Switching radio frequency identification (RFID) tags

Information

  • Patent Grant
  • 8416079
  • Patent Number
    8,416,079
  • Date Filed
    Tuesday, June 2, 2009
    15 years ago
  • Date Issued
    Tuesday, April 9, 2013
    11 years ago
Abstract
The present disclosure is directed switching RFID tags. In some implementations, the RFID system includes an RFID tag and a panel. The panel includes one or more contacts configured to move between a first position and a second position. The second position forms an electrical connection between the RFID tag and the one or more contacts to update a state of the RFID tag.
Description
TECHNICAL FIELD

This application relates to switching Radio Frequency Identification (RFID) tags.


BACKGROUND

RFID tags are used in a multitude of situations and may need to operate in two or more distinct conditions or states. A basic example of when an RFID tag is configured to alternate between two different states is when an RFID tag can be activated and deactivated. RFID tags may be deactivated by disrupting the radio frequency (RF) field of the tag. The utility of RFID tags, however, depends on their size, simplicity, and efficiency, and methods for deactivating RFID tags should take into account these factors. Further, as RFID tags transition between states, the present state of the RFID tag may be difficult to ascertain. It may be especially challenging to conveniently and accurately determine the current state of RFID tags that are configured to operate in more than two different states.


SUMMARY

The present disclosure is directed switching RFID tags. In some implementations, the RFID system includes an RFID tag and a panel. The panel includes one or more contacts configured to move between a first position and a second position. The second position forms an electrical connection between the RFID tag and the one or more contacts to update a state of the RFID tag.


The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF DRAWINGS


FIG. 1 illustrates an example system for identifying a state of an RFID tag;



FIGS. 2A-B illustrate an example RFID tag configured to deactivate the RF carrier of the RFID tag;



FIGS. 3A-B illustrate an example RFID tag configured to disable the antenna of the RFID tag;



FIGS. 4A-B illustrate a conceptual apparatus and method of FIGS. 3A-B for deactivating an RFID tag;



FIGS. 5A-B illustrate an example implementation of the apparatus of FIGS. 3A-B configured for deactivation and visual identification of the state of an RFID tag;



FIGS. 6A-B illustrate an example implementation of the apparatus of FIGS. 3A-B configured for deactivation and visual identification of the state of an RFID tag;



FIGS. 7A-C illustrate an example multi-level switched state RFID tag configured for switching between multiple, visually identifiable states;



FIGS. 8A-C illustrate enlarged views of a multi-level switched state RFID tag, such as the RFID tag of FIGS. 7A-C; and



FIG. 9 is a low-level view of an internal circuit of an RFID tag, such as the RFID tag of FIGS. 7A-C.





Like reference symbols in the various drawings indicate like elements.


DETAILED DESCRIPTION


FIG. 1 illustrates an example system 100 for updating states of Radio Frequency Identification (RFID) tags in accordance with some implementations of the present disclosure. A state may include one of a plurality of different modes of operation of an RFID tag such as active states, deactivated, an idle state, and/or any other operational state of the RFID tag. For example, an RFID tag may be configured to switch between a first state and a second state such as activated and deactivated. In some implementations, the tag state can be updated through suppression of the Radio Frequency (RF) field and/or through changing the state of the tag by redirecting a portion of the RF energy. For example, the electrical change may be accomplished by blocking the RF carrier, shorting the RF voltage on the tag, and/or rectifying the RF energy to generate a logic state. In addition, the RFID tag may include one or more visual indicators that identify a state of the RFID tag. In these instances, the RFID tag may present, in a first configuration, a first color (e.g., green) indicating an activated state and, in a second configuration, a second color (e.g., red) indicating deactivated. For example, the system 100 may include RFID tags with one or more moveable elements configured to update a tag state and visually indicate the associated tag state in response to at least the moveable elements being switched between two positions. In some implementations, the system 100 can include or execute one or more of the following: updating a tag state in response to at least one or more moveable elements switched between one or more positions; visually presenting one or more indications identifying a state of an RFID tag; deactivating an RFID tag by blocking the RF carrier; electrically shorting the RF voltage of an RFID tag; rectifying the RF energy to generate a logic state; and/or other processes. For example, the RF voltage on the tag may be shorted by placing a metal shorting bar or element across the RFID antenna using metal foil on a slide or hinged cover. Alternatively, or in combination, a moveable element may update a logic state of the tag in response to at least the tag positioned in one of a plurality of selectable position. For example, the RFID tag may be switched between three or more states in response to the moveable element being positioned between different locations with each associated with a different state. In some implementations, the system 100 may provide or otherwise include visual indications of the state of an RFID tag, the capability to deactivate an RFID tag with minimal effect on the tag's performance, state updates independent of mechanical contacts (e.g., capacitive coupling), and/or other advantages. For instance, RFID tags capable of switching between multiple, visually identifiable states may be beneficial in transportation systems. For example, the RFID tags may be used in vehicles for electronic toll collection, vehicle identification or routing, traffic monitoring, and/or other uses. The state of the RFID tag may be visually recognized by both passengers within a vehicle and onlookers outside the vehicle.


At a high level, the system 100 can, in some implementations, include one or more RFID tags 120a-c and readers 140a-b. If multiple RFID tags 120 are used, the RFID tags 120 may be used in isolation or grouped together with other RFID tags 120a-c. Each RFID tag 120 may wirelessly communicate one or more RFID readers 140 through an antenna 126. In certain implementations, each RFID tag 120 can include one or more moveable elements, such as a panel 122, that includes one or more conductive pads 124. The panel 122 may be manufactured separately from and later attached or otherwise affixed to the RFID tag 120. The conductive pads 124 may be mounted or otherwise arranged on the panel 122 to align with one or more elements of the RFID tag 120 in one of a plurality of selectable positions associated with the panel 122. In response to a selectable position of the panel 122, the conductive pads 124 for each RFID tag 120 may form a direct or indirect electrical connection to the RFID tag 120 that updates the tag state, such as deactivation or an update to the logic state. The elements of the panel 122 and/or the RFID tag 120 may visually identify a tag state based on, for example, the position of the panel and/or markings of the panel 122 and/or the RFID tag 120. In some examples, a panel 122 in a first position that does not form a connection with the conductive pad 124 with the RFID tag 120 may visually indicate an activated state, whereas a panel 122 in a second position that forms an electrical connection between the conductive pad 124 the RFID tag 120 may visually indicate a deactivated state. Panel 122 may move between the first and second position by way of a variety of methods such as, for example, rotating about a hinge, sliding between positions, folding the panel 122, and/or other methods.


