Semiconductors and other high technology items, pharmaceuticals, entertainment media and fabricated consumer goods such as handbags may be subject to high degrees of counterfeiting. Counterfeit items may incur billions of dollars in lost revenue to manufacturers, result in legal actions, and for critical systems may compromise communication security or result in loss of life.
In the field of electronics, counterfeit semiconductor devices may generally be less expensive substitutes, salvaged scrap parts, or even non-functional semiconductor devices that do not meet the performance and/or quality specifications of non-counterfeit semiconductor devices. For example, “standard” semiconductor devices may be substituted for higher reliability or performance “mil-spec” semiconductor devices. Semiconductor device counterfeiting may be a significant concern in supply chains where semiconductor devices are not shipped from the manufacturer through trusted intermediaries to customers in real time. This may often be the case with low-run or end-of-life semiconductor devices where products may enter the supply chain when semiconductor devices from a trusted source cannot be obtained in a timely manner, at an appropriate cost, or at all. This so-called “gray-market” for semiconductor devices is outside of traditional supply chain management practices and controls, and may represent significant risk to the producers of systems that incorporate such semiconductor devices. The Semiconductor Industry Association estimates that the total damage done by semiconductor device counterfeiting exceeds $7.5 billion annually, with the bulk of this economic damage done to the final product owners who must recall or repair integrated systems to repair the intrusion of sub-par semiconductor devices into their supply chain.
Multiple common methods exist for ensuring the authenticity and/or provenance of objects, for example: supply chain management, anti-counterfeit tagging, and inspection for determination of provenance. The method of secure supply chain management controls the flow of objects from factory to end user and is regimented by a quality system. Objects transferred under this method are often tracked using printed text and barcode labels or RFID tags. As long as the transfer of objects is as prescribed by the quality system, the objects are assumed to be securely transferred and therefore genuine. However, supply chains may be stressed by events such as natural disasters, may be breached by unscrupulous parties, and may be difficult to maintain for many lower volume manufactured objects; thus, this solution does not fully meet the needs of multiple industries requiring genuine objects or those of known provenance.
The method of anti-counterfeit tagging adds to objects, often at the time of manufacture, features, characteristics, and/or identifiers that are difficult or impossible to counterfeit. Multiple proprietary tagging systems exist today, including schemes that incorporate microparticles, holograms, specialized inks, microprinting, DNA marking, fluorescent particles and/or IR inks. These anti-counterfeiting tagging systems are considered secure since they are hard to duplicate because they require complex processes for both creation and verification. These anti-counterfeiting tagging systems often represent security codes with billions of possible combinations, where a counterfeiter may not be able to properly guess a specific secret value.
Many of these proprietary anti-counterfeit tagging methods have problems such as: 1) manufacturing processes must change to incorporate these features, and 2) many methods require special systems to test for the authentication features. Each of these problems incur increased costs and difficulty for users and integrators and therefore inhibit adoption. For example, in the case of recent paper currency design changes, automatic bill-changers had to shift from magnetic sensing technology to optical and/or other sensing technologies to permit identification and authentication of the new styles of paper currency. Such changes can be mandated by a sole supplier of an object, in the case of paper currency a government as the only valid producer of its currency, but are difficult to implement in an industry with many varied suppliers and users of an object.
The method of inspection for determination of provenance utilizes inspection of object coloration, weight, visual markings, and/or other observables to authenticate objects. Although such inspection methods can capture the products of unsophisticated counterfeiters who are not attempting to properly replicate an object in detail; their overall capability is limited and as counterfeiters become increasingly sophisticated this method is of decreasing value. Ultimately, the limits of visual inspection can be traced back to the limits of the human eye or typical machine vision inspection system. These systems lack significant resolving power compared to the resolution of the tools used to create the visual markings and as a result, visually inspected counterfeit objects may incorrectly be deemed genuine or of known provenance.
Recently, the problem of counterfeiting is being addressed for semiconductor devices with the advent of inspections for a Physically Unclonable Function (PUF). A PUF is a representation of one or more physical features of an object that are easy to evaluate but impossible to control, even with knowledge of the exact manufacturing process that produced the object. An ideal PUF may be fabricated by a manufacturing process that creates features so difficult to control that they serve the function of a random number generator, where the number is permanently associated with each individual object and no other. Each object is thus assigned an effective serialization without the need for an exogenous taggant. After inspection, at the time of manufacture, the unique feature of the inspected object is stored in a database for comparison by subsequent inspection at a later time. With a properly selected PUF, billions if not trillions of discrete objects can be uniquely identified, and are essentially impossible to spoof.
For example, in a defined location of a specific sheet of paper, the fibers of cellulose may be arranged in a unique pattern that differs from the pattern that may be at that location in any other sheet of paper. There is no aspect of paper-making which controls the exact distribution of fibers, and thus from a manufacturing process the exact arrangement of fibers observed in any specific sheet of paper can be considered random and therefore unclonable, a PUF. An inspection process for this PUF using high resolution imaging and image analysis therefore inspects this feature and determines the effective serialization for each individual sheet of paper, and this physical feature is constant over the paper's life and therefore can be used to authenticate it.
A PUF may therefore provide a high degree of security; however, use of a PUF comes with significant complexity. The requirement for 100% inspection of objects at their time of production places significant burden and cost on the manufacturer of an object. This burden is further amplified when inspection techniques with low throughput are used, as they can easily create a bottleneck in the manufacturing line which makes production of objects uneconomical. Further, the requirement for 100% inspection results in a system that is vulnerable to supply chain errors since each object must be individually recorded. Finally, true PUFs can be difficult to identify and implement, since they require very large numbers of possible combinations (to remove the chance of repetition of serialization) and require consistency of inspection over all environmental conditions, and throughout the object's life.
For many applications there is simply no need to record a serialization for each individual object. For example, in many cases it is desirable to determine the authenticity or provenance of an object as Boolean state (genuine or not), but not necessarily establish its exact unique identity out of a very large collection of nominally identical objects. For example, the integrator of a semiconductor chip package need not unique identify each semiconductor chip package but desires to confirm the authenticity or provenance of a lot of such semiconductor chip packages. Thus, for these applications, which represent the majority of authentication requests, the benefits of a PUF are not valued while the costs necessary for implementation are high.
Previous work has also suggested the use of neural network vision systems for analysis of the authenticity of an object, most notably currency. Neural networks have been heavily studied for the extraction of information from complex visual images, and are especially useful in instances where it may be uncertain where the information resides. For example, a neural network has been previously developed to aid in the discrimination of photocopied bank notes from authentic notes. In this work, the neural net was trained using several hundred samples of known authentic notes and known forgeries, and developed a “hidden” algorithm to discriminate the two.
A weakness of neural networks, however, may be that their variables are hidden, and as a result when they fail it can be difficult to discern why. Although neural networks are powerful tools for analysis of complex images, they can be fragile when exposed to data outside their training sets. Further, because they are naïve about the location of information in an image, they require training with hundreds or thousands of data sets, which can be prohibitively expensive in many applications. Finally, because they use hidden algorithms and lack an explicit reference that serves as the basis for differentiation of authentic versus counterfeit items, they are not auditable by customers or standards bodies that wish to validate their performance.
There thus remains a significant need for new anti-counterfeiting, authenticity and provenance determination techniques which provide a required degree of security for objects that are both simple to operate and low cost, so that authentication tracking and control can be performed throughout the supply chain of the object.
In one embodiment, a method for determining authenticity is provided. The method may include providing an object of authentication. The method may include capturing characteristic data from the object of authentication. The method may include deriving authentication data from the characteristic data of the object of authentication. The method may include comparing the authentication data with an electronic database including reference authentication data to provide an authenticity score for the object of authentication. The reference authentication data may correspond to one or more reference objects of authentication other than the object of authentication.
In another embodiment, a method for creating an electronic database is provided. The method may include providing at least one plurality of reference objects of authentication collectively belonging to a class. The method may include capturing characteristic data from the at least one plurality of reference objects of authentication. The method may include deriving reference authentication data from the characteristic data of the at least one plurality of reference objects of authentication. The method may include preparing the electronic database corresponding to the reference authentication data. The electronic database may include a representation of the class according to the at least one plurality of reference objects of authentication.
