Robotic surgical systems have been used in minimally invasive medical procedures. Some robotic surgical systems included a console supporting a robot arm, and at least one end effector such as forceps or a grasping tool including jaws for capturing tissue therebetween. The at least one end effector was mounted to the robot arm. During a medical procedure, the end effector was inserted into a small incision (via a cannula) or a natural orifice of a patient to position the end effector at a work site within the body of the patient.
Cables extended from the console, through the robot arm, and connected to the end effector. In some instances, the cables were actuated by means of motors that were controlled by a processing system including a user interface for a surgeon or clinician to be able to control the robotic surgical system including the robot arm and/or the end effector. The cables connected to a pulley assembly that transferred torque to drive the actuation of the end effector.
In some instances, surgical procedures may require fine control of the end effector to grasp tissue for dissection and/or to spread tissue surfaces for deep tissue access. Accordingly, there is a need for surgical tools that are able to provide precisely controlled forces applied by jaws of an end effector of a robotic surgical system.
Jaws at the end of surgical robotics tools, such as forceps or scissor cutting tools, may be driven by a pulley assembly including pulleys and cables. In accordance with an aspect of the present disclosure, an end effector of a surgical tool comprises a first jaw and a second jaw each being rotatable about a first axis. A first driven pulley is attached to the first jaw and a second driven pulley is attached to the second jaw. The first and second driven pulleys are rotatable about the first axis. Each driven pulley includes a first radial side and a second radial side. A driving pulley is rotatable about a second axis. A first cable has a first end portion, a second end portion, and an intermediate portion. The first end portion is connected to the first radial side of the first driven pulley. The second end portion is connected to the second radial side of the second driven pulley. The intermediate portion is connected to the driving pulley. A second cable has a first end portion, a second end portion, and an intermediate portion. The first end portion is connected to the first radial side of the second driven pulley. The second end portion is connected to the second radial side of the first driven pulley. The intermediate portion is connected to the driving pulley. A rotation of the driving pulley about the second axis rotates the driven pulleys in opposite directions about the first axis to open or close the jaws.
In some embodiments, a rotation of the driving pulley in a first direction about the second axis may rotate the first and second driven pulleys via the first cable. A rotation of the driving pulley in a second direction, opposite the first direction, may rotate the first and second driven pulleys via the second cable.
In aspects of the present disclosure, during rotation of the driving pulley in the first direction, the first cable may be in a tensioned condition and the second cable may be in a slack condition. During rotation of the driving pulley in the second direction, the first cable may be in a slack condition and the second cable may be in a tensioned condition.
In another aspect of the present disclosure, the intermediate portions of the first and second cables may be connected to a common point of the driving pulley or may be connected to different points of the driving pulley. It is contemplated that the intermediate portions of the first and second cables may be crimped to the driving pulley.
In some instances, the first end portion of the first cable and the second end portion of the second cable may be parallel, and in other instances the first end portion of the second cable and the second end portion of the first cable may cross. In other instances the respective end portions of the cables may be perpendicular instead of parallel or may be positioned at different angles that are neither parallel nor perpendicular.
In some embodiments, a proximal end of the first jaw may be fixedly attached to a circumferential edge of the first drive pulley and a proximal end of the second jaw may be fixedly attached to a circumferential edge of the second drive pulley.
In aspects of the present disclosure, the first and second jaws may be in flush engagement with one another. It is contemplated that the first axis may be spaced a lateral distance from the second axis. It is further contemplated that the first and second cables may be connected to the driving pulley at a location off-set a radial distance from the second axis.
In embodiments, the driving pulley may support an anchor member, and the intermediate portions of the first and second cables may each be looped through the anchor member of the driving pulley. The anchor member may include a hook that can be attached to a circumferential edge of the driving pulley.
In accordance with another aspect of the present disclosure, a pulley assembly for actuating a first jaw and a second jaw is provided. The pulley assembly comprises a first driven pulley configured to be attached to the first jaw and a second driven pulley configured to be attached to the second jaw. The first and second driven pulleys are rotatable about a first axis. Each driven pulley includes a first radial side and a second radial side. A driving pulley is rotatable about a second axis. A first cable has a first end portion, a second end portion, and an intermediate portion. The first end portion is connected to the first radial side of the first driven pulley. The second end portion is connected to the second radial side of the second driven pulley. The intermediate portion is connected to the driving pulley. A second cable has a first end portion, a second end portion, and an intermediate portion. The first end portion is connected to the first radial side of the second driven pulley. The second end portion is connected to the second radial side of the first driven pulley. The intermediate portion is connected to the driving pulley. A rotation of the driving pulley about the second axis rotates the first and second driven pulleys in opposite directions about the first axis.
In aspects of the present disclosure, a rotation of the driving pulley in a first direction about the second axis may rotate the first and second driven pulleys via the first cable. A rotation of the driving pulley in a second direction, opposite the first direction, may rotate the first and second driven pulleys via the second cable. In embodiments, during rotation of the driving pulley in the first direction, the first cable may be in a tensioned condition and the second cable may be in a slack condition. During rotation of the driving pulley in the second direction, the first cable may be in a slack condition and the second cable may be in a tensioned condition.
In some of these aspects, the intermediate portions of the first and second cables may be connected to a common point of the driving pulley or may be connected to different points of the driving pulley. In some instances, the first and second cables may be crimped to the driving pulley.
In some of the aforementioned aspects, the first end portion of the first cable and the second end portion of the second cable may be parallel, and the first end portion of the second cable and the second end portion of the first cable may cross. In other instances the respective end portions of the cables may be perpendicular instead of parallel or may be positioned at different angles that are neither parallel nor perpendicular.