The RFID tags 120 can include any software, hardware, and/or firmware configured to respond to communication from the RFID reader 140. These tags 120 may operate without the use of an internal power supply. Rather, the tags 120 may transmit a reply to a received signal using power stored from the previously received RF signals, independent of an internal power source. This mode of operation is typically referred to as backscattering. In some implementations, the tags 120 alternate between absorbing power from signals transmitted by the RFID reader 140 and transmitting responses to the signals using at least a portion of the absorbed power. In passive tag operation, the tags 120 typically have a maximum allowable time to maintain at least a minimum DC voltage level. In some implementations, this time duration is determined by the amount of power available from an antenna of a tag 120 minus the power consumed by the tag 120 and the size of the on-chip capacitance. The effective capacitance can, in some implementations, be configured to store sufficient power to support the internal DC voltage when there is no received RF power available via the antenna. The tag 120 may consume the stored power when information is either transmitted to the tag 120 or the tag 120 responds to the RFID reader 140 (e.g., modulated signal on the antenna input). In transmitting responses back to the RFID reader 140, the tags 120 may include one or more of the following: an identification string, locally stored data, tag state, internal temperature, and/or others. For example, the tag 120 may transmit information including or otherwise identifying vehicle information such as type, weight, vehicle height, tag height, account number, owner information (e.g., name, license number), and/or other information. In some implementations, the signals can be based, at least in part, on sinusoids having frequencies in the range of 902-928 MHz or 2400-2483.5 MHz. In some implementations, an RFID tag 120 in the inhibited zone may be of a type manufactured to support the ISO 18000-6C standard. An RFID tag manufactured to ISO 18000-6C standard may support dual states: an A state, in which the RFID tag is responsive to RF interrogation, and a B state, in which the RFID tag is temporarily unresponsive to RF interrogation. Under the ISO 18000-6C standard, an RFID tag may typically remain in an unresponsive B state for between 0.8 seconds and 2.0 seconds even without any further power being supplied to the RFID tag 120.


In the illustrated implementations, the RFID tag 120 includes a panel 122, electrical contacts 124, and the antenna 126. The panel 122 may include one or more moveable elements that switch between a plurality of selectable positions. In some implementations, the panel 122 may slide between different positions associated with different tag states. In some implementations, the panel 122 may fold between two positions associated with different states. In some implementations, the panel 122 may present one or more visual indicators identifying a current state of the RFID tag. In a first configuration, the panel 122 may present a green color indicating an active state to observers, and in a second configuration, the panel 122 may present a red color indicating a deactivated state to observers. In response to switching between different configurations, the electrical contacts 124 may dynamically update a state of the RFID tag 120. The electrical contacts 124 may form a shield that substantially prevents the RFID tag 120 from receiving RF signals and/or may form direct or indirect electrical connections with the RFID tag 120 to update the state. In some implementations, the electrical contacts 124 may shield, using conductive elements, the RFID tag 120 to substantially prevent reception of RF signals. For example, the electrical contacts 124 may include a metal foil that overlays at least a portion of the RFID 120 in a first position such that the metal foil substantially shields the antenna 126. In some implementations, the electrical contacts 124 may deactivate the tag 120 by shorting the antenna. For example, the electrical contacts 124 may include a conductive bar that directly or indirectly contacts the antenna 126 to form a short.


The RFID reader 140 can include any software, hardware, and/or firmware configured to transmit and receive RF signals. In general, the RFID reader 140 may transmit a request for information within a certain geographic area, or interrogation zone, associated with the reader 140. The reader 140 may transmit the query in response to a request, automatically, in response to a threshold being satisfied (e.g., expiration of time), as well as other events. The interrogation zone may be based on one or more parameters such as transmission power, associated protocol, nearby impediments (e.g., objects, walls, buildings), as well as others. In general, the RFID reader 140 may include a controller, a transceiver coupled to the controller (not illustrated), and at least one RF antenna 142 coupled to the transceiver. In the illustrated example, the RF antenna 142 transmits commands generated by the controller through the transceiver and receives responses from RFID tags 120 and/or antennas 126 in the associated interrogation zone. In certain cases such as tag-talks-first (TTF) systems, the reader 140 may not transmit commands but only RF energy. In some implementations, the controller can determine statistical data based, at least in part, on tag responses. The readers 140 often include a power supply or may obtain power from a coupled source for powering included elements and transmitting signals. In some implementations, the reader 140 operates in one or more of frequency bands allotted for RF communication. For example, the Federal Communication Commission (FCC) has assigned 902-928 MHz and 2400-2483.5 MHz as frequency bands for certain RFID applications. In some implementations, the reader 140 may dynamically switch between different frequency bands. For example, the reader 140 may switch between European bands 860 to 870 MHz and Japanese frequency bands 952 MHz to 956 MHz. Some implementations of system 100 may further include an RFID reader 140 to control timing, coordination, synchronization, and/or signal strength of transmissions by inhibitor antenna and RFID antenna.