In one embodiment, a method for defining authentication data is provided. The method may include providing a first plurality of objects of authentication. The first plurality of objects of authentication may belong to a first family. The method may include capturing a plurality of characteristic data from the plurality of objects of authentication belonging to the first family. The method may include deriving a plurality of authentication data from the plurality of characteristic data. The method may include analyzing the plurality of authentication data to determine one or more authentication parameters. The one or more authentication parameters may be suitable for associating the plurality of objects of authentication with another object of authentication belonging to the first family. The one or more authentication parameters may be suitable for discriminating the plurality of objects of authentication of the first family from a second plurality of objects of authentication belonging to a second family.
In another embodiment, a system for determining authenticity is provided. The system may include a characterization module configured for capturing characteristic data from an object of authentication. The system may include a data storage module configured to store an electronic database including reference authentication data. The system may include a processor operatively coupled to the characterization module and the data storage module. The processor may be programmed to operate the characterization module to capture the characteristic data from the object of authentication. The processor may be programmed to derive authentication data from the characteristic data of the object of authentication. The processor may be programmed to compare the authentication data with the electronic database including the reference authentication data to provide an authenticity score for the object of authentication. The processor may be programmed to access the data storage module to store and retrieve one or more of: the authentication data, the electronic database including the reference authentication data, the characteristic data from the object of authentication, and the authenticity score.
In one embodiment, a tangible computer-readable medium having instructions stored thereon for controlling a processor is provided. The instructions may control the processor to operate the characterization module to capture the characteristic data from the object of authentication. The instructions may control the processor to derive authentication data from the characteristic data of the object of authentication. The instructions may control the processor to compare the authentication data with the electronic database including the reference authentication data to provide an authenticity score for the object of authentication. The instructions may control the processor to access the data storage module to store and retrieve one or more of: the authentication data, the electronic database including the reference authentication data, the characteristic data from the object of authentication, and the authenticity score.
In an embodiment, a method for determining the authenticity of a marked object includes providing a marked object for authentication, capturing characteristic data from the marked object, deriving authentication data from the captured characteristic data, comparing the authentication data with reference authentication data, and determining the authenticity of the marked object based upon the comparing.
In an embodiment, a method for determining the authenticity of a marked object includes providing a marked object for authentication, capturing an optical image of the marked object, performing optical characterization recognition of the captured optical image, deriving authentication data from the optical character recognition by extracting font information from the optical character recognition, comparing the authentication data with reference authentication data derived from statistical testing, including hypothesis testing of authentication data from a plurality of other marked objects, and determining the authenticity of the marked object from the comparing.
In an embodiment, a method for determining the provenance of a marked object includes providing the marked object, capturing an optical image of the marked object, performing optical characterization recognition of the captured optical image, deriving marking system data from the optical character recognition by extracting font Bezier curve information from the optical character recognition, comparing the marking data with reference marking system data derived from statistical testing of marking system data from a plurality of other marked objects, and determining the provenance of the marked object from the comparing.
In an embodiment, a method for determining the provenance of a marked object includes providing the marked object, capturing an optical image of the marked object, performing optical characterization recognition of the captured optical image, deriving marking system data from the optical character recognition by extracting font Bezier curve information from the optical character recognition, comparing the marking data with reference marking system data derived from statistical testing of marking system data from a plurality of other marked objects, determining the provenance of the marked object from the comparing, and authenticating the marked object by verifying its provenance.
In an embodiment, a system for determining the authenticity of a marked object includes a measurement system for capturing characteristic data from the marked object, storage for containing reference authentication data, a processor for deriving authentication data from the captured characteristic data, comparing the authentication data with the reference authentication data, and determining the authenticity of the marked object from the comparing; and an indicator of authenticity.
In an embodiment, an article including a computer program product having stored therein instructions that, if executed by a processing unit, configure the processing unit to: provide a marked object for authentication, capture characteristic data from the marked object, derive authentication data from the captured characteristic data, compare the authentication data with reference authentication data, and determine the authenticity of the marked object from the comparison.
In an embodiment, an article including a computer program product having stored therein instructions that, if executed by a processing unit, configure the processing unit to: provide a marked object for determining the origin of manufacture, capture characteristic data from the marked object, derive marking tool data from the captured characteristic data, compare the marking tool data with reference marking tool data, and determine the provenance of the marked object from the comparison.
In an embodiment, a method of identifying the origin of manufacture of a marked object includes capturing an image of the markings on the object, comparing the captured image with at least one reference authentication image in a database, wherein comparing includes determining the mathematical similarity or difference between the captured image and the at least one reference authentication image, and determining whether the marked object has the same origin of manufacture as an object associated with the reference authentication image based on this mathematical similarity or difference.
In an embodiment, a method for defining authentication data for a marked object includes providing a plurality of the marked objects belonging to a family, capturing a plurality of characteristic data from the plurality of marked objects, deriving a plurality of authentication data from the plurality of captured characteristic data, and analyzing the plurality of authentication data to determine one or more authentication parameters suitable for associating the plurality of marked objects with an additional marked object from the same family.
In an embodiment, a method for defining authentication parameters for a marked object of a first family includes providing a plurality of the marked objects of the first family, capturing a plurality of characteristic data from the plurality of marked objects of the first family, deriving a plurality of authentication data from the plurality of captured characteristic data, analyzing the plurality of authentication data to determine authentication parameters suitable for discriminating the plurality of marked objects of the first family from one or more pluralities of marked objects of additional families.
In an embodiment, a method for defining authentication parameters for marked objects includes providing a first plurality of marked objects of a first family, providing a second plurality of marked objects of a second family, capturing a plurality of characteristic data from the plurality of marked objects of the first and second families, deriving a plurality of authentication data from the plurality of captured characteristic data, analyzing the plurality of authentication data to determine authentication parameters suitable for discriminating the plurality of marked objects of the first family from the plurality of marked objects of the second family.
In an embodiment, a method for determining the provenance of a marked object includes providing the marked object for marking tool identification, capturing characteristic data from the marked object, deriving marking system data from the captured characteristic data, comparing the marking system data with reference marking system data, and determining the provenance of the marked object based upon the comparing.
In an embodiment, a method for sorting objects may include capturing characteristic data from a plurality of objects, creating a plurality of feature points in a feature space based on the characteristic data, and grouping the plurality of objects using spectral methods into one or more distinct groups according to the plurality of feature points.
The present disclosure may be understood by reference to the following detailed description taken in conjunction with the drawings briefly described below. It is noted that, for purposes of illustrative clarity, certain elements in the drawings may not be drawn to scale.
The present invention has surprisingly found authentication does not require comparison to a historical record of the object of authentication to securely authenticate or determine provenance of the object of authentication. For example, features of an object of authentication may be compared against a historical record, e.g., a structured database, of the features of a family of nominally identical objects with known authenticity and/or provenance. Such authentication may proceed with high confidence by such a one-to-many comparison without requiring pre-existing characterization of the object of authentication.
As used herein, an “authentic” object may be understood to be associated with a known family of reference objects, regardless of provenance or genuine origin. An “authenticity score” may represent a Boolean value, a binned value, a probability, and the like, providing an estimate of the likelihood that the object is authentic, for example, whether there may be a match between the object and the family. “Authentication” is the process of matching one object to a related family of reference objects of authentication. The authenticity of the family may have been previously defined. A distinction should be understood between an object being genuine and “authentic.” An authenticated object and an associated family may be either genuine or counterfeit. Authentication in this usage does not require access to any information beyond that which may be physically present with the object itself.
Information about the origin of an object and/or family may be considered the “provenance” of the object and/or family. This may include, for example, information on manufacturing of the object of authentication, e.g., a corresponding manufacturing time, place, manufacturer, lot, tool or process, or a determination of whether the object can be trusted. Thus, the process of establishing the provenance of an object may include both authentication and an association of the object and/or family to a set of information that may be exogenous to the objects.
As used herein, “font reconstruction” means a process of mathematically transforming characteristic data, e.g., images, of glyphs in a font and representing them in a mathematical form, e.g., a polynomial spline, a Bezier-curve spline, and the like. Authentication parameters may be extracted from such a mathematical transformation as a reconstructed font for use in authentication.
