The present disclosure relates to surgical systems and, in various arrangements, to grasping instruments that are designed to grasp the tissue of a patient, dissecting instruments configured to manipulate the tissue of a patient, clip appliers configured to clip the tissue of a patient, and suturing instruments configured to suture the tissue of a patient, among others.
Various features of the embodiments described herein, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Applicant of the present application owns the following U.S. Patent Applications that were filed on Aug. 24, 2018, and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application owns the following U.S. Patent Applications that were filed on May 1, 2018 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application owns the following U.S. Patent Applications that were filed on Feb. 28, 2018 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application owns the following U.S. Patent Applications that were filed on Oct. 30, 2017 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application owns the following U.S. Provisional Patent Applications, filed on Dec. 28, 2017, the disclosure of each of which is herein incorporated by reference in its entirety:
Applicant of the present application owns the following U.S. Provisional Patent Applications, filed on Mar. 28, 2018, each of which is herein incorporated by reference in its entirety:
Applicant of the present application owns the following U.S. Patent Applications, filed on Mar. 29, 2018, each of which is herein incorporated by reference in its entirety:
Applicant of the present application owns the following U.S. Patent Applications, filed on Mar. 29, 2018, each of which is herein incorporated by reference in its entirety:
Applicant of the present application owns the following U.S. Patent Applications, filed on Mar. 29, 2018, each of which is herein incorporated by reference in its entirety:
Applicant of the present application owns the following U.S. Provisional Patent Applications, filed on Mar. 30, 2018, each of which is herein incorporated by reference in its entirety:
Applicant of the present application owns the following U.S. Provisional Patent Application, filed on Apr. 19, 2018, which is herein incorporated by reference in its entirety:
Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. Well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. The reader will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”), and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a surgical system, device, or apparatus that “comprises,” “has,” “includes”, or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, an element of a system, device, or apparatus that “comprises,” “has,” “includes”, or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.
The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the reader will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, the reader will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongate shaft of a surgical instrument can be advanced.
The embodiments disclosed herein are configured for use with surgical suturing instruments and systems such as those disclosed in U.S. patent application Ser. No. 13/832,786, now U.S. Pat. No. 9,398,905, entitled CIRCULAR NEEDLE APPLIER WITH OFFSET NEEDLE AND CARRIER TRACKS; U.S. patent application Ser. No. 14/721,244, now U.S. Patent Application Publication No. 2016/0345958, entitled SURGICAL NEEDLE WITH RECESSED FEATURES; and U.S. patent application Ser. No. 14/740,724, now U.S. Patent Application Publication No. 2016/0367243, entitled SUTURING INSTRUMENT WITH MOTORIZED NEEDLE DRIVE, which are incorporated by reference in their entireties herein. The embodiments discussed herein are also usable with the instruments, systems, and methods disclosed in U.S. patent application Ser. No. 15/908,021, entitled SURGICAL INSTRUMENT WITH REMOTE RELEASE, filed on Feb. 28, 2018, U.S. patent application Ser. No. 15/908,012, entitled SURGICAL INSTRUMENT HAVING DUAL ROTATABLE MEMBERS TO EFFECT DIFFERENT TYPES OF END EFFECTOR MOVEMENT, filed on Feb. 28, 2018, U.S. patent application Ser. No. 15/908,040, entitled SURGICAL INSTRUMENT WITH ROTARY DRIVE SELECTIVELY ACTUATING MULTIPLE END EFFECTOR FUNCTIONS, filed on Feb. 28, 2018, U.S. patent application Ser. No. 15/908,057, entitled SURGICAL INSTRUMENT WITH ROTARY DRIVE SELECTIVELY ACTUATING MULTIPLE END EFFECTOR FUNCTIONS, filed on Feb. 28, 2018, U.S. patent application Ser. No. 15/908,058, entitled SURGICAL INSTRUMENT WITH MODULAR POWER SOURCES, filed on Feb. 28, 2018, and U.S. patent application Ser. No. 15/908,143, entitled SURGICAL INSTRUMENT WITH SENSOR AND/OR CONTROL SYSTEMS, filed on Feb. 28, 2018, which are incorporated in their entireties herein. The embodiments discussed herein are also usable with the instruments, systems, and methods disclosed in U.S. Provisional Patent Application No. 62/659,900, entitled METHOD OF HUB COMMUNICATION, filed on Apr. 19, 2018, U.S. Provisional Patent Application No. 62/611,341, entitled INTERACTIVE SURGICAL PLATFORM, filed on Dec. 28, 2017, U.S. Provisional Patent Application No. 62/611,340, entitled CLOUD-BASED MEDICAL ANALYTICS, filed on Dec. 28, 2017, and U.S. Provisional Patent Application No. 62/611,339, entitled ROBOT ASSISTED SURGICAL PLATFORM, filed on Dec. 28, 2017, which are incorporated by reference in their entireties herein. Generally, these surgical suturing instruments comprise, among other things, a shaft, an end effector attached to the shaft, and drive systems positioned within the shaft to transfer motion from a source motion to the end effector. The motion source can comprise a manually driven actuator, an electric motor, and/or a robotic surgical system. The end effector comprises a body portion, a needle track defined within the body portion, and a needle driver configured to drive a needle through a rotational firing stroke. The needle is configured to be guided through its rotational firing stroke within the body portion by the needle track. In various instances, the needle driver is similar to that of a ratchet system. In at least one instance, the needle driver is configured to drive the needle through a first half of the rotational firing stroke which places the needle in a hand-off position—a position where a tissue-puncturing end of the needle has passed through the target tissue and reentered the body portion of the end effector. At such point, the needle driver can be returned to its original position to pick up the tissue-puncturing end of the needle and drive the needle through a second half of its rotational firing stroke. Once the needle driver pulls the needle through the second half of its rotational firing stroke, the needle driver is then returned to its original unfired position to grab the needle for another rotational firing stroke. The drive systems can be driven by one or more motors and/or manual drive actuation systems. The needle comprises suturing material, such as thread, for example, attached thereto. The suturing material is configured to be pulled through tissue as the needle is advanced through its rotational firing stroke to seal the tissue and/or attached the tissue to another structure, for example.
The needle 91200 comprises a tip 91213, a butt end 91211, and an arcuate shaft 91212 extending between the tip 91213 and the butt end 91211. The needle 91200 further comprises suturing material 91220 attached to the butt end 91211 of the needle 91200. The tip 91213 comprises a bevel, or point, 91215 configured to pierce tissue during a firing stroke of the needle 91200. As the needle 91200 moves through its firing stroke, it is configured to move into and out of contact with the terminals 91112, 91132, and 91142. In its starting, or home, position (
The system 91100 permits the needle location to be detected directly. Monitoring the needle location over a period of time can provide means for determining the rate of advancement of the needle and/or changes in rate of advancement of the needle during its firing stroke. In various instances, if the needle is sensed to be moving at a rate slower than preferred, for example, the instrument can automatically adjust a power control program of the motor which is advancing the needle through its firing stroke to speed up the needle. Similarly, if the needle is sensed to be moving at a rate faster than preferred, for example, the instrument can automatically adjust the power control program of the motor which is advancing the needle through its firing stroke to slow down the needle. This arrangement allows the control program to adapt the rate and/or sequence at which the needle is fired during a procedure and/or during each firing stroke of the needle to better accommodate variable conditions such as, for example, variable tissue thicknesses during suturing.
The sensors 91340 can be used in combination with a control program to ensure that a motor driving the needle 91320 through its firing stroke is driving the needle 91320 the expected amount. For example, a certain amount of rotation from the needle drive motor should produce a corresponding travel length of the needle 91320. Monitoring the position of the needle 91320 in the end effector 91310 along with rotational motion of the motor can provide a way to make sure that the motor is producing the anticipated drive motions of the needle. An example of a needle stroke where the rotational motion of the motor and the actual length of needle travel are monitored is depicted in the graph 91360 illustrated in
If the actual motions sensed by a needle position sensing system are not as expected, the control program can place the system in a limp mode, for example, to prevent premature failure of components.
The needle sensing system 91300 can also monitor the current drawn by the needle drive motor while monitoring the input from the sensors 91340. In such an embodiment, a control program can the reverse actuation of the needle 91320 in the event that a substantial increase in current is detected in the motor and the subsequent sensor 91340 has not been tripped—possibly indicating that the needle is jammed. In the same and/or another embodiment, an encoder can be used to measure the number of rotations being provided by the motor. A control program can compare the number of rotations being provided by the motor to the input from the sensors 91340. In an instance where the sensors 91340 are not being tripped as expected by a given amount of rotation from the motor, the control program can interrogate the motor current to assess why the needle is not traveling the expected distance. If the motor current is substantially high, this could indicate a jam, as discussed above. If the motor current is substantially low, this could indicate that the needle and the needle driver are no longer coupled, for example, and that the needle driver is freely moving without driving the needle. In an alternative embodiment, motor torque can be sensed instead of motor current. An example of current monitoring can be seen in the graph 91370 illustrated in
The needle drive system 91550 comprises a linear actuator 91520, a proximal needle feed wheel 91552 configured to be rotated about its pivot 91552 by way of the linear actuator 91520 and rotatably mounted within the body 91540 of the end effector 91530, and a distal needle feed wheel 91554 configured to be rotated about its pivot 91555 by a connecting link 91556 by way of the proximal needle feed wheel 91552 and rotatably mounted within the body 91540 of the end effector 91530. The feed wheels 91552, 91554 are configured to be rotated together to move the flexible needle 91570 through the body 91540 of the end effector 91530 and out of the body 91540 of the end effector 91530 against the movable needle guide 91560. The movable needle guide 91560 comprises a curved tip 91563 configured to guide the flexible needle 91570 back into the body 91540 of the end effector 91530 so that the distal needle feed wheel 91554 can begin guiding the flexible needle 91570 back toward the proximal needle feed wheel 91552. The feed wheels 91552, 91554 are connected by a coupler bar such that they rotate at the same time.
In various instances, the needle 91570 may need to be repaired or replaced. To remove the needle 91570 from the end effector 91530, the movable needle guide 91560 may be pivoted outwardly to provide access to the needle 91570 (
The needle 91570 comprises an arc length A. The distance between the pivots 91553, 91555 of the feed wheels 91552, 91554 is labeled length B. The arc length A of the needle 91570 must be greater than the length B in order to be able to guide the flexible needle 91570 back into the end effector body 91540 with the proximal needle feed wheel 91553. Such an arrangement allows a capture, or bite, width 91580 of the surgical suturing instrument 91500 to be larger than the diameter of the shaft 91510. In certain instances, a portion of the end effector containing the needle drive system 91550 can be articulated relative to the end effector body 91540 so that the capture width, or opening, 91580 can hinge outwardly and face tissue distally with respect to the instrument 91500. This arrangement can prevent a user from having to preform the suturing procedure with respect to the side of the instrument 91500. Such a feature may utilize a hinge mechanism with snap features to rigidly hold the end effector body 91540 in a firing position as opposed to a position suitable for insertion through a trocar.
As outlined above, a portion of the end effector 91530 is movable to increase or decrease the width of the end effector 91530. Decreasing the width of the end effector 91530 allows the end effector 91530 to be inserted through a narrow trocar passageway. Increasing the width of the end effector 91530 after it has been passed through the trocar allows the end effector 91530 to make larger suture loops in the patient tissue, for example. In various instances, the end effector 91530 and/or the needle 91570 can be flexible so that they can be compressed as they are inserted through the trocar and then re-expand once they have passed through the trocar. Such an arrangement, as described above, allows a larger end effector to be used.
The tissue bite region 92321 is larger than the diameter of the shaft 92310. During use, a user would insert the collapsible suturing device 92300 into a trocar while the device 92300 is in its straight configuration. After the device 92300 is inserted through the trocar, the user may actively rotate the end effector 92320 with an actuator to orient the end effector 92320 properly to prepare to suture the tissue. Once the end effector 92320 is oriented to face the tissue to be sutured, a movable needle guide may be actuated outwardly to prepare to advance the needle through a needle firing stroke. In this configuration, the end effector 92320 can then be pressed against the tissue to be sutured and the needle can be advanced through a needle firing stroke. Once suturing is complete, the needle guide can be collapsed and the end effector 92320 can be rotated back into its straight configuration to be removed from the patient through the trocar. The needle may be taken out of the end effector 92320 before or after the end effector 92320 has passed back out of the patient through the trocar.
When a clinician wants to complete a suture stroke, discussed in greater detail below, the needle 91630 is moved to the position shown in
Referring to the graph 91830, the solid plot line represents a scenario where an attempt at attaching the modular attachment 91820 to the attachment interface 91810 was made, and the modular attachment 91820 and the attachment 91830 slipped out of engagement thereby causing a reduction in torque of the actuation drive system below a minimum torque threshold representing an unsuccessful attachment and engagement of drive systems. The torque of a failed attempt is noticeably different than the torque of a successful attempt which is also illustrated in the graph 91830. In another embodiment, the current of the motor that drives the drive system can be directly monitored. Referring now to the graph 91830′, the surgical instrument is equipped with a control system that shuts off the motor in this scenario (1) when the torque sensed drops below the minimum threshold torque. The control system can also alert a user that the motor has been stopped because attachment was not successful. Referring again to the graph 91830, a second scenario is illustrated by a dashed plot line where attachment is made, however, the torque sensed increases above a maximum torque threshold. This could indicate a jam between the attachment interface 91810 and the modular attachment 91820. Referring again to the graph 91830′, the surgical instrument is equipped with a control system that limits the torque delivered by the drive system when the torque sensed increases above the maximum threshold torque, as illustrated in the dashed plot line representing the second scenario (2). Such a limiting of torque delivery can prevent the breaking of components in the modular attachment 91820 and/or the attachment interface 91810.
In various embodiments, strain gauges can be fitted to frame elements of the modular attachments to monitor force applied to tissue with the frame elements themselves. For example, a strain gauge can be fitted to an outer shaft element to monitor the force experienced by the shaft as the modular attachment is pushed against tissue and/or as the modular attachment pulls tissue. This information can be communicated to the user of the instrument so that the user is aware of the pressure being applied to the tissue by the grounded elements of the modular attachment due to manipulation and movement of the modular attachment within the surgical site.
The surgical instrument can also alert the user when an unexpected voltage potential is detected and await further action by a user of the instrument. If the user is using the instrument that experiences the voltage spike as a mono-polar bridge instrument then the user could inform the instrument of this to continue actuation of the instrument. The instrument can also include an electrical circuit, or ground path, to interrupt the flow of electricity beyond a dedicated position when the instrument experiences an unexpected voltage potential. In at least one instance, the ground path can extend within a flex circuit extending throughout the shaft.
In various embodiments, surgical suturing instruments can include means for detecting the tension of the suture during the suturing procedure. This can be achieved by monitoring the force required to advance a needle through its firing stroke. Monitoring the force required to pull the suturing material through tissue can indicate stitch tightness and/or suture tension. Pulling the suturing material too tight during, for example, tying a knot can cause the suturing material to break. The instrument can use the detected forces to communicate stitch tightness to the user during a suturing procedure and let the user know that the stitch is approaching its failure tightness or, on the other hand, is not tight enough to create a sufficient stitch. The communicated stitch tightness can be shown to a user during a suturing procedure in an effort to improve the stitch tightness throughout the procedure.
In various embodiments, a surgical suturing instrument comprises a method for detecting load within the end effector, or head, of the instrument, and a control program to monitor this information and automatically modify, and/or adjust, the operation of the instrument. In one instance, a needle holder and/or a needle drive can comprise a strain gauge mounted thereon to monitor the force and stress being experienced by the needle during its firing stroke. A processor of the instrument can monitor the strain sensed by the strain gauge by monitoring the voltage reading that the strain gauge provides and, if the force detected is above a predetermined threshold, the processor can slow the needle and/or alert a user of the instrument that the needle is experiencing a force greater than a certain threshold. Other parameters, such as needle velocity and/or acceleration, for example, can be monitored and used to modify the operation of the surgical instrument.
Many different forces experienced by a surgical suturing instrument can be monitored throughout a suturing procedure to improve efficiency of the operation.
Various parameters of the instrument 92200 can be monitored during a surgical suturing procedure. The force, or load, experienced by the needle 92236 can be monitored, the torque load that resists distal head rotation of the end effector 92230 can be monitored, and/or the bending load of the shaft 92210 that can cause drive systems within the shaft to bind up can be monitored. The monitoring of these parameters is illustrated in the graph 92100 in
Another system for detecting and/or monitoring the location of the suturing needle during its firing stroke can include utilizing one or more magnets and Hall Effect sensors. In such an embodiment, a permanent magnet can be placed within and/or on the needle and a Hall Effect sensor can be placed within, or adjacent to, the needle track, for example. In such an instance, movement of the needle will cause the magnet to move into, within, and/or out of the field created by the Hall Effect sensor thereby providing a way to detect the location of the needle. In the same embodiment, and/or in another embodiment, a magnet can be placed on one side of the needle track and a corresponding Hall Effect sensor can be placed on the other side of the needle track. In such an embodiment, the needle itself can interrupt the magnetic field between the magnet and the Hall Effect sensor as the needle passes between the two magnets, thereby providing a way to detect the location of the needle.
The surgical suturing end effector assembly 93100 further comprises a needle sensing system comprising a magnet 93162 and a Hall Effect sensor 93164. The magnet 93162 and Hall Effect sensor 93164 are positioned within the suturing cartridge 93141 such that the needle 93152 is configured to interrupt the magnetic field between the magnet 93162 and the Hall Effect sensor 93164. Such an interruption can indicate to a control program the position of the needle 93152 relative to the suturing cartridge 93141 and/or within its firing stroke. The sensor and magnet may be embedded within the cartridge and/or placed adjacent the needle track such as, for example, on top of, on bottom of, and/or on the sides of the needle track.
Another system for detecting and/or monitoring the location of the suturing needle during its firing stroke can include utilizing one or more proximity sensors near the needle and/or the needle driver. As discussed above, the needle driver is configured to drive the needle out of its needle track and back into the other side of the needle track, release the needle, and return to its original position to grab the needle on the other side of the track to prepare for a second half of a firing stroke. The proximity sensor(s) can be used to monitor the location of the needle and/or the needle driver. In an instance where multiple proximity sensors are used, a first proximity sensor can be used near the entry point on the needle track and a second proximity sensor can be used near the exit point on the needle track, for example.
In at least one embodiment, a plurality of proximity sensors can be used within the end effector of a suturing device to determine if a needle of the suturing device has been de-tracked or fallen out of its track. To achieve this, an array of proximity sensors can be provided such that the needle contacts at least two sensors at all times during its firing stroke. If a control program determines that only one sensor is contacted based on the data from the proximity sensors, the control system can then determine that the needle has been de-tracked and modify the operation of the drive system accordingly.
Another system for detecting and/or monitoring the location of the suturing needle during its firing stroke can include placing a circuit in communication with the needle track. For example, a conductive supply leg can be wired in contact with one side of the needle track and a conductive return leg can be wired in contact with the other side of the needle track. Thus, as the needle passes by the circuit, the needle can act as a circuit switch and complete the circuit to lower the resistance within the circuit thereby providing a way to detect and/or monitor the location of the needle. Several of these circuits can be placed throughout the needle track. To aid the needle conductivity between the circuit contacts, brushes can be used to cradle the needle as the needle passes the circuit location. A flex circuit can also be used and can be adhered to inner walls of the needle track, for example. The flex circuit can contain multiple contacts, and/or terminals. In at least one instance, the contacts can be molded directly into the walls. In another instance, the contacts of the flex circuit can be folded over an inner wall of the needle track and stuck to the wall with an adhesive, for example, such that the contacts face the needle path. In yet another instance, both of these mounting options can be employed.
Another system for detecting and/or monitoring the location of the suturing needle during its firing stroke can include one or more inductive sensors. Such sensors can detect the needle and/or the needle grabber, or driver.
Another system for detecting and/or monitoring the location of the suturing needle during its firing stroke can include using a light source and a photodetector which are positioned such that movement of the needle interrupts the detection of the light source by the photodetector. A light source can be positioned within, and/or near, the needle track, for example, and faced toward the needle path. The photodetector can be positioned opposite the light source such that needle can pass between the light source and the photodetector thereby interrupting the detection of light by the photodetector as the needle passes between the light source and the photodetector. Interruption of the light provided by the light source can indicate the needle's presence or lack thereof. The light source may be an infrared LED emitter, for example. Infrared light may be preferred due to its ability to penetrate tissue and organic debris, especially within a suturing site, which otherwise could produce a false positive reading by the photodetector. That said, any suitable light emitter could be used.
In at least one embodiment, a surgical suturing needle can comprise a helical profile to provide helical suturing strokes. Such a needle comprises a length spanning 360 degrees where a butt end of the needle and a tip of the needle do not reside in the same plane and define a vertical distance therebetween. This needle can be actuated through a helical, or coil shaped, stroke to over-sew a staple line, for example, providing a three dimensional needle stroke. A needle having the helical shape discussed above provides a three dimensional suturing path.
In various instances, the needle comprises a circular configuration that is less than 360 degrees in circumference. In at least one instance, the needle can be stored in the end effector in an orientation which stores the needle within the profile of the end effector. Once the end effector is positioned within the patient, the needle can be rotated out of its stored position to then perform a firing stroke.
In various embodiments, a surgical suturing instrument can accommodate different needle and suture sizes for different suturing procedures. Such an instrument can comprise a means for detecting the size of the needle and/or suture loaded into the instrument. This information can be communicated to the instrument so that the instrument can adjust the control program accordingly. Larger diameter needles may be rotated angularly at a slower rate than smaller diameter needles. Needles with different lengths may also be used with a single instrument. In such instances, a surgical instrument can comprise means for detecting the length of the needle. This information can be communicated to a surgical instrument to modify the needle driver's path, for example. A longer needle may require a smaller stroke path from the needle driver to sufficiently advance the longer needle through its firing stroke as opposed to a smaller needle which may require a longer stroke path from the needle driver to sufficiently advance the shorter needle through its firing stroke in the same needle track.
In at least one embodiment, a suture needle is stored in a suturing instrument in a folded manner. In at least one such instance, the suture needle comprises two portions which are hingedly connected to one another at a hinge. After the end effector has been passed through the trocar, the suture needle can be unfolded and locked into its unfolded configuration. In at least one instance, a one-way snap feature can be used to rigidly hold the suture needle in its unfolded configuration.
In at least one embodiment, a surgical instrument is configured to apply a suture to the tissue of a patient which comprises a lockout system. The lockout system comprises a locked configuration and an unlocked configuration. The surgical instrument further comprises a control circuit and is configured to identify if a cartridge is installed or not installed within an end effector of the surgical instrument. The control circuit is configured to place the lockout system in the locked condition when a cartridge is not installed in the end effector and place the lockout system in the unlocked condition when a cartridge is installed in the end effector. Such a lockout system can include an electrical sensing circuit of which a cartridge can complete upon installation indicating that a cartridge has been installed. In at least one instance, the actuator comprises an electric motor and the lockout system can prevent power from being supplied to the electric motor. In at least one instance, the actuator comprises a mechanical trigger, and the lockout system blocks the mechanical trigger from being pulled to actuate the suture needle. When the lockout system is in the locked configuration, the lockout system prevents an actuator from being actuated. When the lockout system is in the unlocked configuration, the lockout system permits the actuator to deploy the suture positioned within the cartridge. In one embodiment, the control circuit provides haptic feedback to a user of the surgical instrument when the electrical sensing circuit places the surgical instrument in the locked configuration. In one embodiment, the control circuit prevents the actuation of an electric motor configured to actuate the actuator when the electrical sensing circuit determines that the lockout system is in the locked configuration. In one embodiment, the lockout system is in the unlocked configuration when a cartridge is positioned in the end effector and the cartridge has not been completely expended.
A surgical system 128000 is illustrated in
Referring again to
Further to the above, the jaws of the end effector 128030 are driven by a jaw drive system including an electric motor. In use, a voltage potential is applied to the electric motor to rotate the drive shaft of the electric motor and drive the jaw drive system. The surgical system 128000 comprises a motor control system configured to apply the voltage potential to the electric motor. In at least one instance, the motor control system is configured to apply a constant DC voltage potential to the electric motor. In such instances, the electric motor will run at a constant speed, or an at least substantially constant speed. In various instances, the motor control system comprises a pulse width modulation (PWM) circuit and/or a frequency modulation (FM) circuit which can apply voltage pulses to the electric motor. The PWM and/or FM circuits can control the speed of the electric motor by controlling the frequency of the voltage pulses supplied to the electric motor, the duration of the voltage pulses supplied to the electric motor, and/or the duration between the voltage pulses supplied to the electric motor.
The motor control system is also configured to monitor the current drawn by the electric motor as a means for monitoring the force being applied by the jaws of the end effector 128030. When the current being drawn by the electric motor is low, the loading force on the jaws is low. Correspondingly, the loading force on the jaws is high when the current being drawn by the electric motor is high. In various instances, the voltage being applied to the electric motor is fixed, or held constant, and the motor current is permitted to fluctuate as a function of the force loading at the jaws. In certain instances, the motor control system is configured to limit the current drawn by the electric motor to limit the force that can be applied by the jaws. In at least one embodiment, the motor control system can include a current regulation circuit that holds constant, or at least substantially constant, the current drawn by the electric motor to maintain a constant loading force at the jaws.
The force generated between the jaws of the end effector 128030, and/or on the jaws of the end effector 128030, may be different depending on the task that the jaws are being used to perform. For instance, the force needed to hold a suture needle may be high as suture needles are typically small and it is possible that a suture needle may slip during use. As such, the jaws of the end effector 128030 are often used to generate large forces when the jaws are close together. On the other hand, the jaws of the end effector 128030 are often used to apply smaller forces when the jaws are positioned further apart to perform larger, or gross, tissue manipulation, for example.
Referring to the upper portion 128110 of the graph 128100 illustrated in
Referring again to
In addition to or in lieu of the above, the speed of the jaws 128040 and 128050 can be controlled and/or limited by the motor control system as a function of the mouth opening size between the jaws 128040 and 128050 and/or the direction the jaws are being moved. Referring to the middle portion 128120 and lower portion 128130 of the graph 128100 in
In various instances, further to the above, the handle of the surgical system 128000 comprises an actuator, the motion of which tracks, or is supposed to track, the motion of the jaws 128040 and 128050 of the end effector 128030. For instance, the actuator can comprise a scissors-grip configuration which is openable and closable to mimic the opening and closing of the end effector jaws 128040 and 128050. The control system of the surgical system 128000 can comprise one or more sensor systems configured to monitor the state of the end effector jaws 128040 and 128050 and the state of the handle actuator and, if there is a discrepancy between the two states, the control system can take a corrective action once the discrepancy exceeds a threshold and/or threshold range. In at least one instance, the control system can provide feedback, such as audio, tactile, and/or haptic feedback, for example, to the clinician that the discrepancy exists and/or provide the degree of discrepancy to the clinician. In such instances, the clinician can make mental compensations for this discrepancy. In addition to or in lieu of the above, the control system can adapt its control program of the jaws 128040 and 128050 to match the motion of the actuator. In at least one instance, the control system can monitor the loading force being applied to the jaws and align the closed position of the actuator with the position of the jaws when the jaws experience the peak force loading condition when grasping tissue. Similarly, the control system can align the open position of the actuator with the position of the jaws when the jaws experience the minimum force loading condition when grasping tissue. In various instances, the control system is configured to provide the clinician with a control to override these adjustments and allow the clinician to use their own discretion in using the surgical system 128000 in an appropriate manner.
A surgical system 128700 is illustrated in
As discussed above, the end effector 128730 comprises two scissor jaws 128740 and 128750 movable between an open position and a closed position to cut the tissue of a patient. The jaw 128740 comprises a sharp distal end 128741 and the jaw 128750 comprises a sharp distal end 128751 which are configured to snip the tissue of the patient at the mouth 128731 of the end effector 128730, for example. That said, other embodiments are envisioned in which the distal ends 128741 and 128751 are blunt and can be used to dissect tissue, for example. In any event, the jaws are driven by a jaw drive system including an electric drive motor, the speed of which is adjustable to adjust the closure rate and/or opening rate of the jaws. Referring to the graph 128400 of
The above-provided discussion with respect to the surgical system 128700 can provide mechanical energy or a mechanical cutting force to the tissue of a patient. That said, the surgical system 128700 is also configured to provide electrosurgical energy or an electrosurgical cutting force to the tissue of a patient. In various instances, the electrosurgical energy comprises RF energy, for example; however, electrosurgical energy could be supplied to the patient tissue at any suitable frequency. In addition to or in lieu of AC power, the surgical system 128700 can be configured to supply DC power to the patient tissue. The surgical system 128700 comprises a generator in electrical communication with one or more electrical pathways defined in the instrument shaft 128720 which can supply electrical power to the jaws 128740 and 128750 and also provide a return path for the current. In at least one instance, the jaw 128740 comprises an electrode 128742 in electrical communication with a first electrical pathway in the shaft 128720 and the jaw 128750 comprises an electrode 128752 in electrical communication with a second electrical pathway in the shaft 128720. The first and second electrical pathways are electrically insulated, or at least substantially insulated, from one another and the surrounding shaft structure such that the first and second electrical pathways, the electrodes 128742 and 128752, and the tissue positioned between the electrodes 128742 and 128752 forms a circuit. Such an arrangement provides a bipolar arrangement between the electrodes 128742 and 128752. That said, embodiments are envisioned in which a monopolar arrangement could be used. In such an arrangement, the return path for the current goes through the patient and into a return electrode positioned on or under the patient, for example.
As discussed above, the tissue of a patient can be cut by using a mechanical force and/or an electrical force. Such mechanical and electrical forces can be applied simultaneously and/or sequentially. For instance, both forces can be applied at the beginning of a tissue cutting actuation and then the mechanical force can be discontinued in favor of the electrosurgical force finishing the tissue cutting actuation. Such an approach can apply an energy-created hemostatic seal to the tissue after the mechanical cutting has been completed. In such arrangements, the electrosurgical force is applied throughout the duration of the tissue cutting actuation. In other instances, the mechanical cutting force, without the electrosurgical cutting force, can be used to start a tissue cutting actuation which is then followed by the electrosurgical cutting force after the mechanical cutting force has been stopped. In such arrangements, the mechanical and electrosurgical forces are not overlapping or co-extensive. In various instances, both the mechanical and electrosurgical forces are overlapping and co-extensive throughout the entire tissue cutting actuation. In at least one instance, both forces are overlapping and co-extensive throughout the entire tissue cutting actuation but in magnitudes or intensities that change during the tissue cutting actuation. The above being said, any suitable combination, pattern, and/or sequence of mechanical and electrosurgical cutting forces and energies could be used.
Further to the above, the surgical system 128700 comprises a control system configured to co-ordinate the application of the mechanical force and electrosurgical energy to the patient tissue. In various instances, the control system is in communication with the motor controller which drives the jaws 128740 and 128750 and, also, the electrical generator and comprises one or more sensing systems for monitoring the mechanical force and electrosurgical energy being applied to the tissue. Systems for monitoring the forces within a mechanical drive system are disclosed elsewhere herein. Systems for monitoring the electrosurgical energy being applied to the patient tissue include monitoring the impedance, or changes in the impedance, of the patient tissue via the electrical pathways of the electrosurgical circuit. In at least one instance, referring to the graph 128800 in
Further to the above, the control system and/or generator of the surgical system 128700 comprises one or more ammeter circuits and/or voltmeter circuits configured to monitor the electrosurgical current and/or voltage, respectively, being applied to the patient tissue. Referring again to
In various instances, the control system of the surgical system 128700 is configured to adaptively increase the electrosurgical energy applied to the patient tissue when the drive motor slows. The motor slowing can be a reaction to an increase in the tissue cutting load and/or an adaptation of the control system. Similarly, the control system of the surgical system 128700 is configured to adaptively increase the electrosurgical energy applied to the patient tissue when the drive motor stops. Again, the motor stopping can be a reaction to an increase in the tissue cutting load and/or an adaptation of the control system. Increasing the electrosurgical energy when the electric motor slows and/or stops can compensate for a reduction in mechanical cutting energy. In alternative embodiments, the electrosurgical energy can be reduced and/or stopped when the electric motor slows and/or stops. Such embodiments can afford the clinician to evaluate the situation in a low-energy environment.
In various instances, the control system of the surgical system 128700 is configured to adaptively decrease the electrosurgical energy applied to the patient tissue when the drive motor speeds up. The motor speeding up can be a reaction to a decrease in the cutting load and/or an adaptation of the control system. Decreasing the electrosurgical energy when the electric motor slows and/or stops can compensate for, or balance out, an increase in mechanical cutting energy. In alternative embodiments, the electrosurgical energy can be increased when the electric motor speeds up. Such embodiments can accelerate the closure of the jaws and provide a clean, quick cutting motion.
In various instances, the control system of the surgical system 128700 is configured to adaptively increase the speed of the drive motor when the electrosurgical energy applied to the patient tissue decreases. The electrosurgical energy decreasing can be a reaction to a change in tissue properties and/or an adaptation of the control system. Similarly, the control system of the surgical system 128700 is configured to adaptively increase the speed of the drive motor when electrosurgical energy applied to the patient tissue stops in response to an adaptation of the control system. Increasing the speed of the drive motor when the electrosurgical energy decreases or is stopped can compensate for a reduction in electrosurgical cutting energy. In alternative embodiments, the speed of the drive motor can be reduced and/or stopped when the electrosurgical energy decreases and/or is stopped. Such embodiments can afford the clinician to evaluate the situation in a low-energy and/or static environment.
In various instances, the control system of the surgical system 128700 is configured to adaptively decrease the speed of the electric motor when the electrosurgical energy applied to the patient tissue increases. The electrosurgical energy increasing can be a reaction to a change in tissue properties and/or an adaptation of the control system. Decreasing the drive motor speed when the electrosurgical energy increases can compensate for, or balance out, an increase in electrosurgical cutting energy. In alternative embodiments, the drive motor speed can be increased when the electrosurgical energy increases. Such embodiments can accelerate the closure of the jaws and provide a clean, quick cutting motion.
In various instances, the surgical system 128700 comprises controls, such as on the handle of the surgical system 128700, for example, that a clinician can use to control when the mechanical and/or electrosurgical forces are applied. In addition to or in lieu of manual controls, the control system of the surgical system 128700 is configured to monitor the mechanical force and electrical energy being applied to the tissue and adjust one or the other, if needed, to cut the tissue in a desirable manner according to one or more predetermined force-energy curves and/or matrices. In at least one instance, the control system can increase the electrical energy being delivered to the tissue once the mechanical force being applied reaches a threshold limit. Moreover, the control system is configured to consider other parameters, such as the impedance of the tissue being cut, when making adjustments to the mechanical force and/or electrical energy being applied to the tissue.
