Solid state image sensors, such as CMOS image sensors (“CIS”) and charge-coupled devices (“CCD”), are used in various imaging devices, such as video cameras. Backside illuminated (“BSI”) image sensors have been introduced as an alternative to front side illuminated (“FSI”) image sensors to address fill factor problems associated with FSI sensors. As the name implies, BSI image sensors receive light through a backside surface of a substrate supporting the image sensor circuitry; as a result, the substrate must be extremely thin. In general, BSI technology promises a higher sensitivity, lower cross-talk, and comparable quantum efficiency as compared to FSI, since the substrate is thinner, thereby rendering the photo-sensitive region closer to the color filter. However, currently, for a variety of reasons, the sensitivity of BSI image sensors is still not favorably comparable to FSI image sensors.
The features and advantages of a system and method for enhancing light sensitivity for backside illumination image sensor in accordance with an embodiment will be more clearly understood from the following description taken in conjunction with the accompanying drawings in which like reference numerals designate similar or corresponding elements, regions, and portions, and in which:
It is to be understood that the following disclosure provides many different embodiments, or examples, that may benefit from the present invention. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact.
In the present embodiment, a multilayer interconnect (MLI) and an inter-level dielectric (ILD), collectively designated with the reference numeral 103, are provided on the semiconductor substrate 102.
One or more imaging sensor elements 104 are disposed in the semiconductor substrate 110. For the sake of example, two image sensor elements, designated individually as elements 104a and 104b, are illustrated in the figure. The sensor elements 104 include a light-sensing region 106 which may be a doped region having N-type and/or P-type dopants formed in the semiconductor substrate 102 by a method such as diffusion or ion implantation. In furtherance of the present example, two light-sensing regions, designated individually as regions 106a and 106b, are illustrated in the figure. The light-sensing regions 106 may have a doping concentration ranging between about 1014 and 1021 atoms/cm3. The light-sensing regions may have a surface area ranging between about 10% and 80% of the area of the associated sensor element, being operable to receive light (or other form of radiation energy from an object to be imaged). Examples of the sensor element 104 include a photodiode, a complimentary metal-oxide-semiconductor (CMOS) image sensor, a charged coupling device (CCD) sensor, an active sensor, a passive sensor, and/or other types of devices diffused or otherwise formed in the substrate 102. As such, the sensor element 104 may include conventional and/or future-developed image sensing devices. For the sake of further example, two image sensor elements 104a, 104b, and two light-sensing regions 106a, 106b are illustrated in the figure.
The sensor elements 104 are provided here only for example. The semiconductor device 100 may include a plurality of sensor elements disposed in an array or other proper configuration. The plurality of sensor elements may be designed to have various sensor types. For example, one group of sensor elements may be CMOS image sensors and another group of sensor elements may be passive sensors. Moreover, the sensor elements 104 may include color image sensors and/or monochromatic image sensors. At least one transistor 107, represented in
At least one transistor 107, represented in
Due to the high n-value of the substrate, the back focus length (“BFL”) is extended in the BSI image sensor, such as embodied in integrated circuit 100. However, the high k-value of the substrate (e.g., approximately 0.2 for silicon), results in the blue ray sensitivity deteriorating with the long focus length. Moreover, the single micro-lens structure 108, which is formed by reflow process, does not supply enough light-bending power due primarily to the aspect-ratio constraints of the material.
In one embodiment, the micro-lens structure 208 comprises a nitrogen-containing material, such as silicon nitride, and has an n-value of less than approximately 2 and preferably between 1.6 and 2.0. The insulating layer 207 may comprise a dielectric material, such as oxide or oxynitride, and may be formed using a chemical vapor deposition (“CVD”) or spin-on method. The planarizing layer 210 may comprise an organic material and may be formed using a spin-coating method.
In one embodiment, the inner micro-lens structure 308 comprises a nitrogen-containing material, such as silicon nitride, and has an n-value of less than approximately 2 and preferably between 1.6 and 2.0. In one embodiment, the outer micro-lens structure 314 comprises an organic material and has an n-value of 1.6˜1.8. In one embodiment, the radius of curvature of the inner micro-lens structure 308 is greater than or equal to that of the outer micro-lens structure 314. In one embodiment, the n-value of the inner micro-lens structure 308 is greater than or equal to that of the outer micro-lens structure 314. The insulating layer 307 may comprise a dielectric material, such as oxide or oxynitride, and may be formed using a chemical vapor deposition (“CVD”) or spin-on method. The planarizing layer 310 may comprise an organic material and may be formed using a spin-coating method.
In one embodiment, the inner micro-lens structure 408 comprises a nitrogen-containing material, such as silicon nitride, and has an n-value of less than approximately 2 and preferably between 1.6 and 2.0. In one embodiment, the outer micro-lens structure 414 comprises an organic material and has an n-value of 1.6˜1.8. In one embodiment, the radius of curvature of the inner micro-lens structure 408 is greater than or equal to that of the outer micro-lens structure 414. In one embodiment, the n-value of the inner micro-lens structure 408 is greater than or equal to that of the outer micro-lens structure 414. The insulating layer 407 may comprise a dielectric material, such as oxide or oxynitride, and may be formed using a chemical vapor deposition (“CVD”) or spin-on method. The planarizing layer 410 may comprise an organic material and may be formed using a spin-coating method.
One embodiment is an integrated circuit that includes a substrate and an image sensor device that includes at least one transistor formed over a first surface of the substrate and a photosensitive region. A color filter is disposed over a second surface of the substrate opposite the first surface thereof. A micro-lens structure is disposed between the second surface of the substrate and the color filter.
Another embodiment is an integrated circuit that includes a substrate and an image sensor device that includes at least one transistor formed over a first surface of the substrate and a photosensitive region. A first micro-lens structure is formed over a second surface of the substrate opposite the first surface thereof. A color filter is disposed over first micro-lens structure and a second micro-lens structure is formed over the color filter.
Another embodiment is an integrated circuit that includes a substrate and an image sensor device that includes at least one transistor formed over a first surface of the substrate and a photosensitive region. A first micro-lens structure comprising a first material is formed over a second surface of the substrate opposite the first surface thereof. A second micro-lens structure comprising a second material is formed over the first micro-lens structure. The first material is different from the second material.
Another embodiment is an integrated circuit including a substrate and an image sensor device that includes at least one transistor formed over a first surface of the substrate and a photosensitive region. A first micro-lens structure is formed over a second surface of the substrate opposite the first surface thereof and a second micro-lens structure is formed over the first micro-lens structure. A radius of curvature of the first micro-lens structure is greater than or equal to a radius of curvature of the second micro-lens structure.
While the preceding description shows and describes one or more embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the present disclosure. Therefore, the claims should be interpreted in a broad manner, consistent with the present disclosure.