In accordance with yet another aspect of the present disclosure, another pulley assembly for actuating a first jaw and a second jaw is provided. The pulley assembly may include at least two driven pulleys. Each driven pulley may be coupled to a respective jaw and each driven pulley may include at least two radial sides.
The pulley assembly may also include a driving pulley rotatable about a different axis from the driven pulleys and at least two cable sections. Each cable section may couple different radial sides of each driven pulley to the driving pulley. A directional change in rotation of the driving pulley may relieve a tension in at least two first cable sections coupled to different radial sides of at least two of the driven pulleys and may apply a tension to at least two second cable sections coupled to opposite radial sides of the driven pulleys than the first two cable sections.
In some instances, a first cable section may be coupled between a first radial side of a first driven pulley and the driving pulley. A second cable section may be coupled between a second radial side of the first driven pulley and the driving pulley. A third cable section may be coupled between a first radial side of a second driven pulley and the driving pulley. A fourth cable section may be coupled between a second radial side of the second driven pulley and the driving pulley.
The first and the fourth cable sections may be tensioned and the second and the third cable sections may be slackened when the driving pulley is rotated in a first direction. The first and the fourth cable sections may be slackened and the second and the third cable sections may be tensioned when the driving pulley is rotated in a second direction. In some instances, at least two of the cable sections may be part of a single continuous cable.
The first and the second cable sections may be part of a first single continuous cable and the third and the fourth cable sections may be part of a second single continuous cable. The first and the fourth cable sections may be part of a first single continuous cable and the second and the third cable sections may be part of a second single continuous cable. In other instances, each of the cable sections may be a separate cable from the other cable sections. In other instances, two of the cable sections may be part of a single continuous cable and two of the cable sections may be separate cables.
Further details and aspects of exemplary embodiments of the present disclosure are described in more detail below with reference to the appended figures.
As used herein, the terms parallel and perpendicular are understood to include relative configurations that are substantially parallel and substantially perpendicular, such as up to about + or −10 degrees from true parallel and true perpendicular.
Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:
Embodiments of the presently disclosed surgical end effectors and methods of actuating the same are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the jaws and/or pulley assembly that is closer to a surgical site, while the term “proximal” refers to that portion of the jaws and/or pulley assembly that is farther from the surgical site.
Referring initially to
Each of the robot arms 2, 3 includes an attaching device 9, 11, to which may be attached, for example, a surgical tool “ST” supporting an end effector 100, in accordance with any one of several embodiments disclosed herein, as will be described in greater detail below.
Robot arms 2, 3 may be driven by electric drives (not shown) that are connected to control device 4. Control device 4 (e.g., a computer) is set up to activate the drives, in particular by means of a computer program, in such a way that robot arms 2, 3, their attaching devices 9, 11 and thus the surgical tool (including end effector 100) execute a desired movement according to a movement defined by means of manual input devices 7, 8. Control device 4 may also be set up in such a way that it regulates the movement of robot arms 2, 3 and/or of the drives.
Medical work station 1 is configured for use on a patient 13 lying on a patient table 12 to be treated in a minimally invasive manner by means of end effector 100. Medical work station 1 may also include one or more robot arms 2, 3, the additional robot arms likewise being connected to control device 4 and being telemanipulatable by means of operating console 5. A medical instrument or surgical tool (including an end effector 100) may also be attached to the additional robot arm. Medical work station 1 may include a database 14, in particular coupled to with control device 4, in which are stored for example pre-operative data from patient 13 and/or anatomical atlases.
Reference may be made to U.S. Patent Publication No. 2012/0116416, filed on Nov. 3, 2011 (now U.S. Pat. No. 8,828,023), entitled “Medical Workstation,” the entire content of which is incorporated herein by reference, for a detailed discussion of the construction and operation of medical work station 1.
Control device 4 may control a plurality of motors (Motor 1 . . . n) with each motor configured to wind-up or let out a length of cable “C” (
Turning now to
End effector 100 includes a pulley assembly 120 disposed therein for actuating jaws 102a, 102b of end effector 100. Pulley assembly 120 includes a first driven pulley 122a, a second driven pulley 122b, a driving pulley 140, a first cable “C1,” and a second cable “C2.” In
In another embodiment that is a variation of that shown in
This configuration may result in a tensioning of a first section of cables C1 and C2 during a rotation of the driving pulley 140 in a first direction as well as a slacking of the other second section of cables C1 and C2. A tensioning of the second sections of cables C1 and C2 and a slacking of the first sections of cables C1 and C2 may occur when rotating the driving pulley 140 in the opposite direction. Other cable routings may be possible in different embodiments.
In embodiments, jaws 102a, 102b may be detachably engaged to driven pulleys 122a, 122b via a hinge, clips, buttons, adhesives, ferrule, snap-fit, threaded, and/or other engagement.
Each driven pulley 122a, 122b has a central opening 124a, 124b formed therein configured for disposal or receipt of a pivot pin (not shown) therein. Central openings 124a, 124b of each driven pulley 122a, 122b are in coaxial alignment with one another. A first axis “X1” extends through central openings 124a, 124b of first and second driven pulleys 122a, 122b. First and second driven pulleys 122a, 122b are disposed adjacent to one another and are rotatable relative to one another about first axis “X1.” In some embodiments, driven pulleys 122a, 122b may be in abutting relation to one another or in spaced apart relation to one another, along first axis “X1.” As mentioned above, first driven pulley 122a supports jaw 102a and second driven pulley 122b supports jaw 102b such that jaws 102a, 102b rotate with driven pulleys 122a, 122b about first axis “X1.”