In general, RFID tags 120 may switch between activated and deactivated states. In some implementations, deactivation of an RFID tag 120 ordinarily involves suppressing the RF field of the RFID tag. The suppression of the RF field can be accomplished by physically blocking the RF carrier or electrically deactivating the RFID tag's antenna. FIGS. 2A-B illustrate an example RFID tag that is deactivated by physically blocking the RF signal carrier 126. This may be accomplished by placing a metal plate 210 in close proximity to the RFID tag 120 as shown in FIG. 2B. The metal plate 210 may be metal foil, which can be placed in front of or behind the RFID tag 120. RFID tag 120 may be operational when the metal plate 210 is removed from the vicinity of the tag 120 as in FIG. 2A but may be deactivated when the metal plate is placed in close proximity with the RFID tag 120 as in FIG. 2B. The metal plate may substantially block the RF signals between the tag 120 and the reader 140.



FIGS. 3A-B illustrate another example RFID tag 120 that deactivaties by shorting the antenna 126. The RFID tag 120 may be disabled by electrically short-circuiting, or shorting, the leads 302a and 302b of the antenna 126. In the illustrated implementation, the RFID tag 120 is shorted by selectively positioning a metal bar 310 across the antenna 126 as shown in FIG. 3A. Thus, when the metal shorting bar 310 forms a short circuit across the leads 302a and 302b, the antenna 126 is deactivated. When the shorting bar 310 is removed, as depicted in FIG. 3B, the RFID tag 120 and antenna 126 are operational. In some implementations, the metal bar 310 may form indirect electrical contacts through capacitive coupling between the antenna leads 302a and 302b and the shorting bar 310. Close proximity between the leads 302 and the bar 310 may yield similar results to ohmic contacts. In these instances, the RFID tag 120 may deactivate the metal shorting bar 310, which is less metal than the metal plate 210. In addition, the metal shorting bar 310 may interfere less with the tag 120 during an activate state as compared with the plate 210.



FIGS. 4A-B illustrate yet another example RFID tag 120 that deactivates by shorting the leads 302a and 302b. In the illustrated implementation, the RFID tag 120 includes a switch 410 with one electrical contact connected to the lead 302a and a second contact connected to the lead 302b. Referring to FIG. 4A, when the switch 410 is closed, the switch 410 connects the leads 302 of the antenna 126 to form a short. The closed switch 410 shorts the leads 302 to disable the RF functionality of the antenna 126. Referring to FIG. 4B, when the switch 410 is open, the leads 302 are not shorted and form an open circuit. In this instance, the leads 302 of the antenna 126 are activated and the RFID tag 120 is operational.



FIGS. 5A-B illustrate another example RFID tag 120 that deactivates using a sliding plate 510. Referring to FIG. 5A, the RFID tag 120 may include a case 520 including the RFID tag 120 affixed to a surface of the case 520. The pull-out slide 510 slides two different positions as illustrated in FIGS. 5A and 5B. The pull-out slide 510 includes a metal strip 530 attached to the surface of the pull-out slide 510, and the metal strip 530 operates as a shorting bar capable of deactivating the RFID tag 120. For example, the metal strip 530 may form electrical connections with the antenna 126 in the configuration illustrated in FIG. 2B. In general, the metal strip 530 may slide between a first position and a second position in response to a user positioning the slide 510 between two positions. In the active state, the slide 510 is inserted into or substantially enclosed by the cover 520 with the metal strip 530 not forming a shorting contact. Accordingly, this example tag 120 may allow easy activation and deactivation of the RFID tag 120 by pulling and inserting a pull-out slide 510 out of and into the case 520. Further, in some implementations, the slide can visually indicate the tag state, i.e., activated or deactivated. For example, the pull-out slide 510 may be marked a particular color, and an extended slide 510 can provide visual confirmation that the RFID tag 120 has been disabled. Similarly, the absence of the color may indicate that the slide 510 has been inserted into the case 520 and that the RFID tag 120 is activated.



FIGS. 6A-B illustrate another example implementation of an RFID tag that is deactivated by shorting the leads 302 of the RFID antenna 126. In the illustrated example, an RFID tag 120 includes a case 620, and the RFID tag 120 is affixed to the surface of the case 620. A cover 610 is attached to the case 620 along a hinge or fold such that the cover 610 rotates about the hinge or fold between an open position and a closed position. In certain implementations, the cover 610 may be structurally similar to the slide 510 described in FIGS. 5A-B, with the difference that the cover 610 moves between two positions via a hinge or fold as opposed to a sliding mechanism. As seen in FIG. 6A, when the cover 610 is in an open position, the RFID tag 120 is in an active state. When the cover 610 is in a closed position as shown in FIG. 6B, the RFID tag 120 is deactivated. Attached to the surface of the cover 610 is a metal strip 630 that operates as a shorting bar to deactivate the tag 120 in the second configuration illustrated in FIG. 6B. The metal strip 630 comes in contact and/or overlaps the leads 302a and 302b to form electrical contacts. In these instances, the metal strip 630 forms a short circuit between the leads 302 of the RFID antenna 126, and the RFID tag 120 is deactivated. When the cover 610 is open as depicted in FIG. 6A, the metal strip 630 no longer shorts the antenna 126 and results in activation of the tag 120. In other words, the RFID tag 120 is activated when the cover 610 is in an open position and deactivated when the cover 610 is in a closed position. In addition, the cover 610 may visually identify whether the tag 120 is activated or deactivated. For example, the inner surface of the cover 610 may be marked one color and the outer surface of the cover 610 may be marked a different color. Thus, when the cover 610 is in a closed position, only one color is visually apparent, indicating that the RFID tag 120 is deactivated. Likewise, when the cover 610 is opened, a separate color is visible, indicating that the RFID tag 120 is activated.


Some applications may include more functionality than merely the ability to read or deactivate an RFID tag. For example, some applications may update the tag's response as compared with deactivation. Accordingly, in certain implementations, an RFID tag, such as multi-level switched state RFID tags, can switch to different states in addition to an activated and deactivated state and can be switched between the plurality of states in response to a moveable element. In these instances, the RFID tag may be set to a logical state by altering the RF energy instead of shorting the RF energy, as may be implemented when deactivating the RFID tag.