The microcontroller 75040 may be any single core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments, for example. In at least one instance, the microcontroller 75040 is a LM4F230H5QR ARM Cortex-M4F Processor Core, available from Texas Instruments, for example, comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) loaded with StellarisWare® software, 2 KB electrically erasable programmable read-only memory (EEPROM), one or more pulse width modulation (PWM) modules and/or frequency modulation (FM) modules, one or more quadrature encoder inputs (QEI) analog, one or more 12-bit Analog-to-Digital Converters (ADC) with 12 analog input channels, for example, details of which are available from the product datasheet.
In various instances, the microcontroller 75040 comprises a safety controller comprising two controller-based families such as TMS570 and RM4x known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. The safety controller may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.
The microcontroller 75040 is programmed to perform various functions such as precisely controlling the speed and/or position of the suture needle, for example. The microcontroller 75040 is also programmed to precisely control the rotational speed and position of the end effector of the suturing instrument and the articulation speed and position of the end effector of the suturing instrument. In various instances, the microcontroller 75040 computes a response in the software of the microcontroller 75040. The computed response is compared to a measured response of the actual system to obtain an “observed” response, which is used for actual feedback decisions. The observed response is a favorable, tuned, value that balances the smooth, continuous nature of the simulated response with the measured response, which can detect outside influences on the system.
The motor 75010 is controlled by the motor driver 75050. In various forms, the motor 75010 is a DC brushed driving motor having a maximum rotational speed of approximately 25,000 RPM, for example. In other arrangements, the motor 75010 includes a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. The motor driver 75050 may comprise an H-bridge driver comprising field-effect transistors (FETs), for example. The motor driver 75050 may be an A3941 available from Allegro Microsystems, Inc., for example. The A3941 motor driver 75050 is a full-bridge controller for use with external N-channel power metal oxide semiconductor field effect transistors (MOSFETs) specifically designed for inductive loads, such as brush DC motors. In various instances, the motor driver 75050 comprises a unique charge pump regulator provides full (>10 V) gate drive for battery voltages down to 7 V and allows the A3941 motor driver 75050 to operate with a reduced gate drive, down to 5.5 V. A bootstrap capacitor may be employed to provide the above-battery supply voltage required for N-channel MOSFETs. An internal charge pump for the high-side drive allows DC (100% duty cycle) operation. The full bridge can be driven in fast or slow decay modes using diode or synchronous rectification. In the slow decay mode, current recirculation can be through the high-side or the lowside FETs. The power FETs are protected from shoot-through by resistor adjustable dead time. Integrated diagnostics provide indication of undervoltage, overtemperature, and power bridge faults, and can be configured to protect the power MOSFETs under most short circuit conditions. Other motor drivers may be readily substituted.
The tracking system 75060 comprises a controlled motor drive circuit arrangement comprising one or more position sensors, such as the sensor 75080, sensor 75090, sensor 71502, and sensory array 71940, for example. The position sensors for an absolute positioning system provide a unique position signal corresponding to the location of a displacement member. As used herein, the term displacement member is used generically to refer to any movable member of any of the surgical instruments disclosed herein. In various instances, the displacement member may be coupled to any position sensor suitable for measuring linear displacement or rotational displacement. Linear displacement sensors may include contact or non-contact displacement sensors. The displacement sensors may comprise linear variable differential transformers (LVDT), differential variable reluctance transducers (DVRT), a slide potentiometer, a magnetic sensing system comprising a movable magnet and a series of linearly arranged Hall Effect sensors, a magnetic sensing system comprising a fixed magnet and a series of movable linearly arranged Hall Effect sensors, an optical sensing system comprising a movable light source and a series of linearly arranged photo diodes or photo detectors, or an optical sensing system comprising a fixed light source and a series of movable linearly arranged photo diodes or photo detectors, or any combination thereof.
The position sensors 75080, 75090, 71502, and 71940 for example, may comprise any number of magnetic sensing elements, such as, for example, magnetic sensors classified according to whether they measure the total magnetic field or the vector components of the magnetic field. The techniques used to produce both types of magnetic sensors encompass many aspects of physics and electronics. The technologies used for magnetic field sensing include search coil, fluxgate, optically pumped, nuclear precession, SQUID, Hall-Effect, anisotropic magnetoresistance, giant magnetoresistance, magnetic tunnel junctions, giant magnetoimpedance, magnetostrictive/piezoelectric composites, magnetodiode, magnetotransistor, fiber optic, magnetooptic, and microelectromechanical systems-based magnetic sensors, among others.
In various instances, one or more of the position sensors of the tracking system 75060 comprise a magnetic rotary absolute positioning system. Such position sensors may be implemented as an AS5055EQFT single-chip magnetic rotary position sensor available from Austria Microsystems, AG and can be interfaced with the controller 75040 to provide an absolute positioning system. In certain instances, a position sensor comprises a low-voltage and low-power component and includes four Hall-Effect elements in an area of the position sensor that is located adjacent a magnet. A high resolution ADC and a smart power management controller are also provided on the chip. A CORDIC processor (for Coordinate Rotation Digital Computer), also known as the digit-by-digit method and Volder's algorithm, is provided to implement a simple and efficient algorithm to calculate hyperbolic and trigonometric functions that require only addition, subtraction, bitshift, and table lookup operations. The angle position, alarm bits, and magnetic field information are transmitted over a standard serial communication interface such as an SPI interface to the controller 75040. The position sensors can provide 12 or 14 bits of resolution, for example. The position sensors can be an AS5055 chip provided in a small QFN 16-pin 4×4×0.85 mm package, for example.
The tracking system 75060 may comprise and/or be programmed to implement a feedback controller, such as a PID, state feedback, and adaptive controller. A power source converts the signal from the feedback controller into a physical input to the system, in this case voltage. Other examples include pulse width modulation (PWM) and/or frequency modulation (FM) of the voltage, current, and force. Other sensor(s) may be provided to measure physical parameters of the physical system in addition to position. In various instances, the other sensor(s) can include sensor arrangements such as those described in U.S. Pat. No. 9,345,481, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, which is hereby incorporated herein by reference in its entirety; U.S. Patent Application Publication No. 2014/0263552, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, which is hereby incorporated herein by reference in its entirety; and U.S. patent application Ser. No. 15/628,175, entitled TECHNIQUES FOR ADAPTIVE CONTROL OF MOTOR VELOCITY OF A SURGICAL STAPLING AND CUTTING INSTRUMENT, which is hereby incorporated herein by reference in its entirety. In a digital signal processing system, absolute positioning system is coupled to a digital data acquisition system where the output of the absolute positioning system will have finite resolution and sampling frequency. The absolute positioning system may comprise a compare and combine circuit to combine a computed response with a measured response using algorithms such as weighted average and theoretical control loop that drives the computed response towards the measured response. The computed response of the physical system takes into account properties like mass, inertial, viscous friction, inductance resistance, etc., to predict what the states and outputs of the physical system will be by knowing the input.
The absolute positioning system provides an absolute position of the displacement member upon power up of the instrument without retracting or advancing the displacement member to a reset (zero or home) position as may be required with conventional rotary encoders that merely count the number of steps forwards or backwards that the motor 75010 has taken to infer the position of a device actuator, the needle driver, and the like.
A sensor 75080 and/or 71502 comprising a strain gauge or a micro-strain gauge, for example, is configured to measure one or more parameters of the end effector of the suturing instrument, such as, for example, the strain experienced by the needle during a suturing operation. The measured strain is converted to a digital signal and provided to the processor 75020. A sensor 75090 comprising a load sensor, for example, can measure another force applied by the suturing instrument. In various instances, a current sensor 75070 can be employed to measure the current drawn by the motor 75010. The force required to throw, or rotate, the suturing needle can correspond to the current drawn by the motor 75010, for example. The measured force is converted to a digital signal and provided to the processor 75020. A magnetic field sensor can be employed to measure the thickness of the captured tissue. The measurement of the magnetic field sensor can also be converted to a digital signal and provided to the processor 75020.
The measurements of the tissue thickness and/or the force required to rotate the needle through tissue as measured by the sensors can be used by the controller 75040 to characterize the position and/or speed of the movable member being tracked. In at least one instance, the memory 75030 may store a technique, an equation, and/or a look-up table which can be employed by the controller 75040 in the assessment. In various instances, the controller 75040 can provide the user of the suturing instrument with a choice as to the manner in which the suturing instrument should be operated. To this end, a display 75044 can display a variety of operating conditions of the suturing instrument and can include touch screen functionality for data input. Moreover, information displayed on the display 75044 may be overlaid with images acquired via the imaging modules of one or more endoscopes and/or one or more additional surgical instruments used during the surgical procedure.
As discussed above, the suturing instruments disclosed herein may comprise control systems. Each of the control systems can comprise a circuit board having one or more processors and/or memory devices. Among other things, the control systems are configured to store sensor data, for example. They are also configured to store data which identifies the type of suturing instrument attached to a handle or housing. More specifically, the type of suturing instrument can be identified when attached to the handle or housing by the sensors and the sensor data can be stored in the control system. Moreover, they are also configured to store data including whether or not the suturing instrument has been previously used and/or how many times the suture needle has been cycled. This information can be obtained by the control system to assess whether or not the suturing instrument is suitable for use and/or has been used less than a predetermined number of times, for example.
The embodiments disclosed in
The frame 101102 of the surgical end effector jaw 101100 comprises a socket 101104. When the end effector jaw 101100 is used in a pair of jaws of a surgical instrument, the sockets 101104 of the two end effector jaws 101100 are aligned and a pin can be inserted through the sockets 101104. The pair of end effector jaws 101100 can be rotated about the pin between open and closed positions. The surgical instrument can also comprise an actuator that can move the end effector jaws 101100 between open and closed positions.
The surgical end effector jaw 101100 comprises a proximal portion 101106 and a distal portion 101110. The overall geometry of the end effector jaw 101100 is curved between the proximal portion 101106 and the distal portion 101110. In addition, the end effector jaw 101100 is tapered from the wider proximal portion 101106 to the narrower distal portion 101110. The tapered profile of the end effector jaw 101100 can permit a surgeon to target a specific location within a patient.
In addition, or in the alternative, the surgical end effector jaw 101100 can comprise other geometries, such as a symmetrical geometry and/or and a tapered geometry with a larger distal portion 101110 and a narrower proximal portion 101106, for example. When the surgical end effector jaw 101100 comprises a symmetrical profile, the surgical end effector jaw 101100 can grasp a patient's tissue evenly over the entire end effector jaw 101100. When the surgical end effector jaw 101100 comprises a tapered geometry with a larger distal portion 101110 and a narrower proximal portion 101106, the larger distal portion 101110 can allow the surgical end effector 101100 to grasp a larger portion of the patient's tissue.
The proximal portion 101106 of the outer surface 101108 comprises a substantially smooth surface. The substantially smooth surface can refer to a surface, for example, that is substantially free from projections or unevenness, generally flat or unruffled, and/or substantially of uniform consistency. The distal portion 101110 of the outer surface 101108 comprises a plurality of features. The plurality of features comprises central features 101120, peripheral features 101122, and lateral features 101132, and/or any other suitable features.
The central features 101120, peripheral features 101122, and lateral features 101132 comprise ridges, or teeth, but could comprise any suitable configuration. The central features 101120, peripheral features 101122, and lateral features 101132 can be comprised of various materials. The central, peripheral, and/or lateral features 101120, 101122, 101132 can be comprised of a first material and the outer surface 101108 of the end effector jaw 101100 can be comprised of a second material. The first material can have a greater elasticity than the second material. The second material can have a greater rigidity than the first material. With a less rigid and more elastic material, the central, peripheral, and/or lateral features 101120, 101122, 101132 can deform against a target, such as a patient's tissue, and increase the traction and interaction between the surgical end effector jaw 101100 and the target object.
The plurality of central features 101120 can be substantially perpendicular to the chord of the arc of the jaw 101108. The plurality of central features 101120 are raised above the outer surface of the jaw 101108. In addition, the central features 101120 can be overlaid or overmolded with the lateral features 101132 that can be positioned along the jaw 101108. The lateral features 101132 can be comprised of a different material having a different rigidity and elasticity. For instance, the lateral features 101132 can be more elastic and/or have greater compliance than the central features 101120 which can allow the lateral features 101132 to have a greater ability to interact with a target, such as a patient's tissue. The plurality of central features 101120 can have a slight concavity with respect to the proximal portion 101106 of the end effector jaw 101100, for example. The plurality of peripheral features 101122 can include a convex shape with respect to the proximal portion 101106 of the end effector jaw 101100, for example. The convex-concave-convex pattern of the peripheral-central-peripheral feature combination can allow for greater interaction with a target, such as a patient's tissue.
Where the central features 101120 are aligned substantially perpendicular to the chord of the arc on the surgical end effector jaw 101100, the central features 101120 can facilitate a desired interaction with a patient's tissue. This configuration may allow the surgical end effector jaw 101100 to be drawn through the tissue plane and create a parting action of the tissue. Furthermore, where the patterns of the central features 101120 at the tip of the surgical instrument are aligned with the chord of the arc of the surgical end effector jaw 101100, this pattern facilitates the lateral movement of the surgical end effector jaw 101100 to create a tissue parting action.
The central, peripheral, and lateral features 101120, 101122, 101132 of the end effector jaw 101100 can include symmetrical or asymmetrical patterns that extend along the end effector jaw 101100. The patterns of the central, peripheral, and/or lateral features 101120, 101122, 101132 can be continuous or interlocking and become more interrupted and staggered as they extend towards the proximal portion 101106 and/or distal portion 101110 of the end effector jaw 101100. The various configurations of the central, peripheral, and lateral features 101120, 101122, 101132 can result in posts or standing pillars that can enhance the interaction of these features with the target object, such as a patient's tissue.
The central, peripheral, and lateral features 101120, 101122, 101132 can comprise overmolded plastic and/or polymers. The central, peripheral, and lateral features 101120, 101122, 101132 can comprise various polymers or plastics having different densities and/or properties. A first layer of plastic may be overmolded onto portions of the metallic core 101130 of the end effector jaw 101100. The first layer of plastic can have a first density, rigidity, and elasticity. A second layer of plastic may be overmolded onto portions of the first layer of overmolded plastic and/or onto portions of the metallic core 101130. The second layer of plastic can have a second density, rigidity, and elasticity. The first density, rigidity, and/or elasticity can be the same or different than the second density, rigidity and/or elasticity.
Various sections of the covering 101126 can comprise overmolded plastic and/or polymers. The various sections of the covering 101126 can comprise various polymers or plastics having different densities and/or properties. A first layer of plastics may be overmolded onto portions of the metallic core 101130 of the end effector jaw 101100. The first layer of plastic can have a first density, rigidity, and elasticity. A second layer of plastic may be overmolded onto portions of the first layer of overmolded plastic and/or onto portions of the metallic core 101130. The second layer of plastic can have a second density, rigidity, and elasticity. The first density, rigidity, and/or elasticity can be the same or different than the second density, rigidity and/or elasticity.
In one embodiment, the first layer can comprise a rigid layer that can provide a structural support or backbone to the end effector jaw 101100 along with the metallic core 101130. The second layer can comprise a more elastic and/or less rigid layer. The second layer can be more deformable to create a tissue interaction outer surface that allows for grasping and securing the tissue. The first layer that is more rigid can have a sharper profile and edges that can maintain its shape and actively shear tissue while the outer softer layer acts more like a bumper to prevent cutting tissue before the surgical end effector jaw 101100 is engaged with the desired location or section of tissue.
The inner surface 101118 of the end effector jaw 101100 comprises a plurality of teeth 101116 that extend between the proximal portion 101106 and the distal portion 101110 of the end effector jaw 101100. The plurality of teeth 101116 extend across the width of the inner surface 101118 and follow the tapered profile of the end effector jaw 101100. The central portion of the plurality of teeth 101116 comprises an exposed section of the metallic core 101130. The exposed section of the metallic core 101130 extends substantially uniformly down the central portion of the plurality of teeth 10116 between the proximal portion 101106 and the distal portion 101110. In the alternative, the metallic core 101130 can extend to the inner surface 101118 of the end effector jaw 101100, for example, in an asymmetrical pattern. The different exposed patterns of the metallic core 101130 can allow the end effector jaw 101100 to transmit electrosurgical energy to a patient's tissue in different ways, as described in greater detail below.
When a patient's tissue comes in contact with the metallic core 101130, a surgeon can apply electrosurgical energy to the targeted tissue through the metallic core 101130. The electrosurgical energy can cause ablation and/or cauterization of the targeted tissue.
The distal most portion of the inner surface 101118 comprises a distal bumper portion 101124 and a distal tip 101128. The distal bumper portion 101124 comprises an elastic and/or deformable material that can allow the end effector jaw 101100 to interact with a target object with less irritation to the object. The distal tip 101128 comprises the metallic core 101130 and is configured to deliver electrosurgical energy to a target object, such as a patient's tissue. The distal bumper portion 101124 being constructed of a more elastic and less rigid material can allow the user of the surgical end effector jaw 101100 to be more aggressive without increasing the irritation of the target object, such as a patient's tissue.
In addition, or in the alternative, the various polymers and/or plastics that comprise the surgical end effector jaw 101100 may comprise hydrophobic plastic or materials. The hydrophobic materials can repel liquid, such as body fluids and/or water to keep the dissection features free to dissect. In addition, by repelling fluids, the hydrophobic material may allow a user greater visibility of the interaction portions of the device when using the device in a minimally invasive procedure. The hydrophobic materials may also allow for a consistent dissection surface during the use of the surgical instrument by repelling and keeping away the fluids from the interaction site.
The frame 101202 of the surgical end effector jaw 101200 comprises a socket 101204. When the end effector jaw 101200 is used in a pair of jaws of a surgical instrument, the sockets 101204 of the two end effector jaws 101200 are aligned and a pin can be inserted through the sockets 101204. The pair of end effector jaws 101200 can be rotated about the pin between open and closed positions. The surgical instrument can also comprise an actuator that can move the end effector jaws 101200 between open and closed positions.
The surgical end effector jaw 101200 comprises a proximal portion 101206 and a distal portion 101210. The overall geometry of the end effector jaw 101200 is curved between the proximal portion 101206 and the distal portion 101210. In addition, the end effector jaw 101200 is tapered from the wider proximal portion 101206 to the narrower distal portion 101210. The tapered profile of the end effector jaw 101200 can permit a surgeon to target a specific location within a patient.
In addition, or in the alternative, the surgical end effector jaw 101200 can comprise other geometries, such as a symmetrical geometry and/or and a tapered geometry with a larger distal portion 101210 and a narrower proximal portion 101206, for example. When the surgical end effector jaw 101200 comprises a symmetrical profile, the surgical end effector jaw 101200 can grasp a patient's tissue evenly over the entire end effector jaw 101200. When the surgical end effector jaw 101200 comprises a tapered geometry with a larger distal portion 101210 and a narrower proximal portion 101206, the larger distal portion 101210 can allow the surgical end effector 101200 to grasp a larger portion of the patient's tissue.
The proximal portion 101206 of the outer surface 101208 comprises a substantially smooth surface. The substantially smooth surface can refer to a surface, for example, that is substantially free from projections or unevenness, generally flat or unruffled, and/or substantially of uniform consistency. The distal portion 101210 of the outer surface 101208 comprises a plurality of features. The plurality of features comprises central features 101220, peripheral features 101222, and lateral features 101232, and/or any other suitable features.
The central features 101220, peripheral features 101222, and lateral features 101232 comprise recesses or through holes, but could comprise any suitable configuration. The recesses or through holes expose the metallic core 101230 to the outer surface 101208 and patient tissue. The central features 101220, peripheral features 101122, and lateral features 101232 can comprise different diameters and/or depths, or the same diameters and/or depths. The central features 101220, peripheral features 101122, and lateral features 101232 can also comprise different patterns and/or orientations along the outer surface 101208 of the surgical end effector jaw 101200.
The central features 101220, peripheral features 101222, and lateral features 101232 allow a patient's tissue to come in contact with the metallic core 101230 of the surgical end effector jaw 101200. When a pair of end effector jaws 101200 is used to stretch out tissue, the mechanical forces used to stretch out the tissue can cause the tissue to flow into the central features 101220, peripheral features 101222, and/or lateral features 101232. Once the tissue is in contact with the metallic core 101230 within the central features 101220, peripheral features 101222, and/or lateral features 101232, a clinician can apply electrosurgical energy to the tissue. The combination of mechanical force and electrosurgical energy can allow for ablation of the tissue without tearing the tissue. In addition, or in the alternative, the electrosurgical energy can allow the end effector jaws 101200 to cauterize the tissue as the tissue is spread and/or torn. The combination of electrosurgical energy and mechanical forces can allow a surgeon to perform a surgical procedure with using less mechanical force as the effects of the electrosurgical energy and mechanical force are cumulative.
In various instances, less mechanical force, for example, is required to dissect tissue when more electrosurgical energy is applied. Correspondingly, more mechanical force is required to dissect tissue when less electrosurgical energy is applied. That said, the ratio of mechanical force to electrosurgical energy can be held constant throughout the opening stroke of the dissector jaws. In other instances, the ratio of mechanical force to electrosurgical energy can change throughout the opening stroke of the dissector jaws. In at lease one instance, the electrosurgical energy can increase as the dissector jaws are opened. Such an arrangement can apply the electrosurgical energy when tissue tearing and/or bleeding is most likely to occur. In other instances, the electrosurgical energy can decrease as the dissector jaws are opened. Such an arrangement can create or start an initial otomy that then is stretched open by the mechanical force.
The inner surface 101218 of the end effector jaw 101200 comprises a plurality of teeth 101216 that extend between the proximal portion 101206 and the distal portion 101210 of the end effector jaw 101200. The plurality of teeth 101216 extend across the width of the inner surface 101218 and follow the tapered profile of the end effector jaw 101200. The central portion of the plurality of teeth 101216 comprises an exposed section of the metallic core 101230. The exposed section of the metallic core 101230 extends substantially uniformly down the central portion of the plurality of teeth 10126 between the proximal portion 101206 and the distal portion 101210. In the alternative, the metallic core 101230 can extend to the inner surface 101218 of the end effector jaw 101200, for example, in an asymmetrical pattern. The different exposed patterns of the metallic core 101230 can allow the end effector jaw 101200 to transmit electrosurgical energy to a patient's tissue in different ways, as described in greater detail below.
When a patient's tissue comes in contact with the metallic core 101230, a surgeon can apply electrosurgical energy to the targeted tissue through the metallic core 101230. The electrosurgical energy can cause ablation and/or cauterization of the targeted tissue.
The distal most portion of the inner surface 101218 comprises a distal bumper portion 101224 and a distal tip 101228. The distal bumper portion 101224 comprises an elastic and/or deformable material that can allow the end effector jaw 101200 to interact with a target object with less irritation to the object. The distal tip 101228 comprises the metallic core 101230 and is configured to deliver electrosurgical energy to a target object, such as a patient's tissue. The distal bumper portion 101224 being constructed of a more elastic and less rigid material can allow the user of the surgical end effector jaw 101200 to be more aggressive without increasing the irritation of the target object, such as a patient's tissue.
Various sections of the covering 101226 can comprise overmolded plastic and/or polymers. The various sections of the covering 101226 can comprise various polymers or plastics having different densities and/or properties. A first layer of plastics may be overmolded onto portions of the metallic core 101230 of the end effector jaw 101200. The first layer of plastic can have a first density, rigidity, and elasticity. A second layer of plastic may be overmolded onto portions of the first layer of overmolded plastic and/or onto portions of the metallic core 101230. The second layer of plastic can have a second density, rigidity, and elasticity. The first density, rigidity, and/or elasticity can be the same or different than the second density, rigidity and/or elasticity.
In addition, or in the alternative, the various polymers and/or plastics that comprise the surgical end effector jaw 101200 may comprise hydrophobic plastic or materials. The hydrophobic materials can repel liquid, such as body fluids and/or water to keep the dissection features free to dissect. In addition, by repelling fluids, the hydrophobic material may allow a user greater visibility of the interaction portions of the device when using the device in a minimally invasive procedure. The hydrophobic materials may also allow for a consistent dissection surface during the use of the surgical instrument by repelling and keeping away the fluids from the interaction site.
The central distal feature 101336 and lateral distal features 101334 allow a patient's tissue to come in contact with the metallic core 101330 of the surgical end effector jaw 101300. When a surgeon pushes tissue with the nose of the surgical end effector jaw 101300, the mechanical forces used to push the jaw 101300 into the tissue to stretch out the tissue can cause the tissue to flow into the central distal feature 101336 and lateral distal features 101334. Once the tissue is in contact with the metallic core 101330 within the central distal feature 101336 and/or lateral distal features 101334, electrosurgical energy can be transmitted to the tissue. The combination of mechanical force and electrosurgical energy can allow for ablation of the tissue without tearing the tissue. In addition, or in the alternative, the electrosurgical energy can allow the end effector jaws 101300 to cauterize the tissue as the tissue is spread and/or torn. The combination of electrosurgical energy and mechanical forces can allow a surgeon to perform a surgical procedure with using less mechanical force as the effects of the electrosurgical energy and mechanical force are cumulative.
In various instances, less mechanical force, for example, is required to dissect tissue when more electrosurgical energy is applied. Correspondingly, more mechanical force is required to dissect tissue when less electrosurgical energy is applied. That said, the ratio of mechanical force to electrosurgical energy can be held constant throughout the opening stroke of the dissector jaws. In other instances, the ratio of mechanical force to electrosurgical energy can change throughout the opening stroke of the dissector jaws. In at lease one instance, the electrosurgical energy can increase as the dissector jaws are opened. Such an arrangement can apply the electrosurgical energy when tissue tearing and/or bleeding is most likely to occur. In other instances, the electrosurgical energy can decrease as the dissector jaws are opened. Such an arrangement can create or start an initial otomy that then is stretched open by the mechanical force.
The surgical end effector jaws may also have overmolded plastic bodies having fractal exterior geometries. The fractal exterior geometries can enable the distal tip of the end effector jaws to be more aggressive without creating undesired interaction with the tissue. In another embodiment, the metallic core of the end effector jaws can be positioned near the outer surface and at the distal tip as well as along the spine of the surgical end effector, as seen in
A surgical suturing system comprising a firing system and an end effector comprising a needle track, a needle comprising suturing material attached thereto, wherein the needle is configured to be guided by and movable within the needle track, and wherein the firing system is configured to apply control motions to the needle to advance the needle through a firing stroke to suture tissue with the suturing material, and means for detecting a parameter of the needle during the firing stroke, wherein the surgical suturing system is configured to automatically adjust the control motions applied to the needle based on the detected parameter.
A surgical suturing system comprising a shaft comprising a shaft diameter, a firing drive, and an end effector comprising a flexible needle comprising suturing material attached thereto, wherein the firing drive is configured to apply control motions to the needle to advance the needle through a firing stroke to suture tissue with the suturing material, and wherein the flexible needle comprises a first end and a second end, and a movable needle guide, wherein the movable needle guide is movable between, one, a collapsed configuration for passing the end effector through a trocar, wherein, in the collapsed configuration, the end effector comprises a collapsed diameter which is less than or equal to the shaft diameter, and wherein the first end of the flexible needle is oriented proximal to the second end in the collapsed configuration and, two, an expanded configuration for suturing tissue with the flexible needle, wherein, in the expanded configuration, the end effector comprises an expanded diameter which is greater than the shaft diameter, and wherein the flexible is configured to be advanced through its firing stroke when the movable need guide is in the expanded configuration.
A surgical suturing system comprising a shaft comprising a shaft diameter, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle track and a needle comprising suturing material attached thereto, wherein the needle is configured to be guided by the needle track and actuated by the firing drive, and wherein the needle is movable along a needle path comprising a maximum capture width which is greater than the shaft diameter.
A surgical suturing system comprising a shaft comprising a shaft diameter, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle track comprising a linear section and a needle comprising a linear segment, an arcuate segment extending from the linear segment, and suturing material attached to the needle, wherein the needle is configured to be guided by the needle track and actuated by the firing drive, and wherein the firing drive is configured to rotate the needle and displace the needle linearly to move the needle along a continuous loop stroke.
A surgical suturing system comprising a shaft, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle track and a needle comprising suturing material attached thereto, wherein the needle is configured to be guided by the needle track and actuated by the firing drive through a firing stroke to suture tissue. The surgical suturing system further comprises means for detecting a load experienced by the needle during the firing stroke and means for monitoring the detected load, wherein the surgical suturing system is configured to initiate a change in the operation of the surgical suturing system when the load exceeds a predetermined threshold.
A modular surgical instrument comprising a control interface, a shaft extending from the control interface, a drive system, and means for detecting electrical potential applied to the modular surgical instrument, wherein the modular surgical instrument is configured to automatically initiate a change in operation of the modular surgical instrument when the detected electrical potential exceeds a predetermined threshold.
A surgical suturing cartridge comprising a needle movable through a firing stroke, wherein the firing stroke comprises a home position, a partially fired position, and a fully actuated position, wherein the needle moves along a path in a single direction from the home position to the fully actuated position and from the fully actuated position to the home position during a full firing stroke. The surgical suturing cartridge further comprises a sensing circuit comprising a supply conductor comprising a first resistive leg, wherein the first resistive leg terminates at a first terminal and comprises a first resistance, and a return conductor comprising a second resistive leg terminating at a second terminal and comprising a second resistance and a third resistive leg terminating at a third terminal and comprising a third resistance, wherein the first resistance, the second resistance, and the third resistance are different, and wherein the first resistive leg and the second resistive leg are wired in parallel with respect to the return conductor. The needle is movable through the firing stroke to contact the first terminal, the second terminal, and the third terminal in the home position of the firing stroke, the second terminal and the third terminal in a partially fired position of the firing stroke, and the first terminal and the third terminal in a fully fired position of the firing stroke. The surgical suturing cartridge further comprises means for monitoring the resistance of the sensing circuit during the firing stroke, wherein the sensing circuit comprises a first circuit resistance when the needle is in the home position, a second circuit resistance when the needle is in the partially fired position, and a third circuit resistance when the needle is in the fully fired position, wherein the first circuit resistance, the second circuit resistance, and the third circuit resistance are different, and wherein the resistance of the sensing circuit indicates the position of the needle during the firing stroke.
A surgical suturing system comprising a shaft, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle track and a needle comprising suturing material attached thereto, wherein the needle is configured to be guided by the needle track and actuated by the firing drive through a firing stroke to suture tissue. The surgical suturing system further comprises a proximity sensor configured to sense movement of the needle during its firing stroke to indicate the position of the needle to a control program of the surgical suturing system.
A surgical suturing system comprising a shaft, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle driver configured to be actuated by the firing drive, a needle track, and a needle comprising suturing material attached thereto, wherein the needle is configured to be guided by the needle track and actuated by the needle driver through a firing stroke to suture tissue. The surgical suturing system further comprises a proximity sensor configured to sense movement of the needle driver as the needle driver advances the needle through the firing stroke to indicate the position of the needle driver to a control program of the surgical suturing system.
A surgical suturing system comprising a shaft, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle driver configured to be actuated by the firing drive, a needle track, and a needle comprising suturing material attached thereto, wherein the needle is configured to be guided by the needle track and actuated by the needle driver through a firing stroke to suture tissue. The surgical suturing system further comprises a position sensing system comprising a magnet and a Hall Effect sensor, wherein the needle is configured to interrupt a magnetic field induced by the magnet to change the condition of the Hall Effect sensor to indicate the position of the needle driver to a control program of the surgical suturing system.
A surgical suturing system comprising a shaft, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle driver configured to be actuated by the firing drive, a needle track comprising a first wall and a second wall, and a needle comprising suturing material attached thereto, wherein the needle is configured to be guided by the needle track and actuated by the needle driver through a firing stroke to suture tissue. The surgical suturing system further comprises a position sensing circuit comprising a first conductor connected to the first wall of the track and a second conductor connected to the second wall of the track, wherein the needle is configured to move into and out of contact with the first wall and the second wall as the needle is moved through the firing stroke to indicate the position of the needle.
A surgical suturing system comprising a shaft, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle driver configured to be actuated by the firing drive, a needle track comprising a first wall and a second wall, and a needle comprising suturing material attached thereto, wherein the needle is configured to be guided by the needle track and actuated by the needle driver through a firing stroke to suture tissue. The surgical suturing system further comprises a position sensing flex circuit comprising a first conductor comprising a first terminal folded over and adhered to the first wall of the track and a second conductor comprising a second terminal folded over and adhered to the second wall of the track, wherein the needle is configured to move into and out of contact with the first terminal and the second terminal as the needle is moved through the firing stroke to indicate the position of the needle.
A surgical suturing system comprising a shaft, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle driver configured to be actuated by the firing drive, a needle track comprising a first wall and a second wall, and a needle comprising suturing material attached thereto, wherein the needle is configured to be guided by the needle track and actuated by the needle driver through a firing stroke to suture tissue. The surgical suturing system further comprises a position sensing circuit comprising a first conductor comprising a first terminal molded into to the first wall of the track and a second conductor comprising a second terminal molded into to the second wall of the track, wherein the needle is configured to move into and out of contact with the first terminal and the second terminal as the needle is moved through the firing stroke to indicate the position of the needle.
A surgical suturing system comprising a shaft, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle driver configured to be actuated by the firing drive, a needle track comprising a first wall and a second wall, and a needle comprising suturing material attached thereto, wherein the needle is configured to be guided by the needle track and actuated by the needle driver through a firing stroke to suture tissue. The surgical suturing system further comprises a position sensing system comprising an infrared LED emitter, and a photodetector configured to detect infrared light emitted by the infrared LED emitter, wherein the needle is configured to interrupt the infrared light emitted by the infrared LED emitter as the needle is moved through the firing stroke to indicate the position of the needle.
A surgical suturing system comprising a shaft, a firing drive, and an end effector attached to the shaft, wherein the end effector comprises a needle configured to be driven by the firing drive, a needle track configured to guide the needle through a firing stroke, and suturing material attached to the needle. The surgical suturing system further comprises a plurality of proximity sensors configured to detect the position of the needle as the needle is advanced through the firing stroke, wherein the plurality of proximity sensors are positioned such that the needle is configured to trip at least two of the plurality of proximity sensors at all times during the firing stroke, wherein the surgical suturing system is configured to determine if the needle has diverted from the needle track if less than two of the proximity sensors are tripped at any point during the firing stroke.
A surgical suturing system comprising a shaft comprising a shaft diameter, a firing drive, and an end effector attached to the shaft, wherein the end effector comprises a needle driver configured to be actuated by the firing drive, a needle track, a needle comprising suturing material attached thereto, wherein the needle is configured to be guided by the needle track and actuated by the needle driver through a firing stroke to suture tissue, and a tissue bite region where the needle is configured to be advanced through the tissue bite region to suture tissue, wherein the tissue bite region comprises a width greater than the shaft diameter. The end effector is movable relative to the shaft such that the tissue bite region can extend beyond the shaft diameter.