Driven pulleys 122a, 122b have a circular configuration and each define a circumferential edge 126a, 126b. Circumferential edges 126a, 126b each define an arcuate channel or groove 128a, 128b extending along a circumference of each driven pulley 122a, 122b. Channel or groove 128a, 128b is configured for receipt of one of cables “C1,” “C2,” as described in further detail herein below. In embodiments, driven pulleys 122a, 122b are variously configured, such as, for example, oval, oblong, tapered, arcuate, uniform, non-uniform and/or variable.
First driven pulley 122a includes a first radial side 130a and a second radial side 132a each defining a semicircular portion of first driven pulley 122a, as demarcated by dotted line “L1” in
Pulley assembly 120 further includes a driving pulley 140, similar to first and second driven pulleys 122a, 122b described herein above. Driving pulley 140 is spaced a lateral distance from first and second driven pulleys 122a, 122b. Cable “C,” connected to motor (Motor 1 . . . n), may be wrapped at least once around driving pulley 140, in the manner of a capstan so as to not interfere with first and second cables “C1,” “C2.” Driving pulley 140 includes a central opening 141 formed therein. A second axis “X2” passes through central opening 141, is spaced a lateral distance from first axis “X1,” and may run parallel to first axis “X1” in some instances. In other instances, the second axis “X2” may be offset from the first axis “X1” so that it runs at other non-parallel angles to the first axis “X1,” such as perpendicular to the first axis.
Driving pulley 140 has a circular configuration and defines a circumferential edge 142. Circumferential edge 142 defines an arcuate channel or groove 144 extending along a circumference of driving pulley 140. Channel or groove 144 is configured for disposal of each of cables “C1,” “C2.” Driving pulley 140 includes a first radial side 146 and a second radial side 148 each defining a semicircular portion of driving pulley 140, as demarcated by dotted line “L3” in
Driving pulley 140 supports an anchor member 150 attached to a proximal-most portion of circumferential edge 142. Anchor member 150 secures both cables “C1,” “C2” to drive pulley 140 such that, as driving pulley 140 is rotated, cables “C1,” “C2” move therewith. In embodiments, anchor member 150 may be a hook onto which cables “C1,” “C2” are attached. In other embodiments, anchor member 150 may be a crimp that secures cables “C1,” “C2” to circumferential edge 142 of driving pulley 140.
In use, a rotation of driving pulley 140 about second axis “X2” via motor (Motor 1 . . . n) and cable “C” causes first and second driven pulleys 122a, 122b to rotate, via cables “C1,” “C2,” in opposing directions about first axis “X1” to open or close first and second jaws 102a, 102b, which are attached thereto.
Pulley assembly 120 may further includes a first cable “C1” and a second cable “C2.” First cable “C1” and second cable “C2” each have a first end portion 160a, 160b, a second end portion 162a, 162b, and an intermediate portion or looped portion 164a, 164b. First and second cables “C1,” “C2” are connected to first and second driven pulleys 122a, 122b and driving pulley 140 such that first end portion 160a of first cable “C1” and second end portion 162b of second cable “C2” are substantially parallel, and first end portion 160b of second cable “C2” and second end portion 162a of first cable “C1” cross, as shown in
First cable “C1” is secured by anchor member 150 of driving pulley 140 to a proximal-most portion of circumferential edge 142 of driving pulley 140 such that intermediate portion or looped portion 164a of first cable “C1” is fixedly engaged with a portion of circumferential edge 142 of driving pulley 140. Intermediate portion or looped portion 164a of first cable “C1” is connected to driving pulley 140 at a location off-set a radial distance from second axis “X2.”
First end portion 160a of first cable “C1” is connected to a portion of circumferential edge 126a of first driven pulley 122a that is disposed on first radial side 130a of first driven pulley 122a. Second end portion 162a of first cable “C1” is connected to a portion of circumferential edge 126b of second driven pulley 122b that is disposed on second radial side 132b of second driven pulley 122b.
First end portion 160a of first cable “C1” is connected to first radial side 130a of first driven pulley 122a via an anchor member 180a. Second end portion 162a of first cable “C1” is connected to second radial side 132b of second driven pulley 122b via an anchor member 180b. Anchor members 180a, 180b are similar to anchor member 150 described above. Each anchor member 150, 180a, 180b can be the same or may be different. In this way, intermediate portion or looped portion 164a of first cable “C1” is wrapped around only first radial side 146 of driving pulley 140, as shown in
Second cable “C2” is secured by anchor member 150 of driving pulley 140 to a proximal-most portion of circumferential edge 142 of driving pulley 140 such that intermediate portion or looped portion 164b of second cable “C2” is fixedly engaged with a portion of circumferential edge 142 of driving pulley 140. Intermediate portion or looped portion 164b of second cable “C2” is connected to driving pulley 140 at a location off-set a radial distance from second axis “X2.” In this way, intermediate portions or looped portions 164a, 164b of first and second cables “C1,” “C2” are connected to a common point of driving pulley 140.
First end portion 160b of second cable “C2” is connected to a portion of circumferential edge 126b of second driven pulley 122b that is disposed on first radial side 130b of second driven pulley 122b. Second end portion 162b of second cable “C2” is connected to a portion of circumferential edge 126a of first driven pulley 122a that is disposed on second radial side 132a of first driven pulley 122a.