FIGS. 7A-C illustrate an example RFID tag 120 that may be selectively switched between three states including activation and deactivation. In the illustrated implementation, the tag 120 includes slide 720 configured to switch between the different states. The RFID tag 120 includes a case 710 and the slide 720 that is moveable relative to the case 710. In some implementations, the RFID chip and antenna may be embedded in, affixed to, or otherwise included with the case 710. The slide 720 is operable to move relative to the case 710 to a plurality of different positions, where each position may be associated with a different tag state. For example, each of the plurality of positions may be configured to update the RF energy to a different state of the RFID tag 120. As shown in FIG. 7A, the slide 720 can be positioned at a center point such that substantially equal portions of the slide 720 extend from opposite sides of the case 710. In response to at least selectively positioning the slide 720 at this location, the RFID tag 120 may be updated to a first state based on the RF energy associated with the RFID tag 120 in the first position. When the slide 720 is positioned to the left, as seen in FIG. 7B, the cover 710 overlaps a right portion of the slide 720 and may update the RFID tag 120 to a second state. When the slide 720 is positioned to the right, as seen in FIG. 7C, the cover 710 overlaps a left portion of the slide 720 and may update the RFID tag 120 to a third state. In the illustrated example, the slide 720 may also include colored markings to visually indicate the state of the tag 120 as the slide 720 is switched between the plurality of different positions. For example, in FIG. 7A the exposed portion 750a of the slide 720 may be green indicating an activated state, in FIG. 7B the exposed portion 750b of the slide 720 may be yellow indicating a different operational state, and in FIG. 7C the newly exposed portion 750c of the slide 720 may be red indicating a deactivated state. In these instances, the different exposed colors on the slide 720 may enable visual recognition of the state of the tag 120. Furthermore, using the colored slide implementation of the multi-level switched state tag, the state of the tag may be visually identified from either side of the tag, which may be beneficial in certain implementations, such as when the RFID tag is fixed on the windshield of a vehicle.



FIGS. 8A-C illustrate example circuitry for switching the tag 120 of FIG. 7 between the different states. The case 710 includes an RFID chip 712, RFID antenna 714, conductive pads 716 and/or other elements. The conductive pads 716 on the case 710 may be connected to isolated nodes within the internal circuit. In the illustrated example, the slide 720 also includes conductive pads 726 fixed to the surface of the slide. The conductive pads 726 on the slide are positioned so that as the slide 720 moves into specified positions, the conductive pads 726 on the slide 720 electrically contact associated conductive pads 716 on the RFID case 710. Once the conductive pads 716 and 726 are in contact, the conductive pads 726 on the slide 720 form a direct or indirect electrical connection.



FIG. 8B illustrates an enlarged view of the circuitry associated with the RFID case 710 and slide 720. The individual conductive pads 716a-c of the RFID case 710 are isolated from each other while the slide 720 is in a center position corresponding with the first state of the RFID tag 120 as described with respect to FIG. 7A. In this position, the conductive pads 726a-b on the slide 720 are isolated from the conductive pads 716a-c on the RFID case 710. FIG. 8C illustrates the case 710 and slide 720 at different relative positions associated with the second state. In this instance, the conductive pad 726b overlaps conductive pads 716b and 716c to form an electrical connection between these pads 716. In addition, the slide 720 may be shifted to the right into a position corresponding with a third state of the RFID tag (see FIG. 7C). In this instance, the conductive pad 726a overlaps conductive pads 716a and 716c.



FIG. 9 illustrates an example circuit 900 used in connection with the pads 716 and 726. Conductive pads 716b and 716c are illustrated as nodes in the circuit 900. In the illustrated example, when the slide 720 is positioned in the second state (e.g., FIGS. 7B and 8C), the conductive pad 726b is substantially aligned with pads 716a and 716c. In this case, the RF signal is conducted through a Schottky diode 910, which may cause node 920 (the common node of resistor 930, capacitor 940, and gate of transistor 960) to increase in voltage. As a result, transistor 950 is activated, and the drain of transistor 970 can be used to pull down a resistor or the input of a circuit mounted on an associated printed circuit board. In some implementations, based on the design of circuit 900 and values of the components comprising circuit 900, the voltage on node 920 may rise in a relatively short period of time when compared to the time that the voltage would be maintained when the RF power is removed. A circuit identical or similar to circuit 900 in FIG. 9 may be used to transition the RFID tag 120 into a third state when the slide 720 is shifted to the right as illustrated in FIG. 7C and conductive pads 716a and 716c are electrically connected.