A surgical suturing system comprising a shaft, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle track comprising a linear section and a needle comprising a linear segment, an arcuate segment extending from the linear segment, and suturing material attached to the needle, wherein the needle is configured to be guided by the needle track and actuated by the firing drive, wherein the firing drive is configured to rotate the needle and displace the needle linearly to move the needle throughout a needle firing stroke, and wherein the needle firing stroke can be varied from stroke to stroke.
A surgical suturing system comprising a shaft, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a circular needle comprising a first end and a second end helically extending at least 360 degrees from the first end, wherein the first end and the second end define a vertical distance therebetween. The end effector further comprises suturing material attached to the circular needle, wherein the circular needle is configured to be actuated through a helical drive stroke to suture tissue.
A surgical suturing system comprising a shaft, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a helical needle and suturing material attached to the helical needle, wherein the helical needle is configured to be driven through a three dimensional needle stroke by the firing drive to suture tissue.
A surgical suturing system comprising a shaft, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle driver configured to be actuated by the firing drive, wherein the needle driver is configured to drive a needle installed within the end effector, and a needle track configured to guide the needle installed within the end effector through a needle firing stroke. The end effector is configured to receive suturing needles having different circumference lengths, and wherein the surgical suturing system is configured to adjust the actuation of the needle driver to accommodate needles with different circumference lengths installed within the end effector.
A surgical suturing system comprising a shaft, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle driver configured to be actuated by the firing drive, wherein the needle driver is configured to drive a needle installed within the end effector, and a needle track configured to guide the needle installed within the end effector through a needle firing stroke. The end effector is configured to receive suturing needles having different diameters, and wherein the surgical suturing system is configured to adjust the actuation speed of the needle driver to accommodate needles with different diameters installed within the end effector.
A surgical suturing system comprising an actuation interface comprising a motor, an attachment interface, and an output drive configured to be driven by the motor. The surgical suturing system further comprises a modular attachment configured to be attached to and detached from the actuation interface, wherein the modular attachment comprises a shaft, an input drive configured to be coupled with the output drive upon the attachment of the modular attachment and the actuation interface, and an end effector extending distally from the shaft. The surgical suturing system further comprises a load sensor configured to detect the load applied to the input drive and the output drive when the input drive and the output drive are actuated by the motor, wherein the surgical suturing system is configured to limit current flow through the motor when the detected load reaches a first threshold, and wherein the surgical suturing system is configured to shut off the motor when the detected load falls below a second threshold.
A surgical suturing system comprising an actuation interface comprising a motor, an attachment interface, and an output drive configured to be driven by the motor. The surgical suturing system further comprises a modular attachment configured to be attached to and detached from the actuation interface, wherein the modular attachment comprises a shaft, an input drive configured to be coupled with the output drive upon the attachment of the modular attachment and the actuation interface, and an end effector extending distally from the shaft. The surgical suturing system further comprises a load sensor configured to detect the load applied to the input drive and the output drive when the input drive and the output drive are actuated by the motor, wherein the surgical suturing system is configured to limit power to the motor when the detected load reaches a first threshold, and wherein the surgical suturing system is configured to stop power to the motor when the detected load falls below a second threshold.
A surgical instrument comprising a motor, a drive system configured to be actuated by the motor, and a shaft. The surgical instrument further comprises an articulation joint, an end effector attached to the shaft by way of the articulation joint, wherein the end effector is configured to be articulated relative to the shaft by the drive system, and a monitoring system configured to monitor electrical energy applied to the surgical instrument, wherein the surgical instrument is configured to reverse the actuation of the motor when an unexpected electrical energy is detected.
A surgical instrument comprising a motor, a drive system configured to be actuated by the motor, and a shaft. The surgical instrument further comprises an articulation joint, an end effector attached to the shaft by way of the articulation joint, wherein the end effector is configured to be articulated relative to the shaft by the drive system, and a monitoring system configured to monitor electrical energy applied to the surgical instrument, wherein the surgical instrument is configured to pause actuation of the motor when an unexpected electrical energy is detected and indicate to a user the condition of the surgical instrument.
A surgical instrument comprising a motor, a drive system configured to be actuated by the motor, and a shaft. The surgical instrument further comprises an end effector attached to the shaft and a strain gauge mounted to the shaft, wherein the surgical instrument is configured to indicate to a user the strain detected by the strain gauge to indicate force being applied to tissue with the shaft.
A surgical suturing system comprising a first motor, a second motor, a shaft, and an end effector attached to the shaft, wherein the end effector comprises a longitudinal axis, wherein the second motor is configured to rotate the end effector about the longitudinal axis, a needle configured to be driven through a firing stroke by the first motor, and suturing material attached to the needle. The surgical suturing system further comprises a first sensor configured to sense force experienced by the needle as the needle is advanced through the firing stroke, a second sensor configured to sense load torque experienced by the end effector as the end effector is rotated about the longitudinal axis, a third sensor configured to sense bending load experienced by the shaft and a control program configured to monitor the force experienced by the needle such that, if the force experienced by the needle exceeds a first predetermined threshold, the control program limits the current flow through the first motor, monitor the load torque experienced by the end effector such that, if the load torque experienced by the end effector exceeds a second predetermined threshold, the control program limits the current flow through the second motor, and monitor the bending load experienced by the shaft such that, if the load bending load experienced by the shaft exceeds a third predetermined threshold, the control program reduces the current flow through the second motor.
A surgical instrument configured to apply a suture to the tissue of a patient comprising an end effector comprising a replaceable suture cartridge comprising a suture removably stored therein, an actuator configured to deploy the suture, and a lockout configurable in a locked configuration and an unlocked configuration, wherein the lockout is in the locked configuration when the replaceable suture cartridge is not in the end effector, wherein the lockout prevents the actuator from being actuated when the lockout is in the locked configuration, wherein the lockout is in the unlocked configuration when the replaceable suture cartridge is positioned in the end effector, and wherein the lockout permits the actuator to deploy the suture when the lockout is in the unlocked configuration. The surgical instrument further comprises a handle, an electric motor configured to drive the actuator, a control circuit configured to control the electric motor, and a sensing system configured to determine when the lockout is in the locked configuration, wherein the sensing system is in communication with the control circuit, and wherein the control circuit prevents the actuation of the electric motor when the sensing system determines that the lockout is in the locked configuration.
A surgical instrument configured to apply a suture to the tissue of a patient comprising an end effector. The end effector comprises a replaceable suture cartridge comprising a suture removably stored therein, an actuator configured to deploy the suture, and a lockout configurable in a locked configuration and an unlocked configuration, wherein the lockout is in the locked configuration when the replaceable suture cartridge is not in the end effector, wherein the lockout prevents the actuator from being actuated when the lockout is in the locked configuration, wherein the lockout is in the unlocked configuration when the replaceable suture cartridge is positioned in the end effector, and wherein the lockout permits the actuator to deploy the suture when the lockout is in the unlocked configuration. The surgical instrument further comprises a handle, an electric motor configured to drive the actuator, a control circuit configured to control the electric motor, and a sensing system configured to determine when the lockout is in the locked configuration, wherein the sensing system is in communication with the control circuit, and wherein the control circuit provides haptic feedback to the user of the surgical instrument when the sensing system determines that the lockout is in the locked configuration.
A surgical instrument configured to apply a suture to the tissue of a patient comprising an end effector. The end effector comprises a replaceable suture cartridge comprising a suture removably stored therein, an actuator configured to deploy the suture, and a lockout configurable in a locked configuration and an unlocked configuration, wherein the lockout is in the locked configuration when the replaceable suture cartridge has been completely expended, wherein the lockout prevents the actuator from being actuated when the lockout is in the locked configuration, wherein the lockout is in the unlocked configuration when the replaceable suture cartridge is positioned in the end effector and has not been completely expended, and wherein the lockout permits the actuator to deploy the suture when the lockout is in the unlocked configuration. The surgical instrument further comprises a handle, an electric motor configured to drive the actuator, a control circuit configured to control the electric motor, and a sensing system configured to determine when the lockout is in the locked configuration, wherein the sensing system is in communication with the control circuit, and wherein the control circuit prevents the actuation of the electric motor when the sensing system determines that the lockout is in the configuration.
A surgical dissector for manipulating the tissue of a patient comprising a shaft comprising an electrical pathway and a first jaw pivotably coupled to the shaft. The first jaw comprises a first inner surface, a first outer surface comprising a first opening, wherein the first outer surface faces away from the first inner surface, a first electrically-conductive portion in electrical communication with the electrical pathway, wherein the first electrically-conductive portion can contact the tissue through the first opening, and a first electrically-insulative portion. The surgical dissector further comprises a second jaw pivotably coupled to the shaft, wherein the second jaw comprises a second inner surface, wherein the second inner surface faces toward the first inner surface, a second outer surface comprising a second opening, wherein the second outer surface faces away from the second inner surface, a second electrically conductive portion in electrical communication with the electrical pathway, wherein the second electrically-conductive portion can contact the tissue through the second opening, and a second electrically-insulative portion.
The surgical dissector of Example 1, further comprising a drive system operably coupled with the first jaw and the second jaw, wherein the drive system comprises an electric motor configured to drive the first jaw and the second jaw from a closed position into an open position.
The surgical dissector of Example 2, further comprising a handle comprising a grip, wherein the electric motor is position in the handle.
The surgical dissector of Examples 2 or 3, further comprising a housing configured to be attached to a robotic surgical system, wherein the electric motor is position in the robotic surgical system.
The surgical dissector of Examples 2, 3, or 4, further comprising a control system in communication with the electric motor and the electrical pathway, wherein the control system is configured to control the electrical power supplied to the motor and the electrical pathway.
The surgical dissector of Example 5, wherein the control system comprises a pulse width modulation motor control circuit configured to control the speed of the electric motor.
The surgical dissector of Examples 5 or 6, wherein the control system comprises at least one of a voltage regulation circuit and a current regulation circuit configured to control the electrical power supplied to the electrical pathway.
The surgical dissector of Examples 5, 6, or 7 wherein the control system is configured to control the voltage potential applied to the electrical pathway to control the electrical power applied to the patient tissue.
The surgical dissector of Examples 5, 6, 7, or 8, wherein the control system comprises an AC voltage control circuit configured to control the voltage potential applied to the electrical pathway to control the electrical power applied to the patient tissue.
The surgical dissector of Example 5, 6, 7, 8, or 9, wherein the control system comprises a DC voltage control circuit configured to control the voltage potential applied to the electrical pathway to control the electrical power applied to the patient tissue.
The surgical dissector of Examples 5, 6, 7, 8, 9, or 10, wherein the control system comprises a current control circuit configured to control the electrical power applied to the patient tissue.
The surgical dissector of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11, further comprising a drive system operably coupled with the first jaw and the second jaw, wherein the drive system comprises an electric motor configured to drive the first jaw and the second jaw from an open position into a closed position.
A surgical dissector for manipulating the tissue of a patient comprising a shaft comprising an electrical pathway and a first jaw pivotably coupled to the shaft. The first jaw comprises an inner surface, an outer surface comprising an opening, an electrically-conductive electrode in electrical communication with the electrical pathway, wherein the electrically-conductive electrode can contact the tissue through the opening, and an electrically-insulative portion. The surgical dissector further comprises a second jaw pivotably coupled to the shaft.
The surgical dissector of Example 14, further comprising a drive system operably coupled with the first jaw and the second jaw, wherein the drive system comprises an electric motor configured to drive the first jaw and the second jaw from a closed position into an open position.
The surgical dissector of Examples 14 or 15, further comprising a control system in communication with the electric motor and the electrical pathway, wherein the control system is configured to control the electrical power supplied to the electric motor and the electrical pathway.
The surgical dissector of Example 15, wherein the control system comprises a pulse width modulation motor control circuit configured to control the speed of the electric motor.
The surgical dissector of Examples 15 or 16, wherein the control system comprises at least one of a voltage regulation circuit and a current regulation circuit configured to control the electrical power supplied to the electrical pathway.
The surgical dissector of Examples 15, 16, or 17, wherein the control system comprises an AC voltage control circuit configured to control the voltage potential applied to the electrical pathway to control the electrical power applied to the patient tissue.
The surgical dissector of Examples 15, 16, 17, or 18, wherein the control system comprises a current control circuit configured to control the electrical power applied to the patient tissue.
A surgical dissector for manipulating the tissue of a patient comprising a shaft comprising an electrical pathway, a first jaw pivotably coupled to the shaft, wherein the first jaw comprises an inner surface, an outer surface comprising an opening, an electrically-conductive electrode in electrical communication with the electrical pathway, wherein the electrically-conductive electrode can contact the tissue through the opening, and an electrically-insulative portion. The surgical dissector further comprises a second jaw pivotably coupled to the shaft and means for spreading the first jaw and the second jaw and applying electrical energy to the patient tissue at the same time.
A surgical suturing system comprising a shaft, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle driver, wherein the firing drive is configured to apply control motions to the needle driver, a needle track, and a needle comprising suturing material attached thereto, wherein the needle is configured to be guided by the needle track and actuated by the needle driver through a firing stroke to suture tissue. The surgical suturing system further comprises a position sensing circuit comprising a detectable parameter, wherein the needle is configured to vary the detectable parameter of the positioning sensing circuit as the needle is advanced through the firing stroke, wherein the surgical suturing system is configured to monitor the detectable parameter of the position sensing circuit and automatically adjust the control motions applied to the needle driver based on the detected parameter.
The surgical suturing system of Example 1, wherein the position sensing system comprises an infrared LED emitter and a photodetector configured to detect infrared light emitted by the infrared LED emitter, wherein the needle is configured to interrupt the infrared light emitted by the infrared LED emitter as the needle is moved through the firing stroke to indicate the position of the needle.
The surgical suturing system of Example 2, wherein the needle track comprises an exit location where the needle exits the needle track and an entry location where the needle reenters the needle track, and wherein the infrared LED emitter is positioned at the exit location.
The surgical suturing system of Examples 1, 2, or 3, wherein the detectable parameter comprises a load experienced by the needle during the firing stroke.
The surgical suturing system of Example 4, wherein the surgical suturing system is configured to adjust the control motions when the load exceeds a predetermined threshold.
The surgical suturing system of Examples 1, 2, 3, 4, or 5, wherein the position sensing system comprises a plurality of proximity sensors configured to detect the position of the needle as the needle is advanced through the firing stroke.
The surgical suturing system of Example 6, wherein the plurality of proximity sensors are positioned such that the needle is configured to trip at least two of the plurality of proximity sensors at all times during the firing stroke, and wherein the surgical suturing system is configured to determine if the needle has diverted from the needle track if less than two of the proximity sensors are tripped at any point during the firing stroke.
The surgical suturing system of Examples 1, 2, 3, 4, 5, 6, or 7, wherein the position sensing system comprises a magnet and a Hall Effect sensor, wherein the needle is configured to interrupt a magnetic field induced by the magnet to change the condition of the Hall Effect sensor to indicate the position of the needle driver to a control program of the surgical suturing system.
The surgical suturing system of Examples 1, 2, 3, 4, 5, 6, 7, or 8, wherein the position sensing system comprises a proximity sensor configured to sense movement of the needle driver as the needle driver advances the needle through the firing stroke to indicate the position of the needle driver to a control program of the surgical suturing system.
The surgical suturing system of Examples 1, 2, 3, 4, 5, 6, 7, 8, or 9, wherein the needle track comprises a first wall and a second wall, wherein the position sensing system comprises a flex circuit, and wherein the flex circuit comprises a first conductor comprising a first terminal folded over and adhered to the first wall of the needle track and a second conductor comprising a second terminal folded over and adhered to the second wall of the needle track, wherein the needle is configured to move into and out of contact with the first terminal and the second terminal as the needle is moved through the firing stroke to indicate the position of the needle.
The surgical suturing system of Example 10, wherein the first terminal and the second terminal comprise electrical brushes.
A surgical suturing system comprising a needle movable through a firing stroke, wherein the firing stroke comprises a home position, a partially fired position, and a fully actuated position, wherein the needle moves along a path in a single direction from the home position to the fully actuated position and from the fully actuated position to the home position during a full firing stroke. The surgical suturing system further comprises a sensing circuit comprising a supply conductor comprising a first resistive leg, wherein the first resistive leg terminates at a first terminal and comprises a first resistance and a return conductor comprising a second resistive leg terminating at a second terminal and comprising a second resistance and a third resistive leg terminating at a third terminal and comprising a third resistance, wherein the first resistance, the second resistance, and the third resistance are different, and wherein the first resistive leg and the second resistive leg are wired in parallel with respect to the return conductor. The needle is movable through the firing stroke to contact the first terminal, the second terminal, and the third terminal in the home position of the firing stroke, the second terminal and the third terminal in a partially fired position of the firing stroke, and the first terminal and the third terminal in a fully fired position of the firing stroke. The surgical suturing system further comprises means for monitoring the resistance of the sensing circuit during the firing stroke, wherein the sensing circuit comprises a first circuit resistance when the needle is in the home position, a second circuit resistance when the needle is in the partially fired position, and a third circuit resistance when the needle is in the fully fired position, wherein the first circuit resistance, the second circuit resistance, and the third circuit resistance are different, and wherein the resistance of the sensing circuit indicates the position of the needle during the firing stroke.
The surgical suturing system of Example 12, wherein the firing stroke comprises a circular path.
The surgical suturing system of Examples 12 or 13, further comprising a power control program configured to determine a rate of advancement of the needle based on the monitored resistance.
The surgical suturing cartridge of Examples 12, 13, or 14, further comprising a power control program configured to automatically adjust control motions applied to the needle based on the monitored resistance.
A surgical suturing system comprising a firing system and an end effector comprising a needle track, an arcuate needle comprising suturing material attached thereto, wherein the arcuate needle is configured to be guided by the needle track, and wherein the firing system is configured to apply control motions to the needle to advance the arcuate needle through a circular firing stroke to suture tissue with the suturing material, and a needle detection circuit configured to detect a parameter of the arcuate needle during the circular firing stroke, wherein the surgical suturing system is configured to automatically adjust the control motions applied to the arcuate needle based on the detected parameter.
The surgical suturing system of Example 16, wherein the needle detection circuit comprises an electrical resistance circuit, wherein the electrical resistance circuit comprises a resistance configured to be altered by the arcuate needle as the arcuate needle is actuated through the circular firing stroke.
The surgical suturing system of Examples 16 or 17, wherein the needle detection circuit comprises a plurality of proximity sensors.
The surgical suturing system of Examples 16, 17, or 18, wherein the needle detection circuit comprises a plurality of proximity sensors.
The surgical suturing system of Examples 16, 17, 18, or 19, wherein the needle detection circuit comprises a Hall Effect sensor and a magnet.
A surgical suturing system comprising a shaft comprising a shaft diameter, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle track and a needle comprising suturing material attached thereto, wherein the needle is configured to be guided by the needle track and actuated by the firing drive through a firing stroke, and wherein the needle is movable along a needle path comprising a maximum capture width which is greater than the shaft diameter.
The surgical suturing system of Example 1, wherein the needle is non-circular.
The surgical suturing system of Examples 1 or 2, wherein the needle comprises a linear segment and an arcuate segment.
The surgical suturing system of Examples 1, 2, or 3, wherein the needle comprises a park position relative to the end effector, wherein the firing stroke comprises a firing stroke path, and wherein the park position is not located on the firing stroke path.
The surgical suturing system of Example 4, wherein the surgical suturing system is contained with a space defined by the shaft diameter when the needle is in the park position.
The surgical suturing system of Examples 1, 2, 3, 4, or 5, wherein the needle comprises a linear segment, a proximal arcuate segment, and a distal arcuate segment, wherein the linear segment is disposed between the proximal arcuate segment and the distal arcuate segment.
The surgical suturing system of Examples 1, 2, 3, 4, 5, or 6, wherein the needle track comprises a non-circular path.
The surgical suturing system of Examples 1, 2, 3, 4, 5, 6, or 7, wherein the needle is configured to be actuated in a proximal direction, in a distal direction, and about a rotational axis defined by an end of the needle.
A surgical suturing system comprising a shaft comprising a shaft diameter, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle track comprising a linear section and a needle comprising a linear segment, an arcuate segment extending from the linear segment, and suturing material attached to the needle, wherein the needle is configured to be guided by the needle track and actuated by the firing drive, and wherein the firing drive is configured to rotate the needle and displace the needle linearly to move the needle along a continuous loop stroke.
The surgical suturing system of Example 9, wherein the needle track comprises a y-shaped track.
A surgical suturing system comprising a shaft comprising a shaft diameter, a firing drive and an end effector comprising a flexible needle comprising suturing material attached thereto, wherein the firing drive is configured to apply control motions to the needle to advance the needle through a firing stroke to suture tissue with the suturing material, and wherein the flexible needle comprises a first end and a second end, and a movable needle guide, wherein the movable needle guide is movable between a collapsed configuration for passing the end effector through a trocar, wherein, in the collapsed configuration, the end effector comprises a collapsed diameter which is less than or equal to the shaft diameter, and wherein the first end of the flexible needle is oriented proximal to the second end in the collapsed configuration, and an expanded configuration for suturing tissue with the flexible needle, wherein, in the expanded configuration, the end effector comprises an expanded diameter which is greater than the shaft diameter, and wherein the flexible is configured to be advanced through its firing stroke when the movable need guide is in the expanded configuration.
The surgical suturing system of Example 11, wherein the end effector is hingedly coupled to the shaft such that the end effector can be rotated relative to the shaft.
The surgical suturing system of Examples 11 or 12, wherein the end effector further comprises a proximal feed wheel and a distal feed wheel configured to be driven by the firing drive, and wherein the flexible needle is configured to be fed into and out of the end effector by the proximal feed wheel and the distal feed wheel.
The surgical suturing system of Examples 11, 12, or 13, wherein the end effector further comprises a proximal feed wheel, a distal feed wheel, and an intermediate feed wheel positioned between the proximal feed wheel and the distal feed wheel, wherein the feed wheels are configured to be driven by the firing drive, wherein the flexible needle is configured to be fed into and out of the end effector by the proximal feed wheel and the distal feed wheel.
The surgical suturing system of Examples 11, 12, 13, or 14, wherein the movable needle guide is pivotally coupled to the end effector, and wherein the shaft is coupled to the movable needle guide such that the shaft can pivot the movable needle guide between the collapsed configuration and the expanded configuration.
A surgical suturing system comprising a shaft comprising a shaft diameter, a firing drive, and an end effector attached to the shaft, wherein the end effector comprises a needle driver configured to be actuated by the firing drive, a needle track, a needle comprising suturing material attached thereto, wherein the needle is configured to be guided by the needle track and actuated by the needle driver through a firing stroke to suture tissue, and a tissue bite region where the needle is configured to be advanced through the tissue bite region to suture tissue, wherein the tissue bite region comprises a width greater than the shaft diameter, wherein the end effector is movable relative to the shaft such that the tissue bite region can extend beyond the shaft diameter.
A surgical suturing system comprising a shaft, a firing drive, and an end effector extending distally from the shaft, wherein the end effector comprises a needle track comprising a linear section and a needle comprising a linear segment, an arcuate segment extending from the linear segment and suturing material attached to the needle, wherein the needle is configured to be guided by the needle track and actuated by the firing drive, wherein the firing drive is configured to rotate the needle and displace the needle linearly to move the needle throughout a needle firing stroke, and wherein the needle firing stroke can be varied from stroke to stroke.
The surgical suturing system of Example 17, wherein the needle comprises a canoe-like shape.
The surgical suturing system of Examples 17 or 18, wherein the needle comprises a park position relative to the end effector, wherein the firing stroke comprises a firing stroke path, and wherein the park position is not located on the firing stroke path.
The surgical suturing system of Example 19, wherein the shaft comprises a shaft diameter, wherein the surgical suturing system is contained with a space defined by the shaft diameter when the needle is in the park position.
A surgical bipolar forceps instrument comprising a shaft comprising a first electrical pathway and a second electrical pathway and a closable jaw assembly comprising a first jaw comprising a first tissue cutting blade and a first electrically-conductive portion in electrical communication with the first electrical pathway, and a second jaw comprising a second tissue cutting blade and a second electrically-conductive portion in electrical communication with the second electrical pathway. The surgical bipolar forceps instrument further comprises a pivot, wherein at least one of the first jaw and the second jaw are rotatable about the pivot, a drive system comprising an electric motor operably engaged with at least one of the first jaw and the second jaw, wherein the drive system is configured to apply a mechanical cutting force to the tissue through the rotation of at least one of the first jaw and the second jaw, a power supply system in electrical communication with the first electrical pathway and the second electrical pathway configured to apply an electrosurgical cutting force to the tissue through at least one of the first electrically-conductive portion and the second electrically-conductive portion, and a control system configured to control when the mechanical cutting force and the electrosurgical cutting force are applied to the tissue.
The surgical bipolar forceps instrument of Example 1, wherein the control system is configured to monitor the current drawn by the electric motor and change the speed of the electric motor to control the closing speed of the jaw assembly.
The surgical bipolar forceps instrument of Examples 1 or 2, wherein the control system comprises a pulse width modulation motor control circuit to change the speed of the electric motor.
The surgical bipolar forceps instrument of Examples 1, 2, or 3, wherein the control system is configured to increase the electrosurgical cutting force when the electrical motor slows down.
The surgical bipolar forceps instrument of Examples 1, 2, 3, or 4, wherein the control system is configured to increase the electrosurgical cutting force when the electrical motor is slowed down by the control system.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, or 5, wherein the control system is configured to decrease the electrosurgical cutting force when the electrical motor speeds up.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, 5, or 6, wherein the control system is configured to increase the electrosurgical cutting force when the electrical motor is sped up by the control system.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, 5, 6, or 7, wherein the control system is configured to initiate the electrosurgical cutting force when the electrical motor slows down.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, 5, 6, 7, or 8, wherein the control system is configured to initiate the electrosurgical cutting force when the electrical motor stops.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8, or 9, wherein the control system is configured to monitor the current drawn by the electric motor and change at least one of the current and the voltage applied to the tissue through the first and the electrically-conductive portions.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, wherein the control system comprises at least one of a voltage regulation circuit and a current regulation circuit configured to control the electrical power supplied to the tissue.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11, wherein the control system comprises an AC voltage control circuit configured to control the voltage potential applied to the first and the electrically-conductive portions.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12, wherein the control system comprises a DC voltage control circuit configured to control the voltage potential applied to the first and the electrically-conductive portions.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or 13, wherein the control system comprises a current control circuit configured to control the electrical power applied to the patient tissue.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14, wherein the control system comprises a pulse width modulation motor control circuit to change the speed of the electric motor.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15, wherein the control system slows the electric motor when the electrosurgical cutting force increases.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16, wherein the control system slows the electric motor when the control system increases the electrosurgical cutting force.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17, wherein the control system speeds up the electric motor when the electrosurgical cutting force decreases.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18, wherein the control system speeds up the electric motor when the control system decreases the electrosurgical cutting force.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19, wherein the control system stops the electric motor when the electrosurgical cutting force increases.
The surgical bipolar forceps instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20, wherein the control system stops the electric motor when the control system increases the electrosurgical cutting force
A surgical instrument comprising a shaft comprising an electrical pathway and a closable jaw assembly comprising a first jaw comprising a tissue cutting blade and an electrode in electrical communication with the electrical pathway. The closable jaw assembly further comprises a second jaw. The surgical instrument further comprises a pivot, wherein the first jaw is rotatable about the pivot, a drive system comprising an electric motor operably engaged with the first jaw, wherein the drive system is configured to apply a mechanical cutting force to the tissue through the rotation of the first jaw, a power supply system in electrical communication with the electrical pathway configured to apply an electrosurgical cutting force to the tissue through the electrode, and a control system configured to control when the mechanical cutting force and the electrosurgical cutting force are applied to the tissue.
A surgical instrument comprising a shaft comprising an electrical pathway and a closable jaw assembly comprising a first jaw comprising a tissue cutting blade and a second jaw comprising an electrode in electrical communication with the electrical pathway. The surgical instrument further comprises a pivot, wherein at least one of the first jaw is rotatable about the pivot, a drive system comprising an electric motor operably engaged with the closable jaw assembly, wherein the drive system is configured to apply a mechanical cutting force to the tissue through the rotation of at least one of the first jaw and the second jaw, a power supply system in electrical communication with the electrical pathway configured to apply an electrosurgical cutting force to the tissue through the electrode, and a control system configured to control when the mechanical cutting force and the electrosurgical cutting force are applied to the tissue.
A surgical bipolar forceps instrument comprising a shaft comprising a first electrical pathway and a second electrical pathway and a first jaw comprising a first tissue cutting blade and a first electrically-conductive portion in electrical communication with the first electrical pathway. The surgical bipolar forceps instrument further comprises a second jaw comprising a second tissue cutting blade and a second electrically-conductive portion in electrical communication with the second electrical pathway. The surgical bipolar forceps instrument further comprises a pivot, wherein at least one of the first jaw and the second jaw are rotatable about the pivot and means for treating the tissue of a patient comprising means for applying a mechanical cutting force to the tissue through the rotation of at least one of the first jaw member and the second jaw member and means for applying electrosurgical force to the tissue through at least one of the first electrically-conductive portion and the second electrically-conductive portion.
A modular surgical instrument comprising a control interface, a shaft extending from said control interface, an end effector extending from said shaft, and a control circuit configured to sense the electrical potential applied to said modular surgical instrument, determine if said sensed electrical potential is above a predetermined threshold, and adjust the operation of said modular surgical instrument when said sensed electrical potential exceeds said predetermined threshold.
The modular surgical instrument of Example 1, further comprising an articulation joint, wherein said end effector is configured to be articulated relative to said shaft by said control interface, and wherein said control circuit is configured to unarticulate said end effector when said sensed electrical potential exceeds said predetermined threshold and said end effector is in an articulated state.
The modular surgical instrument of Example 2, wherein said control circuit is configured to unarticulate said end effector to an unarticulated state.
The modular surgical instrument of Examples 2 or 3, wherein said control circuit is configured to unarticulate said end effector until said sensed electrical potential falls below said predetermined threshold.
The modular surgical instrument of Examples 1, 2, 3, or 4, wherein said control circuit is configured to carry out an operation adjustment until said sensed electrical potential falls below said predetermined threshold.
The modular surgical instrument of Examples 1, 2, 3, 4, or 5, wherein said control circuit is configured to carry out an operation adjustment until a predetermined period of time passes after said sensed electrical potential falls below said predetermined threshold.
A surgical suturing system comprising an actuation interface comprising a motor, an attachment interface, and an output drive configured to be driven by said motor. The surgical suturing system further comprises a modular attachment configured to be attached to and detached from said actuation interface, wherein said modular attachment comprises a shaft, an input drive configured to be coupled with said output drive upon the attachment of said modular attachment and said actuation interface, and an end effector extending distally from said shaft. The surgical suturing system further comprises a load sensor configured to detect the load applied to said input drive and said output drive when said input drive and said output drive are actuated by said motor, wherein said surgical suturing system further comprises a control circuit configured to monitor said detected load from said load sensor, limit current flow through said motor when said detected load reaches a first threshold, and stop power to said motor when said detected load reaches a second threshold.
The surgical suturing system of Example 7, wherein said second threshold is less than said first threshold.
The surgical suturing system of Example 7, wherein said second threshold is greater than said first threshold.
A surgical instrument comprising a motor, a drive system configured to be actuated by said motor, a shaft, an articulation joint, an end effector attached to said shaft by way of said articulation joint, wherein said end effector is configured to be articulated relative to said shaft by said drive system, and a control circuit configured to detect electrical energy applied to said surgical instrument; and alter the actuation of said motor when an unexpected electrical energy is detected.
The surgical instrument of Example 10, wherein said control circuit is configured to reverse the actuation of said motor when an unexpected electrical energy is detected.
The surgical instrument of Examples 10 or 11, wherein said control circuit is configured to pause the actuation of said motor when an unexpected electrical energy is detected.
The surgical instrument of Examples 10, 11, or 12, wherein said control circuit is further configured to indicate to a user the condition of said surgical instrument when an unexpected electrical energy is detected.
A surgical suturing system comprising a first motor, a second motor, a shaft, an end effector attached to said shaft, wherein said end effector comprises a longitudinal axis, wherein said second motor is configured to rotate said end effector about said longitudinal axis, a needle configured to be driven through a firing stroke by said first motor and suturing material attached to said needle. The surgical suturing system further comprises a first sensor configured to sense force experienced by said needle as said needle is advanced through said firing stroke, a second sensor configured to sense load torque experienced by said end effector as said end effector is rotated about said longitudinal axis, a third sensor configured to sense bending load experienced by said shaft, and a control program configured to monitor said force experienced by said needle such that, if said force experienced by said needle exceeds a first predetermined threshold, said control program limits the current flow through said first motor, monitor said load torque experienced by said end effector such that, if said load torque experienced by said end effector exceeds a second predetermined threshold, said control program limits the current flow through said second motor, and monitor said bending load experienced by said shaft such that, if said load bending load experienced by said shaft exceeds a third predetermined threshold, said control program reduces the current flow through said second motor.
The surgical suturing system of Example 14, wherein said first sensor comprises a strain gauge.
The surgical suturing system of Examples 14 or 15, wherein said second sensor comprises a strain gauge.
The surgical suturing system of Examples 14, 15, or 16, wherein said third sensor comprises a strain gauge.
The surgical suturing system of Examples 14, 15, 16, or 17, wherein data measured by said first sensor, said second sensor, and said third sensor are indicated to a user of said surgical suturing system.
The surgical suturing system of Examples 14, 15, 16, 17, or 18, further comprising a surgical suturing cartridge.
The surgical instrument systems described herein are motivated by an electric motor; however, the surgical instrument systems described herein can be motivated in any suitable manner. In certain instances, the motors disclosed herein may comprise a portion or portions of a robotically controlled system. U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535, for example, discloses several examples of a robotic surgical instrument system in greater detail, the entire disclosure of which is incorporated by reference herein.
The devices, systems, and methods disclosed in the Subject Application can be used with the devices, systems, and methods disclosed in U.S. patent application Ser. No. 13/832,786, now U.S. Pat. No. 9,398,905, entitled CIRCULAR NEEDLE APPLIER WITH OFFSET NEEDLE AND CARRIER TRACKS; U.S. patent application Ser. No. 14/721,244, now U.S. Patent Application Publication No. 2016/0345958, entitled SURGICAL NEEDLE WITH RECESSED FEATURES; and U.S. patent application Ser. No. 14/740,724, now U.S. Patent Application Publication No. 2016/0367243, entitled SUTURING INSTRUMENT WITH MOTORIZED NEEDLE DRIVE, which are incorporated by reference in their entireties herein.