First end portion 160b of second cable “C2” is connected to first radial side 130b of second driven pulley 122b via an anchor member 182a. Second end portion 162b of second cable “C2” is connected to second radial side 132a of first driven pulley 122a via an anchor member 182b. Anchor members 182a, 182b are similar to anchor member 150 described above. In this way, intermediate portion 164b of second cable “C2” is wrapped around only second radial side 148 of driving pulley 140, as shown in
In one embodiment, first cable “C1” includes two cables each having a first end connected to driving pulley 140 at a common point and a second end connected to first radial side 130a of first driven pulley 122a and second radial side 132b of second driven pulley 122b, respectively. Second cable “C2” may include two cables each having a first end connected to driving pulley 140 at a common point and a second end connected to first radial side 130b of second driven pulley 122b and second radial side 132a of first driven pulley 122a, respectively.
In operation, motor (Motor 1 . . . n) is energized to rotate and, in turn, drive a letting out or winding-up or a rotation of cable “C.” As cable “C” is actuated, cable “C” drives the rotation of driving pulley 140 in one of a clockwise and counter-clockwise direction. A rotation of driving pulley 140 in a first direction, indicated by arrow “A1” shown in
A rotation of driving pulley 140 in a second direction, indicated by arrow “B1” shown in
In one embodiment, as shown in
Pulley assembly 220 includes a first driven pulley 222a, a second driven pulley 222b, a driving pulley 240, a first cable “C3,” and a second cable “C4,” similar to first driven pulley 122a, second driven pulley 122b, driving pulley 140, first cable “C1,” and second cable “C2,” respectively, described above. In accordance with the present embodiment, first cable “C3” and second cable “C4” may be in the form of a cable loop or the like.
First driven pulley 222a supports jaw 202a and second driven pulley 222b supports jaw 202b such that jaws 202a, 202b rotate with driven pulleys 222a, 222b about the first axis. Driven pulleys 222a, 222b have a circular configuration and each define a circumferential edge 226a, 226b configured for disposal or receipt of first and second cables “C3,” “C4,” respectively.
Driving pulley 240 is spaced a lateral distance from first and second driven pulleys 222a, 222b. Cable “C,” connected to motor (Motor 1 . . . n), may be wrapped at least once around driving pulley 240, in the manner of a capstan so as to not interfere with first and second cables “C3,” “C4.” Driving pulley 240 has a circular configuration and defines a circumferential edge 242 configured for disposal or receipt of each of cables “C3,” “C4.”
First cable “C3” is looped or wrapped about circumferential edge 242 of driving pulley 240 and circumferential edge 226a of first driven pulley 222a such that, a first half 260a and a second half 260b of cable “C3” are in parallel relation to one another. Second cable “C4” is looped or wrapped about circumferential edge 242 of driving pulley 240 and circumferential edge 226b of second driven pulley 222b such that, a first half 270a and a second half 270b of cable “C4” are in a criss-cross or figure-eight pattern.
In use, a rotation of driving pulley 240 via motor (Motor 1 . . . n) and cable “C” causes first and second driven pulleys 222a, 222b to rotate, via cables “C3,” “C4,” in opposing directions to open or close first and second jaws 202a, 202b, which are attached thereto.
It will be understood that various modifications may be made to the embodiments disclosed herein. For example, while the driven pulleys disclosed herein have been shown and described as being connected to the proximal ends of the jaws, it is contemplated and within the scope of the present disclosure, for the driven pulleys to be operatively connected with the distal portion of the jaws. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended thereto.
This application is a Continuation Application which claims the benefit of and priority to U.S. patent application Ser. No. 15/116,350, filed on Aug. 3, 2016, which is a U.S. National Stage Application filed under 35 U.S.C. § 371(a) of International Patent Application Serial No. PCT/US2014/064009, filed Nov. 5, 2014, which claims the benefit of each of U.S. Provisional Patent Application Ser. No. 61/938,728, filed Feb. 12, 2014, and U.S. Provisional Patent Application Ser. No. 61/938,732, filed Feb. 12, 2014, the entire disclosure of each of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2777340 | Hettwer et al. | Jan 1957 | A |
2957353 | Babacz | Oct 1960 | A |
3111328 | Di Rito et al. | Nov 1963 | A |
3695058 | Keith, Jr. | Oct 1972 | A |
3734515 | Dudek | May 1973 | A |
3759336 | Marcovitz et al. | Sep 1973 | A |
4162399 | Hudson | Jul 1979 | A |
4606343 | Conta et al. | Aug 1986 | A |
4705038 | Sjostrom et al. | Nov 1987 | A |
4722685 | de Estrada et al. | Feb 1988 | A |
4823807 | Russell et al. | Apr 1989 | A |
4874181 | Hsu | Oct 1989 | A |
5129118 | Walmesley | Jul 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5152744 | Krause et al. | Oct 1992 | A |