As used herein, “object of authentication” means any tangible substrate for which authentication is desired. For example, an object of authentication may be an article of manufacture. A “reference object of authentication” is other than the object of authentication and may be used for comparison in analyzing and authenticating the object of authentication. In various embodiments, the reference object of authentication may have a known authenticity, a known provenance, an unknown authenticity, or an unknown provenance.
As used herein, an “article of manufacture” means a man-made object, e.g., a molded part, a machined part, a 3D printed part, an embossed part, an extruded part, a forged part, and the like.
As used herein, “characteristic data” means raw or processed data obtained from a characterization module, for example, raw imaging data or formatted image data obtained from a camera, scanner, spectrometer, and the like. “Reference characteristic data” means authentication data corresponding to a reference object of authentication.
As used herein, an “electronic database” means a structured database used to store similar or different types of data, parameters, and the like. In some embodiments, an “electronic database” explicitly excludes information encoded in a trained neural network.
As used herein, “authentication data” means data or parameters derived by a mathematical transformation of characteristic data that is used to authenticate an object. “Reference authentication data” means authentication data corresponding to a reference object of authentication. As used herein, “authentication parameters” are descriptive parameters obtained by processing or analyzing the characteristic data that may be included in the authentication data. Authentication parameters may define or characterize an authentication function, such the parameters of a Bezier spline representation of an object, and the like.
As used herein, a “mark,” e.g., on a man-made object, may include, for example, a font character, a glyph, a tooling or manufacturing mark, a printed mark, and the like. A mark may be made by an intentional marking tool, such as a printer or laser marking system. A mark may be made in the course of manufacturing, such as by a machining tool or a molding process.
The present invention represents a widely applicable and simplified system and method for authenticating or determining provenance and/or authenticity of marked objects. Other advantages of the current invention will be described in association with the described embodiments.
Characterization function 130 may be any type of characterization suitable for the derivation of authentication and/or identifying information for marked object 140. For conventional light imaging technologies, characterization function 130 may be or be integrated with a camera, microscope, smart phone, scanner, Google Glass or other device. Other types of characterization may include fixed or portable instrumentation designed to provide such characterization.
A summary of example characterization methods are listed in Table 1. It should be understood that Table 1 is in no way exhaustive of possible characterization methods and that combinations of any of the listed methods are also possible. Any of the methods listed in Table 1 may be changed in order, replaced and/or combined with alternative methods known in the respective measurement art. For example, RGB color imaging may be substituted for CMYK color imaging.
Analysis function 110 may perform automatic determination of identifying information of marked object 140 such as size, text description, and/or color in addition to deriving authentication information from characteristic data. Identifying information may be used to index the authentication information of marked object 140. The authentication and identifying information may be obtained using analysis methods including, but not limited to, those listed in TABLE 2.
Authentication and/or identifying information produced by analysis function 110 may be stored into data storage 120 for future access. Data storage 120 may be a structured database such as a SQL database residing upon a local or networked server or may be “Cloud” or peer-based data storage. An authentication configuration associated with a marked object may include, but is not limited to, fields such as listed in TABLE 3. Certain data fields may be associated with object authentication and others may be associated with object provenance. The authentication data fields may be associated with the ability to relate an object to an object family during an authentication process such as process 300. The provenance data fields may be associated with the ability to relate the object family to a marking system and/or fabricator of origin.
As detailed further herein, analysis function 110 may analyze characteristic data from characterization function 130 to determine a hierarchy of authentication information including, but not limited to, 1) characteristic data such as an unprocessed optical image; 2) authentication data including one or more authentication features such as formatting data of a character derived from optical character recognition (OCR) processing of the optical image of the marked object or a polynomial-spline descriptive representation of the character outline derived from the optical, e.g., the Bezier curves or kerning of a character derived from optical character recognition (OCR) processing of the optical image of a marked object and 3) an authentication value as a scalar metric or probability for authenticity or provenance such as a 99% chance of belonging to a specific family of objects, a 99% chance that the object does not belong to a specific family of objects, and the like.
Marked object 140 may be any object suitably marked so as to permit characterization and authentication by such systems and methods as described herein. A summary of example marking methods and associated marked objects are listed in Table 4. It should be understood that Table 4 is in no way exhaustive of possible marking methods or of types of marked objects and that combinations of any of the listed marking methods and objects are also possible.
Features derived from characteristic data of reference objects useful for authentication may be sufficiently variable so as to provide the desired level of distinguishability or discrimination between different families of marked objects. However, the variability between the individual objects that are internal to a family may be ideally minimized. For example, when authenticating marked objects associated with multiple marking systems, the variability in features created by different marking systems may be high, but the variability of features of a single marking system may be low. Thus, the process of characterizing the object may indirectly characterize the marking system that made the object. The marked object may be tracked back to this marking system even though the object may have never been characterized. This contrasts with authentication using a PUF where ideally variability may be high at the object level, and objects are not traceable back to their marking systems of origin. The low degree of variability of features within a family of marked objects permits discrimination of these features amongst all marking systems. The predictability of and limited access to the marking systems giving rise to the features may enable secure authentication. Laser marking and other marking technologies discussed herein may provide this appropriate degree of variability and sufficient common features.
The information derived from authentication data may include information (such as scalar values) associated with a single set of data. The information derived from authentication data may include information about the variability of the data within a family. Even within a family the marking may not be expected to be completely reproducible, and some characteristic variability may be expected in a given data set. A measure of the variability of features from object to object may be incorporated into the authentication data, which in turn may provide information for the determination of authentication values. Authentication may be based on the presence of the appropriate amount of variability or patterns of variability in a reference authentication data set. Additionally, unexpectedly low variation may also be an indication of a lack of authenticity.
The unique variability of laser marking systems provides a set of authentication features associated with a specific marked object, but which may represent the laser marking system that created it rather than completely unique to the object itself. This fingerprint may arise, for example, from inconsistencies in x-y tracking, spatial light distribution and laser intensity that may be inherent to a given laser marking system, yet which may be distinct from system to system, and may make it possible to identify the provenance of the object by correlating its marking features with those characteristic of the marking system that marked the object.
Variation may be evaluated by utilizing an existing pattern, such as an existing lot numbering system, and measuring the profile of the marks and the geometric shape of the overall pattern to establish a relationship between the mark and a specific laser marking system. Variations may be enhanced by programming the system to create specific patterns that enhance the ability to distinguish systems from one another, for example by instructing the system to draw a mark with features finer than its specified resolving range or at spacings that may challenge the tolerance of the x-y translation platform. The variability from system to system may be more easily identified, or the control within a system may be enhanced.
Process 200 initiates with step 210 wherein any necessary or optional setup and preparation steps may be performed. Setup and preparation operations may include the requisition of the appropriate number of marked objects, warm-up or calibration of a characterization system, determination of expected appropriate characterization system methods and data analysis methods, and the like. Once any desired preparatory operations are completed, process 200 may advance to step 220.
Marking system identification step 220 may include determination and recording of the marking method, e.g., laser scribing; the determination and recording of the make, model, serial number, manufacturer and owner of the marking system,. e.g., LaserMark V12, S/N 123456789, produced in 2012 from Company XYZ, owned by Company ABC; or otherwise determining and recording of the source of the marked objects which may also derive from a known and trusted 3rd party rather than a manufacturer. This identifying information may be important in ascertaining the provenance of a subsequently measured marked object. It may further aid in the determination of authenticity, since the individual and deterministic features derived from each individual marking system and associated marked object may define the basis for the authentication data, algorithms and/or metrics.
Process 200 may include step 230 wherein a number of objects may either be marked using the marking system identified in step 220 or may be retrospectively verified as having been marked with the identified system or obtained from the identified source. Process 200 may be applied to existing marked objects subsequent to manufacture, for example, as long as the authenticity or provenance may be verified or otherwise indicated by some other method prior to inclusion of the existing marked objects into a database of reference authentication information. As used herein, “authenticity” may be generally applied to verifiably known counterfeit marked objects as well as marked objects of known provenance in general.