The devices, systems, and methods disclosed in the Subject Application can also be used with the devices, systems, and methods disclosed in U.S. Provisional Patent Application No. 62/659,900, entitled METHOD OF HUB COMMUNICATION, filed on Apr. 19, 2018, U.S. Provisional Patent Application No. 62/611,341, entitled INTERACTIVE SURGICAL PLATFORM, filed on Dec. 28, 2017, U.S. Provisional Patent Application No. 62/611,340, entitled CLOUD-BASED MEDICAL ANALYTICS, filed on Dec. 28, 2017, and U.S. Provisional Patent Application No. 62/611,339, entitled ROBOT ASSISTED SURGICAL PLATFORM, filed on Dec. 28, 2017, which are incorporated by reference in their entireties herein.
The devices, systems, and methods disclosed in the Subject Application can also be used with the devices, systems, and methods disclosed in U.S. patent application Ser. No. 15/908,021, entitled SURGICAL INSTRUMENT WITH REMOTE RELEASE, filed on Feb. 28, 2018, U.S. patent application Ser. No. 15/908,012, entitled SURGICAL INSTRUMENT HAVING DUAL ROTATABLE MEMBERS TO EFFECT DIFFERENT TYPES OF END EFFECTOR MOVEMENT, filed on Feb. 28, 2018, U.S. patent application Ser. No. 15/908,040, entitled SURGICAL INSTRUMENT WITH ROTARY DRIVE SELECTIVELY ACTUATING MULTIPLE END EFFECTOR FUNCTIONS, filed on Feb. 28, 2018, U.S. patent application Ser. No. 15/908,057, entitled SURGICAL INSTRUMENT WITH ROTARY DRIVE SELECTIVELY ACTUATING MULTIPLE END EFFECTOR FUNCTIONS, filed on Feb. 28, 2018, U.S. patent application Ser. No. 15/908,058, entitled SURGICAL INSTRUMENT WITH MODULAR POWER SOURCES, filed on Feb. 28, 2018, and U.S. patent application Ser. No. 15/908,143, entitled SURGICAL INSTRUMENT WITH SENSOR AND/OR CONTROL SYSTEMS, filed on Feb. 28, 2018, which are incorporated in their entireties herein.
The surgical instrument systems described herein are motivated by an electric motor; however, the surgical instrument systems described herein can be motivated in any suitable manner. In certain instances, the motors disclosed herein may comprise a portion or portions of a robotically controlled system. U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535, for example, discloses several examples of a robotic surgical instrument system in greater detail, the entire disclosure of which is incorporated by reference herein.
The surgical instrument systems described herein can be used in connection with the deployment of suture material to seal tissue. Moreover, various embodiments are envisioned which utilize any suitable means for sealing tissue. For instance, an end effector in accordance with various embodiments can comprise electrodes configured to heat and seal the tissue. Also, for instance, an end effector in accordance with certain embodiments can apply vibrational energy to seal the tissue. In addition, various embodiments are envisioned which utilize a suitable cutting means to cut the tissue.
The entire disclosures of:
Although various devices have been described herein in connection with certain embodiments, modifications and variations to those embodiments may be implemented. Particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined in whole or in part, with the features, structures or characteristics of one or more other embodiments without limitation. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, a device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps including, but not limited to, the disassembly of the device, followed by cleaning or replacement of particular pieces of the device, and subsequent reassembly of the device. In particular, a reconditioning facility and/or surgical team can disassemble a device and, after cleaning and/or replacing particular parts of the device, the device can be reassembled for subsequent use. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
The devices disclosed herein may be processed before surgery. First, a new or used instrument may be obtained and, when necessary, cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, and/or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta radiation, gamma radiation, ethylene oxide, plasma peroxide, and/or steam.
While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials do not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
This non-provisional application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 62/578,793, entitled SURGICAL INSTRUMENT WITH REMOTE RELEASE, filed Oct. 30, 2017, of U.S. Provisional Patent Application Ser. No. 62/578,804, entitled SURGICAL INSTRUMENT HAVING DUAL ROTATABLE MEMBERS TO EFFECT DIFFERENT TYPES OF END EFFECTOR MOVEMENT, filed Oct. 30, 2017, of U.S. Provisional Patent Application Ser. No. 62/578,817, entitled SURGICAL INSTRUMENT WITH ROTARY DRIVE SELECTIVELY ACTUATING MULTIPLE END EFFECTOR FUNCTIONS, filed Oct. 30, 2017, of U.S. Provisional Patent Application Ser. No. 62/578,835, entitled SURGICAL INSTRUMENT WITH ROTARY DRIVE SELECTIVELY ACTUATING MULTIPLE END EFFECTOR FUNCTIONS, filed Oct. 30, 2017, of U.S. Provisional Patent Application Ser. No. 62/578,844, entitled SURGICAL INSTRUMENT WITH MODULAR POWER SOURCES, filed Oct. 30, 2017, and of U.S. Provisional Patent Application Ser. No. 62/578,855, entitled SURGICAL INSTRUMENT WITH SENSOR AND/OR CONTROL SYSTEMS, filed Oct. 30, 2017, the disclosures of which are incorporated by reference herein in their entirety. This non-provisional application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 62/665,129, entitled SURGICAL SUTURING SYSTEMS, filed May 1, 2018, of U.S. Provisional Patent Application Ser. No. 62/665,139, entitled SURGICAL INSTRUMENTS COMPRISING CONTROL SYSTEMS, filed May 1, 2018, of U.S. Provisional Patent Application Ser. No. 62/665,177, entitled SURGICAL INSTRUMENTS COMPRISING HANDLE ARRANGEMENTS, filed May 1, 2018, of U.S. Provisional Patent Application Ser. No. 62/665,128, entitled MODULAR SURGICAL INSTRUMENTS, filed May 1, 2018, of U.S. Provisional Patent Application Ser. No. 62/665,192, entitled SURGICAL DISSECTORS, filed May 1, 2018, and of U.S. Provisional Patent Application Ser. No. 62/665,134, entitled SURGICAL CLIP APPLIER, filed May 1, 2018, the disclosures of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1853416 | Hall | Apr 1932 | A |
2222125 | Stehlik | Nov 1940 | A |
3082426 | Miles | Mar 1963 | A |
3503396 | Pierie et al. | Mar 1970 | A |
3584628 | Green | Jun 1971 | A |
3626457 | Duerr et al. | Dec 1971 | A |
3633584 | Farrell | Jan 1972 | A |
3759017 | Young | Sep 1973 | A |
3863118 | Lander et al. | Jan 1975 | A |
3898545 | Coppa et al. | Aug 1975 | A |
3912121 | Steffen | Oct 1975 | A |
3915271 | Harper | Oct 1975 | A |
3932812 | Milligan | Jan 1976 | A |
4041362 | Ichiyanagi | Aug 1977 | A |
4052649 | Greenwell et al. | Oct 1977 | A |
4087730 | Goles | May 1978 | A |
4157859 | Terry | Jun 1979 | A |
4171700 | Farin | Oct 1979 | A |
4202722 | Paquin | May 1980 | A |
4412539 | Jarvik | Nov 1983 | A |
4448193 | Ivanov | May 1984 | A |
4523695 | Braun et al. | Jun 1985 | A |
4608160 | Zoch | Aug 1986 | A |
4614366 | North et al. | Sep 1986 | A |
4633874 | Chow et al. | Jan 1987 | A |
4701193 | Robertson et al. | Oct 1987 | A |
4735603 | Goodson et al. | Apr 1988 | A |
4788977 | Farin et al. | Dec 1988 | A |
4849752 | Bryant | Jul 1989 | A |
D303787 | Messenger et al. | Oct 1989 | S |
4892244 | Fox et al. | Jan 1990 | A |
4976173 | Yang | Dec 1990 | A |
5010341 | Huntley et al. | Apr 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5035692 | Lyon et al. | Jul 1991 | A |
5042460 | Sakurai et al. | Aug 1991 | A |
5047043 | Kubota et al. | Sep 1991 | A |
5084057 | Green et al. | Jan 1992 | A |
5100402 | Fan | Mar 1992 | A |
D327061 | Soren et al. | Jun 1992 | S |
5129570 | Schulze et al. | Jul 1992 | A |
5151102 | Kamiyama et al. | Sep 1992 | A |
5156315 | Green et al. | Oct 1992 | A |
5158585 | Saho et al. | Oct 1992 | A |
5171247 | Hughett et al. | Dec 1992 | A |
5189277 | Boisvert et al. | Feb 1993 | A |
5197962 | Sansom et al. | Mar 1993 | A |
5204669 | Dorfe et al. | Apr 1993 | A |
5217003 | Wilk | Jun 1993 | A |
5242474 | Herbst et al. | Sep 1993 | A |
5253793 | Green et al. | Oct 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5275323 | Schulze et al. | Jan 1994 | A |
5318516 | Cosmescu | Jun 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5322055 | Davison et al. | Jun 1994 | A |
5342349 | Kaufman | Aug 1994 | A |
5364003 | Williamson, IV | Nov 1994 | A |
5383880 | Hooven | Jan 1995 | A |
5385544 | Edwards et al. | Jan 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5397046 | Savage et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403327 | Thornton et al. | Apr 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5415335 | Knodell, Jr. | May 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5439468 | Schulze et al. | Aug 1995 | A |
5445304 | Plyley et al. | Aug 1995 | A |
5462545 | Wang et al. | Oct 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5474566 | Alesi et al. | Dec 1995 | A |
5485947 | Olson et al. | Jan 1996 | A |
5496315 | Weaver et al. | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5531743 | Nettekoven et al. | Jul 1996 | A |
5545148 | Wurster | Aug 1996 | A |
5552685 | Young et al. | Sep 1996 | A |
5560372 | Cory | Oct 1996 | A |
5584425 | Savage et al. | Dec 1996 | A |
5610379 | Muz et al. | Mar 1997 | A |
5610811 | Honda | Mar 1997 | A |
5613966 | Makower et al. | Mar 1997 | A |
5624452 | Yates | Apr 1997 | A |
D379346 | Mieki | May 1997 | S |
5626587 | Bishop et al. | May 1997 | A |
5643291 | Pier et al. | Jul 1997 | A |
5654750 | Weil et al. | Aug 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5673842 | Bittner et al. | Oct 1997 | A |
5675227 | Roos et al. | Oct 1997 | A |
5693042 | Boiarski et al. | Dec 1997 | A |
5693052 | Weaver | Dec 1997 | A |
5695502 | Pier et al. | Dec 1997 | A |
5697926 | Weaver | Dec 1997 | A |
5706998 | Plyley et al. | Jan 1998 | A |
5718359 | Palmer et al. | Feb 1998 | A |
5724468 | Leone et al. | Mar 1998 | A |
5725536 | Oberlin et al. | Mar 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5735445 | Vidal et al. | Apr 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5746209 | Yost et al. | May 1998 | A |
5749362 | Funda et al. | May 1998 | A |
5749893 | Vidal et al. | May 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5766186 | Faraz et al. | Jun 1998 | A |
5769791 | Benaron et al. | Jun 1998 | A |
5775331 | Raymond et al. | Jul 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5800350 | Coppleson et al. | Sep 1998 | A |
D399561 | Ellingson | Oct 1998 | S |
5817093 | Wlliamson, IV et al. | Oct 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5836849 | Mathiak et al. | Nov 1998 | A |
5836869 | Kudo et al. | Nov 1998 | A |
5836909 | Cosmescu | Nov 1998 | A |
5843080 | Fleenor et al. | Dec 1998 | A |
5846237 | Nettekoven | Dec 1998 | A |
5849022 | Sakashita et al. | Dec 1998 | A |
5873873 | Smith et al. | Feb 1999 | A |
5878938 | Bittner et al. | Mar 1999 | A |
5893849 | Weaver | Apr 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5942333 | Arnett et al. | Aug 1999 | A |
5947996 | Logeman | Sep 1999 | A |
5968032 | Sleister | Oct 1999 | A |
5980510 | Tsonton et al. | Nov 1999 | A |
5987346 | Benaron et al. | Nov 1999 | A |
5997528 | Bisch et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6030437 | Gourrier et al. | Feb 2000 | A |
6036637 | Kudo | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6039735 | Greep | Mar 2000 | A |
6059799 | Aranyi et al. | May 2000 | A |
6066137 | Greep | May 2000 | A |
6079606 | Milliman et al. | Jun 2000 | A |
6090107 | Borgmeier et al. | Jul 2000 | A |
6099537 | Sugai et al. | Aug 2000 | A |
6102907 | Smethers et al. | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6113598 | Baker | Sep 2000 | A |
6126592 | Proch et al. | Oct 2000 | A |
6126658 | Baker | Oct 2000 | A |
6131789 | Schulze et al. | Oct 2000 | A |
6155473 | Tompkins et al. | Dec 2000 | A |
6214000 | Fleenor et al. | Apr 2001 | B1 |
6258105 | Hart et al. | Jul 2001 | B1 |
6269411 | Reasoner | Jul 2001 | B1 |
6273887 | Yamauchi et al. | Aug 2001 | B1 |
6283960 | Ashley | Sep 2001 | B1 |
6301495 | Gueziec et al. | Oct 2001 | B1 |
6302881 | Farin | Oct 2001 | B1 |
6308089 | von der Ruhr et al. | Oct 2001 | B1 |
6325808 | Bernard et al. | Dec 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6341164 | Dilkie et al. | Jan 2002 | B1 |
6391102 | Bodden et al. | May 2002 | B1 |
6423057 | He et al. | Jul 2002 | B1 |
6434416 | Mizoguchi et al. | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6451015 | Rittman, III et al. | Sep 2002 | B1 |
6454781 | Witt et al. | Sep 2002 | B1 |
6457625 | Tormala et al. | Oct 2002 | B1 |
6461352 | Morgan et al. | Oct 2002 | B2 |
6466817 | Kaula et al. | Oct 2002 | B1 |
6480796 | Wiener | Nov 2002 | B2 |
6524307 | Palmerton et al. | Feb 2003 | B1 |
6530933 | Yeung et al. | Mar 2003 | B1 |
6551243 | Bocionek et al. | Apr 2003 | B2 |
6569109 | Sakurai et al. | May 2003 | B2 |
6582424 | Fleenor et al. | Jun 2003 | B2 |
6584358 | Carter et al. | Jun 2003 | B2 |
6585791 | Garito et al. | Jul 2003 | B1 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6618626 | West, Jr. et al. | Sep 2003 | B2 |
6633234 | Wiener et al. | Oct 2003 | B2 |
6648223 | Boukhny et al. | Nov 2003 | B2 |
6678552 | Pearlman | Jan 2004 | B2 |
6679899 | Wiener et al. | Jan 2004 | B2 |
6685704 | Greep | Feb 2004 | B2 |
6699187 | Webb et al. | Mar 2004 | B2 |
6731514 | Evans | May 2004 | B2 |
6742895 | Robin | Jun 2004 | B2 |
6752816 | Culp et al. | Jun 2004 | B2 |
6760616 | Hoey et al. | Jul 2004 | B2 |
6770072 | Truckai | Aug 2004 | B1 |
6773444 | Messerly | Aug 2004 | B2 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6778846 | Martinez et al. | Aug 2004 | B1 |
6781683 | Kacyra et al. | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6783525 | Greep et al. | Aug 2004 | B2 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6793663 | Kneifel et al. | Sep 2004 | B2 |
6824539 | Novak | Nov 2004 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6849074 | Chen et al. | Feb 2005 | B2 |
6852219 | Hammond | Feb 2005 | B2 |
6863650 | Irion | Mar 2005 | B1 |
6869430 | Balbierz et al. | Mar 2005 | B2 |
6869435 | Blake, III | Mar 2005 | B2 |
6911033 | de Guillebon et al. | Jun 2005 | B2 |
6913471 | Smith | Jul 2005 | B2 |
6937892 | Leyde et al. | Aug 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6951559 | Greep | Oct 2005 | B1 |
6962587 | Johnson et al. | Nov 2005 | B2 |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7009511 | Mazar et al. | Mar 2006 | B2 |
7030146 | Baynes et al. | Apr 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7041941 | Faries, Jr. et al. | May 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7044911 | Drinan et al. | May 2006 | B2 |
7044949 | Orszulak et al. | May 2006 | B2 |
7048775 | Jornitz et al. | May 2006 | B2 |
7053752 | Wang et al. | May 2006 | B2 |
7055730 | Ehrenfels et al. | Jun 2006 | B2 |
7073765 | Newkirk | Jul 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7081096 | Brister et al. | Jul 2006 | B2 |
7097640 | Wang et al. | Aug 2006 | B2 |
7103688 | Strong | Sep 2006 | B2 |
7104949 | Anderson et al. | Sep 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7121460 | Parsons et al. | Oct 2006 | B1 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7147139 | Schwemberger et al. | Dec 2006 | B2 |
7155316 | Sutherland et al. | Dec 2006 | B2 |
7164940 | Hareyama et al. | Jan 2007 | B2 |
7169145 | Isaacson et al. | Jan 2007 | B2 |
7177533 | McFarlin et al. | Feb 2007 | B2 |
7182775 | de Guillebon et al. | Feb 2007 | B2 |
7207472 | Wukusick et al. | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7217269 | El-Galley et al. | May 2007 | B2 |
7230529 | Ketcherside, Jr. et al. | Jun 2007 | B2 |
7232447 | Gellman et al. | Jun 2007 | B2 |
7236817 | Papas et al. | Jun 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7252664 | Nasab et al. | Aug 2007 | B2 |
7278563 | Green | Oct 2007 | B1 |
7294106 | Birkenbach et al. | Nov 2007 | B2 |
7294116 | Ellman et al. | Nov 2007 | B1 |
7296724 | Green et al. | Nov 2007 | B2 |
7317955 | McGreevy | Jan 2008 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7334717 | Rethy et al. | Feb 2008 | B2 |
7343565 | Ying et al. | Mar 2008 | B2 |
7344532 | Goble et al. | Mar 2008 | B2 |
7353068 | Tanaka et al. | Apr 2008 | B2 |
7362228 | Nycz et al. | Apr 2008 | B2 |
7371227 | Zeiner | May 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7383088 | Spinelli et al. | Jun 2008 | B2 |
7391173 | Schena | Jun 2008 | B2 |
7407074 | Ortiz et al. | Aug 2008 | B2 |
7408439 | Wang et al. | Aug 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7423972 | Shaham et al. | Sep 2008 | B2 |
D579876 | Novotney et al. | Nov 2008 | S |
7457804 | Uber, III et al. | Nov 2008 | B2 |
D583328 | Chiang | Dec 2008 | S |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7496418 | Kim et al. | Feb 2009 | B2 |
D589447 | Sasada et al. | Mar 2009 | S |
7515961 | Germanson et al. | Apr 2009 | B2 |
7518502 | Austin et al. | Apr 2009 | B2 |
7554343 | Bromfield | Jun 2009 | B2 |
7563259 | Takahashi | Jul 2009 | B2 |
7568604 | Ehrenfels et al. | Aug 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7597731 | Palmerton et al. | Oct 2009 | B2 |
7617137 | Kreiner et al. | Nov 2009 | B2 |
7621192 | Conti et al. | Nov 2009 | B2 |
7621898 | Lalomia et al. | Nov 2009 | B2 |
7631793 | Rethy et al. | Dec 2009 | B2 |
7637410 | Marczyk | Dec 2009 | B2 |
7637907 | Blaha | Dec 2009 | B2 |
7641092 | Kruszynski et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7667592 | Ohyama et al. | Feb 2010 | B2 |
7667839 | Bates | Feb 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7694865 | Scirica | Apr 2010 | B2 |
7699860 | Huitema et al. | Apr 2010 | B2 |
7720306 | Gardiner et al. | May 2010 | B2 |
7721934 | Shelton, IV et al. | May 2010 | B2 |
7721936 | Shalton, IV et al. | May 2010 | B2 |
7736357 | Lee, Jr. et al. | Jun 2010 | B2 |
7742176 | Braunecker et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
7753245 | Boudreaux et al. | Jul 2010 | B2 |
7757028 | Druke et al. | Jul 2010 | B2 |
7766207 | Mather et al. | Aug 2010 | B2 |
7766905 | Paterson et al. | Aug 2010 | B2 |
7770773 | Whitman et al. | Aug 2010 | B2 |
7771429 | Ballard et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7782789 | Stultz et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7810692 | Hall et al. | Oct 2010 | B2 |
7818041 | Kim et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7833219 | Tashiro et al. | Nov 2010 | B2 |
7836085 | Petakov et al. | Nov 2010 | B2 |
7837079 | Holsten et al. | Nov 2010 | B2 |
7837680 | Isaacson et al. | Nov 2010 | B2 |
7841980 | Minosawa et al. | Nov 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
D631252 | Leslie | Jan 2011 | S |
7862560 | Marion | Jan 2011 | B2 |
7862579 | Ortiz et al. | Jan 2011 | B2 |
7865236 | Cory et al. | Jan 2011 | B2 |
7884735 | Newkirk | Feb 2011 | B2 |
7887530 | Zemlok et al. | Feb 2011 | B2 |
7892337 | Palmerton et al. | Feb 2011 | B2 |
7907166 | Lamprecht et al. | Mar 2011 | B2 |
7913891 | Doll et al. | Mar 2011 | B2 |
7918230 | Whitman et al. | Apr 2011 | B2 |
7918377 | Measamer et al. | Apr 2011 | B2 |
7920706 | Asokan et al. | Apr 2011 | B2 |
7927014 | Dehler | Apr 2011 | B2 |
7932826 | Fritchie et al. | Apr 2011 | B2 |
7942300 | Rethy et al. | May 2011 | B2 |
7945065 | Menzl et al. | May 2011 | B2 |
7945342 | Tsai et al. | May 2011 | B2 |
7951148 | McClurken | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7955322 | Devengenzo et al. | Jun 2011 | B2 |
7956620 | Gilbert | Jun 2011 | B2 |
7963433 | Whitman et al. | Jun 2011 | B2 |
7966269 | Bauer et al. | Jun 2011 | B2 |
7967180 | Scirica | Jun 2011 | B2 |
7976553 | Shelton, IV et al. | Jul 2011 | B2 |
7979157 | Anvari | Jul 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
7982776 | Dunki-Jacobs et al. | Jul 2011 | B2 |
7988028 | Farascioni et al. | Aug 2011 | B2 |
7993140 | Sakezles | Aug 2011 | B2 |
7993354 | Brecher et al. | Aug 2011 | B1 |
7995045 | Dunki-Jacobs | Aug 2011 | B2 |
8005947 | Morris et al. | Aug 2011 | B2 |
8007494 | Taylor et al. | Aug 2011 | B1 |
8007513 | Nalagatla et al. | Aug 2011 | B2 |
8010180 | Quaid et al. | Aug 2011 | B2 |
8012170 | Whitman et al. | Sep 2011 | B2 |
8015976 | Shah | Sep 2011 | B2 |
8016855 | Whitman et al. | Sep 2011 | B2 |
8019094 | Hsieh et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8027710 | Dannan | Sep 2011 | B1 |
8035685 | Jensen | Oct 2011 | B2 |
8038686 | Huitema et al. | Oct 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8043560 | Okumoto et al. | Oct 2011 | B2 |
8054184 | Cline et al. | Nov 2011 | B2 |
8054752 | Druke et al. | Nov 2011 | B2 |
8062306 | Nobis et al. | Nov 2011 | B2 |
8062330 | Prommersberger et al. | Nov 2011 | B2 |
8066721 | Kortenbach et al. | Nov 2011 | B2 |
8074861 | Ehrenfels et al. | Dec 2011 | B2 |
8075571 | Vitali et al. | Dec 2011 | B2 |
8096459 | Ortiz et al. | Jan 2012 | B2 |
8118206 | Zand et al. | Feb 2012 | B2 |
8120301 | Goldberg et al. | Feb 2012 | B2 |
8123764 | Meade et al. | Feb 2012 | B2 |
D655678 | Kobayashi et al. | Mar 2012 | S |
8128625 | Odom | Mar 2012 | B2 |
8131565 | Dicks et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
D657368 | Magee et al. | Apr 2012 | S |
8147486 | Honour et al. | Apr 2012 | B2 |
8155479 | Hoffman et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8157150 | Viola et al. | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8160098 | Yan et al. | Apr 2012 | B1 |
8160690 | Wilfley et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8170396 | Kuspa et al. | May 2012 | B2 |
8172836 | Ward | May 2012 | B2 |
8181839 | Beetel | May 2012 | B2 |
8185409 | Putnam et al. | May 2012 | B2 |
8206345 | Abboud et al. | Jun 2012 | B2 |
8208707 | Mendonca et al. | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8214007 | Baker et al. | Jul 2012 | B2 |
8216849 | Petty | Jul 2012 | B2 |
8220688 | Laurent et al. | Jul 2012 | B2 |
8225643 | Abboud et al. | Jul 2012 | B2 |
8225979 | Farascioni et al. | Jul 2012 | B2 |
8229549 | Whitman et al. | Jul 2012 | B2 |
8231042 | Hessler et al. | Jul 2012 | B2 |
8239066 | Jennings et al. | Aug 2012 | B2 |
8255045 | Gharib et al. | Aug 2012 | B2 |
D667838 | Magee et al. | Sep 2012 | S |
8257387 | Cunningham | Sep 2012 | B2 |
8260016 | Maeda et al. | Sep 2012 | B2 |
8262560 | Whitman | Sep 2012 | B2 |
8292639 | Achammer et al. | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8295902 | Salahieh et al. | Oct 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8321581 | Katis et al. | Nov 2012 | B2 |
8322590 | Patel et al. | Dec 2012 | B2 |
8328065 | Shah | Dec 2012 | B2 |
8335590 | Costa et al. | Dec 2012 | B2 |
D675164 | Kobayashi et al. | Jan 2013 | S |
8343065 | Bartol et al. | Jan 2013 | B2 |
8346392 | Walser et al. | Jan 2013 | B2 |
8360299 | Zemlok et al. | Jan 2013 | B2 |
8364222 | Cook et al. | Jan 2013 | B2 |
D676392 | Gassauer | Feb 2013 | S |
8365975 | Manoux et al. | Feb 2013 | B1 |
D678196 | Miyauchi et al. | Mar 2013 | S |
D678304 | Yakoub et al. | Mar 2013 | S |
8388652 | Viola | Mar 2013 | B2 |
8393514 | Shelton, IV et al. | Mar 2013 | B2 |
8397972 | Kostrzewski | Mar 2013 | B2 |
8398541 | DiMaio et al. | Mar 2013 | B2 |
8403944 | Pain et al. | Mar 2013 | B2 |
8403945 | Whitfield et al. | Mar 2013 | B2 |
8403946 | Whitfield et al. | Mar 2013 | B2 |
8406859 | Zuzak et al. | Mar 2013 | B2 |
8411034 | Boillot et al. | Apr 2013 | B2 |
8413871 | Racenet et al. | Apr 2013 | B2 |
8422035 | Hinderling et al. | Apr 2013 | B2 |
8423182 | Robinson et al. | Apr 2013 | B2 |
8428722 | Verhoef et al. | Apr 2013 | B2 |
8429153 | Birdwell et al. | Apr 2013 | B2 |
8439910 | Greep et al. | May 2013 | B2 |
8444663 | Houser et al. | May 2013 | B2 |
8452615 | Abri | May 2013 | B2 |
8454506 | Rothman et al. | Jun 2013 | B2 |
8461744 | Wiener et al. | Jun 2013 | B2 |
8468030 | Stroup et al. | Jun 2013 | B2 |
8469973 | Meade et al. | Jun 2013 | B2 |
8472630 | Konrad et al. | Jun 2013 | B2 |
8473066 | Aghassian et al. | Jun 2013 | B2 |
D687146 | Juzkiw et al. | Jul 2013 | S |
8476227 | Kaplan et al. | Jul 2013 | B2 |
8478418 | Fahey | Jul 2013 | B2 |
8489235 | Moll et al. | Jul 2013 | B2 |
8499992 | Whitman et al. | Aug 2013 | B2 |
8500728 | Newton et al. | Aug 2013 | B2 |
8500756 | Papa et al. | Aug 2013 | B2 |
8503759 | Greer et al. | Aug 2013 | B2 |
8505801 | Ehrenfels et al. | Aug 2013 | B2 |
8506478 | Mizuyoshi | Aug 2013 | B2 |
8512325 | Mathonnet | Aug 2013 | B2 |
8512365 | Wiener et al. | Aug 2013 | B2 |
8515520 | Brunnett et al. | Aug 2013 | B2 |
8517239 | Scheib et al. | Aug 2013 | B2 |
8521331 | Itkowitz | Aug 2013 | B2 |
8523043 | Ullrich et al. | Sep 2013 | B2 |
8540709 | Allen | Sep 2013 | B2 |
8546996 | Messerly et al. | Oct 2013 | B2 |
8554697 | Claus et al. | Oct 2013 | B2 |
8560047 | Haider et al. | Oct 2013 | B2 |
8561870 | Baxter, III et al. | Oct 2013 | B2 |
8562598 | Falkenstein et al. | Oct 2013 | B2 |
8566115 | Moore | Oct 2013 | B2 |
8567393 | Hickle et al. | Oct 2013 | B2 |
8571598 | Valavi | Oct 2013 | B2 |
8573459 | Smith et al. | Nov 2013 | B2 |
8573465 | Shelton, IV | Nov 2013 | B2 |
8574229 | Eder et al. | Nov 2013 | B2 |
8585631 | Dacquay | Nov 2013 | B2 |
8585694 | Amoah et al. | Nov 2013 | B2 |
8590762 | Hess et al. | Nov 2013 | B2 |
8591536 | Robertson | Nov 2013 | B2 |
8595607 | Nekoomaram et al. | Nov 2013 | B2 |
8596513 | Olson et al. | Dec 2013 | B2 |
8596515 | Okoniewski | Dec 2013 | B2 |
8604709 | Jalbout et al. | Dec 2013 | B2 |
8608044 | Hueil et al. | Dec 2013 | B2 |
8608045 | Smith et al. | Dec 2013 | B2 |
8616431 | Timm et al. | Dec 2013 | B2 |
8617155 | Johnson et al. | Dec 2013 | B2 |
8620055 | Barratt et al. | Dec 2013 | B2 |
8620473 | Diolaiti et al. | Dec 2013 | B2 |
