A. Field of the Invention
The Invention is a swimming machine to allow a person to swim in place against a current of water created by the swimming machine. The swimming machine of the Invention allows a swimmer to remotely control the velocity of the current against which the person swims. The swimming machine of the Invention also blends in to the expected appearance of a swimming pool by providing mounting rails similar in appearance to those of a conventional swimming pool ladder. The configuration of the rails prevents a person from mistaking the swimming machine as a ladder.
B. Description of the Related Art
Most swimming pools are not suitable for swimming because of the small size of the pools. A person attempting to swim in such a swimming pool is required to turn after only a few strokes, interrupting the person's exercise and presenting the possibility of collision with the interior wall of the pool. Swimming machines address this problem by creating a current of water within the swimming pool against which the person may swim while remaining stationary with respect to the swimming pool. A very small swimming pool may thus be used for uninterrupted distance swimming.
Prime examples of the swimming machines of the existing art are the swimming machines produced by Endless Pools, Inc., 200 E. Dutton Mill Rd. Aston, Pa. 19014. See U.S. Pat. No. 5,044,021 to Murdock issued Sep. 3, 1991.
The prior art swimming machines do not teach the mounting system or the control system of the present Invention.
The Invention is a swimming machine. An impeller is mounted below the surface of the water of a swimming pool. A hydraulic motor turns the impeller, creating a current of water in the swimming pool against which a person may swim. A hydraulic pump creates a flow of hydraulic fluid to turn the hydraulic motor. A proportional relief valve selectively bleeds hydraulic fluid from the high pressure side to the low pressure side of the hydraulic pump and around the hydraulic motor, throttling the flow of fluid to the hydraulic motor. The proportional relief valve controls the speed of the hydraulic motor and thus the speed of the impeller and the velocity of the current of water. A remote control system comprising a radio remote control transmitter and a radio receiver operates the proportional relief valve. The swimmer or another person may use the remote control transmitter to control the speed of the current of water against which the person swims.
The swimming machine is mounted on a side of a swimming pool using two tubular rails. The two tubular rails extend above the surface of the water of the swimming pool and engage the deck of the swimming pool. The two tubular rails are configured to resemble a conventional swimming pool ladder in profile. The configuration of the rails disguises the two tubular rails and the swimming machine as a conventional ladder, allowing the swimming machine to blend into the expected appearance of the swimming pool.
The two tubular rails are configured to contact the swimming pool deck at a location adjacent to one another. Placing the tubular rails adjacent to one another on the swimming pool deck prevents a person from passing between the two tubular rails and creates a visual cue to the person that the swimming machine is not a conventional ladder, even though the tubular rails resemble a ladder in profile. The configuration of the tubular rails thus protects both the swimming machine and the person. The barrier created by the configuration of the tubular rails is not complete. Depending on the specific configuration selected for the two tubular rails, the person still may climb over the tubular rails or crawl under the tubular rails to gain access to the swimming pool deck between the two tubular rails and the housing for the swimming machine.
Configuration of the tubular rails to resemble a conventional ladder serves to facilitate installation, service and storage of the swimming machine. The edges between swimming pool interior walls and the decks of swimming pools frequently have a coping or other edge treatments, which can complicate retrofitting of a swimming machine to an existing swimming pool. The two tubular rails are adapted to be attached to the swimming pool deck and provide clearance from the edge, avoiding this problem.
The use of a hydraulic motor to turn the impeller requires that a hydraulic feed line and a hydraulic return line be provided to serve the hydraulic motor. The use of the two tubular rails allows the hydraulic feed and return lines to be concealed within the two tubular rails and hence hidden from view.
The configuration of the tubular rails also serves to cushion the swimming machine and the swimming pool from the forces created by the swimming machine. The impeller for the swimming machine is mounted in the swimming machine substantially parallel to the surface of the water in the pool. When the impeller is turned by the hydraulic motor, the impeller drives the current of water upward and places a corresponding downward force on the swimming machine. Vanes turn the current of water and direct the current parallel to the surface of the water in the pool. The current of water exerts a force on the vanes driving the vanes (and hence the swimming machine) laterally toward the interior wall of the swimming pool. The downward force and the lateral force are resisted by the two tubular rails. The tubular rails act as a suspension system and cooperate to deform elastically under the downward force of the impeller and the lateral force of the vanes, dampening and cushioning the effect of those loads on the support structures of the swimming machine.
The swimming machine is not mounted rigidly to an interior wall of the pool. Instead, the lower end of the housing of the swimming machine is equipped with two wheels or rollers that engage the interior wall of the swimming pool when the swimming machine is operating. When the two rails deform elastically in response to the forces exerted by the impeller, the swimming machine moves downward on the interior wall of the swimming pool in response to the downward force and is pressed against the interior wall by the lateral force. The two wheels roll on the interior wall of the pool, preventing damage to the interior wall of the swimming pool from the forces and motion of the swimming machine.