Process 200 may include step 240 wherein the marked objects are characterized with at least one characterization system and method such as described in association with
Process 200 may include step 250 wherein the captured characteristic data collected during step 240 may be analyzed and authentication information may be derived based upon methods appropriate to the type of marked object, the marking method, and the characterization method. Iteration of the analysis method may be desired for a new family of marked objects to provide stable and useful reference authentication information.
Derivation of authentication information follows from a chosen method of characterization such as optical imaging and a selection of a suitable method for the extraction of features from the characteristic data. For example, optical character recognition may be usefully combined with font reconstruction for authentication. Once an extraction method has been selected, a series of subprocesses may be undertaken to derive the authentication data. These subprocesses include, but are not limited to, extraction of features, analysis of extracted features, categorization of features, weighting and selection of features, classification of features and testing of the discrimination ability of features. These subprocesses may be performed in a wide variety of order and multiples of some subprocesses may be used. A detailed example of the derivation of reference authentication data for semiconductor chip packages follows in association with
Reference authentication information for families of semiconductor packages may be derived and authentication process evaluation may be performed by optical imaging of semiconductor chip packages followed by optical character recognition and font reconstruction processing to extract authentication features from the laser markings. A plurality of chip packages of known provenance and known association with more than one laser marking system may be first characterized by optical imaging. These optical images may next be converted to grayscale images and then custom font processed so that glyph feature information may be used for authentication. Custom font processing may be performed by application of software such as ClearScan (Adobe Systems Inc., San Jose, Calif.) to the grayscale images which may produce a type 1 postscript output, supplemented by case, kerning, font size/scaling and other character information.
Processing of this output may include one or more of: 1) analysis of the differences between similar glyphs marked by different laser marking systems, 2) the analysis of chip-to-chip variations within glyphs marked by the same laser marking system, 3) determination of a feature-vector mask that excludes feature dimensions that do not convey marking system information, 4) construction of an optimized system classifier from the inter- and intra-system statistics of glyph features, 5) proving of a clustering algorithm or linear classifier that correctly classifies every chip in the set of chips using a reduced set of features, 6) calculation of the resolving ability of the system classifier, and 7) evaluation of the performance of this classifier based on observed feature statistics.
For creation of a marking system classifier, a representative template may be created for each marking system to be classified by registering and averaging the characterization image data from all the chips in the collection, then de-noising and inverting the resultant image to generate a grayscale representation of the markings. Next a custom font may be created for the characters in each of the templates for the different families by digitizing the templates as a scannable document using a machine-vision character designation system, e.g. Clear Scan or Decapod (Decapod, available online at http://wiki.fluidproject.org./display/fluid/Decapod+0.7+Release). The glyphs may be represented as vector objects formatted as a type-1 CID font, which may also contain metadata about relative scaling and placement. The files for the OCR-resolved glyphs in the image and their formatting metadata may be extracted for later analysis and for import as a global (non-embedded) font using analysis tools such as FontForge (FontForge, available online at http://fontforge.github.io/) that may be used by other platforms.
In some embodiments, the template may be derived from images of the same object or objects, e.g., chip or chips, taken at multiple different exposure conditions. For example, images of a single chip may be taken using multiple different microscopes, multiple lighting brightness levels, multiple angles of illumination, and the like. For example, the template may be derived from images of a single chip in multiple conditions. The template may be derived from images of multiple chips under multiple conditions. The template may be derived from an image of a single chip that has been synthetically (computationally) altered to simulate multiple different image capture conditions.
The performance of the system-classifier may be measured by analysis of the differences between similar glyphs marked by different systems. This process may include converting the type-1 font files to a uniformly-sampled vector of polygon vertices for comparison, calculating a similarity measure of each glyph from the template in each family with respect to the same glyph from the templates of the other marking system associated families, and rank-ordering the glyphs by dissimilarity values between marking systems. Subsequently an initial determination of which glyphs marked on the chip package carry the most useful information for distinguishing between marking systems and therefore useful for authentication may be performed. This may be done, for example, by converting the type-1 font files to a format that that permits the polygon-vertex of glyphs from different marking systems to be compared using a similarity measure, then identifying those glyphs that demonstrate the greatest dissimilarity (lowest similarity measure) between marking systems. An example measure for this purpose may be the Jaccard distance between all the primitives in the glyph, but a variety of measures may be applied to optimize discrimination between marking systems and minimize susceptibility to noise. This analysis may also reveal which feature vectors in the glyph contain the most information useful for authentication.
Analysis of chip-to-chip variations within glyphs marked by the same marking system may include preprocessing of each chip image to facilitate OCR digitization and font reconstruction, rendering each chip image as an OCR document with embedded custom font, extracting the CID files of the glyphs for each chip's individual custom sub-fonts for every chip in each marking system family, converting the type-1 font files to a uniform vector representation for comparison and calculating the similarity measure of each glyph on every chip in each marking system family with respect to the same glyph from all glyphs in the marking system family.
The set of features of the candidate glyphs for marking system recognition may be filtered to determine which features show the least sensitivity to random uncontrolled variations within a given marking system's markings, which may permit distinguishing between the same glyph created by different marking systems. A custom font may be created for each individual chip in the family marked by each of the marking systems using the methods previously described. Glyphs showing the greatest dissimilarity may be analyzed to determine which features show the greatest correlation among different chips marked by the same marking system and may carry the most useful authentication information. Features that show the least correlation may represent noise. A good measure for this purpose may be the Pearson correlation, but a number of measures may be used.
Construction of an optimized system-classifier from the inter- and intra-marking system statistics of glyph features may include filtering the features in the representation of each glyph according to utility in discriminating between intra- and inter-marking system differences, performing a hard-cluster analysis on the sub-set of reduced glyph features for each marking system, and optimizing the classifier to this set of glyph features using methods suited to the classifier type. At this point, a representation has been derived of the sub-font of glyphs present in the marking system on the chips as imprinted by each of the marking systems, plus a sub-set of features that provide the greatest discrimination between the characters created by different marking systems. This may be a standard multi-objective optimization problem, which may be treated by a number of algorithms such as a distribution based cluster algorithm, for example, based on the feature distribution functions derived from the chip statistics, or a k-mean clustering algorithm that presumes a known number of clusters. Alternatively, a neural network may be used to train the classifier to identify the most relevant features for discrimination. An optimized classifier may be constructed from a plurality of characters by adaptively combining the separate classification processes of a plurality of weakly discriminating characters to “boost” the classifier discrimination, e.g., using “AdaBoost” method by Freund and Schapire.
Calculation of the performance of the laser marking system classifier may include performing an internal evaluation of the classifier on all the chips within a first family or collection using the glyph features used to train the classifier, digitizing the laser markings from a second family or collection of chips and generate their glyph features using the methods discussed above, and performing an external evaluation of the classifier on all the chips in the second family or collection using the equivalent glyph feature. The internal evaluation may be performed by applying the classifier to the (digitized) laser training markings, and using the statistical distribution of points in the vector space generated by the classifier the characterize the resolution. A standard measure for characterizing the resolving power of a classifier such as the Davies-Bouldin index may be used. If this value is sufficiently high, it may be concluded that the classifier has high descriptive validity.
The external evaluation may be performed by first digitizing the laser markings on the second family or collection of chips using the procedure described above. The classifier may be applied to the glyph data for all the chips and the number of false positives and false negatives recorded. A standard measure for characterizing the resolving power of the classifier on the external data, such as the Fowlkes-Mallows index may be used. If the difference between this index and the internal index is small (i.e., the Fowlkes-Mallows index is also high), then it may be concluded that the classifier has high prescriptive validity as well.
A similar procedure may be applied to what may be described above for distinguishing between characters produced by different marking systems to the problem of distinguishing the formatting characteristics of each marking system. The formatting data—kerning, line spacing, in-line glyph placement—also may be captured and extracted using commercial OCR software. The relative positioning of a glyph in a character box may be contained in the metadata provided by ClearScan as “hints,” but rather than working with the ClearScan metadata to analyze the global layout of the markings on a chip, the labeled fonts may be exported for each marking system to other OCR platforms, e.g., FineReader (ABBYY, Milpitas, Calif.).