5301061 | Nakada et al. | Apr 1994 | A |
5312023 | Green et al. | May 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5350355 | Sklar | Sep 1994 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5427087 | Ito et al. | Jun 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5476379 | Disel | Dec 1995 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5526822 | Burbank et al. | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5540375 | Bolanos et al. | Jul 1996 | A |
5540706 | Aust et al. | Jul 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5553675 | Pitzen et al. | Sep 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5609560 | Ichikawa et al. | Mar 1997 | A |
5626587 | Bishop et al. | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5645209 | Green et al. | Jul 1997 | A |
5647526 | Green et al. | Jul 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5693042 | Boiarski et al. | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5762603 | Thompson | Jun 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5792573 | Pitzen et al. | Aug 1998 | A |
5797536 | Smith et al. | Aug 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5863159 | Lasko | Jan 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5993454 | Longo | Nov 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6090123 | Culp et al. | Jul 2000 | A |
6126651 | Mayer | Oct 2000 | A |
6129547 | Cise et al. | Oct 2000 | A |
6165169 | Panescu et al. | Dec 2000 | A |
6239732 | Cusey | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6321855 | Barnes | Nov 2001 | B1 |
6329778 | Culp et al. | Dec 2001 | B1 |
6343731 | Adams et al. | Feb 2002 | B1 |
6348061 | Whitman | Feb 2002 | B1 |
6368324 | Dinger et al. | Apr 2002 | B1 |
6371909 | Hoeg et al. | Apr 2002 | B1 |
6434507 | Clayton et al. | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6461372 | Jensen et al. | Oct 2002 | B1 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6533157 | Whitman | Mar 2003 | B1 |
6537280 | Dinger et al. | Mar 2003 | B2 |
6610066 | Dinger et al. | Aug 2003 | B2 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6645218 | Cassidy et al. | Nov 2003 | B1 |
6654999 | Stoddard et al. | Dec 2003 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6699177 | Wang et al. | Mar 2004 | B1 |
6716233 | Whitman | Apr 2004 | B1 |
6743240 | Smith et al. | Jun 2004 | B2 |
6783533 | Green et al. | Aug 2004 | B2 |
6792390 | Burnside et al. | Sep 2004 | B1 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6849071 | Whitman et al. | Feb 2005 | B2 |
6860892 | Tanaka et al. | Mar 2005 | B1 |
6899538 | Matoba | May 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6964363 | Wales et al. | Nov 2005 | B2 |
6969385 | Moreyra | Nov 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6986451 | Mastri et al. | Jan 2006 | B1 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
RE39152 | Aust et al. | Jun 2006 | E |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7122029 | Koop et al. | Oct 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7141049 | Stern et al. | Nov 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7143926 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7172104 | Scirica et al. | Feb 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7238021 | Johnson | Jul 2007 | B1 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7252660 | Kunz | Aug 2007 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407078 | Shelton, IV et al. | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7419080 | Smith et al. | Sep 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7481824 | Boudreaux et al. | Jan 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7565993 | Milliman et al. | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7588175 | Timm et al. | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7641093 | Doll et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7673780 | Shelton, IV et al. | Mar 2010 | B2 |
7699835 | Lee et al. | Apr 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7738971 | Swayze et al. | Jun 2010 | B2 |
7740159 | Shelton, IV et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
7758613 | Whitman | Jul 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7770773 | Whitman et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7793812 | Moore et al. | Sep 2010 | B2 |
7799039 | Shelton, IV et al. | Sep 2010 | B2 |
7802712 | Milliman et al. | Sep 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7822458 | Webster, III et al. | Oct 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
7870989 | Viola et al. | Jan 2011 | B2 |
7900805 | Shelton, IV et al. | Mar 2011 | B2 |
7905897 | Whitman et al. | Mar 2011 | B2 |
7918230 | Whitman et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922719 | Ralph et al. | Apr 2011 | B2 |
7947034 | Whitman | May 2011 | B2 |
7951071 | Whitman et al. | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7959051 | Smith et al. | Jun 2011 | B2 |
7963433 | Whitman et al. | Jun 2011 | B2 |
7967178 | Scirica et al. | Jun 2011 | B2 |
7967179 | Olson et al. | Jun 2011 | B2 |
7992758 | Whitman et al. | Aug 2011 | B2 |