The two wheels and the configuration of the tubular rails also allow the swimming machine to be readily moved from place to place by one person. When the swimming machine is not installed in the swimming pool, the wheels may support the swimming machine and the tubular rails may serve as handles to allow the swimming machine to be rolled from place to place, much like a hand truck. The swimming machine therefore may be readily moved to a storage or service location.
The expected principal use of the swimming machine of the Invention is to retrofit existing swimming pools to allow swimming-in-place. The swimming machine of the Invention also may be incorporated into the design of new swimming pools.
As shown by
The hydraulic motor 12 has an axis of rotation 14 that is substantially vertical and thus normal to the surface 6 of water 8. An impeller 16 is rotated by hydraulic motor 12. Impeller 16 draws water 8 through intake screen 18. A current 20 of water 8 is expelled by the impeller 16 in a substantially vertical direction. The current 20 passes through first flow straightener 22, which reduces turbulence. The current 20 then is turned by vanes 24 so that the direction of flow of the current 20 is substantially parallel to surface 6 of water 8. The current 20 passes through second flow straightener 26, reducing the turbulence of the current 20. The current 20 exits the swimming machine 2 and travels through the water 8 of the swimming pool 10. A person may swim in place in the current 20.
As shown by
First and second tubular rails 34, 36 each has a first end 40. First ends 40 are adapted to be attached to the deck 42 of the swimming pool 10. First and second tubular rails 34, 36 are configured to discourage entry to the portion 44 of the pool deck 42 between the first and second tubular rails 34, 36 and proximal to the housing 4. That portion 44 of the pool deck 42 is indicated on
As shown by
As shown by
When the swimming machine 2 is mounted in a swimming pool 10 and hydraulic motor 12 is driving impeller 16, impeller 16 will exert force on the housing 4 driving the housing 4 deeper into the water 8. The first and second tubular rails 34, 36 resist the force of the impeller 16; however, the first and second tubular rails 34, 36 have resilience and the housing 4 will move in response to the force of the impeller 16. The force exerted by the impeller 16 also will tend to rotate the swimming machine 2 around the connection between the first ends 40 of first and second tubular rails 34, 36 and the swimming pool deck 42 and will push the housing 4 against the interior wall 72 of the swimming pool 10. Each of a pair of rotatable wheels 74 is mounted to housing 4 and extends beyond back side 32 and bottom side 76 of housing 4. By extending beyond back side 32, wheels 74 engage and roll on interior wall 72 of swimming pool 10 in response to motion of the housing 4, thereby preventing damage to the swimming pool interior wall 72.
As shown by
The hydraulic and control systems are illustrated by
A proportional relief valve 84 connects the hydraulic feed line 54 and the hydraulic return line 56. The proportional relief valve 84 allows a user-selectable amount of the hydraulic fluid to bypass the hydraulic motor 12, thereby controlling the speed and power output of the hydraulic motor 12 and the velocity of the current 20 of water 8 created by the impeller 16. The proportional relief valve 84 is electrically operated and controlled by a pulse-width modulated electrical signal. The proportional relief valve 84 preferably is a cartridge-style screw-in pilot-operated spool-type hydraulic relief valve. The proportional relief valve 84 can be infinitely adjusted across its adjustment range. The proportional relief valve 84 preferably has a manual override feature to allow the proportional relief valve 84 to be set manually when the electric signal is lost.
The proportional relief valve 84 is operated by a remote control transmitter 86 and a remote control receiver 88. The remote control transmitter 86 transmits a radio signal 90 that is picked up by a radio receiver 88. The radio receiver 88 interprets the radio signal 90 from the transmitter 86 and sends a signal to the proportional relief valve 84. The proportional relief valve 84 opens or closes proportionally to the signal received from the radio receiver 88, controlling the flow of hydraulic fluid through the hydraulic motor 12 and hence controlling the velocity of the water 8 exiting the swimming machine 2.
The remote control receiver 88 also controls a contactor controlling the supply of electricity to electrical motor 92. A person therefore may turn the electrical motor 92 on or off using the remote control transmitter 86.
The radio control transmitter 86 preferably is selected to transmit on a 433 MHz frequency using a SAW-based transmitter to satisfy U.S. and international radio spectrum regulations. The radio control receiver 88 preferably is programmable to remember the digital signature code of the remote control transmitter 86 so that the remote control receiver 88 will only accept authorized control signals. A radio transmitter 86 and receiver 88 combination with a range of about one hundred feet has proved successful in practice. Any of the alternatives to radio 90 remote control known in the art may be used, such as an optical remote control or a remote control utilizing sound or voice.
In use, a swimmer or another person may adjust the speed of rotation of the hydraulic motor 12 and hence the velocity of the current 20 of water 8 by pressing one or more buttons on the remote control transmitter 86. The swimmer has continuous control over the velocity of the water 8 but is isolated from the possibility of electrical shock by use of the hydraulic power transmission system and the remote control transmitter 86.
As illustrated by
In describing the above embodiments of the invention, specific terminology was selected for the sake of clarity. However, the invention is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes all technical equivalents that operate in a similar manner to accomplish a similar purpose.