8622275 | Baxter, III et al. | Jan 2014 | B2 |
8623027 | Price et al. | Jan 2014 | B2 |
8627483 | Rachlin et al. | Jan 2014 | B2 |
8627993 | Smith et al. | Jan 2014 | B2 |
8627995 | Smith et al. | Jan 2014 | B2 |
8628518 | Blumenkranz et al. | Jan 2014 | B2 |
8628545 | Cabrera et al. | Jan 2014 | B2 |
8631987 | Shelton, IV et al. | Jan 2014 | B2 |
8632525 | Kerr et al. | Jan 2014 | B2 |
8636190 | Zemlok et al. | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8641621 | Razzaque et al. | Feb 2014 | B2 |
8652086 | Gerg et al. | Feb 2014 | B2 |
8652121 | Quick et al. | Feb 2014 | B2 |
8652128 | Ward | Feb 2014 | B2 |
8657176 | Shelton, IV et al. | Feb 2014 | B2 |
8657177 | Scirica et al. | Feb 2014 | B2 |
8663220 | Wiener et al. | Mar 2014 | B2 |
8666544 | Moll et al. | Mar 2014 | B2 |
8679114 | Chapman et al. | Mar 2014 | B2 |
8682049 | Zhao et al. | Mar 2014 | B2 |
8682489 | Itkowitz et al. | Mar 2014 | B2 |
8685056 | Evans et al. | Apr 2014 | B2 |
8688188 | Heller et al. | Apr 2014 | B2 |
8690864 | Hoarau | Apr 2014 | B2 |
8701962 | Kostrzewski | Apr 2014 | B2 |
D704839 | Juzkiw et al. | May 2014 | S |
8719061 | Birchall | May 2014 | B2 |
8720766 | Hess et al. | May 2014 | B2 |
8733613 | Huitema et al. | May 2014 | B2 |
8740840 | Foley et al. | Jun 2014 | B2 |
8740866 | Reasoner et al. | Jun 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8757465 | Woodard, Jr. et al. | Jun 2014 | B2 |
8761717 | Buchheit | Jun 2014 | B1 |
8763879 | Shelton, IV et al. | Jul 2014 | B2 |
8768251 | Claus et al. | Jul 2014 | B2 |
8771270 | Burbank | Jul 2014 | B2 |
8775196 | Simpson et al. | Jul 2014 | B2 |
8779648 | Giordano et al. | Jul 2014 | B2 |
8790253 | Sunagawa et al. | Jul 2014 | B2 |
8794497 | Zingman | Aug 2014 | B2 |
8795001 | Lam et al. | Aug 2014 | B1 |
8799008 | Johnson et al. | Aug 2014 | B2 |
8799009 | Mellin et al. | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8801703 | Gregg et al. | Aug 2014 | B2 |
8814996 | Giurgiutiu et al. | Aug 2014 | B2 |
8818556 | Sanchez et al. | Aug 2014 | B2 |
8819581 | Nakamura et al. | Aug 2014 | B2 |
8820603 | Shelton, IV et al. | Sep 2014 | B2 |
8820608 | Miyamoto | Sep 2014 | B2 |
8827134 | Viola et al. | Sep 2014 | B2 |
8827136 | Hessler | Sep 2014 | B2 |
8840003 | Morgan et al. | Sep 2014 | B2 |
D716333 | Chotin et al. | Oct 2014 | S |
8851354 | Swensgard et al. | Oct 2014 | B2 |
8852174 | Burbank | Oct 2014 | B2 |
8875973 | Whitman | Nov 2014 | B2 |
8876857 | Burbank | Nov 2014 | B2 |
8882662 | Charles | Nov 2014 | B2 |
8886790 | Harrang et al. | Nov 2014 | B2 |
8893949 | Shelton, IV et al. | Nov 2014 | B2 |
8899479 | Cappuzzo et al. | Dec 2014 | B2 |
8905977 | Shelton et al. | Dec 2014 | B2 |
8912746 | Reid et al. | Dec 2014 | B2 |
8914098 | Brennan et al. | Dec 2014 | B2 |
8917513 | Hazzard | Dec 2014 | B1 |
8918207 | Prisco | Dec 2014 | B2 |
8920186 | Shishikura | Dec 2014 | B2 |
8920414 | Stone et al. | Dec 2014 | B2 |
8920433 | Barrier et al. | Dec 2014 | B2 |
8930203 | Kiaie et al. | Jan 2015 | B2 |
8930214 | Woolford | Jan 2015 | B2 |
8931679 | Kostrzewski | Jan 2015 | B2 |
8936614 | Allen, IV | Jan 2015 | B2 |
8945095 | Blumenkranz et al. | Feb 2015 | B2 |
8945163 | Voegele et al. | Feb 2015 | B2 |
8955732 | Zemlok et al. | Feb 2015 | B2 |
8956581 | Rosenbaum et al. | Feb 2015 | B2 |
8960519 | Whitman et al. | Feb 2015 | B2 |
8960520 | McCuen | Feb 2015 | B2 |
8962062 | Podhajsky et al. | Feb 2015 | B2 |
8967443 | McCuen | Mar 2015 | B2 |
8967455 | Zhou | Mar 2015 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
8968296 | McPherson | Mar 2015 | B2 |
8968309 | Roy et al. | Mar 2015 | B2 |
8968312 | Marczyk et al. | Mar 2015 | B2 |
8968337 | Whitfield et al. | Mar 2015 | B2 |
8968358 | Reschke | Mar 2015 | B2 |
8974429 | Gordon et al. | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8986288 | Konishi | Mar 2015 | B2 |
8986302 | Aldridge et al. | Mar 2015 | B2 |
8989903 | Weir et al. | Mar 2015 | B2 |
8991678 | Wellman et al. | Mar 2015 | B2 |
8992565 | Brisson et al. | Mar 2015 | B2 |
8998797 | Omori | Apr 2015 | B2 |
9002518 | Manzo et al. | Apr 2015 | B2 |
9010608 | Casasanta, Jr. et al. | Apr 2015 | B2 |
9010611 | Ross et al. | Apr 2015 | B2 |
9011366 | Dean et al. | Apr 2015 | B2 |
9011427 | Price et al. | Apr 2015 | B2 |
9016539 | Kostrzewski et al. | Apr 2015 | B2 |
9017326 | DiNardo et al. | Apr 2015 | B2 |
9020240 | Pettersson et al. | Apr 2015 | B2 |
D729267 | Yoo et al. | May 2015 | S |
9023032 | Robinson | May 2015 | B2 |
9023071 | Miller et al. | May 2015 | B2 |
9027431 | Tang et al. | May 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9035568 | Ganton et al. | May 2015 | B2 |
9038882 | Racenet et al. | May 2015 | B2 |
9043027 | Durant et al. | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9044244 | Ludwin et al. | Jun 2015 | B2 |
9044261 | Houser | Jun 2015 | B2 |
9050063 | Roe et al. | Jun 2015 | B2 |
9050083 | Yates et al. | Jun 2015 | B2 |
9050120 | Swarup et al. | Jun 2015 | B2 |
9052809 | Vesto | Jun 2015 | B2 |
9055035 | Porsch et al. | Jun 2015 | B2 |
9055870 | Meador et al. | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9060775 | Wiener et al. | Jun 2015 | B2 |
9066650 | Sekiguchi | Jun 2015 | B2 |
9072523 | Houser et al. | Jul 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9078653 | Leimbach et al. | Jul 2015 | B2 |
9078727 | Miller | Jul 2015 | B2 |
9084606 | Greep | Jul 2015 | B2 |
9089360 | Messerly et al. | Jul 2015 | B2 |
9095362 | Dachs, II et al. | Aug 2015 | B2 |
9095367 | Olson et al. | Aug 2015 | B2 |
9099863 | Smith et al. | Aug 2015 | B2 |
9101358 | Kerr et al. | Aug 2015 | B2 |
9101359 | Smith et al. | Aug 2015 | B2 |
9101374 | Hoch et al. | Aug 2015 | B1 |
9106270 | Puterbaugh et al. | Aug 2015 | B2 |
9107573 | Birnkrant | Aug 2015 | B2 |
9107662 | Kostrzewski | Aug 2015 | B2 |
9107684 | Ma | Aug 2015 | B2 |
9107688 | Kimball et al. | Aug 2015 | B2 |
9107689 | Robertson et al. | Aug 2015 | B2 |
9107694 | Hendriks et al. | Aug 2015 | B2 |
9111548 | Nandy et al. | Aug 2015 | B2 |
9113880 | Zemlok et al. | Aug 2015 | B2 |
9114494 | Mah | Aug 2015 | B1 |
9116597 | Gulasky | Aug 2015 | B1 |
9119617 | Souls et al. | Sep 2015 | B2 |
9119655 | Bowling et al. | Sep 2015 | B2 |
9119657 | Shelton, IV et al. | Sep 2015 | B2 |
9123155 | Cunningham et al. | Sep 2015 | B2 |
9125644 | Lane et al. | Sep 2015 | B2 |
9129054 | Nawana et al. | Sep 2015 | B2 |
9137254 | Bilbrey et al. | Sep 2015 | B2 |
9138129 | Diolaiti | Sep 2015 | B2 |
9138225 | Huang et al. | Sep 2015 | B2 |
9149322 | Knowlton | Oct 2015 | B2 |
9155503 | Cadwell | Oct 2015 | B2 |
9160853 | Daddi et al. | Oct 2015 | B1 |
9161803 | Yates et al. | Oct 2015 | B2 |
9168054 | Turner et al. | Oct 2015 | B2 |
9168091 | Janssen et al. | Oct 2015 | B2 |
9168104 | Dein | Oct 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9183723 | Sherman et al. | Nov 2015 | B2 |
9186143 | Timm et al. | Nov 2015 | B2 |
9192375 | Skinlo et al. | Nov 2015 | B2 |
9192447 | Choi et al. | Nov 2015 | B2 |
9192707 | Gerber et al. | Nov 2015 | B2 |
9198711 | Joseph | Dec 2015 | B2 |
9202078 | Abuelsaad et al. | Dec 2015 | B2 |
9204830 | Zand et al. | Dec 2015 | B2 |
9204879 | Shelton, IV | Dec 2015 | B2 |
9204995 | Scheller et al. | Dec 2015 | B2 |
9211120 | Scheib et al. | Dec 2015 | B2 |
9216062 | Duque et al. | Dec 2015 | B2 |
9218053 | Komuro et al. | Dec 2015 | B2 |
9220502 | Zemlok et al. | Dec 2015 | B2 |
9226689 | Jacobsen et al. | Jan 2016 | B2 |
9226751 | Shelton, IV et al. | Jan 2016 | B2 |
9226766 | Aldridge et al. | Jan 2016 | B2 |
9226767 | Stulen et al. | Jan 2016 | B2 |
9226791 | McCarthy et al. | Jan 2016 | B2 |
9232883 | Ozawa et al. | Jan 2016 | B2 |
9237891 | Shelton, IV | Jan 2016 | B2 |
9237921 | Messerly et al. | Jan 2016 | B2 |
9241728 | Price et al. | Jan 2016 | B2 |
9241730 | Babaev | Jan 2016 | B2 |
9241731 | Boudreaux et al. | Jan 2016 | B2 |
9247996 | Merana et al. | Feb 2016 | B1 |
9250172 | Harris et al. | Feb 2016 | B2 |
9255907 | Heanue et al. | Feb 2016 | B2 |
9265429 | St. Pierre et al. | Feb 2016 | B2 |
9265585 | Wingardner et al. | Feb 2016 | B2 |
9272406 | Aronhalt et al. | Mar 2016 | B2 |
9277956 | Zhang | Mar 2016 | B2 |
9277961 | Panescu et al. | Mar 2016 | B2 |
9277969 | Brannan et al. | Mar 2016 | B2 |
9280884 | Schultz et al. | Mar 2016 | B1 |
9282962 | Schmid et al. | Mar 2016 | B2 |
9282974 | Shelton, IV | Mar 2016 | B2 |
9283045 | Rhee et al. | Mar 2016 | B2 |
9283054 | Morgan et al. | Mar 2016 | B2 |
9289211 | Williams et al. | Mar 2016 | B2 |
9289212 | Shelton, IV et al. | Mar 2016 | B2 |
9295514 | Shelton, IV et al. | Mar 2016 | B2 |
9301691 | Hufnagel et al. | Apr 2016 | B2 |
9301753 | Aldridge et al. | Apr 2016 | B2 |
9301755 | Shelton, IV et al. | Apr 2016 | B2 |
9301759 | Spivey et al. | Apr 2016 | B2 |
9301810 | Amiri et al. | Apr 2016 | B2 |
9302213 | Manahan et al. | Apr 2016 | B2 |
9307894 | von Grunberg et al. | Apr 2016 | B2 |
9307914 | Fahey | Apr 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
9314246 | Shelton, IV et al. | Apr 2016 | B2 |
9314308 | Parihar et al. | Apr 2016 | B2 |
9320563 | Brustad et al. | Apr 2016 | B2 |
9325732 | Stickle et al. | Apr 2016 | B1 |
9326767 | Koch et al. | May 2016 | B2 |
9326770 | Shelton, IV et al. | May 2016 | B2 |
9331422 | Nazzaro et al. | May 2016 | B2 |
9332987 | Leimbach et al. | May 2016 | B2 |
9333042 | Diolaiti et al. | May 2016 | B2 |
9336385 | Spencer et al. | May 2016 | B1 |
9341704 | Picard et al. | May 2016 | B2 |
9345481 | Hall et al. | May 2016 | B2 |
9345490 | Ippisch | May 2016 | B2 |
9345546 | Toth et al. | May 2016 | B2 |
9345900 | Wu et al. | May 2016 | B2 |
9351726 | Leimbach et al. | May 2016 | B2 |
9351727 | Leimbach et al. | May 2016 | B2 |
9358003 | Hall et al. | Jun 2016 | B2 |
9358685 | Meier et al. | Jun 2016 | B2 |
9360449 | Duric | Jun 2016 | B2 |
9364230 | Shelton, IV et al. | Jun 2016 | B2 |
9364231 | Wenchell | Jun 2016 | B2 |
9364249 | Kimball et al. | Jun 2016 | B2 |
9364294 | Razzaque et al. | Jun 2016 | B2 |
9370400 | Parihar | Jun 2016 | B2 |
9375282 | Nau, Jr. et al. | Jun 2016 | B2 |
9375539 | Stearns et al. | Jun 2016 | B2 |
9381003 | Todor et al. | Jul 2016 | B2 |
9381058 | Houser et al. | Jul 2016 | B2 |
9386984 | Aronhalt et al. | Jul 2016 | B2 |
9386988 | Baxter, III et al. | Jul 2016 | B2 |
9387295 | Mastri et al. | Jul 2016 | B1 |
9393017 | Flanagan et al. | Jul 2016 | B2 |
9393037 | Olson et al. | Jul 2016 | B2 |
9398905 | Martin | Jul 2016 | B2 |
9398911 | Auld | Jul 2016 | B2 |
9402629 | Ehrenfels et al. | Aug 2016 | B2 |
9414776 | Sillay et al. | Aug 2016 | B2 |
9414940 | Stein et al. | Aug 2016 | B2 |
9419018 | Sasagawa et al. | Aug 2016 | B2 |
9421014 | Ingmanson et al. | Aug 2016 | B2 |
9433470 | Choi | Sep 2016 | B2 |
9439622 | Case et al. | Sep 2016 | B2 |
9439668 | Timm et al. | Sep 2016 | B2 |
9439736 | Olson | Sep 2016 | B2 |
9445764 | Gross et al. | Sep 2016 | B2 |
9445813 | Shelton, IV et al. | Sep 2016 | B2 |
9450701 | Do et al. | Sep 2016 | B2 |
9451949 | Gorek et al. | Sep 2016 | B2 |
9451958 | Shelton, IV et al. | Sep 2016 | B2 |
9463022 | Swayze et al. | Oct 2016 | B2 |
9463646 | Payne et al. | Oct 2016 | B2 |
9468438 | Baber et al. | Oct 2016 | B2 |
9474565 | Shikhman et al. | Oct 2016 | B2 |
D772252 | Myers et al. | Nov 2016 | S |
9480492 | Aranyi et al. | Nov 2016 | B2 |
9485475 | Speier et al. | Nov 2016 | B2 |
9486271 | Dunning | Nov 2016 | B2 |
9492146 | Kostrzewski et al. | Nov 2016 | B2 |
9492237 | Kang et al. | Nov 2016 | B2 |
9493807 | Little et al. | Nov 2016 | B2 |
9498182 | Case et al. | Nov 2016 | B2 |
9498215 | Duque et al. | Nov 2016 | B2 |
9498231 | Haider et al. | Nov 2016 | B2 |
9516239 | Blanquart et al. | Dec 2016 | B2 |
9519753 | Gerdeman et al. | Dec 2016 | B1 |
9522003 | Weir et al. | Dec 2016 | B2 |
9526407 | Hoeg et al. | Dec 2016 | B2 |
9526499 | Kostrzewski et al. | Dec 2016 | B2 |
9526587 | Zhao et al. | Dec 2016 | B2 |
9532827 | Morgan et al. | Jan 2017 | B2 |
9532845 | Dossett et al. | Jan 2017 | B1 |
9539007 | Dhakad et al. | Jan 2017 | B2 |
9539020 | Conlon et al. | Jan 2017 | B2 |
9542481 | Halter et al. | Jan 2017 | B2 |
9546662 | Shener-Irmakoglu et al. | Jan 2017 | B2 |
9549781 | He et al. | Jan 2017 | B2 |
9554692 | Levy | Jan 2017 | B2 |
9554794 | Baber et al. | Jan 2017 | B2 |
9554854 | Yates et al. | Jan 2017 | B2 |
9561038 | Shelton, IV et al. | Feb 2017 | B2 |
9561045 | Hinman et al. | Feb 2017 | B2 |
9561082 | Yen et al. | Feb 2017 | B2 |
9561982 | Enicks et al. | Feb 2017 | B2 |
9566708 | Kurnianto | Feb 2017 | B2 |
9572592 | Price et al. | Feb 2017 | B2 |
9579099 | Penna et al. | Feb 2017 | B2 |
9579503 | McKinney et al. | Feb 2017 | B2 |
9585657 | Shelton, IV et al. | Mar 2017 | B2 |
9592095 | Panescu et al. | Mar 2017 | B2 |
9597081 | Swayze et al. | Mar 2017 | B2 |
9600031 | Kaneko et al. | Mar 2017 | B2 |
9600138 | Thomas et al. | Mar 2017 | B2 |
9603024 | Wang et al. | Mar 2017 | B2 |
9603277 | Morgan et al. | Mar 2017 | B2 |
D783675 | Yagisawa et al. | Apr 2017 | S |
D784270 | Bhattacharya | Apr 2017 | S |
9610114 | Baxter, III et al. | Apr 2017 | B2 |
9610412 | Zemlok et al. | Apr 2017 | B2 |
9615877 | Tyrrell et al. | Apr 2017 | B2 |
9622684 | Wybo | Apr 2017 | B2 |
9622808 | Beller et al. | Apr 2017 | B2 |
9628501 | Datta Ray et al. | Apr 2017 | B2 |
9629560 | Joseph | Apr 2017 | B2 |
9629623 | Lytle, IV et al. | Apr 2017 | B2 |
9629628 | Aranyi | Apr 2017 | B2 |
9629629 | Leimbach et al. | Apr 2017 | B2 |
9630318 | Ibarz Gabardos et al. | Apr 2017 | B2 |
9636112 | Penna et al. | May 2017 | B2 |
9636188 | Gattani et al. | May 2017 | B2 |
9636239 | Durand et al. | May 2017 | B2 |
9636825 | Penn et al. | May 2017 | B2 |
9641596 | Unagami et al. | May 2017 | B2 |
9641815 | Richardson et al. | May 2017 | B2 |
9642620 | Baxter, III et al. | May 2017 | B2 |
9643022 | Mashiach et al. | May 2017 | B2 |
9649110 | Parihar et al. | May 2017 | B2 |
9649111 | Shelton, IV et al. | May 2017 | B2 |
9649126 | Robertson et al. | May 2017 | B2 |
9649169 | Cinquin et al. | May 2017 | B2 |
9652655 | Satish et al. | May 2017 | B2 |
9655616 | Aranyi | May 2017 | B2 |
9656092 | Golden | May 2017 | B2 |
9662116 | Smith et al. | May 2017 | B2 |
9662177 | Weir et al. | May 2017 | B2 |
9668729 | Williams et al. | Jun 2017 | B2 |
9668732 | Patel et al. | Jun 2017 | B2 |
9668765 | Grace et al. | Jun 2017 | B2 |
9671860 | Ogawa et al. | Jun 2017 | B2 |
9675264 | Acquista et al. | Jun 2017 | B2 |
9675354 | Weir et al. | Jun 2017 | B2 |
9681870 | Baxter, III et al. | Jun 2017 | B2 |
9686306 | Chizeck et al. | Jun 2017 | B2 |
9687230 | Leimbach et al. | Jun 2017 | B2 |
9690362 | Leimbach et al. | Jun 2017 | B2 |
9700292 | Nawana et al. | Jul 2017 | B2 |
9700309 | Jaworek et al. | Jul 2017 | B2 |
9700312 | Kostrzewski et al. | Jul 2017 | B2 |
9700320 | Dinardo et al. | Jul 2017 | B2 |
9706993 | Hessler et al. | Jul 2017 | B2 |
9710214 | Lin et al. | Jul 2017 | B2 |
9710644 | Reybok et al. | Jul 2017 | B2 |
9713424 | Spaide | Jul 2017 | B2 |
9713503 | Goldschmidt | Jul 2017 | B2 |
9717141 | Tegg | Jul 2017 | B1 |
9717498 | Aranyi et al. | Aug 2017 | B2 |
9717525 | Ahluwalia et al. | Aug 2017 | B2 |
9717548 | Couture | Aug 2017 | B2 |
9724094 | Baber et al. | Aug 2017 | B2 |
9724100 | Scheib et al. | Aug 2017 | B2 |
9724118 | Schulte et al. | Aug 2017 | B2 |
9733663 | Leimbach et al. | Aug 2017 | B2 |
9737301 | Baber et al. | Aug 2017 | B2 |
9737310 | Whitfield et al. | Aug 2017 | B2 |
9737335 | Butler et al. | Aug 2017 | B2 |
9737355 | Yates et al. | Aug 2017 | B2 |
9740826 | Raghavan et al. | Aug 2017 | B2 |
9743016 | Nestares et al. | Aug 2017 | B2 |
9743929 | Leimbach et al. | Aug 2017 | B2 |
9743946 | Faller et al. | Aug 2017 | B2 |
9743947 | Price et al. | Aug 2017 | B2 |
9750499 | Leimbach et al. | Sep 2017 | B2 |
9750500 | Malkowski | Sep 2017 | B2 |
9750522 | Scheib et al. | Sep 2017 | B2 |
9750523 | Tsubuku | Sep 2017 | B2 |
9750563 | Shikhman et al. | Sep 2017 | B2 |
9753135 | Bosch | Sep 2017 | B2 |
9753568 | McMillen | Sep 2017 | B2 |
9757126 | Cappola | Sep 2017 | B2 |
9757128 | Baber et al. | Sep 2017 | B2 |
9757142 | Shimizu | Sep 2017 | B2 |
9757152 | Ogilvie et al. | Sep 2017 | B2 |
9763741 | Alvarez et al. | Sep 2017 | B2 |
9764164 | Wiener et al. | Sep 2017 | B2 |
9770541 | Carr et al. | Sep 2017 | B2 |
9775611 | Kostrzewski | Oct 2017 | B2 |
9777913 | Talbert et al. | Oct 2017 | B2 |
9782164 | Mumaw et al. | Oct 2017 | B2 |
9782169 | Kimsey et al. | Oct 2017 | B2 |
9782212 | Wham et al. | Oct 2017 | B2 |
9782214 | Houser et al. | Oct 2017 | B2 |
9788835 | Morgan et al. | Oct 2017 | B2 |
9788836 | Overmyer et al. | Oct 2017 | B2 |
9788851 | Dannaher et al. | Oct 2017 | B2 |
9788902 | Inoue et al. | Oct 2017 | B2 |
9788907 | Alvi et al. | Oct 2017 | B1 |
9795436 | Yates et al. | Oct 2017 | B2 |
9797486 | Zergiebel et al. | Oct 2017 | B2 |
9801531 | Morita et al. | Oct 2017 | B2 |
9801626 | Parihar et al. | Oct 2017 | B2 |
9801627 | Harris et al. | Oct 2017 | B2 |
9801679 | Trees et al. | Oct 2017 | B2 |
9802033 | Hibner et al. | Oct 2017 | B2 |
9804618 | Leimbach et al. | Oct 2017 | B2 |
9805472 | Chou et al. | Oct 2017 | B2 |
9808244 | Leimbach et al. | Nov 2017 | B2 |
9808245 | Richard et al. | Nov 2017 | B2 |
9808246 | Shelton, IV et al. | Nov 2017 | B2 |
9808248 | Hoffman | Nov 2017 | B2 |
9808249 | Shelton, IV | Nov 2017 | B2 |
9814457 | Martin et al. | Nov 2017 | B2 |
9814460 | Kimsey et al. | Nov 2017 | B2 |
9814462 | Woodard, Jr. et al. | Nov 2017 | B2 |
9814463 | Williams et al. | Nov 2017 | B2 |
9820699 | Bingley et al. | Nov 2017 | B2 |
9820738 | Lytle, IV et al. | Nov 2017 | B2 |
9820741 | Kostrzewski | Nov 2017 | B2 |
9820768 | Gee et al. | Nov 2017 | B2 |
9826976 | Parihar et al. | Nov 2017 | B2 |
9826977 | Leimbach et al. | Nov 2017 | B2 |
9827054 | Richmond et al. | Nov 2017 | B2 |
9827059 | Robinson et al. | Nov 2017 | B2 |
9830424 | Dixon et al. | Nov 2017 | B2 |
9833241 | Huitema et al. | Dec 2017 | B2 |
9833254 | Barral et al. | Dec 2017 | B1 |
9839419 | Deck et al. | Dec 2017 | B2 |
9839424 | Zergiebel et al. | Dec 2017 | B2 |
9839428 | Baxter, III et al. | Dec 2017 | B2 |
9839467 | Harper et al. | Dec 2017 | B2 |
9839470 | Gilbert et al. | Dec 2017 | B2 |
9839487 | Dachs, II | Dec 2017 | B2 |
9844321 | Ekvall et al. | Dec 2017 | B1 |
9844368 | Boudreaux et al. | Dec 2017 | B2 |
9844369 | Huitema et al. | Dec 2017 | B2 |
9844374 | Lytle, IV et al. | Dec 2017 | B2 |
9844375 | Overmyer et al. | Dec 2017 | B2 |
9844376 | Baxter, III et al. | Dec 2017 | B2 |
9844379 | Shelton, IV et al. | Dec 2017 | B2 |
9848058 | Johnson et al. | Dec 2017 | B2 |
9848877 | Shelton, IV et al. | Dec 2017 | B2 |
9861354 | Saliman et al. | Jan 2018 | B2 |
9861363 | Chen et al. | Jan 2018 | B2 |
9861428 | Trees et al. | Jan 2018 | B2 |
9864839 | Baym et al. | Jan 2018 | B2 |
9867612 | Parihar et al. | Jan 2018 | B2 |
9867651 | Wham | Jan 2018 | B2 |
9867670 | Brannan et al. | Jan 2018 | B2 |
9867914 | Bonano et al. | Jan 2018 | B2 |
9872609 | Levy | Jan 2018 | B2 |
9872683 | Hopkins et al. | Jan 2018 | B2 |
9877718 | Weir et al. | Jan 2018 | B2 |
9877721 | Schellin et al. | Jan 2018 | B2 |
9883860 | Leimbach | Feb 2018 | B2 |
9888864 | Rondoni et al. | Feb 2018 | B2 |
9888914 | Martin et al. | Feb 2018 | B2 |
9888919 | Leimbach et al. | Feb 2018 | B2 |
9888921 | Williams et al. | Feb 2018 | B2 |
9888975 | Auld | Feb 2018 | B2 |
9895148 | Shelton, IV et al. | Feb 2018 | B2 |
9900787 | Ou | Feb 2018 | B2 |
9901342 | Shelton, IV et al. | Feb 2018 | B2 |
9901406 | State et al. | Feb 2018 | B2 |
9905000 | Chou et al. | Feb 2018 | B2 |
9907196 | Susini et al. | Feb 2018 | B2 |
9907550 | Sniffin et al. | Mar 2018 | B2 |
9913642 | Leimbach et al. | Mar 2018 | B2 |
9913645 | Zerkle et al. | Mar 2018 | B2 |
9918326 | Gilson et al. | Mar 2018 | B2 |
9918730 | Trees et al. | Mar 2018 | B2 |
9918778 | Walberg et al. | Mar 2018 | B2 |
9918788 | Paul et al. | Mar 2018 | B2 |
9922304 | DeBusk et al. | Mar 2018 | B2 |
9924941 | Burbank | Mar 2018 | B2 |
9924944 | Shelton, IV et al. | Mar 2018 | B2 |
9924961 | Shelton, IV et al. | Mar 2018 | B2 |
9931040 | Homyk et al. | Apr 2018 | B2 |
9931118 | Shelton, IV et al. | Apr 2018 | B2 |
9931124 | Gokharu | Apr 2018 | B2 |
9936863 | Tesar | Apr 2018 | B2 |
9936942 | Chin et al. | Apr 2018 | B2 |
9936955 | Miller et al. | Apr 2018 | B2 |
9936961 | Chien et al. | Apr 2018 | B2 |
9937012 | Hares et al. | Apr 2018 | B2 |
9937014 | Bowling et al. | Apr 2018 | B2 |
9937626 | Rockrohr | Apr 2018 | B2 |
9938972 | Walley | Apr 2018 | B2 |
9943230 | Kaku et al. | Apr 2018 | B2 |
9943309 | Shelton, IV et al. | Apr 2018 | B2 |
9943312 | Posada et al. | Apr 2018 | B2 |
9943377 | Yates et al. | Apr 2018 | B2 |
9943379 | Gregg, II et al. | Apr 2018 | B2 |
9943918 | Grogan et al. | Apr 2018 | B2 |
9949785 | Price et al. | Apr 2018 | B2 |
9962157 | Sapre | May 2018 | B2 |
9968355 | Shelton, IV et al. | May 2018 | B2 |
9974595 | Anderson et al. | May 2018 | B2 |
9980140 | Spencer et al. | May 2018 | B1 |
9980769 | Trees et al. | May 2018 | B2 |
9980778 | Ohline et al. | May 2018 | B2 |
9987000 | Shelton, IV et al. | Jun 2018 | B2 |
9987068 | Anderson et al. | Jun 2018 | B2 |
9987072 | McPherson | Jun 2018 | B2 |
9990856 | Kuchenbecker et al. | Jun 2018 | B2 |
9993248 | Shelton, IV et al. | Jun 2018 | B2 |
9993258 | Shelton, IV et al. | Jun 2018 | B2 |
9993305 | Andersson | Jun 2018 | B2 |
10004491 | Martin et al. | Jun 2018 | B2 |
10004497 | Overmyer et al. | Jun 2018 | B2 |
10004500 | Shelton, IV et al. | Jun 2018 | B2 |
10004501 | Shelton, IV et al. | Jun 2018 | B2 |
10004527 | Gee et al. | Jun 2018 | B2 |
10004557 | Gross | Jun 2018 | B2 |
D822206 | Shelton, IV et al. | Jul 2018 | S |
10010322 | Shelton, IV et al. | Jul 2018 | B2 |
10010324 | Huitema et al. | Jul 2018 | B2 |
10013049 | Leimbach et al. | Jul 2018 | B2 |
10016199 | Baber et al. | Jul 2018 | B2 |
10021318 | Hugosson et al. | Jul 2018 | B2 |
10022090 | Whitman | Jul 2018 | B2 |
10022120 | Martin et al. | Jul 2018 | B2 |
10022391 | Ruderman Chen et al. | Jul 2018 | B2 |
10022568 | Messerly et al. | Jul 2018 | B2 |
10028402 | Walker | Jul 2018 | B1 |
10028744 | Shelton, IV et al. | Jul 2018 | B2 |
10028761 | Leimbach et al. | Jul 2018 | B2 |
10028788 | Kang | Jul 2018 | B2 |
10034704 | Asher et al. | Jul 2018 | B2 |
10037641 | Hyde et al. | Jul 2018 | B2 |
10037715 | Toly et al. | Jul 2018 | B2 |
D826405 | Shelton, IV et al. | Aug 2018 | S |
10039546 | Williams et al. | Aug 2018 | B2 |
10039564 | Hibner et al. | Aug 2018 | B2 |
10039565 | Vezzu | Aug 2018 | B2 |
10039589 | Virshek et al. | Aug 2018 | B2 |
10041822 | Zemlok | Aug 2018 | B2 |
10044791 | Kamen et al. | Aug 2018 | B2 |
10045704 | Fagin et al. | Aug 2018 | B2 |
10045776 | Shelton, IV et al. | Aug 2018 | B2 |
10045779 | Savage et al. | Aug 2018 | B2 |
10045781 | Cropper et al. | Aug 2018 | B2 |
10045782 | Murthy Aravalli | Aug 2018 | B2 |
10045813 | Mueller | Aug 2018 | B2 |
10048379 | Markendorf et al. | Aug 2018 | B2 |
10052044 | Shelton, IV et al. | Aug 2018 | B2 |
10052102 | Baxter, III et al. | Aug 2018 | B2 |
10052104 | Shelton, IV et al. | Aug 2018 | B2 |
10054441 | Schorr et al. | Aug 2018 | B2 |
10058393 | Bonutti et al. | Aug 2018 | B2 |
10069633 | Gulati et al. | Sep 2018 | B2 |
10076326 | Yates et al. | Sep 2018 | B2 |
10080618 | Marshall et al. | Sep 2018 | B2 |
10084833 | McDonnell et al. | Sep 2018 | B2 |
D831209 | Huitema et al. | Oct 2018 | S |
10085748 | Morgan et al. | Oct 2018 | B2 |
10085749 | Cappola et al. | Oct 2018 | B2 |
10092355 | Hannaford et al. | Oct 2018 | B1 |
10095942 | Mentese et al. | Oct 2018 | B2 |
10097578 | Baldonado et al. | Oct 2018 | B2 |
10098527 | Weisenburgh, II et al. | Oct 2018 | B2 |
10098635 | Burbank | Oct 2018 | B2 |
10098642 | Baxter, III et al. | Oct 2018 | B2 |
10098705 | Brisson et al. | Oct 2018 | B2 |
10102926 | Leonardi | Oct 2018 | B1 |
10105140 | Malinouskas et al. | Oct 2018 | B2 |
10105142 | Baxter, III et al. | Oct 2018 | B2 |
10105470 | Reasoner et al. | Oct 2018 | B2 |
10111658 | Chowaniec et al. | Oct 2018 | B2 |
10111665 | Aranyi et al. | Oct 2018 | B2 |
10111679 | Baber et al. | Oct 2018 | B2 |
10111703 | Cosman, Jr. et al. | Oct 2018 | B2 |
D834541 | You et al. | Nov 2018 | S |
10117649 | Baxter et al. | Nov 2018 | B2 |
10117651 | Whitman et al. | Nov 2018 | B2 |
10117702 | Danziger et al. | Nov 2018 | B2 |
10118119 | Sappok et al. | Nov 2018 | B2 |
10130359 | Hess et al. | Nov 2018 | B2 |
10130360 | Olson et al. | Nov 2018 | B2 |
10130361 | Yates et al. | Nov 2018 | B2 |
10130367 | Cappola et al. | Nov 2018 | B2 |
10133248 | Fitzsimmons et al. | Nov 2018 | B2 |
10135242 | Baber et al. | Nov 2018 | B2 |
10136887 | Shelton, IV et al. | Nov 2018 | B2 |
10136891 | Shelton, IV et al. | Nov 2018 | B2 |
10136949 | Felder et al. | Nov 2018 | B2 |
10136954 | Johnson et al. | Nov 2018 | B2 |
10137245 | Melker et al. | Nov 2018 | B2 |
10143526 | Walker et al. | Dec 2018 | B2 |
10143948 | Bonifas et al. | Dec 2018 | B2 |
10147148 | Wu et al. | Dec 2018 | B2 |
10149680 | Parihar et al. | Dec 2018 | B2 |
10152789 | Carnes et al. | Dec 2018 | B2 |
10154841 | Weaner et al. | Dec 2018 | B2 |
10159044 | Hrabak | Dec 2018 | B2 |
10159481 | Whitman et al. | Dec 2018 | B2 |
10159483 | Beckman et al. | Dec 2018 | B2 |
10164466 | Calderoni | Dec 2018 | B2 |
10166025 | Leimbach et al. | Jan 2019 | B2 |
10166061 | Berry et al. | Jan 2019 | B2 |
10169862 | Andre et al. | Jan 2019 | B2 |
10172618 | Shelton, IV et al. | Jan 2019 | B2 |
10172687 | Garbus et al. | Jan 2019 | B2 |
10175096 | Dickerson | Jan 2019 | B2 |
10175127 | Collins et al. | Jan 2019 | B2 |
10178992 | Wise et al. | Jan 2019 | B2 |
10179413 | Rockrohr | Jan 2019 | B2 |
10180463 | Beckman et al. | Jan 2019 | B2 |
10182814 | Okoniewski | Jan 2019 | B2 |
10182816 | Shelton, IV et al. | Jan 2019 | B2 |