A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

Claims
  • 1. An RFID system comprising: an RFID tag including an antenna affixed to a first panel; anda second panel including a first portion of the panel with a first image, a second portion of the panel with a second image, and a metal element configured to move relative to the RFID tag affixed to the first panel between a first position and a second position, the metal element in the second position forms electrical connections with a first portion of the antenna and a second portion of the antenna, and the second position is configured to substantially conceal the first portion of the second panel with the first image while the second portion of the second panel with the second image is visible.
  • 2. The RFID system of claim 1, the electrical connections formed in the second position short the antenna.
  • 3. The RFID system of claim 1, the electrical connections formed by a capacitive coupling between the metal element and the first portion and the second portion of the antenna.
  • 4. The RFID system of claim 1, the electrical connections form a short between the first portion of the antenna and the second portion of the antenna to deactivate the RFID tag.
  • 5. The RFID system of claim 1, the metal element comprising metal foil.
  • 6. The RFID system of claim 1, further comprises a case including the first panel and configured to enclose at least a portion of the second panel, the RFID tag affixed to the case.
  • 7. The RFID system of claim 1, further comprises a case including the first panel and configured to slide relative to the second panel to a plurality of different positions, each position associated with a different tag state, and the RFID tag affixed to the case.
  • 8. The RFID system of claim 1, at least of one of the first visual indicator or the second visual indicator includes one or more colors to visually identify a current state of the RFID tag.
  • 9. A method, comprising: wireless communicating with an RFID reader in accordance with a first set of operating parameters associated with a first physical configuration of an RFID tag, wherein the RFID tag includes an antenna, is affixed to a first panel and is movable relative to a second panel including a first portion of the second panel with a first image and a second portion of the second panel with a second image, the first physical configuration configured to substantially conceal the second image while the first image is visible; andin response to at least updating the RFID tag to a second physical configuration, updating operating conditions of the RFID tag to a second set of operating parameters, wherein the second panel includes a metal element configured, in the second physical configuration, to form electrical connections with a first portion of the antenna and a second portion of the antenna, and the second physical configuration is configured to substantially conceal the first image while the second image is visible.
  • 10. The method of claim 9, the electrical connections formed in the second physical configuration short the antenna.
  • 11. The method of claim 9, the electrical connections includes capacitively coupling the first portion of the antenna and the second portion of the antenna.
  • 12. The method of claim 9, the electrical connections form a short between the first portion of the antenna and the second portion of the antenna to deactivate the RFID tag.
  • 13. The method of claim 9, the metal element includes a metal foil.
  • 14. The method of claim 9, wherein the RFID tag is affixed to the first panel of a case configured to enclose at least a portion of the second panel.
  • 15. The method of claim 9, wherein an update to the second configuration includes sliding a cover including the first panel relative to the second panel to a plurality of different positions, each position associated with a different tag state.
  • 16. The method of claim 9, at least of one of the first visual indicator or the second visual indicator includes one or more colors to visually identify a current state of the RFID tag.
  • 17. A system, comprising: a means for wireless communicating with an RFID reader in accordance with a first set of operating parameters associated with a first physical configuration of an RFID tag, wherein the RFID tag includes an antenna, is affixed to a first panel, and is movable relative to a second panel including a first portion of the second panel with a first image and a second portion of the second panel with a second image, the first physical configuration configured to substantially conceal the second image while the first image is visible; andin response to at least updating the RFID tag to a second physical configuration, a means for updating operating conditions of the RFID tag to a second set of operating parameters, wherein the second panel includes a metal element configured, in the second physical configuration, to form electrical connections with a first portion of the antenna and a second portion of the antenna, and the second physical configuration is configured to substantially conceal the first image while the second image is visible.