8011550 | Aranyi et al. | Sep 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8016855 | Whitman et al. | Sep 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8035487 | Malackowski | Oct 2011 | B2 |
8052024 | Viola et al. | Nov 2011 | B2 |
8074859 | Kostrzewski | Dec 2011 | B2 |
8114118 | Knodel et al. | Feb 2012 | B2 |
8127975 | Olson et al. | Mar 2012 | B2 |
8132705 | Viola et al. | Mar 2012 | B2 |
8152516 | Harvey et al. | Apr 2012 | B2 |
8157150 | Viola et al. | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8182494 | Yencho et al. | May 2012 | B1 |
8186555 | Shelton, IV et al. | May 2012 | B2 |
8186587 | Zmood et al. | May 2012 | B2 |
8220367 | Hsu | Jul 2012 | B2 |
8235273 | Olson et al. | Aug 2012 | B2 |
8241322 | Whitman et al. | Aug 2012 | B2 |
8272554 | Whitman et al. | Sep 2012 | B2 |
8292150 | Bryant | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8342379 | Whitman et al. | Jan 2013 | B2 |
8348130 | Shah et al. | Jan 2013 | B2 |
8348855 | Hillely et al. | Jan 2013 | B2 |
8353440 | Whitman et al. | Jan 2013 | B2 |
8357144 | Whitman et al. | Jan 2013 | B2 |
8365633 | Simaan et al. | Feb 2013 | B2 |
8365972 | Aranyi et al. | Feb 2013 | B2 |
8371492 | Aranyi et al. | Feb 2013 | B2 |
8372057 | Cude et al. | Feb 2013 | B2 |
8391957 | Carlson et al. | Mar 2013 | B2 |
8403926 | Nobis et al. | Mar 2013 | B2 |
8418904 | Wenchell et al. | Apr 2013 | B2 |
8424739 | Racenet et al. | Apr 2013 | B2 |
8454585 | Whitman | Jun 2013 | B2 |
8505802 | Viola et al. | Aug 2013 | B2 |
8517241 | Nicholas et al. | Aug 2013 | B2 |
8523043 | Ullrich et al. | Sep 2013 | B2 |
8551076 | Duval et al. | Oct 2013 | B2 |
8561871 | Rajappa et al. | Oct 2013 | B2 |
8561874 | Scirica | Oct 2013 | B2 |
8602287 | Yates et al. | Dec 2013 | B2 |
8617203 | Stefanchik et al. | Dec 2013 | B2 |
8623000 | Humayun et al. | Jan 2014 | B2 |
8627995 | Smith et al. | Jan 2014 | B2 |
8632463 | Drinan et al. | Jan 2014 | B2 |
8636766 | Milliman et al. | Jan 2014 | B2 |
8647258 | Aranyi et al. | Feb 2014 | B2 |
8652121 | Quick et al. | Feb 2014 | B2 |
8657174 | Yates et al. | Feb 2014 | B2 |
8657177 | Scirica et al. | Feb 2014 | B2 |
8672206 | Aranyi et al. | Mar 2014 | B2 |
8696552 | Whitman | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8715306 | Faller et al. | May 2014 | B2 |
8758391 | Swayze et al. | Jun 2014 | B2 |
8806973 | Ross et al. | Aug 2014 | B2 |
8808311 | Heinrich et al. | Aug 2014 | B2 |
8820605 | Shelton, IV | Sep 2014 | B2 |
8828023 | Neff et al. | Sep 2014 | B2 |
8851355 | Aranyi et al. | Oct 2014 | B2 |
8858571 | Shelton, IV et al. | Oct 2014 | B2 |
8875972 | Weisenburgh, II et al. | Nov 2014 | B2 |
8888762 | Whitman | Nov 2014 | B2 |
8893946 | Boudreaux et al. | Nov 2014 | B2 |
8899462 | Kostrzewski et al. | Dec 2014 | B2 |
8905289 | Patel et al. | Dec 2014 | B2 |
8919630 | Milliman | Dec 2014 | B2 |
8931680 | Milliman | Jan 2015 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8950646 | Viola | Feb 2015 | B2 |
8960519 | Whitman et al. | Feb 2015 | B2 |
8961396 | Azarbarzin et al. | Feb 2015 | B2 |
8967443 | McCuen | Mar 2015 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
8968337 | Whitfield et al. | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
9016545 | Aranyi et al. | Apr 2015 | B2 |
9023014 | Chowaniec et al. | May 2015 | B2 |
9033868 | Whitman et al. | May 2015 | B2 |
9055943 | Zemlok et al. | Jun 2015 | B2 |
9064653 | Prest et al. | Jun 2015 | B2 |
9072515 | Hall et al. | Jul 2015 | B2 |
9113847 | Whitman et al. | Aug 2015 | B2 |
9113875 | Viola et al. | Aug 2015 | B2 |
9113876 | Zemlok et al. | Aug 2015 | B2 |
9113899 | Garrison et al. | Aug 2015 | B2 |
9216013 | Scirica et al. | Dec 2015 | B2 |
9241712 | Zemlok et al. | Jan 2016 | B2 |
9282961 | Whitman et al. | Mar 2016 | B2 |
9282963 | Bryant | Mar 2016 | B2 |
9295522 | Kostrzewski | Mar 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
10226305 | Seow | Mar 2019 | B2 |
20010021859 | Kawai et al. | Sep 2001 | A1 |
20010031975 | Whitman et al. | Oct 2001 | A1 |
20020049454 | Whitman et al. | Apr 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20030038938 | Jung et al. | Feb 2003 | A1 |
20030165794 | Matoba | Sep 2003 | A1 |
20040034369 | Sauer et al. | Feb 2004 | A1 |
20040111012 | Whitman | Jun 2004 | A1 |
20040133189 | Sakurai | Jul 2004 | A1 |
20040153124 | Whitman | Aug 2004 | A1 |
20040176751 | Weitzner et al. | Sep 2004 | A1 |
20040193146 | Lee et al. | Sep 2004 | A1 |
20050125027 | Knodel et al. | Jun 2005 | A1 |
20050131442 | Yachia et al. | Jun 2005 | A1 |
20060074415 | Scott et al. | Apr 2006 | A1 |
20060142656 | Malackowski et al. | Jun 2006 | A1 |
20060142740 | Sherman et al. | Jun 2006 | A1 |
20060142744 | Boutoussov | Jun 2006 | A1 |
20060259073 | Miyamoto et al. | Nov 2006 | A1 |
20060278680 | Viola et al. | Dec 2006 | A1 |
20060284730 | Schmid et al. | Dec 2006 | A1 |
20070023476 | Whitman et al. | Feb 2007 | A1 |
20070023477 | Whitman et al. | Feb 2007 | A1 |
20070029363 | Popov | Feb 2007 | A1 |
20070084897 | Shelton et al. | Apr 2007 | A1 |
20070102472 | Shelton | May 2007 | A1 |
20070152014 | Gillum et al. | Jul 2007 | A1 |
20070175947 | Ortiz et al. | Aug 2007 | A1 |
20070175949 | Shelton et al. | Aug 2007 | A1 |
20070175950 | Shelton et al. | Aug 2007 | A1 |