10182818 | Hensel et al. | Jan 2019 | B2 |
10188385 | Kerr et al. | Jan 2019 | B2 |
10189157 | Schlegel et al. | Jan 2019 | B2 |
10190888 | Hryb et al. | Jan 2019 | B2 |
10194907 | Marczyk et al. | Feb 2019 | B2 |
10194913 | Nalagatla et al. | Feb 2019 | B2 |
10194972 | Yates et al. | Feb 2019 | B2 |
10197803 | Badiali et al. | Feb 2019 | B2 |
10198965 | Hart | Feb 2019 | B2 |
10201311 | Chou et al. | Feb 2019 | B2 |
10201349 | Leimbach et al. | Feb 2019 | B2 |
10201364 | Leimbach et al. | Feb 2019 | B2 |
10201365 | Boudreaux et al. | Feb 2019 | B2 |
10205708 | Fletcher et al. | Feb 2019 | B1 |
10206605 | Shelton, IV et al. | Feb 2019 | B2 |
10206752 | Hares et al. | Feb 2019 | B2 |
10213201 | Shelton, IV et al. | Feb 2019 | B2 |
10213203 | Swayze et al. | Feb 2019 | B2 |
10213266 | Zemlok et al. | Feb 2019 | B2 |
10213268 | Dachs, II | Feb 2019 | B2 |
10219491 | Stiles, Jr. et al. | Mar 2019 | B2 |
10220522 | Rockrohr | Mar 2019 | B2 |
10222750 | Bang et al. | Mar 2019 | B2 |
10226249 | Jaworek et al. | Mar 2019 | B2 |
10226250 | Beckman et al. | Mar 2019 | B2 |
10226254 | Cabrera et al. | Mar 2019 | B2 |
10226302 | Lacal et al. | Mar 2019 | B2 |
10231634 | Zand et al. | Mar 2019 | B2 |
10231733 | Ehrenfels et al. | Mar 2019 | B2 |
10231775 | Shelton, IV et al. | Mar 2019 | B2 |
10238413 | Hibner et al. | Mar 2019 | B2 |
10245027 | Shelton, IV et al. | Apr 2019 | B2 |
10245028 | Shelton, IV et al. | Apr 2019 | B2 |
10245029 | Hunter et al. | Apr 2019 | B2 |
10245030 | Hunter et al. | Apr 2019 | B2 |
10245033 | Overmyer et al. | Apr 2019 | B2 |
10245037 | Conklin et al. | Apr 2019 | B2 |
10245038 | Hopkins et al. | Apr 2019 | B2 |
10245040 | Milliman | Apr 2019 | B2 |
10251661 | Collings et al. | Apr 2019 | B2 |
10251725 | Valentine et al. | Apr 2019 | B2 |
10258331 | Shelton, IV et al. | Apr 2019 | B2 |
10258359 | Kapadia | Apr 2019 | B2 |
10258362 | Conlon | Apr 2019 | B2 |
10258363 | Worrell et al. | Apr 2019 | B2 |
10258415 | Harrah et al. | Apr 2019 | B2 |
10258418 | Shelton, IV et al. | Apr 2019 | B2 |
10258425 | Mustufa et al. | Apr 2019 | B2 |
10263171 | Wiener et al. | Apr 2019 | B2 |
10265004 | Yamaguchi et al. | Apr 2019 | B2 |
10265035 | Fehre et al. | Apr 2019 | B2 |
10265066 | Measamer et al. | Apr 2019 | B2 |
10265068 | Harris et al. | Apr 2019 | B2 |
10265072 | Shelton, IV et al. | Apr 2019 | B2 |
10265090 | Ingmanson et al. | Apr 2019 | B2 |
10265130 | Hess et al. | Apr 2019 | B2 |
10271840 | Sapre | Apr 2019 | B2 |
10271844 | Valentine et al. | Apr 2019 | B2 |
10271850 | Wiliams | Apr 2019 | B2 |
10271851 | Shelton, IV et al. | Apr 2019 | B2 |
D847989 | Shelton, IV et al. | May 2019 | S |
10278698 | Racenet | May 2019 | B2 |
10278778 | State et al. | May 2019 | B2 |
10283220 | Azizian et al. | May 2019 | B2 |
10285694 | Viola et al. | May 2019 | B2 |
10285698 | Cappola et al. | May 2019 | B2 |
10285700 | Scheib | May 2019 | B2 |
10285705 | Shelton, IV et al. | May 2019 | B2 |
10292704 | Harris et al. | May 2019 | B2 |
10292707 | Shelton, IV et al. | May 2019 | B2 |
10292758 | Boudreaux et al. | May 2019 | B2 |
10292769 | Yu | May 2019 | B1 |
10292771 | Wood et al. | May 2019 | B2 |
10293129 | Fox et al. | May 2019 | B2 |
10299792 | Huitema et al. | May 2019 | B2 |
10299870 | Connolly et al. | May 2019 | B2 |
10305926 | Mihan et al. | May 2019 | B2 |
D850617 | Shelton, IV et al. | Jun 2019 | S |
10307159 | Harris et al. | Jun 2019 | B2 |
10307170 | Parfett et al. | Jun 2019 | B2 |
10307199 | Farritor et al. | Jun 2019 | B2 |
10311036 | Hussam et al. | Jun 2019 | B1 |
10313137 | Aarnio et al. | Jun 2019 | B2 |
10314577 | Laurent et al. | Jun 2019 | B2 |
10314582 | Shelton, IV et al. | Jun 2019 | B2 |
10321907 | Shelton, IV et al. | Jun 2019 | B2 |
10321964 | Grover et al. | Jun 2019 | B2 |
10327764 | Harris et al. | Jun 2019 | B2 |
10327779 | Richard et al. | Jun 2019 | B2 |
10335147 | Rector et al. | Jul 2019 | B2 |
10335149 | Baxter, III et al. | Jul 2019 | B2 |
10335180 | Johnson et al. | Jul 2019 | B2 |
10335227 | Heard | Jul 2019 | B2 |
10339496 | Matson et al. | Jul 2019 | B2 |
10342543 | Shelton, IV et al. | Jul 2019 | B2 |
10342602 | Strobl et al. | Jul 2019 | B2 |
10342623 | Huelman et al. | Jul 2019 | B2 |
10343102 | Reasoner et al. | Jul 2019 | B2 |
10349824 | Claude et al. | Jul 2019 | B2 |
10349939 | Shelton, IV et al. | Jul 2019 | B2 |
10349941 | Marczyk et al. | Jul 2019 | B2 |
10350016 | Burbank et al. | Jul 2019 | B2 |
10357184 | Crawford et al. | Jul 2019 | B2 |
10357246 | Shelton, IV et al. | Jul 2019 | B2 |
10357247 | Shelton, IV et al. | Jul 2019 | B2 |
10362179 | Harris | Jul 2019 | B2 |
10363032 | Scheib et al. | Jul 2019 | B2 |
10363037 | Aronhalt et al. | Jul 2019 | B2 |
10368861 | Baxter, III et al. | Aug 2019 | B2 |
10368865 | Harris et al. | Aug 2019 | B2 |
10368867 | Harris et al. | Aug 2019 | B2 |
10368876 | Bhatnagar et al. | Aug 2019 | B2 |
10368894 | Madan et al. | Aug 2019 | B2 |
10368903 | Morales et al. | Aug 2019 | B2 |
10376263 | Morgan et al. | Aug 2019 | B2 |
10376305 | Yates et al. | Aug 2019 | B2 |
10376337 | Kilroy et al. | Aug 2019 | B2 |
10376338 | Taylor et al. | Aug 2019 | B2 |
10378893 | Mankovskii | Aug 2019 | B2 |
10383518 | Abu-Tarif et al. | Aug 2019 | B2 |
10383699 | Kilroy et al. | Aug 2019 | B2 |
10384021 | Koeth et al. | Aug 2019 | B2 |
10386990 | Shikhman et al. | Aug 2019 | B2 |
10390718 | Chen et al. | Aug 2019 | B2 |
10390794 | Kuroiwa et al. | Aug 2019 | B2 |
10390825 | Shelton, IV et al. | Aug 2019 | B2 |
10390831 | Holsten et al. | Aug 2019 | B2 |
10390895 | Henderson et al. | Aug 2019 | B2 |
10398348 | Osadchy et al. | Sep 2019 | B2 |
10398434 | Shelton, IV et al. | Sep 2019 | B2 |
10398517 | Eckert et al. | Sep 2019 | B2 |
10398521 | Itkowitz et al. | Sep 2019 | B2 |
10404521 | McChord et al. | Sep 2019 | B2 |
10404801 | Martch | Sep 2019 | B2 |
10405857 | Shelton, IV et al. | Sep 2019 | B2 |
10405863 | Wise et al. | Sep 2019 | B2 |
10413291 | Worthington et al. | Sep 2019 | B2 |
10413293 | Shelton, IV et al. | Sep 2019 | B2 |
10413297 | Harris et al. | Sep 2019 | B2 |
10417446 | Takeyama | Sep 2019 | B2 |
10420552 | Shelton, IV et al. | Sep 2019 | B2 |
10420558 | Nalagatla et al. | Sep 2019 | B2 |
10420559 | Marczyk et al. | Sep 2019 | B2 |
10420620 | Rockrohr | Sep 2019 | B2 |
10420865 | Reasoner et al. | Sep 2019 | B2 |
10422727 | Pliskin | Sep 2019 | B2 |
10426466 | Contini et al. | Oct 2019 | B2 |
10426467 | Miller et al. | Oct 2019 | B2 |
10426468 | Contini et al. | Oct 2019 | B2 |
10426471 | Shelton, IV et al. | Oct 2019 | B2 |
10426481 | Aronhalt et al. | Oct 2019 | B2 |
10433837 | Worthington et al. | Oct 2019 | B2 |
10433844 | Shelton, IV et al. | Oct 2019 | B2 |
10433849 | Shelton, IV et al. | Oct 2019 | B2 |
10433918 | Shelton, IV et al. | Oct 2019 | B2 |
10441279 | Shelton, IV et al. | Oct 2019 | B2 |
10441345 | Aldridge et al. | Oct 2019 | B2 |
10448948 | Shelton, IV et al. | Oct 2019 | B2 |
10448950 | Shelton, IV et al. | Oct 2019 | B2 |
10456137 | Vendely et al. | Oct 2019 | B2 |
10456140 | Shelton, IV et al. | Oct 2019 | B2 |
10456193 | Yates et al. | Oct 2019 | B2 |
10463365 | Williams | Nov 2019 | B2 |
10463367 | Kostrzewski et al. | Nov 2019 | B2 |
10463371 | Kostrzewski | Nov 2019 | B2 |
10463436 | Jackson et al. | Nov 2019 | B2 |
10470762 | Leimbach et al. | Nov 2019 | B2 |
10470764 | Baxter, III et al. | Nov 2019 | B2 |
10470768 | Harris et al. | Nov 2019 | B2 |
10470791 | Houser | Nov 2019 | B2 |
10471254 | Sano et al. | Nov 2019 | B2 |
10478181 | Shelton, IV et al. | Nov 2019 | B2 |
10478185 | Nicholas | Nov 2019 | B2 |
10478189 | Bear et al. | Nov 2019 | B2 |
10478190 | Miller et al. | Nov 2019 | B2 |
10478544 | Friederichs et al. | Nov 2019 | B2 |
10485450 | Gupta et al. | Nov 2019 | B2 |
10485542 | Shelton, IV et al. | Nov 2019 | B2 |
10485543 | Shelton, IV et al. | Nov 2019 | B2 |
10492783 | Shelton, IV et al. | Dec 2019 | B2 |
10492784 | Beardsley et al. | Dec 2019 | B2 |
10492785 | Overmyer et al. | Dec 2019 | B2 |
10496788 | Amarasingham et al. | Dec 2019 | B2 |
10498269 | Zemlok et al. | Dec 2019 | B2 |
10499847 | Latimer et al. | Dec 2019 | B2 |
10499891 | Chaplin et al. | Dec 2019 | B2 |
10499914 | Huang et al. | Dec 2019 | B2 |
10499915 | Aranyi | Dec 2019 | B2 |
10499994 | Luks et al. | Dec 2019 | B2 |
10507068 | Kopp et al. | Dec 2019 | B2 |
10512413 | Schepis et al. | Dec 2019 | B2 |
10512461 | Gupta et al. | Dec 2019 | B2 |
10512499 | McHenry et al. | Dec 2019 | B2 |
10512514 | Nowlin et al. | Dec 2019 | B2 |
10517588 | Gupta et al. | Dec 2019 | B2 |
10517595 | Hunter et al. | Dec 2019 | B2 |
10517596 | Hunter et al. | Dec 2019 | B2 |
10517686 | Vokrot et al. | Dec 2019 | B2 |
10524789 | Swayze et al. | Jan 2020 | B2 |
10531579 | Hsiao et al. | Jan 2020 | B2 |
10531874 | Morgan et al. | Jan 2020 | B2 |
10531929 | Widenhouse et al. | Jan 2020 | B2 |
10532330 | Diallo et al. | Jan 2020 | B2 |
10536617 | Liang et al. | Jan 2020 | B2 |
10537324 | Shelton, IV et al. | Jan 2020 | B2 |
10537325 | Bakos et al. | Jan 2020 | B2 |
10537351 | Shelton, IV et al. | Jan 2020 | B2 |
10542978 | Chowaniec et al. | Jan 2020 | B2 |
10542979 | Shelton, IV et al. | Jan 2020 | B2 |
10542982 | Beckman et al. | Jan 2020 | B2 |
10542991 | Shelton, IV et al. | Jan 2020 | B2 |
D876466 | Kobayashi et al. | Feb 2020 | S |
10548504 | Shelton, IV et al. | Feb 2020 | B2 |
10548612 | Martinez et al. | Feb 2020 | B2 |
10548673 | Harris et al. | Feb 2020 | B2 |
10552574 | Sweeney | Feb 2020 | B2 |
10555675 | Satish et al. | Feb 2020 | B2 |
10555748 | Yates et al. | Feb 2020 | B2 |
10555750 | Conlon et al. | Feb 2020 | B2 |
10555769 | Worrell et al. | Feb 2020 | B2 |
10561422 | Schellin et al. | Feb 2020 | B2 |
10561471 | Nichogi | Feb 2020 | B2 |
10561753 | Thompson et al. | Feb 2020 | B2 |
10568625 | Harris et al. | Feb 2020 | B2 |
10568626 | Shelton, IV et al. | Feb 2020 | B2 |
10568632 | Miller et al. | Feb 2020 | B2 |
10568704 | Savall et al. | Feb 2020 | B2 |
10575868 | Hall et al. | Mar 2020 | B2 |
10582928 | Hunter et al. | Mar 2020 | B2 |
10582931 | Mujawar | Mar 2020 | B2 |
10582964 | Weinberg et al. | Mar 2020 | B2 |
10586074 | Rose et al. | Mar 2020 | B2 |
10588623 | Schmid et al. | Mar 2020 | B2 |
10588625 | Weaner et al. | Mar 2020 | B2 |
10588629 | Malinouskas et al. | Mar 2020 | B2 |
10588630 | Shelton, IV et al. | Mar 2020 | B2 |
10588631 | Shelton, IV et al. | Mar 2020 | B2 |
10588632 | Shelton, IV et al. | Mar 2020 | B2 |
10588711 | DiCarlo et al. | Mar 2020 | B2 |
10592067 | Merdan et al. | Mar 2020 | B2 |
10595844 | Nawana et al. | Mar 2020 | B2 |
10595882 | Parfett et al. | Mar 2020 | B2 |
10595887 | Shelton, IV et al. | Mar 2020 | B2 |
10595930 | Scheib et al. | Mar 2020 | B2 |
10595952 | Forrest et al. | Mar 2020 | B2 |
10602007 | Takano | Mar 2020 | B2 |
10602848 | Magana | Mar 2020 | B2 |
10603036 | Hunter et al. | Mar 2020 | B2 |
10603128 | Zergiebel et al. | Mar 2020 | B2 |
10610223 | Wellman et al. | Apr 2020 | B2 |
10610224 | Shelton, IV et al. | Apr 2020 | B2 |
10610286 | Wiener et al. | Apr 2020 | B2 |
10610313 | Bailey et al. | Apr 2020 | B2 |
10617412 | Shelton, IV et al. | Apr 2020 | B2 |
10617414 | Shelton, IV et al. | Apr 2020 | B2 |
10617482 | Houser et al. | Apr 2020 | B2 |
10617484 | Kilroy et al. | Apr 2020 | B2 |
10624635 | Harris et al. | Apr 2020 | B2 |
10624667 | Faller et al. | Apr 2020 | B2 |
10624691 | Wiener et al. | Apr 2020 | B2 |
10631423 | Collins et al. | Apr 2020 | B2 |
10631858 | Burbank | Apr 2020 | B2 |
10631912 | McFarlin et al. | Apr 2020 | B2 |
10631916 | Horner et al. | Apr 2020 | B2 |
10631917 | Ineson | Apr 2020 | B2 |
10631939 | Dachs, II et al. | Apr 2020 | B2 |
10639027 | Shelton, IV et al. | May 2020 | B2 |
10639034 | Harris et al. | May 2020 | B2 |
10639035 | Shelton, IV et al. | May 2020 | B2 |
10639036 | Yates et al. | May 2020 | B2 |
10639037 | Shelton, IV et al. | May 2020 | B2 |
10639039 | Vendely et al. | May 2020 | B2 |
10639098 | Cosman et al. | May 2020 | B2 |
10639111 | Kopp | May 2020 | B2 |
10639185 | Agrawal et al. | May 2020 | B2 |
10653413 | Worthington et al. | May 2020 | B2 |
10653476 | Ross | May 2020 | B2 |
10653489 | Kopp | May 2020 | B2 |
10656720 | Holz | May 2020 | B1 |
10660705 | Piron et al. | May 2020 | B2 |
10667809 | Bakos et al. | Jun 2020 | B2 |
10667810 | Shelton, IV et al. | Jun 2020 | B2 |
10667811 | Harris et al. | Jun 2020 | B2 |
10667877 | Kapadia | Jun 2020 | B2 |
10674897 | Levy | Jun 2020 | B2 |
10675021 | Harris et al. | Jun 2020 | B2 |
10675023 | Cappola | Jun 2020 | B2 |
10675024 | Shelton, IV et al. | Jun 2020 | B2 |
10675025 | Swayze et al. | Jun 2020 | B2 |
10675026 | Harris et al. | Jun 2020 | B2 |
10675035 | Zingman | Jun 2020 | B2 |
10675100 | Frushour | Jun 2020 | B2 |
10675104 | Kapadia | Jun 2020 | B2 |
10677764 | Ross et al. | Jun 2020 | B2 |
10679758 | Fox et al. | Jun 2020 | B2 |
10682136 | Harris et al. | Jun 2020 | B2 |
10682138 | Shelton, IV et al. | Jun 2020 | B2 |
10686805 | Reybok, Jr. et al. | Jun 2020 | B2 |
10687806 | Shelton, IV et al. | Jun 2020 | B2 |
10687809 | Shelton, IV et al. | Jun 2020 | B2 |
10687810 | Shelton, IV et al. | Jun 2020 | B2 |
10687884 | Wiener et al. | Jun 2020 | B2 |
10687905 | Kostrzewski | Jun 2020 | B2 |
10695055 | Shelton, IV et al. | Jun 2020 | B2 |
10695081 | Shelton, IV et al. | Jun 2020 | B2 |
10695134 | Barral et al. | Jun 2020 | B2 |
10702270 | Shelton, IV et al. | Jul 2020 | B2 |
10702271 | Aranyi et al. | Jul 2020 | B2 |
10709446 | Harris et al. | Jul 2020 | B2 |
10716489 | Kalvoy et al. | Jul 2020 | B2 |
10716615 | Shelton, IV et al. | Jul 2020 | B2 |
10716639 | Kapadia et al. | Jul 2020 | B2 |
10717194 | Griffiths et al. | Jul 2020 | B2 |
10722222 | Aranyi | Jul 2020 | B2 |
10722233 | Wellman | Jul 2020 | B2 |
10722292 | Arya et al. | Jul 2020 | B2 |
D893717 | Messerly et al. | Aug 2020 | S |
10729458 | Stoddard et al. | Aug 2020 | B2 |
10729509 | Shelton, IV et al. | Aug 2020 | B2 |
10733267 | Pedersen | Aug 2020 | B2 |
10736219 | Seow et al. | Aug 2020 | B2 |
10736616 | Scheib et al. | Aug 2020 | B2 |
10736628 | Yates et al. | Aug 2020 | B2 |
10736629 | Shelton, IV et al. | Aug 2020 | B2 |
10736636 | Baxter, III et al. | Aug 2020 | B2 |
10736705 | Scheib et al. | Aug 2020 | B2 |
10743872 | Leimbach et al. | Aug 2020 | B2 |
10748115 | Laster et al. | Aug 2020 | B2 |
10751052 | Stokes et al. | Aug 2020 | B2 |
10751136 | Farritor et al. | Aug 2020 | B2 |
10751768 | Hersey et al. | Aug 2020 | B2 |
10755813 | Shelton, IV et al. | Aug 2020 | B2 |
D896379 | Shelton, IV et al. | Sep 2020 | S |
10758229 | Shelton, IV et al. | Sep 2020 | B2 |
10758230 | Shelton, IV et al. | Sep 2020 | B2 |
10758294 | Jones | Sep 2020 | B2 |
10758310 | Shelton, IV et al. | Sep 2020 | B2 |
10765376 | Brown, III et al. | Sep 2020 | B2 |
10765424 | Baxter, III et al. | Sep 2020 | B2 |
10765427 | Shelton, IV et al. | Sep 2020 | B2 |
10765470 | Yates et al. | Sep 2020 | B2 |
10772630 | Wixey | Sep 2020 | B2 |
10772651 | Shelton, IV et al. | Sep 2020 | B2 |
10772673 | Allen, IV et al. | Sep 2020 | B2 |
10772688 | Peine et al. | Sep 2020 | B2 |
10779818 | Zemlok et al. | Sep 2020 | B2 |
10779821 | Harris et al. | Sep 2020 | B2 |
10779823 | Shelton, IV et al. | Sep 2020 | B2 |
10779897 | Rockrohr | Sep 2020 | B2 |
10779900 | Pedros et al. | Sep 2020 | B2 |
10783634 | Nye et al. | Sep 2020 | B2 |
10786298 | Johnson | Sep 2020 | B2 |
10786317 | Zhou et al. | Sep 2020 | B2 |
10786327 | Anderson et al. | Sep 2020 | B2 |
10792038 | Becerra et al. | Oct 2020 | B2 |
10792118 | Prpa et al. | Oct 2020 | B2 |
10792422 | Douglas et al. | Oct 2020 | B2 |
10799304 | Kapadia et al. | Oct 2020 | B2 |
10803977 | Sanmugalingham | Oct 2020 | B2 |
10806445 | Penna et al. | Oct 2020 | B2 |
10806453 | Chen et al. | Oct 2020 | B2 |
10806454 | Kopp | Oct 2020 | B2 |
10806499 | Castaneda et al. | Oct 2020 | B2 |
10806506 | Gaspredes et al. | Oct 2020 | B2 |
10806532 | Grubbs et al. | Oct 2020 | B2 |
10813638 | Shelton, IV et al. | Oct 2020 | B2 |
10813703 | Swayze et al. | Oct 2020 | B2 |
10818383 | Sharifi Sedeh et al. | Oct 2020 | B2 |
10828028 | Harris et al. | Nov 2020 | B2 |
10828030 | Weir et al. | Nov 2020 | B2 |
10835245 | Swayze et al. | Nov 2020 | B2 |
10835246 | Shelton, IV et al. | Nov 2020 | B2 |
10835247 | Shelton, IV et al. | Nov 2020 | B2 |
10842473 | Scheib et al. | Nov 2020 | B2 |
10842490 | DiNardo et al. | Nov 2020 | B2 |
10842492 | Shelton, IV et al. | Nov 2020 | B2 |
10842522 | Messerly et al. | Nov 2020 | B2 |
10842523 | Shelton, IV et al. | Nov 2020 | B2 |
10842575 | Panescu et al. | Nov 2020 | B2 |
10842897 | Schwartz et al. | Nov 2020 | B2 |
D904612 | Wynn et al. | Dec 2020 | S |
10849697 | Yates et al. | Dec 2020 | B2 |
10849700 | Kopp et al. | Dec 2020 | B2 |
10856768 | Osadchy et al. | Dec 2020 | B2 |
10856867 | Shelton, IV et al. | Dec 2020 | B2 |
10856868 | Shelton, IV et al. | Dec 2020 | B2 |
10856870 | Harris et al. | Dec 2020 | B2 |
10863984 | Shelton, IV et al. | Dec 2020 | B2 |
10864037 | Mun et al. | Dec 2020 | B2 |
10864050 | Tabandeh et al. | Dec 2020 | B2 |
10872684 | McNutt et al. | Dec 2020 | B2 |
10881399 | Shelton, IV et al. | Jan 2021 | B2 |
10881401 | Baber et al. | Jan 2021 | B2 |
10881446 | Strobl | Jan 2021 | B2 |
10881464 | Odermatt et al. | Jan 2021 | B2 |
10888321 | Shelton, IV et al. | Jan 2021 | B2 |
10888322 | Morgan et al. | Jan 2021 | B2 |
10892899 | Shelton, IV et al. | Jan 2021 | B2 |
10892995 | Shelton, IV et al. | Jan 2021 | B2 |
10893863 | Shelton, IV et al. | Jan 2021 | B2 |
10893864 | Harris et al. | Jan 2021 | B2 |
10893884 | Stoddard et al. | Jan 2021 | B2 |
10898183 | Shelton, IV et al. | Jan 2021 | B2 |
10898186 | Bakos et al. | Jan 2021 | B2 |
10898189 | McDonald, II | Jan 2021 | B2 |
10898256 | Yates et al. | Jan 2021 | B2 |
10898280 | Kopp | Jan 2021 | B2 |
10898622 | Shelton, IV et al. | Jan 2021 | B2 |
10902944 | Casey et al. | Jan 2021 | B1 |
10903685 | Yates et al. | Jan 2021 | B2 |
10905415 | DiNardo et al. | Feb 2021 | B2 |
10905418 | Shelton, IV et al. | Feb 2021 | B2 |
10905420 | Jasemian et al. | Feb 2021 | B2 |
10912559 | Harris et al. | Feb 2021 | B2 |
10912567 | Shelton, IV et al. | Feb 2021 | B2 |
10912580 | Green et al. | Feb 2021 | B2 |
10912619 | Jarc et al. | Feb 2021 | B2 |
10916415 | Karancsi et al. | Feb 2021 | B2 |
D914878 | Shelton, IV et al. | Mar 2021 | S |
10932784 | Mozdzierz et al. | Mar 2021 | B2 |
10950982 | Regnier et al. | Mar 2021 | B2 |
11000276 | Shelton, IV et al. | May 2021 | B2 |
11051817 | Shelton, IV et al. | Jul 2021 | B2 |
11058501 | Tokarchuk et al. | Jul 2021 | B2 |
11071595 | Johnson et al. | Jul 2021 | B2 |
11141213 | Yates et al. | Oct 2021 | B2 |
11185325 | Shelton, IV et al. | Nov 2021 | B2 |
D950728 | Bakos et al. | May 2022 | S |
D952144 | Boudreaux | May 2022 | S |
20010056237 | Cane et al. | Dec 2001 | A1 |
20020049551 | Friedman et al. | Apr 2002 | A1 |
20020052616 | Wiener et al. | May 2002 | A1 |
20020072746 | Lingenfelder et al. | Jun 2002 | A1 |
20020138642 | Miyazawa et al. | Sep 2002 | A1 |
20020169584 | Fu et al. | Nov 2002 | A1 |
20030009111 | Cory et al. | Jan 2003 | A1 |
20030018329 | Hooven | Jan 2003 | A1 |
20030046109 | Uchikubo | Mar 2003 | A1 |
20030069573 | Kadhiresan et al. | Apr 2003 | A1 |
20030093503 | Yamaki et al. | May 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030130711 | Pearson et al. | Jul 2003 | A1 |
20030210812 | Khamene et al. | Nov 2003 | A1 |
20030223877 | Anstine et al. | Dec 2003 | A1 |
20040015053 | Bieger et al. | Jan 2004 | A1 |
20040078236 | Stoodley et al. | Apr 2004 | A1 |
20040108825 | Lee et al. | Jun 2004 | A1 |
20040199180 | Knodel et al. | Oct 2004 | A1 |
20040199659 | Ishikawa et al. | Oct 2004 | A1 |
20040206365 | Knowlton | Oct 2004 | A1 |
20040229496 | Robinson et al. | Nov 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040243148 | Wasielewski | Dec 2004 | A1 |
20040243435 | Williams | Dec 2004 | A1 |
20050020909 | Moctezuma de la Barrera et al. | Jan 2005 | A1 |
20050020918 | Wilk et al. | Jan 2005 | A1 |
20050021027 | Shields et al. | Jan 2005 | A1 |
20050023324 | Doll et al. | Feb 2005 | A1 |
20050063575 | Ma et al. | Mar 2005 | A1 |
20050065438 | Miller | Mar 2005 | A1 |
20050070800 | Takahashi | Mar 2005 | A1 |
20050100867 | Hilscher et al. | May 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050139629 | Schwemberger et al. | Jun 2005 | A1 |
20050143759 | Kelly | Jun 2005 | A1 |
20050149001 | Uchikubo et al. | Jul 2005 | A1 |
20050149356 | Cyr et al. | Jul 2005 | A1 |
20050165390 | Mauti et al. | Jul 2005 | A1 |
20050182655 | Merzlak et al. | Aug 2005 | A1 |
20050192633 | Montpetit | Sep 2005 | A1 |
20050203380 | Sauer et al. | Sep 2005 | A1 |
20050203384 | Sati et al. | Sep 2005 | A1 |
20050203504 | Wham et al. | Sep 2005 | A1 |
20050222631 | Dalal et al. | Oct 2005 | A1 |
20050228246 | Lee et al. | Oct 2005 | A1 |
20050228425 | Boukhny et al. | Oct 2005 | A1 |
20050236474 | Onuma et al. | Oct 2005 | A1 |
20050251233 | Kanzius | Nov 2005 | A1 |
20050277913 | McCary | Dec 2005 | A1 |
20060020272 | Gildenberg | Jan 2006 | A1 |
20060025816 | Shelton | Feb 2006 | A1 |
20060059018 | Shiobara et al. | Mar 2006 | A1 |
20060069388 | Truckai et al. | Mar 2006 | A1 |
20060079872 | Eggleston | Apr 2006 | A1 |
20060079874 | Faller et al. | Apr 2006 | A1 |
20060116908 | Dew et al. | Jun 2006 | A1 |
20060136622 | Rouvelin et al. | Jun 2006 | A1 |
20060184160 | Ozaki et al. | Aug 2006 | A1 |
20060241399 | Fabian | Oct 2006 | A1 |
20060282009 | Oberg et al. | Dec 2006 | A1 |
20070010838 | Shelton et al. | Jan 2007 | A1 |
20070016235 | Tanaka et al. | Jan 2007 | A1 |
20070016979 | Damaj et al. | Jan 2007 | A1 |
20070023477 | Whitman | Feb 2007 | A1 |
20070027459 | Horvath et al. | Feb 2007 | A1 |
20070038080 | Salisbury et al. | Feb 2007 | A1 |
20070049947 | Menn et al. | Mar 2007 | A1 |
20070066970 | Ineson | Mar 2007 | A1 |
20070078678 | DiSilvestro et al. | Apr 2007 | A1 |
20070084896 | Doll et al. | Apr 2007 | A1 |
20070085528 | Govari et al. | Apr 2007 | A1 |
20070156019 | Larkin et al. | Jul 2007 | A1 |
20070167702 | Hasser et al. | Jul 2007 | A1 |
20070168461 | Moore | Jul 2007 | A1 |
20070173803 | Wham et al. | Jul 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070179482 | Anderson | Aug 2007 | A1 |
20070179508 | Arndt | Aug 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070203744 | Scholl | Aug 2007 | A1 |
20070225556 | Ortiz et al. | Sep 2007 | A1 |
20070225690 | Sekiguchi et al. | Sep 2007 | A1 |
20070239028 | Houser et al. | Oct 2007 | A1 |
20070244478 | Bahney | Oct 2007 | A1 |
20070249990 | Cosmescu | Oct 2007 | A1 |
20070270660 | Caylor et al. | Nov 2007 | A1 |
20070282195 | Masini et al. | Dec 2007 | A1 |
20070282321 | Shah et al. | Dec 2007 | A1 |
20070282333 | Fortson et al. | Dec 2007 | A1 |
20070293218 | Meylan et al. | Dec 2007 | A1 |
20080013460 | Allen et al. | Jan 2008 | A1 |
20080015664 | Podhajsky | Jan 2008 | A1 |
20080015912 | Rosenthal et al. | Jan 2008 | A1 |
20080033404 | Romoda et al. | Feb 2008 | A1 |
20080040151 | Moore | Feb 2008 | A1 |
20080058593 | Gu et al. | Mar 2008 | A1 |
20080059658 | Williams | Mar 2008 | A1 |
20080077158 | Haider et al. | Mar 2008 | A1 |
20080083414 | Messerges | Apr 2008 | A1 |
20080091071 | Kumar et al. | Apr 2008 | A1 |
20080114212 | Messerges | May 2008 | A1 |
20080114350 | Park et al. | May 2008 | A1 |
20080129465 | Rao | Jun 2008 | A1 |
20080140090 | Aranyi et al. | Jun 2008 | A1 |
20080167644 | Shelton et al. | Jul 2008 | A1 |
20080177258 | Govari et al. | Jul 2008 | A1 |
20080177362 | Phillips et al. | Jul 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080234708 | Houser et al. | Sep 2008 | A1 |
20080235052 | Node-Langlois et al. | Sep 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080262654 | Omori et al. | Oct 2008 | A1 |
20080272172 | Zemlok et al. | Nov 2008 | A1 |
20080281301 | DeBoer et al. | Nov 2008 | A1 |
20080281678 | Keuls et al. | Nov 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080306759 | Ilkin et al. | Dec 2008 | A1 |
20080312953 | Claus | Dec 2008 | A1 |
20090017910 | Rofougaran et al. | Jan 2009 | A1 |
20090030437 | Houser et al. | Jan 2009 | A1 |
20090036750 | Weinstein et al. | Feb 2009 | A1 |
20090036794 | Stubhaug et al. | Feb 2009 | A1 |
20090043253 | Podaima | Feb 2009 | A1 |
20090046146 | Hoyt | Feb 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090048611 | Funda et al. | Feb 2009 | A1 |
20090076409 | Wu et al. | Mar 2009 | A1 |
20090090763 | Zemlok | Apr 2009 | A1 |
20090099866 | Newman | Apr 2009 | A1 |
20090114699 | Viola | May 2009 | A1 |
20090128084 | Johnson et al. | May 2009 | A1 |
20090182577 | Squilla et al. | Jul 2009 | A1 |
20090206131 | Weisenburgh, II et al. | Aug 2009 | A1 |
20090217932 | Voegele | Sep 2009 | A1 |
20090234352 | Behnke et al. | Sep 2009 | A1 |
20090259149 | Tahara et al. | Oct 2009 | A1 |
20090259221 | Tahara et al. | Oct 2009 | A1 |
20090299214 | Wu et al. | Dec 2009 | A1 |
20090306581 | Claus | Dec 2009 | A1 |
20090307681 | Armado et al. | Dec 2009 | A1 |
20090326321 | Jacobsen et al. | Dec 2009 | A1 |
20090326336 | Lemke et al. | Dec 2009 | A1 |
20100036374 | Ward | Feb 2010 | A1 |
20100036405 | Giordano et al. | Feb 2010 | A1 |
20100038403 | D'Arcangelo | Feb 2010 | A1 |
20100057106 | Sorrentino et al. | Mar 2010 | A1 |
20100065604 | Weng | Mar 2010 | A1 |
20100069939 | Konishi | Mar 2010 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100070417 | Flynn et al. | Mar 2010 | A1 |
20100120266 | Rimborg | May 2010 | A1 |
20100132334 | Duclos et al. | Jun 2010 | A1 |
20100137845 | Ramstein et al. | Jun 2010 | A1 |
20100137886 | Zergiebel et al. | Jun 2010 | A1 |
20100168561 | Anderson | Jul 2010 | A1 |
20100179831 | Brown et al. | Jul 2010 | A1 |
20100191100 | Anderson et al. | Jul 2010 | A1 |
20100198200 | Horvath | Aug 2010 | A1 |