  • 18. The system of claim 17, at least of one of the first visual indicator or the second visual indicator includes one or more colors to visually identify a current state of the RFID tag.
  • 19. The RFID system of claim 1, wherein the first image comprises a first shape with a first color and the second image comprises a second shape with a second color different from the first color.
  • 20. The method of claim 9, wherein the first image comprises a first shape with a first color and the second image comprises a second shape with a second color different from the first color.
US Referenced Citations (247)
Number Name Date Kind
3568197 Cubley Mar 1971 A
3663932 Mount et al. May 1972 A
3688250 Howlett Aug 1972 A
3693059 Harris Sep 1972 A
3696429 Tressa Oct 1972 A
3876946 La Clair et al. Apr 1975 A
3984835 Kaplan et al. Oct 1976 A
4243955 Daniel et al. Jan 1981 A
4297672 Fruchey et al. Oct 1981 A
4325057 Bishop Apr 1982 A
4509123 Vereen Apr 1985 A
4595915 Close Jun 1986 A
4849706 Davis et al. Jul 1989 A
4857925 Brubaker Aug 1989 A
4870391 Cooper Sep 1989 A
4873529 Gibson Oct 1989 A
4903033 Tsao et al. Feb 1990 A
4968967 Stove Nov 1990 A
5012225 Gill Apr 1991 A
5021780 Fabiano et al. Jun 1991 A
5038283 Caveney Aug 1991 A
5095536 Loper Mar 1992 A
5165109 Han et al. Nov 1992 A
5278563 Spiess Jan 1994 A
5278569 Ohta et al. Jan 1994 A
5293408 Takahashi et al. Mar 1994 A
5334822 Sanford Aug 1994 A
5381157 Shiga Jan 1995 A
5396489 Harrison Mar 1995 A
5430441 Bickley et al. Jul 1995 A
5444864 Smith Aug 1995 A
5461374 Lewiner et al. Oct 1995 A
5477215 Mandelbaum Dec 1995 A
5495500 Jovanovich et al. Feb 1996 A
5506584 Boles Apr 1996 A
5519729 Jurisch et al. May 1996 A
5539394 Cato et al. Jul 1996 A
5608379 Narlow et al. Mar 1997 A
5613216 Galler Mar 1997 A
5630072 Dobbins May 1997 A
5648767 O'Connor et al. Jul 1997 A
5649295 Shober et al. Jul 1997 A
5661485 Manuel Aug 1997 A
5661494 Bondyopadhyay Aug 1997 A
5668558 Hong Sep 1997 A
5708423 Ghaffari et al. Jan 1998 A
5729576 Stone et al. Mar 1998 A
5745037 Guthrie et al. Apr 1998 A
5777561 Chieu et al. Jul 1998 A
5784414 Bruekers et al. Jul 1998 A
5825753 Betts et al. Oct 1998 A
5831578 Lefevre Nov 1998 A
5841814 Cupo Nov 1998 A
5850187 Carrender et al. Dec 1998 A
5861848 Iwasaki Jan 1999 A
5892396 Anderson et al. Apr 1999 A
5898405 Iwasaki Apr 1999 A
5905405 Ishizawa May 1999 A
5940006 MacLellan et al. Aug 1999 A
5974301 Palmer et al. Oct 1999 A
6025780 Bowers et al. Feb 2000 A
6026378 Onozaki Feb 2000 A
6084530 Pidwerbetsky et al. Jul 2000 A
6094149 Wilson Jul 2000 A
6107910 Nysen Aug 2000 A
6121929 Olson et al. Sep 2000 A
6137447 Saitoh et al. Oct 2000 A
6177861 MacLellan et al. Jan 2001 B1
6192225 Arpaia et al. Feb 2001 B1
6219534 Torii Apr 2001 B1
6229817 Fischer et al. May 2001 B1
6229987 Greeff et al. May 2001 B1
6232837 Yoo et al. May 2001 B1
6275192 Kim Aug 2001 B1
6286762 Reynolds et al. Sep 2001 B1
6317027 Watkins Nov 2001 B1
6320542 Yamamoto et al. Nov 2001 B1
6366216 Olesen Apr 2002 B1
6412086 Friedman et al. Jun 2002 B1
6414626 Greef et al. Jul 2002 B1
6442276 Doljack Aug 2002 B1
6456668 MacLellan et al. Sep 2002 B1
6459687 Bourlas et al. Oct 2002 B1
6466130 Van Horn et al. Oct 2002 B2
6492933 McEwan Dec 2002 B1
6501807 Chieu et al. Dec 2002 B1
6531957 Nysen Mar 2003 B1
6538564 Cole Mar 2003 B1
6566997 Bradin May 2003 B1
6567648 Ahn et al. May 2003 B1
6603391 Greeff et al. Aug 2003 B1
6639509 Martinez Oct 2003 B1
6700547 Mejia et al. Mar 2004 B2
6714121 Moore Mar 2004 B1
6714133 Hum et al. Mar 2004 B2
6768441 Singvall et al. Jul 2004 B2
6774685 O'Toole et al. Aug 2004 B2
6784789 Eroglu et al. Aug 2004 B2
6794000 Adams et al. Sep 2004 B2
6798384 Aikawa et al. Sep 2004 B2
6816125 Kuhns et al. Nov 2004 B2
6819938 Sahota Nov 2004 B2
6831603 Menache Dec 2004 B2
6838989 Mays et al. Jan 2005 B1
6888509 Atherton May 2005 B2
6974928 Bloom Dec 2005 B2
7009496 Arneson et al. Mar 2006 B2
7034689 Teplitxky et al. Apr 2006 B2
7039359 Martinez May 2006 B2
7043269 Ono et al. May 2006 B2
7053755 Atkins et al. May 2006 B2
7058368 Nicholls et al. Jun 2006 B2
7083083 Droz Aug 2006 B2
7084769 Bauer et al. Aug 2006 B2
7088248 Forster Aug 2006 B2
7091828 Greeff et al. Aug 2006 B2
7095324 Conwell et al. Aug 2006 B2
7095985 Hofmann Aug 2006 B1
7099406 Najarian et al. Aug 2006 B2
7099671 Liang Aug 2006 B2
7100835 Selker Sep 2006 B2
7109867 Forster Sep 2006 B2
7155172 Scott Dec 2006 B2
7180402 Carrender et al. Feb 2007 B2
7197279 Bellantoni Mar 2007 B2
7199713 Barink et al. Apr 2007 B2
7213767 Tethrake et al. May 2007 B2
7215976 Brideglall May 2007 B2
7221900 Reade et al. May 2007 B2
7256682 Sweeney, II Aug 2007 B2
7257079 Bachrach Aug 2007 B1
7284703 Powell et al. Oct 2007 B2
7357299 Frerking Apr 2008 B2
7375634 Sprague May 2008 B2
7385511 Muchkaev Jun 2008 B2
7388468 Diorio et al. Jun 2008 B2
7388501 Tang et al. Jun 2008 B2
7409194 Shi et al. Aug 2008 B2
7411505 Smith et al. Aug 2008 B2
7413124 Frank et al. Aug 2008 B2