The system-markings templates created for each marking system may be rendered, then the formatting data extracted. This data may be treated as another feature set that may be distinct from the font features, and also may be represented in abstract vector form. The formatting vectors of all of the chips marked by the marking systems may be analyzed for similarities within a family or collection and dissimilarities between families or collections by the same procedures discussed above for glyphs. Because of the more discretized nature of a formatting data vector versus a glyph vector object, a measure such as the Tanimoto coefficient may be used for this purpose, although a number of measures may be used. The resolving power of the matrix may be measured before and after this addition to quantify the improvement made by the additional dimensionality.
The resolving power (“R”) of a given feature may be defined as the ratio of the specified control capability (dControl) of the production of a feature and the resolving capability (dAnalysis) of a characterization method used to characterize the feature: R=dControl/dAnalysis. The resolving power relates both to the level of variability in a feature as well as the ability of that feature to be used to discriminate amongst or within a family of marked objects.
For example, a lithographic process may have an alignment capability of 10 nm, and characterization by SEM may have a resolution of 1 nm, therefore the resolving power may be 10. This number may be low relative to the number of families of marked objects for which discrimination and unique identification may be desired. This problem of low R for a given characterization method may be partially alleviated by deriving multiple features from the characteristic data that result from the same manufacturing process, which may enhance the resolving capability as long as the features are decoupled from each other. For example, in analysis of laser marked objects, one may expect the laser spot size to be decoupled from the x-axis translation distance between characters, which in turn may be completely decoupled from the time the laser dwells in a location at the start of a character. These three different features may be characterized simultaneously to provide a resolving power that may be the product of each individual element: R=R1*R2*R3.
Some features may be partially decoupled, for example, the x-axis translation on a stage may be independent from the y-axis translation, or may not, and for such elements the true R may be empirically determined. For the derivation of the most robust authentication information, the highest possible theoretical resolving power may be targeted, and because of the multiplicative power of resolving unrelated elements, a rich feature space may be desirable to obtain the best results. The example laser mark identification system described herein may be based on optical imaging because of the richness of this space: the product of many small details such as line width, pooling, stroke patterns, and the like may enable improved resolving power when combined. The addition of other imaging modalities such as interferometry and SEM may offer further capability.
In various embodiments, the present invention may be used to analyze an intentionally marked object, such as an object that has been marked by a laser. Surprisingly and unexpectedly, sufficient information resides in the two-dimensional outlines that result from marking to successfully distinguished marked parts. This result was unexpected because laser marking systems may be used to “spoof” existing marks. Such systems are specifically designed with 25 or more different adjustable parameters so output can be tuned to mimic that from other equipment. However, the present methods may distinguish marking by two different tools, even when a first tool is professionally tuned to mimic the output from a second tool.
The mathematical framework described above may be highly modular—any feature that may be determined at a later stage to be useful may be added as a dimension into the authentication information without any significant changes to the framework itself. The improvements in resolving power associated with this new feature may be automatically calculated. The framework may allow for rapid evaluation of potential improvements as more data may be collected.
Process 200 may include to step 260 where a determination may be made of the suitability that the extracted features and derived authentication information may be appropriate for the authentication of the targeted marked object family. Determination of suitability may include cross-evaluation of the newly derived authentication data against the authentication data one or more existing families to assess distinguishability. For example, the calculation of a discrimination metric and comparison of the discrimination metric against a threshold may include, for example a value of 99%, to determine suitability. Such a threshold may be set as a goal or may be correspond to the number of available marked objects.
Since authentication may correspond to the interaction of the marking system and the marked object, a metric for authentication may include a value or threshold for discrimination between either/both marking systems or/and marked objects. Determination of a desired level of confidence of authentication may use a sufficient portion of a family of marked object to establish a level of confidence. However, determination of the desired level of confidence may proceed without characterization and analysis of 100% of a family of marked objects associated with a specific marking system.
Step 260 may include testing or enhancing the robustness of the authentication data by one or more of: 1) sampling nominally identical marked objects from the same marking system over a period of time (e.g., one week, one year, and the like), and evaluating suitability; 2) sampling similarly marked objects from a plurality of sources; 3) establishing minimum sample sizes and sampling frequencies desired to create the reference authentication data for that family of marked objects; 4) revising the derived authentication data over time to include only those features of the highest resolving power and most unspoofable features; 5) automatic inclusion of new families of marked objects and re-derivation of new authentication information for one or more families to improve discrimination and authenticity determination; 6) characterization of similar objects by different marking systems; 7) characterization and analysis of counterfeit objects and 8) characterization of different objects marked by the same marking system.
Process 200 may include step 280 wherein analysis parameters and other information may be stored for future access as an authentication configuration. If the authentication suitability threshold score and analysis determination ability is judged insufficient, process 200 may return to step 230 via route 275 and further objects may either be marked or added to the set to be analyzed. Optionally, process 200 may return to any of steps 240, 250 and 260 wherein alternative characterization and/or analysis methods may be applied to the marked objects.
Process 200 may terminates with end step 290 following completion of authentication thresholding and analysis of determination ability. Step 290 may include actions such as operator training, system configuration for automatic authentication, data archiving and/or documenting authentication procedures.
Process 300 may include step 340 wherein the captured characteristic data may be analyzed to derive the authentication data. Analysis methods and procedures described herein in association with TABLE 2 may follow a prescriptive method relayed in the authentication configuration and may include processing similar to analyses associated with step 250 of process 200. Process 300 may include step 350 wherein the current authentication data may be compared to the retrieved authentication data to determine a match value or probability of being authentic. The comparison method may be relayed in the authentication configuration and may include processing similar to analyses associated with step 250 of process 200.
Based upon the value of the authenticity score, process 300 may report an authentication PASS indication in step 360, an authentication FAIL indication in step 370 or an authentication SUSPECT indication in step 380. Additionally or optionally, process 300 may report a raw probability value or other finer or coarser indication ranges of authentication such as 5% or 99.7% chance of authenticity. In an authentication system having a user interface, the indication could be, for example, a colored indication with red for fail and green for pass. Process 300 may end with step 390 following indication of authenticity.
Characteristic data useful for authentication system 100 such as described in association with
For example,
The consistency of features between the markings for images 420 and 430 may be visually observed and inconsistencies of features between images 410, 440 and the pair 420 and 430 may also be visually observed. Observable features within these images are listed, but not limited to, those enumerated in TABLE 5.
Any of these individual features and associations amongst any one or more of these features may be used to define authentication data and one of more authentication features useful for comparison between related marked objects such as any two semiconductor chip packages within a family and between genuine and counterfeit marked objects which may represent different object families.
In detail, the analysis of the optical image characteristic data of
For example, the width of a single line that defines the letter ‘G’ may constitute a first scalar authentication feature in a set of authentication features associated with a family of marked semiconductor chip packages. Additionally, the width of the line that defines the number ‘4’ may constitute a second scalar authentication feature, and the width of the line beneath both the ‘G’ and the ‘4’ may constitute a third scalar authentication feature associated with a family of marked semiconductor chip packages. More authentication features may be defined based on other authentication data derived from the characteristic data of the marked semiconductor chip packages in the collection. For example, the x-y locations or rotation of the ‘G’ and ‘4’ characters relative to a defined fiducial or to each other may define a vector or matrix authentication feature for a family of marked semiconductor chip packages. Character grayscale values; data defining the Bezier curve associated with a font fit to the character; kerning between characters; size of the font and other authentication data may define additional authentication features.
Authentication data may include data dimensions related to the variation of the authentication features used to create the reference authentication data, so that calculations of likelihood of authentication between an unauthenticated marked object and the family of marked objects referred to by the reference authentication data may be made. Some authentication data and/or features may not be useful for permitting the establishment of association with and discrimination amongst other families of similar marked objects in a collection. Excessive or minimal variability in an authentication feature may inhibit definition of reference authentication data for a family since the feature may not permit grouping of or discrimination amongst families of marked objects in a collection.
Similar to the images of
Such consistencies and/or inconsistencies of features may be analyzed mathematically and reduced, such as by steps 250 and 260 of process 200, into a number of authentication features useful for determining authentication. Mathematical analysis may include determination of reduced basis sets, image deconvolution, image correlation, edge extraction, determination of fitting parameters designed to measure specific aspects of the image and/or application of mathematical analysis techniques such as principal component analysis or other analyses listed herein.