20100198248 | Vakharia | Aug 2010 | A1 |
20100204717 | Knodel | Aug 2010 | A1 |
20100217991 | Choi | Aug 2010 | A1 |
20100234996 | Schreiber et al. | Sep 2010 | A1 |
20100235689 | Tian et al. | Sep 2010 | A1 |
20100250571 | Pierce et al. | Sep 2010 | A1 |
20100258327 | Esenwein et al. | Oct 2010 | A1 |
20100292535 | Paskar | Nov 2010 | A1 |
20100292684 | Cybulski et al. | Nov 2010 | A1 |
20100301095 | Shelton, IV et al. | Dec 2010 | A1 |
20110022032 | Zemlok et al. | Jan 2011 | A1 |
20110036890 | Ma | Feb 2011 | A1 |
20110046618 | Minar et al. | Feb 2011 | A1 |
20110071530 | Carson | Mar 2011 | A1 |
20110077512 | Boswell | Mar 2011 | A1 |
20110087238 | Wang et al. | Apr 2011 | A1 |
20110087502 | Yelton et al. | Apr 2011 | A1 |
20110105895 | Kornblau et al. | May 2011 | A1 |
20110112569 | Friedman et al. | May 2011 | A1 |
20110118708 | Burbank et al. | May 2011 | A1 |
20110119075 | Dhoble | May 2011 | A1 |
20110125149 | El-Galley et al. | May 2011 | A1 |
20110152712 | Cao et al. | Jun 2011 | A1 |
20110163147 | Laurent et al. | Jul 2011 | A1 |
20110166883 | Palmer et al. | Jul 2011 | A1 |
20110196398 | Robertson et al. | Aug 2011 | A1 |
20110237883 | Chun | Sep 2011 | A1 |
20110251612 | Faller | Oct 2011 | A1 |
20110264000 | Paul et al. | Oct 2011 | A1 |
20110264078 | Lipow et al. | Oct 2011 | A1 |
20110273465 | Konishi et al. | Nov 2011 | A1 |
20110278343 | Knodel et al. | Nov 2011 | A1 |
20110290024 | Lefler | Dec 2011 | A1 |
20110295270 | Giordano et al. | Dec 2011 | A1 |
20110306840 | Allen et al. | Dec 2011 | A1 |
20120012638 | Huang et al. | Jan 2012 | A1 |
20120021684 | Schultz et al. | Jan 2012 | A1 |
20120022519 | Huang et al. | Jan 2012 | A1 |
20120029354 | Mark et al. | Feb 2012 | A1 |
20120046662 | Gilbert | Feb 2012 | A1 |
20120059684 | Hampapur et al. | Mar 2012 | A1 |
20120078247 | Worrell et al. | Mar 2012 | A1 |
20120080336 | Shelton, IV et al. | Apr 2012 | A1 |
20120083786 | Artale et al. | Apr 2012 | A1 |
20120100517 | Bowditch et al. | Apr 2012 | A1 |
20120101488 | Aldridge et al. | Apr 2012 | A1 |
20120116265 | Houser et al. | May 2012 | A1 |
20120116381 | Houser et al. | May 2012 | A1 |
20120116391 | Houser | May 2012 | A1 |
20120116394 | Timm et al. | May 2012 | A1 |
20120130217 | Kauphusman et al. | May 2012 | A1 |
20120145714 | Farascioni et al. | Jun 2012 | A1 |
20120172696 | Kallback et al. | Jul 2012 | A1 |
20120190981 | Harris et al. | Jul 2012 | A1 |
20120191091 | Allen | Jul 2012 | A1 |
20120191162 | Villa | Jul 2012 | A1 |
20120197619 | Namer Yelin et al. | Aug 2012 | A1 |
20120203067 | Higgins et al. | Aug 2012 | A1 |
20120203785 | Awada | Aug 2012 | A1 |
20120211542 | Racenet | Aug 2012 | A1 |
20120226150 | Balicki et al. | Sep 2012 | A1 |
20120245958 | Lawrence et al. | Sep 2012 | A1 |
20120253329 | Zemlok et al. | Oct 2012 | A1 |
20120253847 | Dell'Anno et al. | Oct 2012 | A1 |
20120265555 | Cappuzzo et al. | Oct 2012 | A1 |
20120292367 | Morgan et al. | Nov 2012 | A1 |
20120319859 | Taub et al. | Dec 2012 | A1 |
20130001121 | Metzger | Jan 2013 | A1 |
20130006241 | Takashino | Jan 2013 | A1 |
20130008677 | Huifu | Jan 2013 | A1 |
20130024213 | Poon | Jan 2013 | A1 |
20130046182 | Hegg et al. | Feb 2013 | A1 |
20130046279 | Nlklewskl et al. | Feb 2013 | A1 |
20130046295 | Kerr et al. | Feb 2013 | A1 |
20130066647 | Andrie et al. | Mar 2013 | A1 |
20130090526 | Suzuki et al. | Apr 2013 | A1 |
20130093829 | Rosenblatt et al. | Apr 2013 | A1 |
20130096597 | Anand et al. | Apr 2013 | A1 |
20130116218 | Kaplan et al. | May 2013 | A1 |
20130144284 | Behnke, II et al. | Jun 2013 | A1 |
20130165776 | Blomqvist | Jun 2013 | A1 |
20130178853 | Hyink et al. | Jul 2013 | A1 |
20130191647 | Ferrara, Jr. et al. | Jul 2013 | A1 |
20130193188 | Shelton, IV et al. | Aug 2013 | A1 |
20130197531 | Boukhny et al. | Aug 2013 | A1 |
20130206813 | Nalagatla | Aug 2013 | A1 |
20130214025 | Zemlok et al. | Aug 2013 | A1 |
20130253480 | Kimball et al. | Sep 2013 | A1 |
20130256373 | Schmid et al. | Oct 2013 | A1 |
20130267874 | Marcotte et al. | Oct 2013 | A1 |
20130268283 | Vann et al. | Oct 2013 | A1 |
20130277410 | Fernandez et al. | Oct 2013 | A1 |
20130317837 | Ballantyne et al. | Nov 2013 | A1 |
20130321425 | Greene et al. | Dec 2013 | A1 |
20130325809 | Kim et al. | Dec 2013 | A1 |
20130331873 | Ross et al. | Dec 2013 | A1 |
20130331875 | Ross et al. | Dec 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140006132 | Barker | Jan 2014 | A1 |
20140006943 | Robbins et al. | Jan 2014 | A1 |
20140009894 | Yu | Jan 2014 | A1 |
20140013565 | MacDonald et al. | Jan 2014 | A1 |
20140018788 | Engelman et al. | Jan 2014 | A1 |
20140029411 | Nayak et al. | Jan 2014 | A1 |
20140033926 | Fassel et al. | Feb 2014 | A1 |
20140035762 | Shelton, IV et al. | Feb 2014 | A1 |
20140066700 | Wilson et al. | Mar 2014 | A1 |
20140073893 | Bencini | Mar 2014 | A1 |
20140074076 | Gertner | Mar 2014 | A1 |
20140081255 | Johnson et al. | Mar 2014 | A1 |
20140081659 | Nawana et al. | Mar 2014 | A1 |
20140084949 | Smith et al. | Mar 2014 | A1 |
20140087999 | Kaplan et al. | Mar 2014 | A1 |
20140092089 | Kasuya et al. | Apr 2014 | A1 |
20140107697 | Patani et al. | Apr 2014 | A1 |
20140108035 | Akbay et al. | Apr 2014 | A1 |
20140108983 | William et al. | Apr 2014 | A1 |
20140117256 | Mueller et al. | May 2014 | A1 |
20140121669 | Claus | May 2014 | A1 |
20140148729 | Schmitz et al. | May 2014 | A1 |
20140148803 | Taylor | May 2014 | A1 |
20140163359 | Sholev et al. | Jun 2014 | A1 |
20140166724 | Schellin et al. | Jun 2014 | A1 |
20140171778 | Tsusaka et al. | Jun 2014 | A1 |
20140187856 | Holoien et al. | Jul 2014 | A1 |
20140188440 | Donhowe et al. | Jul 2014 | A1 |
20140194864 | Martin et al. | Jul 2014 | A1 |
20140195052 | Tsusaka et al. | Jul 2014 | A1 |
20140204190 | Rosenblatt, III et al. | Jul 2014 | A1 |
20140226572 | Thota et al. | Aug 2014 | A1 |
20140243799 | Parihar | Aug 2014 | A1 |
20140243809 | Gelfand et al. | Aug 2014 | A1 |
20140243811 | Reschke et al. | Aug 2014 | A1 |
20140246475 | Hall et al. | Sep 2014 | A1 |
20140249557 | Koch et al. | Sep 2014 | A1 |
20140252064 | Mozdzierz et al. | Sep 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263552 | Hall et al. | Sep 2014 | A1 |
20140275760 | Lee et al. | Sep 2014 | A1 |
20140276749 | Johnson | Sep 2014 | A1 |
20140287393 | Kumar et al. | Sep 2014 | A1 |
20140303660 | Boyden et al. | Oct 2014 | A1 |
20140303990 | Schoenefeld et al. | Oct 2014 | A1 |
20140336943 | Pellini et al. | Nov 2014 | A1 |
20140337052 | Pellini et al. | Nov 2014 | A1 |
20140364691 | Krivopisk et al. | Dec 2014 | A1 |
20150006201 | Pait et al. | Jan 2015 | A1 |
20150025549 | Kilroy et al. | Jan 2015 | A1 |
20150032150 | Ishida et al. | Jan 2015 | A1 |
20150051452 | Ciaccio | Feb 2015 | A1 |
20150051598 | Orszulak et al. | Feb 2015 | A1 |
20150051617 | Takemura et al. | Feb 2015 | A1 |
20150053737 | Leimbach et al. | Feb 2015 | A1 |
20150053743 | Yates et al. | Feb 2015 | A1 |
20150057675 | Akeel et al. | Feb 2015 | A1 |
20150066000 | An et al. | Mar 2015 | A1 |
20150066001 | Jeong | Mar 2015 | A1 |
20150070187 | Wiesner et al. | Mar 2015 | A1 |
20150073400 | Sverdlik et al. | Mar 2015 | A1 |
20150077528 | Awdeh | Mar 2015 | A1 |
20150083774 | Measamer et al. | Mar 2015 | A1 |
20150108198 | Estrella | Apr 2015 | A1 |
20150133945 | Dushyant et al. | May 2015 | A1 |
20150136833 | Shelton, IV et al. | May 2015 | A1 |
20150140982 | Postrel | May 2015 | A1 |
20150145682 | Harris | May 2015 | A1 |
20150148830 | Stulen et al. | May 2015 | A1 |
20150157354 | Bales, Jr. et al. | Jun 2015 | A1 |
20150173673 | Toth et al. | Jun 2015 | A1 |
20150173756 | Baxter, III et al. | Jun 2015 | A1 |
20150182220 | Yates et al. | Jul 2015 | A1 |
20150196295 | Shelton, IV et al. | Jul 2015 | A1 |
20150199109 | Lee | Jul 2015 | A1 |
20150202014 | Kim et al. | Jul 2015 | A1 |
20150208934 | Sztrubel et al. | Jul 2015 | A1 |
20150223725 | Engel et al. | Aug 2015 | A1 |
20150223868 | Brandt et al. | Aug 2015 | A1 |
20150237502 | Schmidt et al. | Aug 2015 | A1 |
20150238355 | Vezzu et al. | Aug 2015 | A1 |
20150272557 | Overmyer et al. | Oct 2015 | A1 |
20150272571 | Leimbach et al. | Oct 2015 | A1 |
20150272580 | Leimbach et al. | Oct 2015 | A1 |
20150272582 | Leimbach et al. | Oct 2015 | A1 |
20150272694 | Charles | Oct 2015 | A1 |
20150282821 | Look et al. | Oct 2015 | A1 |
20150297200 | Fitzsimmons et al. | Oct 2015 | A1 |
20150297222 | Huitema et al. | Oct 2015 | A1 |
20150297228 | Huitema et al. | Oct 2015 | A1 |
20150297233 | Huitema et al. | Oct 2015 | A1 |
20150297311 | Tesar | Oct 2015 | A1 |
20150302157 | Collar et al. | Oct 2015 | A1 |
20150310174 | Coudert et al. | Oct 2015 | A1 |
20150313538 | Bechtel et al. | Nov 2015 | A1 |
20150317899 | Dumbauld et al. | Nov 2015 | A1 |
20150320423 | Aranyi | Nov 2015 | A1 |
20150324114 | Hurley et al. | Nov 2015 | A1 |
20150328474 | Flyash et al. | Nov 2015 | A1 |
20150332003 | Stamm et al. | Nov 2015 | A1 |
20150332196 | Stiller et al. | Nov 2015 | A1 |
20150335344 | Aljuri et al. | Nov 2015 | A1 |
20150374259 | Garbey et al. | Dec 2015 | A1 |
20160000437 | Giordano et al. | Jan 2016 | A1 |
20160001411 | Alberti | Jan 2016 | A1 |
20160015471 | Piron et al. | Jan 2016 | A1 |
20160022374 | Haider et al. | Jan 2016 | A1 |
20160034648 | Mohlenbrock et al. | Feb 2016 | A1 |
20160038224 | Couture | Feb 2016 | A1 |
20160038253 | Piron et al. | Feb 2016 | A1 |
20160048780 | Sethumadhavan et al. | Feb 2016 | A1 |
20160058439 | Shelton, IV et al. | Mar 2016 | A1 |
20160066913 | Swayze et al. | Mar 2016 | A1 |
20160078190 | Greene et al. | Mar 2016 | A1 |
20160106516 | Mesallum | Apr 2016 | A1 |
20160106934 | Hiraga et al. | Apr 2016 | A1 |
20160121143 | Mumaw et al. | May 2016 | A1 |
20160157717 | Gaster | Jun 2016 | A1 |
20160158468 | Tang et al. | Jun 2016 | A1 |
20160166336 | Razzaque et al. | Jun 2016 | A1 |
20160174998 | Lal et al. | Jun 2016 | A1 |
20160175025 | Strobl | Jun 2016 | A1 |
20160180045 | Syed | Jun 2016 | A1 |
20160184054 | Lowe | Jun 2016 | A1 |
20160192960 | Bueno et al. | Jul 2016 | A1 |
20160206202 | Frangioni | Jul 2016 | A1 |
20160206362 | Mehta et al. | Jul 2016 | A1 |
20160224760 | Petak et al. | Aug 2016 | A1 |
20160225551 | Shedletsky | Aug 2016 | A1 |
20160228061 | Kallback et al. | Aug 2016 | A1 |
20160228204 | Quaid et al. | Aug 2016 | A1 |
20160235303 | Fleming et al. | Aug 2016 | A1 |
20160242836 | Eggers et al. | Aug 2016 | A1 |
20160249910 | Shelton, IV et al. | Sep 2016 | A1 |
20160249920 | Gupta et al. | Sep 2016 | A1 |
20160270861 | Guru et al. | Sep 2016 | A1 |
20160278841 | Panescu et al. | Sep 2016 | A1 |
20160287312 | Tegg et al. | Oct 2016 | A1 |
20160287316 | Worrell et al. | Oct 2016 | A1 |
20160287912 | Warnking | Oct 2016 | A1 |
20160292456 | Dubey et al. | Oct 2016 | A1 |
20160296246 | Schaller | Oct 2016 | A1 |
20160302210 | Thornton et al. | Oct 2016 | A1 |
20160310055 | Zand et al. | Oct 2016 | A1 |
20160310204 | McHenry et al. | Oct 2016 | A1 |
20160314716 | Grubbs | Oct 2016 | A1 |
20160314717 | Grubbs | Oct 2016 | A1 |
20160321400 | Durrant et al. | Nov 2016 | A1 |
20160323283 | Kang et al. | Nov 2016 | A1 |
20160331460 | Cheatham, III et al. | Nov 2016 | A1 |
20160342753 | Feazell | Nov 2016 | A1 |
20160342916 | Arceneaux et al. | Nov 2016 | A1 |
20160345857 | Jensrud et al. | Dec 2016 | A1 |
20160345976 | Gonzalez et al. | Dec 2016 | A1 |
20160350490 | Martinez et al. | Dec 2016 | A1 |
20160354160 | Crowley et al. | Dec 2016 | A1 |
20160354162 | Yen et al. | Dec 2016 | A1 |
20160361070 | Ardel et al. | Dec 2016 | A1 |
20160367305 | Hareland | Dec 2016 | A1 |
20160367401 | Claus | Dec 2016 | A1 |
20160374710 | Sinelnikov et al. | Dec 2016 | A1 |
20160374723 | Frankhouser et al. | Dec 2016 | A1 |
20160374762 | Case et al. | Dec 2016 | A1 |
20160379504 | Bailey et al. | Dec 2016 | A1 |
20170000516 | Stulen et al. | Jan 2017 | A1 |
20170000553 | Wiener et al. | Jan 2017 | A1 |
20170027603 | Pandey | Feb 2017 | A1 |
20170042604 | McFarland et al. | Feb 2017 | A1 |
20170068792 | Reiner | Mar 2017 | A1 |
20170079530 | DiMaio et al. | Mar 2017 | A1 |
20170079730 | Azizian et al. | Mar 2017 | A1 |
20170086829 | Vendely et al. | Mar 2017 | A1 |
20170086930 | Thompson et al. | Mar 2017 | A1 |
20170105754 | Boudreaux et al. | Apr 2017 | A1 |
20170116873 | Lendvay et al. | Apr 2017 | A1 |
20170127499 | Unoson et al. | May 2017 | A1 |
20170132374 | Lee et al. | May 2017 | A1 |
20170132385 | Hunter et al. | May 2017 | A1 |
20170132785 | Wshah et al. | May 2017 | A1 |
20170143284 | Sehnert et al. | May 2017 | A1 |
20170143442 | Tesar et al. | May 2017 | A1 |
20170156076 | Eom et al. | Jun 2017 | A1 |
20170164997 | Johnson et al. | Jun 2017 | A1 |
20170165008 | Finley | Jun 2017 | A1 |
20170165012 | Chaplin et al. | Jun 2017 | A1 |
20170172550 | Mukherjee et al. | Jun 2017 | A1 |
20170172565 | Heneveld | Jun 2017 | A1 |
20170172614 | Scheib et al. | Jun 2017 | A1 |
20170173262 | Veltz | Jun 2017 | A1 |
20170177807 | Fabian | Jun 2017 | A1 |
20170196583 | Sugiyama | Jul 2017 | A1 |
20170196637 | Shelton, IV et al. | Jul 2017 | A1 |
20170202591 | Shelton, IV et al. | Jul 2017 | A1 |
20170202595 | Shelton, IV | Jul 2017 | A1 |
20170202607 | Shelton, IV et al. | Jul 2017 | A1 |
20170202608 | Shelton, IV et al. | Jul 2017 | A1 |
20170209145 | Swayze et al. | Jul 2017 | A1 |
20170215944 | Keffeler | Aug 2017 | A1 |
20170224332 | Hunter et al. | Aug 2017 | A1 |
20170224334 | Worthington et al. | Aug 2017 | A1 |
20170224428 | Kopp | Aug 2017 | A1 |
20170231627 | Shelton, IV et al. | Aug 2017 | A1 |
20170231628 | Shelton, IV et al. | Aug 2017 | A1 |
20170245809 | Ma et al. | Aug 2017 | A1 |
20170249431 | Shelton, IV et al. | Aug 2017 | A1 |
20170249432 | Grantcharov | Aug 2017 | A1 |
20170262604 | Francois | Sep 2017 | A1 |
20170265864 | Hessler et al. | Sep 2017 | A1 |
20170265943 | Sela et al. | Sep 2017 | A1 |
20170273715 | Piron et al. | Sep 2017 | A1 |
20170281171 | Shelton, IV et al. | Oct 2017 | A1 |
20170281173 | Shelton, IV et al. | Oct 2017 | A1 |
20170281186 | Shelton, IV et al. | Oct 2017 | A1 |
20170281189 | Nalagatla et al. | Oct 2017 | A1 |
20170290585 | Shelton, IV et al. | Oct 2017 | A1 |
20170296169 | Yates et al. | Oct 2017 | A1 |
20170296173 | Shelton, IV et al. | Oct 2017 | A1 |
20170296185 | Swensgard et al. | Oct 2017 | A1 |
20170296213 | Swensgard et al. | Oct 2017 | A1 |
20170303984 | Malackowski | Oct 2017 | A1 |
20170304007 | Piron et al. | Oct 2017 | A1 |
20170304020 | Ng et al. | Oct 2017 | A1 |
20170311777 | Hirayama et al. | Nov 2017 | A1 |
20170312456 | Phillips | Nov 2017 | A1 |
20170325876 | Nakadate et al. | Nov 2017 | A1 |
20170325878 | Messerly et al. | Nov 2017 | A1 |
20170337043 | Brincat et al. | Nov 2017 | A1 |
20170360358 | Amiot et al. | Dec 2017 | A1 |
20170360499 | Greep et al. | Dec 2017 | A1 |
20170367583 | Black et al. | Dec 2017 | A1 |
20170367695 | Shelton, IV et al. | Dec 2017 | A1 |
20170367754 | Narisawa | Dec 2017 | A1 |
20170367771 | Tako et al. | Dec 2017 | A1 |
20170367772 | Gunn et al. | Dec 2017 | A1 |
20170370710 | Chen et al. | Dec 2017 | A1 |
20180008359 | Randle | Jan 2018 | A1 |
20180011983 | Zuhars et al. | Jan 2018 | A1 |
20180021058 | Meglan | Jan 2018 | A1 |
20180042659 | Rupp et al. | Feb 2018 | A1 |
20180050196 | Pawsey et al. | Feb 2018 | A1 |
20180052971 | Hanina et al. | Feb 2018 | A1 |
20180055529 | Messerly et al. | Mar 2018 | A1 |
20180065248 | Barral et al. | Mar 2018 | A1 |
20180078170 | Panescu et al. | Mar 2018 | A1 |
20180098816 | Govari et al. | Apr 2018 | A1 |
20180108438 | Ryan et al. | Apr 2018 | A1 |
20180110523 | Shelton, IV | Apr 2018 | A1 |
20180116662 | Shelton, IV et al. | May 2018 | A1 |
20180116735 | Tierney et al. | May 2018 | A1 |
20180122506 | Grantcharov et al. | May 2018 | A1 |
20180125590 | Giordano et al. | May 2018 | A1 |
20180132895 | Silver | May 2018 | A1 |
20180144243 | Hsieh et al. | May 2018 | A1 |
20180153436 | Olson | Jun 2018 | A1 |
20180153574 | Faller et al. | Jun 2018 | A1 |
20180153628 | Grover et al. | Jun 2018 | A1 |
20180153632 | Tokarchuk et al. | Jun 2018 | A1 |
20180154297 | Maletich et al. | Jun 2018 | A1 |
20180161062 | Kaga et al. | Jun 2018 | A1 |
20180161716 | Li et al. | Jun 2018 | A1 |
20180165780 | Romeo | Jun 2018 | A1 |
20180168574 | Robinson et al. | Jun 2018 | A1 |
20180168575 | Simms et al. | Jun 2018 | A1 |
20180168577 | Aronhalt et al. | Jun 2018 | A1 |
20180168578 | Aronhalt et al. | Jun 2018 | A1 |
20180168579 | Aronhalt et al. | Jun 2018 | A1 |
20180168584 | Harris et al. | Jun 2018 | A1 |
20180168586 | Shelton, IV et al. | Jun 2018 | A1 |
20180168590 | Overmyer et al. | Jun 2018 | A1 |
20180168592 | Overmyer et al. | Jun 2018 | A1 |
20180168593 | Overmyer et al. | Jun 2018 | A1 |
20180168597 | Fanelli et al. | Jun 2018 | A1 |
20180168598 | Shelton, IV et al. | Jun 2018 | A1 |
20180168608 | Shelton, IV et al. | Jun 2018 | A1 |
20180168609 | Fanelli et al. | Jun 2018 | A1 |
20180168610 | Shelton, IV et al. | Jun 2018 | A1 |
20180168614 | Shelton, IV et al. | Jun 2018 | A1 |
20180168615 | Shelton, IV et al. | Jun 2018 | A1 |
20180168617 | Shelton, IV et al. | Jun 2018 | A1 |
20180168618 | Scott et al. | Jun 2018 | A1 |
20180168619 | Scott et al. | Jun 2018 | A1 |
20180168623 | Simms et al. | Jun 2018 | A1 |
20180168625 | Posada et al. | Jun 2018 | A1 |
20180168627 | Weaner et al. | Jun 2018 | A1 |
20180168628 | Hunter et al. | Jun 2018 | A1 |
20180168633 | Shelton, IV et al. | Jun 2018 | A1 |
20180168647 | Shelton, IV et al. | Jun 2018 | A1 |
20180168648 | Shelton, IV et al. | Jun 2018 | A1 |
20180168649 | Shelton, IV et al. | Jun 2018 | A1 |
20180168650 | Shelton, IV et al. | Jun 2018 | A1 |
20180168651 | Shelton, IV et al. | Jun 2018 | A1 |
20180172420 | Hein et al. | Jun 2018 | A1 |
20180177383 | Noonan et al. | Jun 2018 | A1 |
20180182475 | Cossler et al. | Jun 2018 | A1 |
20180193579 | Hanrahan et al. | Jul 2018 | A1 |
20180206884 | Beaupre | Jul 2018 | A1 |
20180206905 | Batchelor | Jul 2018 | A1 |
20180211726 | Courtemanche et al. | Jul 2018 | A1 |
20180214025 | Homyk et al. | Aug 2018 | A1 |
20180221005 | Hamel et al. | Aug 2018 | A1 |
20180221598 | Silver | Aug 2018 | A1 |
20180228557 | Darisse et al. | Aug 2018 | A1 |
20180233222 | Daley et al. | Aug 2018 | A1 |
20180235719 | Jarc | Aug 2018 | A1 |
20180235722 | Baghdadi et al. | Aug 2018 | A1 |
20180242967 | Meade | Aug 2018 | A1 |
20180247128 | Alvi et al. | Aug 2018 | A1 |
20180247711 | Terry | Aug 2018 | A1 |
20180250086 | Grubbs | Sep 2018 | A1 |
20180250825 | Hashimoto et al. | Sep 2018 | A1 |
20180263699 | Murphy et al. | Sep 2018 | A1 |
20180263710 | Sakaguchi et al. | Sep 2018 | A1 |
20180268320 | Shekhar | Sep 2018 | A1 |
20180271520 | Shelton, IV et al. | Sep 2018 | A1 |
20180271603 | Nir et al. | Sep 2018 | A1 |
20180289427 | Griffiths et al. | Oct 2018 | A1 |
20180294060 | Kassab | Oct 2018 | A1 |
20180296286 | Peine et al. | Oct 2018 | A1 |
20180303552 | Ryan et al. | Oct 2018 | A1 |
20180304471 | Tokuchi | Oct 2018 | A1 |
20180310935 | Wixey | Nov 2018 | A1 |
20180310986 | Batchelor et al. | Nov 2018 | A1 |
20180315492 | Bishop et al. | Nov 2018 | A1 |
20180317826 | Muhsin et al. | Nov 2018 | A1 |
20180317916 | Wixey | Nov 2018 | A1 |
20180333188 | Nott et al. | Nov 2018 | A1 |
20180333207 | Moctezuma De la Barrera | Nov 2018 | A1 |
20180333209 | Frushour et al. | Nov 2018 | A1 |
20180351987 | Patel et al. | Dec 2018 | A1 |
20180353186 | Mozdzierz et al. | Dec 2018 | A1 |
20180357383 | Allen et al. | Dec 2018 | A1 |
20180360454 | Shelton, IV et al. | Dec 2018 | A1 |
20180360456 | Shelton, IV et al. | Dec 2018 | A1 |
20180366213 | Fidone et al. | Dec 2018 | A1 |
20180368930 | Esterberg et al. | Dec 2018 | A1 |
20180369511 | Zergiebel et al. | Dec 2018 | A1 |
20190000446 | Shelton, IV et al. | Jan 2019 | A1 |
20190000478 | Messerly et al. | Jan 2019 | A1 |
20190000565 | Shelton, IV et al. | Jan 2019 | A1 |
20190000569 | Crawford et al. | Jan 2019 | A1 |
20190001079 | Zergiebel et al. | Jan 2019 | A1 |
20190005641 | Yamamoto | Jan 2019 | A1 |
20190006047 | Gorek et al. | Jan 2019 | A1 |
20190025040 | Andreason et al. | Jan 2019 | A1 |
20190036688 | Wasily et al. | Jan 2019 | A1 |
20190038335 | Mohr et al. | Feb 2019 | A1 |
20190038364 | Enoki | Feb 2019 | A1 |
20190046198 | Stokes et al. | Feb 2019 | A1 |
20190053801 | Wixey et al. | Feb 2019 | A1 |
20190053866 | Seow et al. | Feb 2019 | A1 |
20190059986 | Shelton, IV et al. | Feb 2019 | A1 |
20190069949 | Vrba et al. | Mar 2019 | A1 |
20190069964 | Hagn | Mar 2019 | A1 |
20190069966 | Petersen et al. | Mar 2019 | A1 |
20190070550 | Lalomia et al. | Mar 2019 | A1 |
20190070731 | Bowling et al. | Mar 2019 | A1 |
20190083190 | Graves et al. | Mar 2019 | A1 |
20190087544 | Peterson | Mar 2019 | A1 |
20190099221 | Schmidt et al. | Apr 2019 | A1 |
20190104919 | Shelton, IV et al. | Apr 2019 | A1 |
20190110828 | Despatie | Apr 2019 | A1 |
20190110855 | Barral et al. | Apr 2019 | A1 |
20190115108 | Hegedus et al. | Apr 2019 | A1 |
20190125320 | Shelton, IV et al. | May 2019 | A1 |
20190125321 | Shelton, IV et al. | May 2019 | A1 |
20190125324 | Scheib et al. | May 2019 | A1 |
20190125335 | Shelton, IV et al. | May 2019 | A1 |
20190125336 | Deck et al. | May 2019 | A1 |
20190125337 | Shelton, IV et al. | May 2019 | A1 |
20190125338 | Shelton, IV et al. | May 2019 | A1 |
20190125339 | Shelton, IV et al. | May 2019 | A1 |
20190125347 | Stokes et al. | May 2019 | A1 |
20190125348 | Shelton, IV et al. | May 2019 | A1 |
20190125352 | Shelton, IV et al. | May 2019 | A1 |
20190125353 | Shelton, IV et al. | May 2019 | A1 |
20190125354 | Deck et al. | May 2019 | A1 |
20190125355 | Shelton, IV et al. | May 2019 | A1 |
20190125356 | Shelton, IV et al. | May 2019 | A1 |
20190125357 | Shelton, IV et al. | May 2019 | A1 |
20190125358 | Shelton, IV et al. | May 2019 | A1 |
20190125359 | Shelton, IV et al. | May 2019 | A1 |
20190125360 | Shelton, IV et al. | May 2019 | A1 |
20190125361 | Shelton, IV et al. | May 2019 | A1 |
20190125377 | Shelton, IV | May 2019 | A1 |
20190125378 | Shelton, IV et al. | May 2019 | A1 |
20190125379 | Shelton, IV et al. | May 2019 | A1 |
20190125380 | Hunter et al. | May 2019 | A1 |
20190125383 | Scheib et al. | May 2019 | A1 |
20190125384 | Scheib et al. | May 2019 | A1 |
20190125385 | Scheib et al. | May 2019 | A1 |
20190125386 | Shelton, IV et al. | May 2019 | A1 |
20190125387 | Parihar et al. | May 2019 | A1 |
20190125388 | Shelton, IV et al. | May 2019 | A1 |
20190125389 | Shelton, IV et al. | May 2019 | A1 |
20190125430 | Shelton, IV et al. | May 2019 | A1 |
20190125432 | Shelton, IV et al. | May 2019 | A1 |
20190125454 | Stokes et al. | May 2019 | A1 |
20190125455 | Shelton, IV et al. | May 2019 | A1 |
20190125456 | Shelton, IV et al. | May 2019 | A1 |
20190125457 | Parihar et al. | May 2019 | A1 |
20190125458 | Shelton, IV et al. | May 2019 | A1 |
20190125459 | Shelton, IV et al. | May 2019 | A1 |
20190125476 | Shelton, IV et al. | May 2019 | A1 |
20190133703 | Seow et al. | May 2019 | A1 |
20190142449 | Shelton, IV et al. | May 2019 | A1 |
20190142535 | Seow et al. | May 2019 | A1 |
20190145942 | Dutriez et al. | May 2019 | A1 |
20190150975 | Kawasaki et al. | May 2019 | A1 |
20190159777 | Ehrenfels et al. | May 2019 | A1 |
20190159778 | Shelton, IV et al. | May 2019 | A1 |
20190162179 | O'Shea et al. | May 2019 | A1 |
20190163875 | Allen et al. | May 2019 | A1 |
20190167296 | Tsubuku et al. | Jun 2019 | A1 |
20190192044 | Ravi et al. | Jun 2019 | A1 |
20190192157 | Scott et al. | Jun 2019 | A1 |
20190192236 | Shelton, IV et al. | Jun 2019 | A1 |
20190200844 | Shelton, IV et al. | Jul 2019 | A1 |
20190200863 | Shelton, IV et al. | Jul 2019 | A1 |
20190200905 | Shelton, IV et al. | Jul 2019 | A1 |
20190200906 | Shelton, IV et al. | Jul 2019 | A1 |
20190200977 | Shelton, IV et al. | Jul 2019 | A1 |
20190200980 | Shelton, IV et al. | Jul 2019 | A1 |
20190200981 | Harris et al. | Jul 2019 | A1 |
20190200984 | Shelton, IV et al. | Jul 2019 | A1 |
20190200985 | Shelton, IV et al. | Jul 2019 | A1 |
20190200986 | Shelton, IV et al. | Jul 2019 | A1 |
20190200987 | Shelton, IV et al. | Jul 2019 | A1 |
20190200988 | Shelton, IV | Jul 2019 | A1 |
20190200996 | Shelton, IV et al. | Jul 2019 | A1 |
20190200997 | Shelton, IV et al. | Jul 2019 | A1 |
20190200998 | Shelton, IV et al. | Jul 2019 | A1 |
20190201020 | Shelton, IV et al. | Jul 2019 | A1 |
20190201021 | Shelton, IV et al. | Jul 2019 | A1 |
20190201023 | Shelton, IV et al. | Jul 2019 | A1 |
20190201024 | Shelton, IV et al. | Jul 2019 | A1 |
20190201025 | Shelton, IV et al. | Jul 2019 | A1 |
20190201026 | Shelton, IV et al. | Jul 2019 | A1 |
20190201027 | Shelton, IV et al. | Jul 2019 | A1 |
20190201028 | Shelton, IV et al. | Jul 2019 | A1 |
20190201029 | Shelton, IV et al. | Jul 2019 | A1 |
20190201030 | Shelton, IV et al. | Jul 2019 | A1 |
20190201033 | Yates et al. | Jul 2019 | A1 |
20190201034 | Shelton, IV et al. | Jul 2019 | A1 |
20190201036 | Nott et al. | Jul 2019 | A1 |
20190201037 | Houser et al. | Jul 2019 | A1 |
20190201038 | Yates et al. | Jul 2019 | A1 |
20190201039 | Widenhouse et al. | Jul 2019 | A1 |
20190201040 | Messerly et al. | Jul 2019 | A1 |
20190201041 | Kimball et al. | Jul 2019 | A1 |
20190201042 | Nott et al. | Jul 2019 | A1 |
20190201043 | Shelton, IV et al. | Jul 2019 | A1 |
20190201044 | Shelton, IV et al. | Jul 2019 | A1 |
20190201045 | Yates et al. | Jul 2019 | A1 |
20190201046 | Shelton, IV et al. | Jul 2019 | A1 |
20190201047 | Yates et al. | Jul 2019 | A1 |
20190201073 | Nott et al. | Jul 2019 | A1 |
20190201074 | Yates et al. | Jul 2019 | A1 |
20190201075 | Shelton, IV et al. | Jul 2019 | A1 |
20190201077 | Yates et al. | Jul 2019 | A1 |
20190201079 | Shelton, IV et al. | Jul 2019 | A1 |
20190201080 | Messerly et al. | Jul 2019 | A1 |