7429953 Buris et al. Sep 2008 B2
7432817 Phipps et al. Oct 2008 B2
7432874 Meissner Oct 2008 B2
7440743 Hara et al. Oct 2008 B2
7450919 Chen et al. Nov 2008 B1
7460014 Pettus Dec 2008 B2
7477151 Forster et al. Jan 2009 B2
7477887 Youn Jan 2009 B2
7479874 Kim et al. Jan 2009 B2
7492812 Ninomiya et al. Feb 2009 B2
7526266 Al-Mahdawi Apr 2009 B2
7548153 Gravelle et al. Jun 2009 B2
7551085 Pempsell et al. Jun 2009 B2
7557762 Shimasaki et al. Jul 2009 B2
7561866 Oliver et al. Jul 2009 B2
7562083 Smith et al. Jul 2009 B2
7570164 Chakraborty et al. Aug 2009 B2
7576657 Duron et al. Aug 2009 B2
7580378 Carrender et al. Aug 2009 B2
7583179 Wu et al. Sep 2009 B2
7586416 Ariyoshi et al. Sep 2009 B2
7592898 Ovard et al. Sep 2009 B1
7592915 Liu Sep 2009 B2
7594153 Kim et al. Sep 2009 B2
7595729 Ku et al. Sep 2009 B2
7596189 Yu et al. Sep 2009 B2
7606532 Wuidart Oct 2009 B2
7609163 Shafer Oct 2009 B2
7612675 Miller et al. Nov 2009 B2
7782206 Burnett et al. Aug 2010 B2
7948381 Lindsay et al. May 2011 B2
8018344 Chang et al. Sep 2011 B2
20010048715 Lee et al. Dec 2001 A1
20020021208 Nicholson et al. Feb 2002 A1
20020067264 Soehnlen Jun 2002 A1
20020072344 Souissi Jun 2002 A1
20020119748 Prax et al. Aug 2002 A1
20020141347 Harp et al. Oct 2002 A1
20030021367 Smith Jan 2003 A1
20030052161 Rakers et al. Mar 2003 A1
20030107877 Mennecart Jun 2003 A1
20030116634 Tanaka Jun 2003 A1
20030228860 Jou Dec 2003 A1
20050084003 Duron et al. Apr 2005 A1
20050099270 Diorio et al. May 2005 A1
20050099340 Suzuki May 2005 A1
20050107051 Aparin et al. May 2005 A1
20050114326 Smith et al. May 2005 A1
20050116867 Park et al. Jun 2005 A1
20050128085 Bon Jun 2005 A1
20050134461 Gelbman et al. Jun 2005 A1
20050156031 Goel et al. Jul 2005 A1
20050179520 Ziebertz Aug 2005 A1
20050237843 Hyde Oct 2005 A1
20050259768 Yang et al. Nov 2005 A1
20060017570 Moskowitz et al. Jan 2006 A1
20060022800 Krishna et al. Feb 2006 A1
20060086809 Shanks et al. Apr 2006 A1
20060098765 Thomas et al. May 2006 A1
20060103533 Pahlavan et al. May 2006 A1
20060125603 Nahear Jun 2006 A1
20060132313 Moskowitz Jun 2006 A1
20060183454 Al-Mahdawi Aug 2006 A1
20060214773 Wagner et al. Sep 2006 A1
20060238302 Loving et al. Oct 2006 A1
20060252398 Park et al. Nov 2006 A1
20060267734 Taki et al. Nov 2006 A1
20060290502 Rawlings Dec 2006 A1
20070001809 Kodukula et al. Jan 2007 A1
20070001813 Maguire et al. Jan 2007 A1
20070018792 Take et al. Jan 2007 A1
20070046432 Aiouaz et al. Mar 2007 A1
20070060075 Mikuteit Mar 2007 A1
20070082617 McCallister Apr 2007 A1
20070109101 Colby May 2007 A1
20070133392 Shin et al. Jun 2007 A1
20070139200 Yushkov et al. Jun 2007 A1
20070152829 Lindsay et al. Jul 2007 A1
20070164868 Deavours et al. Jul 2007 A1
20070188305 Drucker Aug 2007 A1
20070205953 Bombay et al. Sep 2007 A1
20070206704 Zhou et al. Sep 2007 A1
20070206705 Stewart Sep 2007 A1
20070222604 Phipps et al. Sep 2007 A1
20070222606 Phipps et al. Sep 2007 A1
20070236335 Aiouaz et al. Oct 2007 A1
20070285238 Batra Dec 2007 A1
20070290846 Schilling et al. Dec 2007 A1
20070290858 Janke et al. Dec 2007 A1
20080012688 Ha et al. Jan 2008 A1
20080018431 Turner et al. Jan 2008 A1
20080048867 Oliver et al. Feb 2008 A1
20080049870 Shoarinejad et al. Feb 2008 A1
20080065957 Shoarinejad et al. Mar 2008 A1
20080068173 Alexis et al. Mar 2008 A1
20080084310 Nikitin et al. Apr 2008 A1
20080136595 Finkenzeller Jun 2008 A1
20080143486 Downie et al. Jun 2008 A1
20080191961 Tuttle Aug 2008 A1
20080258916 Diorio et al. Oct 2008 A1
20080278286 Takaluoma et al. Nov 2008 A1
20090022067 Gotwals Jan 2009 A1
20090053996 Enguent et al. Feb 2009 A1
20090091454 Tuttle Apr 2009 A1
20090096612 Seppa et al. Apr 2009 A1
20090101720 Dewan et al. Apr 2009 A1
20100194542 Noakes et al. Aug 2010 A1
Foreign Referenced Citations (31)
Number Date Country
2218269 Apr 1999 CA
102005062827 Jun 2007 DE
0133317 Feb 1985 EP
0498369 Aug 1992 EP
0156440 Dec 1992 EP
0915573 May 1999 EP
0923061 Jun 1999 EP
1095427 May 2001 EP
1436857 Jul 2004 EP
2178023 Apr 2010 EP
2178023 Apr 2010 EP
2648602 Dec 1990 FR
1270456 Apr 1972 GB
1158836 Jun 1989 JP
2002-185381 Jun 2002 JP
2005-227818 Aug 2005 JP
2005-253058 Sep 2005 JP
2006-252367 Sep 2006 JP
2002-0091572 Dec 2002 KR
WO 9016119 Dec 1990 WO
WO 9905659 Feb 1999 WO
WO 0124407 Apr 2001 WO
WO 03044892 May 2003 WO
WO 2004001445 Dec 2003 WO
WO 2005072137 Aug 2005 WO
WO 2006037241 Apr 2006 WO
WO 2006068635 Jun 2006 WO
WO 2007003300 Jan 2007 WO
WO 2007094787 Aug 2007 WO
WO 2007126240 Nov 2007 WO
WO 2009058809 May 2009 WO
Non-Patent Literature Citations (27)
Entry
U.S. Appl. No. 12/856,706, filed Aug. 16, 2010, Burnett.
International Search Report and Written Opinion issued in international application No. PCT/US2010/036878, mailed Aug. 31, 2010, 15 pages.
Bridgelall, Raj; “Bluetooth/802.11 Protocol Adaptation for RFID Tags”; Symbol Technologies, Research & Development, One Symbol Plaza, Holtsville, New York 11742; 4 pages. Retrieved from <http://www2.ing.unipi.it/ew2002/proceedings/001.pdf>.