20070175951 | Shelton et al. | Aug 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070175961 | Shelton et al. | Aug 2007 | A1 |
20070270784 | Smith et al. | Nov 2007 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080058801 | Taylor et al. | Mar 2008 | A1 |
20080108443 | Jinno et al. | May 2008 | A1 |
20080109012 | Falco et al. | May 2008 | A1 |
20080110958 | McKenna et al. | May 2008 | A1 |
20080147089 | Loh et al. | Jun 2008 | A1 |
20080167736 | Swayze et al. | Jul 2008 | A1 |
20080185419 | Smith et al. | Aug 2008 | A1 |
20080188841 | Tomasello et al. | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080208195 | Shores et al. | Aug 2008 | A1 |
20080237296 | Boudreaux et al. | Oct 2008 | A1 |
20080251561 | Eades et al. | Oct 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080255607 | Zemlok | Oct 2008 | A1 |
20080262654 | Omori et al. | Oct 2008 | A1 |
20080308603 | Shelton et al. | Dec 2008 | A1 |
20090012533 | Barbagli et al. | Jan 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20090099876 | Whitman | Apr 2009 | A1 |
20090138006 | Bales et al. | May 2009 | A1 |
20090171147 | Lee et al. | Jul 2009 | A1 |
20090182193 | Whitman et al. | Jul 2009 | A1 |
20090209946 | Swayze et al. | Aug 2009 | A1 |
20090209990 | Yates et al. | Aug 2009 | A1 |
20090254094 | Knapp et al. | Oct 2009 | A1 |
20090299141 | Downey et al. | Dec 2009 | A1 |
20100023022 | Zeiner et al. | Jan 2010 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100193568 | Scheib et al. | Aug 2010 | A1 |
20100211053 | Ross et al. | Aug 2010 | A1 |
20100225073 | Porter et al. | Sep 2010 | A1 |
20110071508 | Duval et al. | Mar 2011 | A1 |
20110077673 | Grubac et al. | Mar 2011 | A1 |
20110106145 | Jeong | May 2011 | A1 |
20110121049 | Malinouskas et al. | May 2011 | A1 |
20110125138 | Malinouskas et al. | May 2011 | A1 |
20110139851 | McCuen | Jun 2011 | A1 |
20110155783 | Rajappa et al. | Jun 2011 | A1 |
20110155786 | Shelton, IV | Jun 2011 | A1 |
20110172648 | Jeong | Jul 2011 | A1 |
20110174009 | Iizuka et al. | Jul 2011 | A1 |
20110174099 | Ross et al. | Jul 2011 | A1 |
20110184245 | Xia et al. | Jul 2011 | A1 |
20110204119 | McCuen | Aug 2011 | A1 |
20110218522 | Whitman | Sep 2011 | A1 |
20110238064 | Williams | Sep 2011 | A1 |
20110276057 | Conlon et al. | Nov 2011 | A1 |
20110290854 | Timm et al. | Dec 2011 | A1 |
20110295242 | Spivey et al. | Dec 2011 | A1 |
20110295269 | Swensgard et al. | Dec 2011 | A1 |
20110301637 | Kerr et al. | Dec 2011 | A1 |
20120000962 | Racenet et al. | Jan 2012 | A1 |
20120074199 | Olson et al. | Mar 2012 | A1 |
20120080475 | Smith et al. | Apr 2012 | A1 |
20120089131 | Zemlok et al. | Apr 2012 | A1 |
20120104071 | Bryant | May 2012 | A1 |
20120116368 | Viola | May 2012 | A1 |
20120116416 | Neff et al. | May 2012 | A1 |
20120143002 | Aranyi et al. | Jun 2012 | A1 |
20120158013 | Stefanchik et al. | Jun 2012 | A1 |
20120172924 | Allen, IV | Jul 2012 | A1 |
20120211542 | Racenet | Aug 2012 | A1 |
20120223121 | Viola et al. | Sep 2012 | A1 |
20120245428 | Smith et al. | Sep 2012 | A1 |
20120253329 | Zemlok et al. | Oct 2012 | A1 |
20120310220 | Malkowski et al. | Dec 2012 | A1 |
20120323226 | Chowaniec et al. | Dec 2012 | A1 |
20120330285 | Hartoumbekis et al. | Dec 2012 | A1 |
20130093149 | Saur et al. | Apr 2013 | A1 |
20130110131 | Madhani et al. | May 2013 | A1 |
20130140835 | Stefanchik | Jun 2013 | A1 |
20130181035 | Milliman | Jul 2013 | A1 |
20130184704 | Beardsley et al. | Jul 2013 | A1 |
20130214025 | Zemlok et al. | Aug 2013 | A1 |
20130274722 | Kostrzewski et al. | Oct 2013 | A1 |
20130282052 | Aranyi et al. | Oct 2013 | A1 |
20130292451 | Viola et al. | Nov 2013 | A1 |
20130313304 | Shelton, IV et al. | Nov 2013 | A1 |
20130317486 | Nicholas et al. | Nov 2013 | A1 |
20130319706 | Nicholas et al. | Dec 2013 | A1 |
20130324978 | Nicholas et al. | Dec 2013 | A1 |
20130324979 | Nicholas et al. | Dec 2013 | A1 |
20130334281 | Williams | Dec 2013 | A1 |
20140012236 | Williams et al. | Jan 2014 | A1 |
20140012237 | Pribanic et al. | Jan 2014 | A1 |
20140012289 | Snow et al. | Jan 2014 | A1 |
20140025046 | Williams et al. | Jan 2014 | A1 |
20140110455 | Ingmanson et al. | Apr 2014 | A1 |
20140207125 | Applegate et al. | Jul 2014 | A1 |
20140207182 | Zergiebel et al. | Jul 2014 | A1 |
20140207185 | Goble et al. | Jul 2014 | A1 |
20140236174 | Williams et al. | Aug 2014 | A1 |
20140276932 | Williams et al. | Sep 2014 | A1 |
20140299647 | Scirica et al. | Oct 2014 | A1 |
20140303668 | Nicholas et al. | Oct 2014 | A1 |
20140350570 | Lee | Nov 2014 | A1 |
20140358129 | Zergiebel et al. | Dec 2014 | A1 |
20140361068 | Aranyi et al. | Dec 2014 | A1 |
20140365235 | DeBoer et al. | Dec 2014 | A1 |
20140373652 | Zergiebel et al. | Dec 2014 | A1 |
20150014392 | Williams et al. | Jan 2015 | A1 |
20150048144 | Whitman | Feb 2015 | A1 |
20150076205 | Zergiebel | Mar 2015 | A1 |
20150080912 | Sapre | Mar 2015 | A1 |
20150112381 | Richard | Apr 2015 | A1 |
20150122870 | Zemlok et al. | May 2015 | A1 |
20150133224 | Whitman et al. | May 2015 | A1 |
20150150547 | Ingmanson et al. | Jun 2015 | A1 |
20150150574 | Richard et al. | Jun 2015 | A1 |
20150157320 | Zergiebel et al. | Jun 2015 | A1 |
20150157321 | Zergiebel et al. | Jun 2015 | A1 |