The laser markings may carry unique features at two different scales. The first scale may be uncontrolled variations in the uniformity and intensity of the laser marks created by nonlinear interactions between the laser and the beam delivery system, which may be identified by microscopic inspection at the level of the character and character elements. These features may be evident, for example, in the differences in features of the “N” in the upper left of both images 720 and 730 and readily observed in the edge-detected overlay 710.
The second scale may be unintended variations in the presentation of the characters and symbols with respect to each other and the physical chip package, which may result from interactions between the graphics software, control of the beam delivery head, and the time characteristics of the shuttering of the beam. These features may be evident, for example, in the differences in position and kerning of the majority of the characters and logo of both images 720 and 730 and may be readily observed in the edge-detected overlay 710. Any of these features may be used as authentication features if deemed suitable by analysis, such as discussed in association with process 200 and step 250.
Using the authentication methods and systems defined herein, the tablet may also be authenticated at any point along the distribution path from production and bulk packaging to the pharmacist and users. Additionally, the tablet authentication may proceed without changes to tablet manufacturing processes. Such tablet authentication may be performed by reading the tablet characters using a simple USB microscope or macro lens attachment for a smart phone. Image capture of a tablet may be done by any participant in the supply chain. Analysis of the image data and comparison of the tablet authentication data with reference authentication data stored in the cloud may provide an indication of a match or of a lack thereof.
The markings upon pharmaceuticals may include color or particle size distributions that may be sufficiently difficult to spoof and may be characterized by image processing or other techniques discussed herein. For example, the inclusion of pigment particles in pharmaceuticals is common practice. The FDA maintains a large list of pigments and dyes that may be included in drugs while exempt from batch certification, as well as dyes that are approved for drugs but subject to batch inspection. Example pigments and dyes suitable for use in this solution include: Iron oxide (rust), Carmine (red), Canthaxanthin (red-orange), Titanium dioxide (white), D&C Green No. 5, FD&C Blue No. 2, FD&C Yellow No. 6, and the like.
In the manufacture of a pharmaceutical tablet, at least one and often more than one of the above colored components may be mixed in with the drug as part of the pill formulation. The identity of the components, as well as the size of the particles, may be rotated on a regular basis, where each new batch may contain a distinct “code” including, for example, one or more of: the particle density (e.g., particles per square millimeter of surface of the pill); the particle size; the ratio of each particle with respect to the other; and the like. The particles may desirably be obtained in sizes not conventionally available on the open market, in order to discourage spoofing. Image analysis of these colored particles may provide authentication data for the tablet. Features related to the colored particles and to the marking and molding of a tablet may include relative particle positions, particle tilts, obscuration/embedment, and the like. Similarly, tablet grain size, texture and/or surface roughness related to mixing and pressing operations may provide features suitable for authentication using the system and methods of described herein by associating any tablet with specific production systems of known/controlled provenance.
The image may then be reviewed and deemed acceptable for authentication or may be discarded and a subsequent image captured. Process 1400 may include step 1440 where a user may activate control button 1320 “AUTHENTICATE” such as shown in
The changes described above, and others, may be made in the authentication systems described herein without departing from the scope hereof. For example, although certain examples are described in association with laser marked semiconductor chip packages, it may be understood that the authentication systems described herein may be adapted to other types of objects and other types are marking methodologies. Furthermore, authentication systems as described herein may include one or more types of measurement, characterization, analysis methods or systems. For example, systems and methods discussed herein for laser marked semiconductor chip package authentication may include die, wafer and package level authentication using infrared or Terahertz spectral bands of radiation to penetrate semiconductor chip packages in addition to visible light imaging for authentication of the semiconductor chip packages themselves. Different degrees of resolving power may be appropriate or achievable for each type of authentication performed.
For the semiconductor example, raw wafer vendor and foundry chip manufacturer, wafer segmentation and chip packaging, semiconductor contract manufacturers (CMs) who assemble devices onto circuit boards may be included within the authentication trail and use the defined authentication systems with low cost method of authentication that enables validation of both current production and legacy parts, absent direct participation by the semiconductor manufacturers themselves. Furthermore, the system and methods herein may provide the capability of non-contact validation of parts even after they installation on a circuit board, thereby enabling provenance identification, for example, for systems integrators.
Authentication and identification capability may be provided as a service by maintaining a database of known genuine objects, and charging a low cost subscription fee to contract manufacturers and upstream integrators to access it. In the field, end users may capture images of suspect parts using conventional USB-enabled microscopes, already installed in their facilities, and cloud-based software may be automatically perform identification calculations and feed back to the user confirmation of point of origin.
Capturing characteristic data from the object of authentication may include capturing two or more sets of characteristic data, e.g., images, and processing or selecting among the sets of characteristic data to determine an improved or desired set of characteristic data. For example, the two or more sets of characteristic data may be averaged or aggregated. A selection may be made among the two or more sets of characteristic data based on noise level, best fit to the reference characteristic data, number of parameters such as in deriving the authentication data as a set of Bezier parameters from the two or more sets of characteristic data, the relative OCR quality or efficiency operative on the two or more sets of characteristic data, and the like. The two or more sets of characteristic data may be captured from different wavelengths, using different characterization methods, and the like.
In some embodiments, the object of authentication and the one or more reference objects of authentication may include articles of manufacture. For example, the characteristic data may be captured from a mark on the article of manufacture. The article of manufacture may be, for example, a marked object such as a laser-marked computer chip. The mark may include a font character or glyph. The articles of manufacture may be laser-marked articles.
In several embodiments, the authentication may include subjecting the object of authentication to one or more of: imaging, profilometry, polarimetry, scatterometry, and microscopy. Deriving the authentication data from the characteristic data may include, for example, analyzing the characteristic data using one or more of: an image transform, statistical analysis, principle component analysis, optical character recognition analysis, font reconstruction, image analysis, polynomial spline fitting, Bezier curve spline fitting, Bezier curve extraction/characterization, Scalable Vector Graphic analysis, Unified Font Object analysis, image registration, wavelet analysis, spatial frequency analysis (e.g. Fourier analysis), and the like. The authentication data may include one or more authentication parameters provided by analyzing the characteristic data. The one or more authentication parameters may define one or more authentication functions, e.g., a Bezier curve or polynomial components thereof.
In various embodiments, comparing the authentication data to the electronic database may include comparing the one or more authentication parameters with one or more reference authentication parameters included by the reference authentication data in the electronic database. Comparing the authentication data to the electronic database may include mathematically determining between the authentication data and the reference authentication data one or more of: a similarity and a difference. Comparing the authentication data to the electronic database may include performing a statistical testing of one or more of the authentication data and the reference authentication data. Comparing the authentication data to the electronic database may include mathematically determining between the authentication data and the reference authentication data one or more of: a similarity and a difference.
In some embodiments, the electronic database may exclude authentication data derived from the object of authentication. The one or more reference objects of authentication may include a plurality of reference objects of authentication belonging to the same family.
In several embodiments, the method may include capturing reference characteristic data from the one or more reference objects of authentication. The method may include deriving the reference authentication data from the reference characteristic data of the one or more reference objects of authentication. The method may include storing the reference authentication data in the electronic database. Deriving the reference authentication data from the reference characteristic data may include analyzing the reference characteristic data using one or more of: an image transform, statistical analysis, principle component analysis, optical character recognition analysis, font reconstruction, image analysis, polynomial spline fitting, Bezier curve spline fitting, Bezier curve extraction/characterization, Scalable Vector Graphic analysis, Unified Font Object analysis, image registration, wavelet analysis, spatial frequency analysis (e.g., Fourier analysis), and the like. The reference authentication data may include one or more reference authentication parameters provided by analyzing the reference characteristic data. The one or more reference authentication parameters may define one or more reference authentication functions. The electronic database may include one or more secondary identifiers may correspond to the one or more reference objects of authentication. The method may include correlating the one or more secondary identifiers with the object of authentication according to the authenticity score. The one or more secondary identifiers may include one or more of: a name, a logo, a trademark, a vendor, a lot number, a date of manufacture, and a marking system description.