20190201081 | Shelton, IV et al. | Jul 2019 | A1 |
20190201082 | Shelton, IV et al. | Jul 2019 | A1 |
20190201083 | Shelton, IV et al. | Jul 2019 | A1 |
20190201084 | Shelton, IV et al. | Jul 2019 | A1 |
20190201085 | Shelton, IV et al. | Jul 2019 | A1 |
20190201086 | Shelton, IV et al. | Jul 2019 | A1 |
20190201087 | Shelton, IV et al. | Jul 2019 | A1 |
20190201090 | Shelton, IV et al. | Jul 2019 | A1 |
20190201091 | Yates et al. | Jul 2019 | A1 |
20190201092 | Yates et al. | Jul 2019 | A1 |
20190201102 | Shelton, IV et al. | Jul 2019 | A1 |
20190201104 | Shelton, IV et al. | Jul 2019 | A1 |
20190201105 | Shelton, IV et al. | Jul 2019 | A1 |
20190201111 | Shelton, IV et al. | Jul 2019 | A1 |
20190201112 | Wiener et al. | Jul 2019 | A1 |
20190201113 | Shelton, IV et al. | Jul 2019 | A1 |
20190201114 | Shelton, IV et al. | Jul 2019 | A1 |
20190201115 | Shelton, IV et al. | Jul 2019 | A1 |
20190201116 | Shelton, IV et al. | Jul 2019 | A1 |
20190201118 | Shelton, IV et al. | Jul 2019 | A1 |
20190201119 | Harris et al. | Jul 2019 | A1 |
20190201120 | Shelton, IV et al. | Jul 2019 | A1 |
20190201123 | Shelton, IV et al. | Jul 2019 | A1 |
20190201124 | Shelton, IV et al. | Jul 2019 | A1 |
20190201125 | Shelton, IV et al. | Jul 2019 | A1 |
20190201126 | Shelton, IV et al. | Jul 2019 | A1 |
20190201127 | Shelton, IV et al. | Jul 2019 | A1 |
20190201128 | Yates et al. | Jul 2019 | A1 |
20190201129 | Shelton, IV et al. | Jul 2019 | A1 |
20190201130 | Shelton, IV et al. | Jul 2019 | A1 |
20190201135 | Shelton, IV et al. | Jul 2019 | A1 |
20190201136 | Shelton, IV et al. | Jul 2019 | A1 |
20190201137 | Shelton, IV et al. | Jul 2019 | A1 |
20190201138 | Yates et al. | Jul 2019 | A1 |
20190201139 | Shelton, IV et al. | Jul 2019 | A1 |
20190201140 | Yates et al. | Jul 2019 | A1 |
20190201141 | Shelton, IV et al. | Jul 2019 | A1 |
20190201142 | Shelton, IV et al. | Jul 2019 | A1 |
20190201143 | Shelton, IV et al. | Jul 2019 | A1 |
20190201144 | Shelton, IV et al. | Jul 2019 | A1 |
20190201145 | Shelton, IV et al. | Jul 2019 | A1 |
20190201146 | Shelton, IV et al. | Jul 2019 | A1 |
20190201158 | Shelton, IV et al. | Jul 2019 | A1 |
20190201159 | Shelton, IV et al. | Jul 2019 | A1 |
20190201594 | Shelton, IV et al. | Jul 2019 | A1 |
20190201597 | Shelton, IV et al. | Jul 2019 | A1 |
20190204201 | Shelton, IV et al. | Jul 2019 | A1 |
20190205001 | Messerly et al. | Jul 2019 | A1 |
20190205441 | Shelton, IV et al. | Jul 2019 | A1 |
20190205566 | Shelton, IV et al. | Jul 2019 | A1 |
20190205567 | Shelton, IV et al. | Jul 2019 | A1 |
20190206003 | Harris et al. | Jul 2019 | A1 |
20190206004 | Shelton, IV et al. | Jul 2019 | A1 |
20190206050 | Yates et al. | Jul 2019 | A1 |
20190206216 | Shelton, IV et al. | Jul 2019 | A1 |
20190206542 | Shelton, IV et al. | Jul 2019 | A1 |
20190206551 | Yates et al. | Jul 2019 | A1 |
20190206555 | Morgan et al. | Jul 2019 | A1 |
20190206556 | Shelton, IV et al. | Jul 2019 | A1 |
20190206561 | Shelton, IV et al. | Jul 2019 | A1 |
20190206562 | Shelton, IV et al. | Jul 2019 | A1 |
20190206563 | Shelton, IV et al. | Jul 2019 | A1 |
20190206564 | Shelton, IV et al. | Jul 2019 | A1 |
20190206565 | Shelton, IV | Jul 2019 | A1 |
20190206569 | Shelton, IV et al. | Jul 2019 | A1 |
20190206576 | Shelton, IV et al. | Jul 2019 | A1 |
20190207911 | Wiener et al. | Jul 2019 | A1 |
20190208641 | Yates et al. | Jul 2019 | A1 |
20190224434 | Silver et al. | Jul 2019 | A1 |
20190254759 | Azizian | Aug 2019 | A1 |
20190261984 | Nelson et al. | Aug 2019 | A1 |
20190269476 | Bowling et al. | Sep 2019 | A1 |
20190272917 | Couture et al. | Sep 2019 | A1 |
20190274662 | Rockman et al. | Sep 2019 | A1 |
20190274705 | Sawhney et al. | Sep 2019 | A1 |
20190274706 | Nott et al. | Sep 2019 | A1 |
20190274707 | Sawhney et al. | Sep 2019 | A1 |
20190274708 | Boudreaux | Sep 2019 | A1 |
20190274709 | Scoggins | Sep 2019 | A1 |
20190274710 | Black | Sep 2019 | A1 |
20190274711 | Scoggins et al. | Sep 2019 | A1 |
20190274712 | Faller et al. | Sep 2019 | A1 |
20190274713 | Scoggins et al. | Sep 2019 | A1 |
20190274714 | Cuti et al. | Sep 2019 | A1 |
20190274716 | Nott et al. | Sep 2019 | A1 |
20190274717 | Nott et al. | Sep 2019 | A1 |
20190274718 | Denzinger et al. | Sep 2019 | A1 |
20190274719 | Stulen | Sep 2019 | A1 |
20190274720 | Gee et al. | Sep 2019 | A1 |
20190274749 | Brady et al. | Sep 2019 | A1 |
20190274750 | Jayme et al. | Sep 2019 | A1 |
20190274752 | Denzinger et al. | Sep 2019 | A1 |
20190278262 | Taylor et al. | Sep 2019 | A1 |
20190282311 | Nowlin et al. | Sep 2019 | A1 |
20190290389 | Kopp | Sep 2019 | A1 |
20190298340 | Shelton, IV et al. | Oct 2019 | A1 |
20190298341 | Shelton, IV et al. | Oct 2019 | A1 |
20190298342 | Shelton, IV et al. | Oct 2019 | A1 |
20190298343 | Shelton, IV et al. | Oct 2019 | A1 |
20190298346 | Shelton, IV et al. | Oct 2019 | A1 |
20190298347 | Shelton, IV et al. | Oct 2019 | A1 |
20190298350 | Shelton, IV et al. | Oct 2019 | A1 |
20190298351 | Shelton, IV et al. | Oct 2019 | A1 |
20190298352 | Shelton, IV et al. | Oct 2019 | A1 |
20190298353 | Shelton, IV et al. | Oct 2019 | A1 |
20190298354 | Shelton, IV et al. | Oct 2019 | A1 |
20190298355 | Shelton, IV et al. | Oct 2019 | A1 |
20190298356 | Shelton, IV et al. | Oct 2019 | A1 |
20190298357 | Shelton, IV et al. | Oct 2019 | A1 |
20190298464 | Abbott | Oct 2019 | A1 |
20190298481 | Rosenberg et al. | Oct 2019 | A1 |
20190307520 | Peine et al. | Oct 2019 | A1 |
20190311802 | Kokubo et al. | Oct 2019 | A1 |
20190314015 | Shelton, IV et al. | Oct 2019 | A1 |
20190314016 | Huitema et al. | Oct 2019 | A1 |
20190314081 | Brogna | Oct 2019 | A1 |
20190320929 | Spencer et al. | Oct 2019 | A1 |
20190321117 | Itkowitz et al. | Oct 2019 | A1 |
20190333626 | Mansi et al. | Oct 2019 | A1 |
20190343594 | Garcia Kilroy et al. | Nov 2019 | A1 |
20190374140 | Tucker et al. | Dec 2019 | A1 |
20190374292 | Barral et al. | Dec 2019 | A1 |
20190378610 | Barral et al. | Dec 2019 | A1 |
20200000470 | Du et al. | Jan 2020 | A1 |
20200000509 | Hayashida et al. | Jan 2020 | A1 |
20200038120 | Ziraknejad et al. | Feb 2020 | A1 |
20200046353 | Deck et al. | Feb 2020 | A1 |
20200054317 | Pisarnwongs et al. | Feb 2020 | A1 |
20200054320 | Harris et al. | Feb 2020 | A1 |
20200054321 | Harris et al. | Feb 2020 | A1 |
20200054322 | Harris et al. | Feb 2020 | A1 |
20200054323 | Harris et al. | Feb 2020 | A1 |
20200054326 | Harris et al. | Feb 2020 | A1 |
20200054328 | Harris et al. | Feb 2020 | A1 |
20200054330 | Harris et al. | Feb 2020 | A1 |
20200078070 | Henderson et al. | Mar 2020 | A1 |
20200078071 | Asher | Mar 2020 | A1 |
20200078076 | Henderson et al. | Mar 2020 | A1 |
20200078077 | Henderson et al. | Mar 2020 | A1 |
20200078078 | Henderson et al. | Mar 2020 | A1 |
20200078079 | Morgan et al. | Mar 2020 | A1 |
20200078080 | Henderson et al. | Mar 2020 | A1 |
20200078081 | Jayme et al. | Mar 2020 | A1 |
20200078082 | Henderson et al. | Mar 2020 | A1 |
20200078089 | Henderson et al. | Mar 2020 | A1 |
20200078096 | Barbagli et al. | Mar 2020 | A1 |
20200078106 | Henderson et al. | Mar 2020 | A1 |
20200078110 | Henderson et al. | Mar 2020 | A1 |
20200078111 | Oberkircher et al. | Mar 2020 | A1 |
20200078112 | Henderson et al. | Mar 2020 | A1 |
20200078113 | Sawhney et al. | Mar 2020 | A1 |
20200078114 | Asher et al. | Mar 2020 | A1 |
20200078115 | Asher et al. | Mar 2020 | A1 |
20200078116 | Oberkircher et al. | Mar 2020 | A1 |
20200078117 | Henderson et al. | Mar 2020 | A1 |
20200078118 | Henderson et al. | Mar 2020 | A1 |
20200078119 | Henderson et al. | Mar 2020 | A1 |
20200078120 | Aldridge et al. | Mar 2020 | A1 |
20200081585 | Petre et al. | Mar 2020 | A1 |
20200090808 | Carroll et al. | Mar 2020 | A1 |
20200100825 | Henderson et al. | Apr 2020 | A1 |
20200100830 | Henderson et al. | Apr 2020 | A1 |
20200106220 | Henderson et al. | Apr 2020 | A1 |
20200162896 | Su et al. | May 2020 | A1 |
20200168323 | Bullington et al. | May 2020 | A1 |
20200178760 | Kashima et al. | Jun 2020 | A1 |
20200178971 | Harris et al. | Jun 2020 | A1 |
20200193600 | Shameli et al. | Jun 2020 | A1 |
20200197027 | Hershberger et al. | Jun 2020 | A1 |
20200203004 | Shanbhag et al. | Jun 2020 | A1 |
20200214699 | Shelton, IV et al. | Jul 2020 | A1 |
20200226751 | Jin et al. | Jul 2020 | A1 |
20200230803 | Yamashita et al. | Jul 2020 | A1 |
20200237372 | Park | Jul 2020 | A1 |
20200261075 | Boudreaux et al. | Aug 2020 | A1 |
20200261076 | Boudreaux et al. | Aug 2020 | A1 |
20200261077 | Shelton, IV et al. | Aug 2020 | A1 |
20200261078 | Bakos et al. | Aug 2020 | A1 |
20200261080 | Bakos et al. | Aug 2020 | A1 |
20200261081 | Boudreaux et al. | Aug 2020 | A1 |
20200261082 | Boudreaux et al. | Aug 2020 | A1 |
20200261083 | Bakos et al. | Aug 2020 | A1 |
20200261084 | Bakos et al. | Aug 2020 | A1 |
20200261085 | Boudreaux et al. | Aug 2020 | A1 |
20200261086 | Zeiner et al. | Aug 2020 | A1 |
20200261087 | Timm et al. | Aug 2020 | A1 |
20200261088 | Harris et al. | Aug 2020 | A1 |
20200261089 | Shelton, IV et al. | Aug 2020 | A1 |
20200275928 | Shelton, IV et al. | Sep 2020 | A1 |
20200275930 | Harris et al. | Sep 2020 | A1 |
20200281665 | Kopp | Sep 2020 | A1 |
20200305924 | Carroll | Oct 2020 | A1 |
20200305945 | Morgan et al. | Oct 2020 | A1 |
20200314569 | Morgan et al. | Oct 2020 | A1 |
20200348662 | Cella et al. | Nov 2020 | A1 |
20200405304 | Mozdzierz et al. | Dec 2020 | A1 |
20200405375 | Shelton, IV et al. | Dec 2020 | A1 |
20210000555 | Shelton, IV et al. | Jan 2021 | A1 |
20210007760 | Reisin | Jan 2021 | A1 |
20210015568 | Liao et al. | Jan 2021 | A1 |
20210022731 | Eisinger | Jan 2021 | A1 |
20210022738 | Weir et al. | Jan 2021 | A1 |
20210022809 | Crawford et al. | Jan 2021 | A1 |
20210059674 | Shelton, IV et al. | Mar 2021 | A1 |
20210068834 | Shelton, IV et al. | Mar 2021 | A1 |
20210076966 | Grantcharov et al. | Mar 2021 | A1 |
20210128149 | Whitfield et al. | May 2021 | A1 |
20210153889 | Nott et al. | May 2021 | A1 |
20210169516 | Houser et al. | Jun 2021 | A1 |
20210176179 | Shelton, IV | Jun 2021 | A1 |
20210177452 | Nott et al. | Jun 2021 | A1 |
20210177489 | Yates et al. | Jun 2021 | A1 |
20210186454 | Behzadi et al. | Jun 2021 | A1 |
20210192914 | Shelton, IV et al. | Jun 2021 | A1 |
20210201646 | Shelton, IV et al. | Jul 2021 | A1 |
20210205020 | Shelton, IV et al. | Jul 2021 | A1 |
20210205021 | Shelton, IV et al. | Jul 2021 | A1 |
20210205028 | Shelton, IV et al. | Jul 2021 | A1 |
20210205029 | Wiener et al. | Jul 2021 | A1 |
20210205030 | Shelton, IV et al. | Jul 2021 | A1 |
20210205031 | Shelton, IV et al. | Jul 2021 | A1 |
20210212602 | Shelton, IV et al. | Jul 2021 | A1 |
20210212694 | Shelton, IV et al. | Jul 2021 | A1 |
20210212717 | Yates et al. | Jul 2021 | A1 |
20210212719 | Houser et al. | Jul 2021 | A1 |
20210212770 | Messerly et al. | Jul 2021 | A1 |
20210212771 | Shelton, IV et al. | Jul 2021 | A1 |
20210212774 | Shelton, IV et al. | Jul 2021 | A1 |
20210212775 | Shelton, IV et al. | Jul 2021 | A1 |
20210212782 | Shelton, IV et al. | Jul 2021 | A1 |
20210219976 | DiNardo et al. | Jul 2021 | A1 |
20210220058 | Messerly et al. | Jul 2021 | A1 |
20210240852 | Shelton, IV et al. | Aug 2021 | A1 |
20210241898 | Shelton, IV et al. | Aug 2021 | A1 |
20210249125 | Morgan et al. | Aug 2021 | A1 |
20210251487 | Shelton, IV et al. | Aug 2021 | A1 |
20210259687 | Gonzalez et al. | Aug 2021 | A1 |
20210259697 | Shelton, IV et al. | Aug 2021 | A1 |
20210259698 | Shelton, IV et al. | Aug 2021 | A1 |
20210282780 | Shelton, IV et al. | Sep 2021 | A1 |
20210282781 | Shelton, IV et al. | Sep 2021 | A1 |
20210306176 | Park et al. | Sep 2021 | A1 |
20210315579 | Shelton, IV et al. | Oct 2021 | A1 |
20210315580 | Shelton, IV et al. | Oct 2021 | A1 |
20210315581 | Shelton, IV et al. | Oct 2021 | A1 |
20210315582 | Shelton, IV et al. | Oct 2021 | A1 |
20210322014 | Shelton, IV et al. | Oct 2021 | A1 |
20210322015 | Shelton, IV et al. | Oct 2021 | A1 |
20210322017 | Shelton, IV et al. | Oct 2021 | A1 |
20210322018 | Shelton, IV et al. | Oct 2021 | A1 |
20210322019 | Shelton, IV et al. | Oct 2021 | A1 |
20210322020 | Shelton, IV et al. | Oct 2021 | A1 |
20210336939 | Wiener et al. | Oct 2021 | A1 |
20210353287 | Shelton, IV et al. | Nov 2021 | A1 |
20210353288 | Shelton, IV et al. | Nov 2021 | A1 |
20210358599 | Alvi et al. | Nov 2021 | A1 |
20210361284 | Shelton, IV et al. | Nov 2021 | A1 |
20220000484 | Shelton, IV et al. | Jan 2022 | A1 |
20220054158 | Shelton, IV et al. | Feb 2022 | A1 |
20220079591 | Bakos et al. | Mar 2022 | A1 |
20220160438 | Shelton, IV et al. | May 2022 | A1 |
20220175374 | Shelton, IV et al. | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
2015201140 | Mar 2015 | AU |
2795323 | May 2014 | CA |
101617950 | Jan 2010 | CN |
104490448 | Mar 2017 | CN |
206097107 | Apr 2017 | CN |
108652695 | Oct 2018 | CN |
2037167 | Jul 1980 | DE |
3016131 | Oct 1981 | DE |
3824913 | Feb 1990 | DE |
4002843 | Apr 1991 | DE |
102005051367 | Apr 2007 | DE |
102016207666 | Nov 2017 | DE |
0000756 | Oct 1981 | EP |
0408160 | Jan 1991 | EP |
0473987 | Mar 1992 | EP |
0929263 | Jul 1999 | EP |
1214913 | Jun 2002 | EP |
2730209 | May 2014 | EP |
2732772 | May 2014 | EP |
2942023 | Nov 2015 | EP |
3047806 | Jul 2016 | EP |
3056923 | Aug 2016 | EP |
3095399 | Nov 2016 | EP |
3120781 | Jan 2017 | EP |
3135225 | Mar 2017 | EP |
3141181 | Mar 2017 | EP |
2838234 | Oct 2003 | FR |
2509523 | Jul 2014 | GB |
S5373315 | Jun 1978 | JP |
2001029353 | Feb 2001 | JP |
2007123394 | May 2007 | JP |
2010057642 | Mar 2010 | JP |
2017513561 | Jun 2017 | JP |
20140104587 | Aug 2014 | KR |
101587721 | Jan 2016 | KR |
WO-9734533 | Sep 1997 | WO |
WO-0024322 | May 2000 | WO |
WO-0108578 | Feb 2001 | WO |
WO-0112089 | Feb 2001 | WO |
WO-0120892 | Mar 2001 | WO |
WO-03079909 | Oct 2003 | WO |
WO-2007137304 | Nov 2007 | WO |
WO-2008053485 | May 2008 | WO |
WO-2008056618 | May 2008 | WO |
WO-2008069816 | Jun 2008 | WO |
WO-2008147555 | Dec 2008 | WO |
WO-2011112931 | Sep 2011 | WO |
WO-2013143573 | Oct 2013 | WO |
WO-2014031800 | Feb 2014 | WO |
WO-2014071184 | May 2014 | WO |
WO-2014134196 | Sep 2014 | WO |
WO-2015129395 | Sep 2015 | WO |
WO-2016100719 | Jun 2016 | WO |
WO-2016118752 | Jul 2016 | WO |
WO-2016206015 | Dec 2016 | WO |
WO-2017011382 | Jan 2017 | WO |
WO-2017011646 | Jan 2017 | WO |
WO-2017058617 | Apr 2017 | WO |
WO-2017058695 | Apr 2017 | WO |
WO-2017151996 | Sep 2017 | WO |
WO-2017189317 | Nov 2017 | WO |
WO-2017205308 | Nov 2017 | WO |
WO-2017210499 | Dec 2017 | WO |
WO-2017210501 | Dec 2017 | WO |
WO-2018116247 | Jun 2018 | WO |
WO-2018152141 | Aug 2018 | WO |
WO-2018176414 | Oct 2018 | WO |
Entry |
---|
US 10,504,709, 8/2018, Karancsi et al. (withdrawn). |
Flores et al., “Large-scale Offloading in the Internet of Things,” 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), IEEE, pp. 479-484, Mar. 13, 2017. |
Kalantarian et al., “Computation Offloading for Real-Time Health-Monitoring Devices,” 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EBMC), IEEE, pp. 4971-4974, Aug. 16, 2016. |
Yuyi Mao et al., “A Survey on Mobile Edge Computing: The Communication Perspective,” IEEE Communications Surveys & Tutorials, pp. 2322-2358, Jun. 13, 2017. |
Khazaei et al., “Health Informatics for Neonatal Intensive Care Units: An Analytical Modeling Perspective,” IEEE Journal of Translational Engineering in Health and Medicine, vol. 3, pp. 1-9, Oct. 21, 2015. |
Benkmann et al., “Concept of iterative optimization of minimally invasive surgery,” 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), IEEE pp. 443-446, Aug. 28, 2017. |
Trautman, Peter, “Breaking the Human-Robot Deadlock: Surpassing Shared Control Performance Limits with Sparse Human-Robot Interaction,” Robotics: Science and Systems XIIII, pp. 1-10, Jul. 12, 2017. |
Yang et al., “A dynamic stategy for packet scheduling and bandwidth allocation based on channel quality in IEEE 802.16e OFDMA system,” Journal of Network and Computer Applications, vol. 39, pp. 52-60, May 2, 2013. |
Takahashi et al., “Automatic smoke evacuation in laparoscopic surgery: a simplified method for objective evaluation,” Surgical Endoscopy, vol. 27, No. 8, pp. 2980-2987, Feb. 23, 2013. |
Miksch et al., “Utilizing temporal data abstraction for data validation and therapy planning for artificially ventilated newborn infants,” Artificial Intelligence in Medicine, vol. 8, No. 6, pp. 543-576 (1996). |
Horn et al., “Effective data validation of high-frequency data: Time-point-time-interval-, and trend-based methods,” Computers in Biology and Medic, New York, NY, vol. 27, No. 5, pp. 389-409 (1997). |
Stacey et al., “Temporal abstraction in intelligent clinical data analysis: A survey,” Artificial Intelligence in Medicine, vol. 39, No. 1, pp. 1-24 (2006). |
Zoccali, Bruno, “A Method for Approximating Component Temperatures at Altitude Conditions Based on CFD Analysis at Sea Level Conditions,” (white paper), www.tdmginc.com, Dec. 6, 2018 (9 pages). |
Slocinski et al., “Distance measure for impedance spectra for quantified evaluations,” Lecture Notes on Impedance Spectroscopy, vol. 3, Taylor and Francis Group (Jul. 2012)—Book Not Attached. |
Engel et al. “A safe robot system for craniofacial surgery”, 2013 IEEE International Conference on Robotics and Automation (ICRA); May 6-10, 2013; Karlsruhe, Germany, vol. 2, Jan. 1, 2001, pp. 2020-2024. |
Bonaci et al., “To Make a Robot Secure: An Experimental Analysis of Cyber Security Threats Against Teleoperated Surgical Robots,” May 13, 2015. Retrieved from the Internet: URL:https://arxiv.org/pdf/1504.04339v2.pdf [retrieved on Aug. 24, 2019]. |
Homa Alemzadeh et al., “Targeted Attacks on Teleoperated Surgical Robots: Dynamic Model-Based Detection and Mitigation,” 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), IEEE, Jun. 28, 2016, pp. 395-406. |
Phumzile Malindi, “5. QoS in Telemedicine,” “Telemedicine,” Jun. 20, 2011, IntechOpen, pp. 119-138. |
Staub et al., “Contour-based Surgical Instrument Tracking Supported by Kinematic Prediction,” Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Sep. 1, 2010, pp. 746-752. |
Allan et al., “3-D Pose Estimation of Articulated Instruments in Robotic Minimally Invasive Surgery,” IEEE Transactions on Medical Imaging, vol. 37, No. 5, May 1, 2018, pp. 1204-1213. |
Kassahun et al., “Surgical Robotics Beyond Enhanced Dexterity Instrumentation: A Survey of the Machine Learning Techniques and their Role in Intelligent and Autonomous Surgical Actions.” International Journal of Computer Assisted Radiology and Surgery, vol. 11, No. 4, Oct. 8, 2015, pp. 553-568. |
Weede et al. “An Intelligent and Autonomous Endoscopic Guidance System for Minimally Invasive Surgery,” 2013 IEEE International Conference on Robotics ad Automation (ICRA), May 6-10, 2013. Karlsruhe, Germany, May 1, 2011, pp. 5762-5768. |
Altenberg et al., “Genes of Glycolysis are Ubiquitously Overexpressed in 24 Cancer Classes,” Genomics, vol. 84, pp. 1014-1020 (2004). |
Harold I. Brandon and V. Leroy Young, Mar. 1997, Surgical Services Management vol. 3 No. 3. retrieved from the internet <https://www.surgimedics.com/Research%20Articles/Electrosurgical%20Plume/Characterization%20And%20Removal%20Of%20Electrosurgical%20Smoke.pdf> (Year: 1997). |
Marshall Brain, How Microcontrollers Work, 2006, retrieved from the internet <https://web.archive.org/web/20060221235221/http://electronics.howstuffworks.com/microcontroller.htm/printable> (Year: 2006). |
CRC Press, “The Measurement, Instrumentation and Sensors Handbook,” 1999, Section VII, Chapter 41, Peter O'Shea, “Phase Measurement,” pp. 1303-1321, ISBN 0-8493-2145-X. |
Jiang, “‘Sound of Silence’: a secure indoor wireless ultrasonic communication system,” Article, 2014, pp. 46-50, Snapshots of Doctoral Research at University College Cork, School of Engineering—Electrical & Electronic Engineering, UCC, Cork, Ireland. |
Li, et al., “Short-range ultrasonic communications in air using quadrature modulation,” Journal, Oct. 30, 2009, pp. 2060-2072, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, No. 10, IEEE. |
Salamon, “AI Detects Polyps Better Than Colonoscopists” Online Article, Jun. 3, 2018, Medscape Medical News, Digestive Disease Week (DDW) 2018: Presentation 133. |
Misawa, et al. “Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience,” Article, Jun. 2018, pp. 2027-2029, vol. 154, Issue 8, American Gastroenterolgy Association. |
Dottorato, “Analysis and Design of the Rectangular Microstrip Patch Antennas forTM0n0 operating mode,” Article, Oct. 8, 2010, pp. 1-9, Microwave Journal. |
Miller, et al., “Impact of Powered and Tissue-Specific Endoscopic Stapling Technology on Clinical and Economic Outcomes of Video-Assisted Thoracic Surgery Lobectomy Procedures: A Retrospective, Observational Study,” Article, Apr. 2018, pp. 707-723, vol. 35 (Issue 5), Advances in Therapy. |
Hsiao-Wei Tang, “ARCM”, Video, Sep. 2012. YouTube, 5 screenshots, Retrieved from internet: <https://www.youtube.com/watch?v=UIdQaxb3fRw&feature=youtu.be>. |
Giannios, et al., “Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies,” Article, Jun. 14, 2016, pp. 1-10, Scientific Reports 6, Article No. 27910, Nature. |
Vander Heiden, et al., “Understanding the Warburg effect: the metabolic requirements of cell proliferation,” Article, May 22, 2009, pp. 1-12, vol. 324, Issue 5930, Science. |
Hirayama et al., “Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry,” Article, Jun. 2009, pp. 4918-4925, vol. 69, Issue 11, Cancer Research. |
Cengiz, et al., “A Tale of Two Compartments: Interstitial Versus Blood Glucose Monitoring,” Article, Jun. 2009, pp. S11-S16, vol. 11, Supplement 1, Diabetes Technology & Therapeutics. |
Shen, et al., “An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor,” Article, Feb. 3, 2007, pp. 106-113, vol. 125, Issue 1, Sensors and Actuators B: Chemical, Science Direct. |
“ATM-MPLS Network Interworking Version 2.0, af-aic-0178.001” ATM Standard, The ATM Forum Technical Committee, published Aug. 2003. |
IEEE Std 802.3-2012 (Revision of IEEE Std 802.3-2008, published Dec. 28, 2012. |
IEEE Std No. 177, “Standard Definitions and Methods of Measurement for Piezoelectric Vibrators,” published May 1966, The Institute of Electrical and Electronics Engineers, Inc., New York, N.Y. |
Shi et al., An Intuitive control console for robotic syrgery system, 2014, IEEE, p. 404-407 (Year: 2014). |
Choi et al., A haptic augmented reality surgeon console for a laparoscopic surgery robot system, 2013, IEEE, p. 355-357 (Year: 2013). |
Xie et al., Development of stereo vision and master-slave controller for a compact surgical robot system, 2015, IEEE, p. 403-407 (Year: 2015). |
Sun et al., Innovative effector design for simulation training in robotic surgery, 2010, IEEE, p. 1735-1759 (Year: 2010). |
Anonymous, “Internet of Things Powers Connected Surgical Device Infrastructure Case Study”, Dec. 31, 2016 (Dec. 31, 2016), Retrieved from the Internet: URL:https://www.cognizant.com/services-resources/150110_IoT_connected_surgical_devices.pdf. |
Draijer, Matthijs et al., “Review of laser pseckle contrast techniques for visualizing tissue perfusion,” Lasers in Medical Science, Springer-Verlag, LO, vol. 24, No. 4, Dec. 3, 2008, pp. 639-651. |
Roy D Cullum, “Handbook of Engineering Design”, ISBN: 9780408005586, Jan. 1, 1988 (Jan. 1, 1988), XP055578597, ISBN: 9780408005586, 10-20, Chapter 6, p. 138, right-hand column, paragraph 3. |
“Surgical instrumentation: the true cost of instrument trays and a potential strategy for optimization”; Mhlaba et al.; Sep. 23, 2015 (Year: 2015). |
Nabil Simaan et al, “Intelligent Surgical Robots with Situational Awareness: From Good to Great Surgeons”, DOI: 10.1115/1.2015-Sep-6 external link, Sep. 2015 (Sep. 2015), p. 3-6, Retrieved from the Internet: URL:http://memagazineselect.asmedigitalcollection.asme.org/data/journals/meena/936888/me-2015-sep6.pdf XP055530863. |
Anonymous: “Titanium Key Chain Tool 1.1, Ultralight Multipurpose Key Chain Tool, Forward Cutting Can Opener—Vargo Titanium,” vargooutdoors.com, Jul. 5, 2014 (Jul. 5, 2014), retrieved from the internet: https://vargooutdoors.com/titanium-key-chain-tool-1-1.html. |
Anonymous: “Screwdriver—Wikipedia”, en.wikipedia.org, Jun. 23, 2019, XP055725151, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php?title=Screwdriver&oldid=903111203 [retrieved on Mar. 20, 2021]. |
Nordlinger, Christopher, “The Internet of Things and the Operating Room of the Future,” May 4, 2015, https://medium.com/@chrisnordlinger/the-internet-of-things-and-the-operating-room-of-the-future-8999a143d7b1, retrieved from the internet on Apr. 27, 2021, 9 pages. |
Screen captures from YouTube video clip entitled “Four ways to use the Lego Brick Separator Tool,” 2 pages, uploaded on May 29, 2014 by user “Sarah Lewis”. Retrieved from internet: https://www.youtube.com/watch?v=ucKiRD6U1LU (Year: 2014). |
Sorrells, P., “Application Note AN680. Passive RFID Basics,” retrieved from http://ww1.microchip.com/downloads/en/AppNotes/00680b.pdf on Feb. 26, 2020, Dec. 31, 1998, pp. 1-7. |
“ATM-MPLS Network Interworking Version 2.0, af-aic-0178.001” ATM Standard, The ATM Forum Technical Committe, published Aug. 2003. |
Lalys, et al., “Automatic knowledge-based recognition of low-level tasks in ophthalmological procedures”, Int J CARS, vol. 8, No. 1, pp. 1-49, Apr. 19, 2012. |
Number | Date | Country | |
---|---|---|---|
20190125431 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62665128 | May 2018 | US | |
62665192 | May 2018 | US | |
62665139 | May 2018 | US | |
62665177 | May 2018 | US | |
62665129 | May 2018 | US | |
62665134 | May 2018 | US | |
62578855 | Oct 2017 | US | |
62578844 | Oct 2017 | US | |
62578804 | Oct 2017 | US | |
62578817 | Oct 2017 | US | |
62578835 | Oct 2017 | US | |
62578793 | Oct 2017 | US |