20150164502 | Richard et al. | Jun 2015 | A1 |
20150201931 | Zergiebel et al. | Jul 2015 | A1 |
20150272577 | Zemlok et al. | Oct 2015 | A1 |
20150297199 | Nicholas et al. | Oct 2015 | A1 |
20150303996 | Calderoni | Oct 2015 | A1 |
20150320420 | Penna et al. | Nov 2015 | A1 |
20150327850 | Kostrzewski | Nov 2015 | A1 |
20150342601 | Williams et al. | Dec 2015 | A1 |
20150342603 | Zergiebel et al. | Dec 2015 | A1 |
20150374366 | Zergiebel et al. | Dec 2015 | A1 |
20150374370 | Zergiebel et al. | Dec 2015 | A1 |
20150374371 | Richard et al. | Dec 2015 | A1 |
20150374372 | Zergiebel et al. | Dec 2015 | A1 |
20150374449 | Chowaniec et al. | Dec 2015 | A1 |
20150380187 | Zergiebel et al. | Dec 2015 | A1 |
20160095585 | Zergiebel et al. | Apr 2016 | A1 |
20160095596 | Scirica et al. | Apr 2016 | A1 |
20160106406 | Cabrera et al. | Apr 2016 | A1 |
20160113648 | Zergiebel et al. | Apr 2016 | A1 |
20160113649 | Zergiebel et al. | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
2451558 | Jan 2003 | CA |
1547454 | Nov 2004 | CN |
1957854 | May 2007 | CN |
101495046 | Jul 2009 | CN |
102247182 | Nov 2011 | CN |
102008053842 | May 2010 | DE |
0705571 | Apr 1996 | EP |
1563793 | Aug 2005 | EP |
1769754 | Apr 2007 | EP |
2316345 | May 2011 | EP |
2668910 | Dec 2013 | EP |
2333509 | Feb 2010 | ES |
2005125075 | May 2005 | JP |
100778387 | Nov 2007 | KR |
1020100001823 | Jan 2010 | KR |
20120022521 | Mar 2012 | KR |
2009051418 | Apr 2009 | WO |
2011-115310 | Sep 2011 | WO |
2011108840 | Sep 2011 | WO |
2012040984 | Apr 2012 | WO |
2014012780 | Jan 2014 | WO |
2015-122943 | Aug 2015 | WO |
Entry |
---|
International Search Report & Written Opinion corresponding to counterpart Int'l Appln. No. PCT/US2014/064006 dated Feb. 5, 2015. |
International Search Report & Written Opinion corresponding to counterpart Int'l Appln. No. PCT/US2014/064009 dated Feb. 5, 2015. |
Extended European Search Report corresponding to counterpart International Application No. EP 14 18 4882.0 dated May 12, 2015. |
Canadian Office Action corresponding to counterpart International Application No. CA 2640399 dated May 7, 2015. |
Japanese Office Action corresponding to counterpart International Application No. JP 2011-197365 dated Mar. 23, 2015. |
Japanese Office Action corresponding to counterpart International Application No. JP 2011-084092 dated May 20, 2015. |
Japanese Office Action corresponding to counterpart International Application No. JP 2014-148482 dated Jun. 2, 2015. |
Extended European Search Report corresponding to counterpart International Application No. EP 14 18 9358.6 dated Jul. 8, 2015. |
Extended European Search Report corresponding to counterpart International Application No. EP 14 19 6148.2 dated Apr. 23, 2015. |
Partial European Search Report corresponding to counterpart International Application No. EP 14 19 6704.2 dated May 11, 2015. |
Australian Office Action corresponding to counterpart International Application No. AU 2010241367 dated Aug. 20, 2015. |
Partial European Search Report corresponding to counterpart International Application No. EP 14 19 97833 dated Sep. 3, 2015. |
Extended European Search Report corresponding to counterpart International Application No. EP 15 16 9962.6 dated Sep. 14, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015. |
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016. |
Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016. |
Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015. |
European Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015. |
Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015. |
Australian Examination Report No. 1 corresponding to International Application No. AU 2014204542 dated Jan. 7, 2016. |
Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016. |
European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016. |
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015. |
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, dated Dec. 21, 2015. |
Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015. |
Partial European Search Report corresponding to International Application No. EP 15 19 0643.5 dated Feb. 26, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016. |
Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 17 3807.7 dated Nov. 24, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015. |
European Office Action corresponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016. |
Chinese Office Action corresponding to counterpart Int'l Appln. No. CN 201310369318.2 dated Jun. 28, 2016. |
Chinese Office Action (with English translation), dated Jul. 4, 2016, corresponding to Chinese Patent Application No. 2013101559718; 23 total pages. |
International Search Report corresponding to PCT/US2014/061329 dated Jan. 28, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 14882554.0 dated Sep. 27, 2017. |
International Search Report for (PCT/US2014/064009) date of completion is Feb. 5, 2015 (3 pages). |
Number | Date | Country | |
---|---|---|---|
20190159850 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
61938728 | Feb 2014 | US | |
61938732 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15116350 | US | |
Child | 16264784 | US |