In various embodiments, the method may include reporting the authentication score. The authentication score may include one or more of: a Boolean value, a binned value, and a probability. The electronic database may include provenance data associated with the reference authentication data. Comparing the authentication data with the electronic database may include determining a corresponding provenance score of the object of authentication. The provenance data may include manufacturing origin data.
In some embodiments, capturing the characteristic data may include capturing an optical image of the object of authentication. Deriving the authentication data may include performing optical characterization recognition and font reconstruction of the optical image to provide a reconstructed font. Deriving the authentication data may include extracting from the reconstructed font one or more parameters of a polynomial spline or a Bezier curve spline representative of the reconstructed font to provide the authentication data comprising a spline font database. The reference authentication data may be derived from reference characteristic data captured from the one or more reference objects of authentication other than the object of authentication.
In several embodiments, capturing the characteristic data may include capturing an optical image of the object of authentication. Deriving the authentication data may include performing optical characterization recognition and font reconstruction of the optical image to provide a reconstructed font. Deriving the authentication data may include extracting from the reconstructed font one or more parameters of a polynomial spline or a Bezier curve spline representative of the reconstructed font to provide the authentication data comprising a spline font database. The authentication data may include the font Bezier curve parameters corresponding to marking system data. The reference authentication data may include reference marking system data. Comparing the authentication data with the electronic database may include comparing the marking system data with the reference marking system data to provide the authenticity score for the object of authentication. The authenticity score may correspond to a provenance score for the object of authentication. The reference marking system data may include a marking system used to mark the one or more reference objects of authentication.
In various embodiments, capturing the characteristic data may include capturing an optical image of the object of authentication. Deriving the authentication data may include performing optical characterization recognition and font reconstruction of the optical image to provide a reconstructed font. Deriving the authentication data may include extracting from the reconstructed font one or more parameters of a polynomial spline or a Bezier curve spline representative of the reconstructed font to provide the authentication data comprising a spline font database. The authentication data may include the font Bezier curve parameters corresponding to marking system data. The reference authentication data may include reference marking system data. Comparing the authentication data with the electronic database may include comparing the marking system data with the reference marking system data to provide the authenticity score for the object of authentication. The authenticity score may correspond to a provenance score for the object of authentication. The reference marking system data may correspond to a marking system used to mark the one or more reference objects of authentication. The reference marking system data may be derived from statistical testing of the reference authentication data.
In some embodiments, capturing the characteristic data may include capturing an optical image of markings on the object of authentication. Deriving the authentication data may include providing the optical image of the markings for the comparing. The reference authentication data may include at least one reference authentication image corresponding to the one or more reference objects of authentication. Comparing the authentication data with the electronic database may include determining a mathematical similarity or difference between the optical image of the markings and the at least one reference authentication image to provide the authenticity score for the object of authentication. The authenticity score may indicate whether the object of authentication has a same origin of manufacture, e.g., provenance, as the one or more reference objects of authentication.
In several embodiments, the object of authentication may include a solid form. As used herein, a solid form is a shape defined by a boundary. For example, solid forms may include font characters, glyphs, tool marking such as laser markings, and the like. Capturing the characteristic data from the object of authentication may include capturing the characteristic data from a boundary of the solid form. The characteristic data may correspond to one or more of: an authenticity of the solid form and a provenance of the solid form. Deriving authentication data from the characteristic data of the object of authentication may include analyzing the characteristic data to determine a plurality of arc segments. Each arc segment in the plurality of arc segments may correspond to at least one member of the characteristic data. The authentication data may include the plurality of arc segments. Comparing the authentication data with the electronic database including the reference authentication data to provide the authenticity score for the object of authentication may include comparing the plurality of arc segments to a plurality of reference arc segments include by the reference authentication data in the electronic database.
In some embodiments, analyzing the characteristic data to determine a plurality of arc segments may explicitly exclude using a neural network. In some embodiments, capturing characteristic data of a boundary of the solid form may explicitly exclude using a neural network. Further, for example, the method may explicitly exclude using a neural network.
In several embodiments, providing the solid form to be analyzed may include providing a marked object including the solid form. The solid form may include a font character or glyph. Identifying the characteristic data may include obtaining an image of the solid form on the marked object. The characteristic data may correspond to characteristic data as described herein. The characteristic data, e.g., an optical image of the characteristic data, may be examined using one or more of: image transforms, statistical analyses, principle component analyses, optical character recognition analyses and font reconstruction, image analyses, polynomial spline fitting, Bezier curve extraction, characterization by means of Bezier curves, Scalable Vector Graphics or Unified Font Objects, image registration, wavelet analyses and spatial frequency analysis. For example, the arc segments may be suitable for examination using any of the preceding techniques, e.g., Bezier curve extraction.
In some embodiments, the characteristic data may be analyzed using one or more of the preceding techniques to provide authentication data as described herein. For example, the plurality of arc segments may correspond to authentication data as described herein. Likewise, a plurality of reference arc segments may correspond to reference authentication data as described herein.
In various embodiments, the method may include capturing the characteristic data from one or more of an exterior boundary of the solid form and an interior boundary of the solid form. The characteristic data may collectively describe a closed contour circumscribing the boundary of the solid form. In some embodiments, the characteristic data may collectively describe an open contour delineating a portion of the boundary of the solid form.
In some embodiments, the solid form may be included by a marked object, e.g., the marked object described herein. For example, the solid form may be a glyph or font character marked on the object. Providing the solid form may include providing the marked object including the solid form. Providing the solid form may include marking an unmarked object to form the marked object, e.g., using a marking system as described herein.
In several embodiments, providing the solid form may include identifying at least one secondary identifier associated with the solid form. The at least one secondary identifier may include one or more of: name, vendor, lot number, date of manufacture, marking system description, and the like. For example, the name may be the name of the marked object. The vendor may be the manufacturer or seller of the marked object. The date of manufacture may correspond to the marked object. The marking system description may describe a marking system used to mark the object with the solid form, e.g., a laser marking system. The at least one secondary identifier associated with the solid form may include exogenous data associated with the solid form. The at least one secondary identifier associated with the solid form may include data incorporated in the solid form. For example, the solid form may include or be part of a plurality of glyphs, e.g., font characters, that recite or correspond to the name, the vendor, the lot number, the date of manufacture, and the like.
In various embodiments, identifying the characteristic data may include measuring the solid form using one or more of: imaging, profilometry, scatterometry, polarimetry, microscopy, and the like.
In some embodiments, determining the plurality of arc segments may include calculating a plurality of splines corresponding to the plurality of arc segments. Each spline may be calculated as a spline representation corresponding to the plurality of arc segments. The spline may be characterized by a plurality of polynomial functions. Further, calculating each spline in the plurality of splines may include dividing each corresponding arc segment into a plurality of arc sub-segments. Each plurality of arc sub-segments may be defined by a corresponding plurality of knots along each arc segment. Calculating each spline in the plurality of splines may include determining a plurality of knot coordinates in 2D space corresponding to the plurality of knots. The plurality of knot coordinates may be sufficient to specify a plurality of parameters of each corresponding spline. Each plurality of knots may be, for example, equidistant on an interval spanned by a corresponding parametric variable. The corresponding parametric variable may be effective to generate the plurality of knots along each corresponding arc segment.
In several embodiments, calculating each spline in the plurality of splines may include calculating a plurality of polynomial functions over a parametric variable of a fixed domain corresponding to each arc segment. The method may include calculating the plurality of polynomial functions in the form of a Bezier curve corresponding to each arc segment. The Bezier curve may be, for example, cubic or quadratic.
In some embodiments, the method may include comparing the solid form to at least one reference solid form by a feature to feature comparison of the characteristic data of the solid form to reference characteristic data of the at least one reference solid form. For example, the method may include providing the at least one reference solid form. The method may include analyzing the at least one reference solid form to identify the reference characteristic data of the reference boundary of the at least one reference solid form. The method may include determining a plurality of reference arc segments. Each reference arc segment in the plurality of reference arc segments may correspond to at least one member of the reference characteristic data.