Burgener, E.C.; “A Personal Transit Arrival Time Receiver;” IEEE—IEE Vehicle Navigation & Information Systems Conference; Ottawa, Ontario, Canada; 1993; pp. 54-55. Retrieved from <http://ieeexplore.ieee.org/xpl/freeabs—all.jsp?arnumber=585583>.
Cavoukian, Ann; “Adding an On/Off Device to Activate the RFID in Enhanced Driver's Licenses: Pioneering a Made-in-Ontario Transformative Technology that Delivers Both Privacy and Security”; Information and Privacy Commissioner of Ontario; Ontario, Canada; Mar. 2009; 3 pages. Retrieved from <http://www.ipc.on.ca/images/Resources/edl.pdf>.
Desmons, Dimitri; “UHF Gen 2 for Item-Level Tagging”; Impinji, Inc.; 24 pages. Retrieved from <http://www.impinj.com/files/Impinj—ILT—RFID—World.pdf>, [Feb. 27, 2006].
Donovan, John; “Software-Defined Radio Tackles Wireless Compatibility Issues”; Portable Design; Apr. 2006; pp. 8-12. Retrieved from <http://www.qmags.com/download/default.aspx?pub=PD&upid=11675&fl=others/PD/PD—20060401—Apr—2006.pdf>.
Han Y. et al.; “System Modeling and Simulation of RFID”; Auto-ID Labs at Fudan University, Shanghai, P.R. China; 12 pages. Retrieved from <http://www.citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.7275&rep=rep1&type=pdf>,[Mar. 29, 2006].
Hansen, T. et al.; “Method for Controlling the Angular Extent of Interrogation Zones in RFID”; Seknion, Inc., 2000 Commonwealth Avenue, Suite 1008, Boston, MA 02135; 12 pages. Retrieved from <http://seknion.com/DOWNLOADS/Seknion—Paper—RFID.pdf>, [Apr. 24, 2006].
Hiltunen, Kimmo; “Using RF Repeaters to Improve WCDMA HSDPA Coverage and Capacity inside Buildings”; The 17th Annual IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC-06); 2006; 5 pages. Retrieved from <http://www.ericsson.com/technology/research—papers/wireless—access/doc/PIMRC06—hiltunen.pdf>.
Khandelwal, G. et al. “Intelligent MAC Design for RFID Networks”; The Pennsylvania State University; 1 page, [Oct. 5, 2005].
Khandelwal, G. et al.; “OPT: Optimal Protocol Tree for Efficient Tag Identification in Dense RFID Systems”; IEEE International Conference on Communications; Jun. 11-15, 2006; pp. 128-133.
Kusy et al.; “Tracking Mobile Nodes Using RF Doppler Shifts”; Vanderbilt University, Nashville, Tennessee; 14 pages. Retrieved from <http://www.isis.vanderbilt.edu/sites/default/files/Kusy—B—11—7—2007—Tracking—M.pdf>, [Nov. 7, 2007].
“New Alien Software Can Identify Velocity, Position of Tags”; RFID News; Apr. 14, 2008; 2 pages. Retrieved from <http://www.rfidnews.org/2008/04/14/new-alien-software-can-identify-velocity-position-of-tags>.
O'Connor, Mary Catherine; “Wal-Mart Seeks UHF for Item-Level”; RFID Journal, Inc.; 2005; 2 pages. Retrieved from <http://www.rfidjournal.com/article/articleview/2228/1/1/>.
Rohatgi, A. et al.; “Implementation of an Anti-Collision Differential-Offset Spread Spectrum FRID System”; Georgia Institute of Technology, School of Electrical and Computer Engineering; IEEE Antennas Propagation Society International Symposium 2006; 4 pages. Retrieved from <http://www.propagation.gatech.edu/Archive/PG—CP—060710—AR/PG—CP—060710—AR.PDF>.
Waldrop et al.; “Colorwave: A MAC for RFID Reader Networks”; Auto-ID Center, Massachusetts Institute of Technology, Cambridge, MA; 4 pages, [May 28, 2003].
Yu, P. et al.; “Securing RFID with Ultra-Wideband Modulation”; Virginia Tech Electrical and Computer Engineering Department; Blacksburg, VA; Workshop on RFID Security; Jul. 2006; 12 pages. Retrieved from <http://events.iaik.tugraz.at/RFIDSec06/Program/papers/004%20-%20Ultra%20Wideband%20Modulation.pdf>.
“Near Field UHF Versus HF”; IDTechEx; May 16, 2006; 1 page. Retrieved from <http://www.idtechex.com/research/articles/near—field—uhf—versus—hf—00000474.asp>.
Kiming, Q. et al.; “Development of a 3cm Band Reflected Power Canceller”; Research Institute of Navigation Technology; 2001 CIE International Conference on, Proceedings; 2001; pp. 1098-1102.
“Developments in Printed Conductors and Tags”; IDTechEx; Jun. 6, 2005; 1 page. Retrieved from <http://www.idtechex.com/research/articles/developments—in—printed—conductors—and—tags—00000188.asp>.
Ryu, H-K. et al.; “Size Reduction in UHF Band RFID Tag Antenna Based on Circular Loop Antenna”; 18th International Conference on Applied Electromagnetics and Communications, ICECom; Oct. 12-14, 2005; pp. 1-4.
Binu P, et al.; “A New Microstrip Patch Antenna for Mobile Communications and Bluetooth Applications”; Microwave and Optical Technology Letters; vol. 33, No. 4, May 20, 2002; pp. 285-286.
Garg et al.; “Microstrip Radiators”; Microstrip Antenna Design Handbook; Artech House, Inc. Norwood, MA; 2001; pp. 1-72.
“Radio Frequency Identification (RFID) Primer” 23 pages. Retrieved from <http://ocw.mit.edu/NR/rdonlyres/Sloan-School-of-Management/15-762JSpring-2005/23F46055-7F21-4046-B2C3-7E96680790DD/0/rfid—primer.pdf>, [Feb. 15, 2005].
Communication Pursuant to Article 94(3) EPC issued in European Application No. 10727239.5 on Oct. 17, 2012; 3 pages.
International Preliminary Report on Patentability issued in International Application No. PCT/US2010/036878 dated Aug. 29, 2011, 9 pages.
Related Publications (1)
Number Date Country
20100302012 A1 Dec 2010 US