In various embodiments, comparing the characteristic data to the reference characteristic data may include projecting the characteristic data according to location on the boundary of the solid form onto the reference boundary of the reference solid form. The method may include projecting the reference characteristic data according to location on the reference boundary of the reference solid form onto the boundary of the solid form. The method may include projecting the characteristic data according to location on the boundary of the solid form onto the reference boundary of the reference solid form. The method may include locating each of the characteristic data at a corresponding intersection. Each corresponding intersection may be between a line perpendicular to the boundary of the solid form and a nearest neighbor location on the reference boundary of the reference solid form. The method may include projecting the reference characteristic data according to location on the reference boundary of the reference solid form onto the boundary of the solid form. The method may include locating each of the reference characteristic data at a corresponding reference intersection. Each corresponding reference intersection may be between a line perpendicular to the reference boundary of the reference solid form and a nearest neighbor location on the boundary of the solid form.
In some embodiments, comparing the characteristic data to the reference characteristic data may include projecting the characteristic data according to location on the boundary of the solid form onto the reference boundary of the reference solid form. The method may include locating each of the characteristic data by mapping a nearest neighbor point on the reference boundary of the reference solid form with a corresponding point of the characteristic data. The method may include projecting the reference characteristic data according to location on the reference boundary of the reference solid form onto the boundary of the solid form. The method may include locating each of the reference characteristic data by mapping a nearest neighbor point on the boundary of the solid form with a corresponding point of the reference characteristic data.
In several embodiments, comparing the solid form to the at least one reference solid form by the feature to feature comparison may include one or more of (A) and (B). Method portion (A) may include providing a plurality of reference arc segments. Each reference arc segment in the plurality of reference arc segments may correspond to at least one member of the reference characteristic data. Each reference arc segment in the plurality of reference arc segments may include a beginning reference point, an ending reference point, and at least one intermediate reference knot. Method portion (A) may include determining proximity of a reference point on the reference solid form to the beginning and ending reference points of each reference arc segment by projecting the beginning and ending reference points and the at least one intermediate reference knot of each reference arc segment onto the boundary of the solid form. Method portion (A) may include determining proximity of a reference point on the reference solid form to the beginning and ending reference points of each reference arc segment by locating each of the plurality of reference arc segments to determine the proximity. Locating each of the plurality of reference arc segments to determine the proximity may proceed according to a corresponding intersection between a line perpendicular to the boundary of the solid form and a nearest neighbor location on the reference boundary of the reference solid form. Locating each of the plurality of reference arc segments to determine the proximity may proceed according to a nearest neighbor point mapped on the reference boundary with a corresponding point of the characteristic data on the boundary. In method portion (B), each arc segment in the plurality of arc segments may include a beginning point, an ending point, and at least one intermediate knot. Method portion (B) may include determining proximity of a point on the solid form to the beginning and ending points of each arc segment by projecting the beginning and ending points and the at least one intermediate knot of each arc segment onto the reference boundary of the reference solid form. Method portion (B) may include determining proximity of a point on the solid form to the beginning and ending points of each arc segment by locating each of the plurality of arc segments to determine the proximity. Locating the plurality of arc segments to determine the proximity may proceed according to a corresponding intersection between a line perpendicular to the reference boundary of the reference solid form and a nearest neighbor location on the boundary of the solid form. Locating the plurality of arc segments to determine the proximity may proceed according to a nearest neighbor point mapped on the boundary with a corresponding point of the plurality of reference arc segments on the reference boundary.
For example, for each arc segment, the corresponding beginning point, ending point, and knot may correspond to authentication parameters as described herein. Similarly, for each reference arc segment, the corresponding beginning reference point, ending reference point, and reference knot may correspond to reference authentication parameters as described herein. Comparing the solid form and the reference solid form may include comparing such authentication parameters to such reference authentication parameters, e.g., by determining a mathematical similarity or difference between the authentication data and the reference authentication data. For example, comparing the solid form and the reference solid form may include comparing the beginning point, ending point, and knot corresponding to each arc segment to the beginning reference point, ending reference point, and reference knot corresponding to each reference arc segment.
In various embodiments, distinguishing the solid form from the at least one reference solid form may include calculating an area between the at least one arc segment and the at least one reference arc segment. The beginning point and the ending point of each arc segment may respectively be nearest neighbors to the reference beginning point and the reference ending point of each corresponding reference arc segment. The reference beginning point and the reference ending point of each corresponding reference arc segment respectively may be characterized by a normal beginning reference line and a normal ending reference line. The method may include determining the beginning point and the ending point of each corresponding arc segment from respective intersections of each arc segment with the normal beginning reference line and the normal ending reference line. For example, the method may include calculating areas broken down by the beginning point of the reference arc to a first control-point knot, from the first control point knot to a second control point knot (e.g., in a cubic Bezier spline), and from the second control point knot to the ending point, and the like. For example, a quadratic Bezier curve may include two features per arc segment, a cubic Bezier curve may include three features per arc segment, and the like.
In some embodiments, the number of arc segments for the plurality of arc segments may be equal to a number of reference arc segments of the plurality of reference arc segments.
In several embodiments, the method may include determining the beginning point and the ending point of each corresponding arc segment from respective intersections of each arc segment with the normal beginning reference line and the normal ending reference line. The characteristic data may belong to one or more of: an unknown authenticity and an unknown provenance. The reference characteristic data may belong to a corresponding one or more of: a known authenticity and a known provenance.
In various embodiments, comparing the solid form to the at least one reference solid form may include classifying the solid form as belonging to or excluded from one or more of: the known authenticity and the known provenance. Accordingly, classifying the solid form may determine authenticity or provenance of the solid form, e.g., corresponding to a marked object including the solid form. Classifying the solid form as belonging to or excluded from one or more of the known authenticity and the known provenance may correspond to determining a class value indicative of belonging or exclusion. For example, classifying the solid form as belonging to or excluded from one or more of the known authenticity and the known provenance may include determining an authentication value as described herein, a provenance value as described herein, and the like. Classifying the solid form as belonging to or excluded from one or more of the known authenticity and the known provenance may correspond to reporting the class value indicative of belonging or exclusion. The class value may include, for example, a Boolean value or a probability indicative of belonging or exclusion. For example, the class value may include: a Boolean value “true” value indicating authenticity or provenance of a corresponding solid form; a Boolean value “false” value contradicting authenticity or provenance of a corresponding solid form; a probability of authenticity or provenance of a corresponding solid form; and the like.
In some embodiments, the method may include providing an electronic database including the reference authentication data. The electronic database including the reference authentication data may include a representation of the reference solid form according to one or more of: the known authenticity and the known provenance. The method may include comparing the solid form to the at least one reference solid form by, for example, classifying the solid form with respect to the electronic database. The solid form may be classified as belonging to or excluded from one or more of: the known authenticity and the known provenance. For example, the electronic database may be stored in and accessed from the data storage described herein. The electronic database may include or correspond to the reference authentication data described herein. The electronic database may include reference authentication parameters as described herein, e.g., the plurality of reference arc segments and corresponding beginning reference points, ending reference points, and reference knots. The representation of the reference solid form may correspond to the plurality of reference solid forms and the plurality of reference solid forms may be related by class, e.g., derived from a plurality of marked objects from the same family as described herein.
In several embodiments, the method may include providing an electronic database including the reference authentication data. The electronic database may include a representation of a synthetic reference form according to one or more of: the known authenticity and the known provenance. The synthetic reference form may be derived from a plurality of the reference solid forms. The method may include comparing the solid form to the at least one reference solid form by classifying the solid form with respect to the electronic database. The solid form may be classified as belonging to or excluded from one or more of: the known authenticity and the known provenance. Classifying the solid form may include using one or more of: a clustering formulation and a classifier. Classifying the solid form may include one or more of: K-means clustering, Neyman-Pearson classifying, Kolmogorov-Smirnoff classifying, and Mann-Whitney classifying.
In several embodiments, the method may include providing a plurality of reference solid forms collectively belonging to a known authenticity and/or a known provenance. The method may include identifying a plurality of reference characteristic features corresponding to a plurality of reference boundaries of the plurality of reference solid forms. The method may include combining the reference characteristic data of the plurality of reference solid forms to create a synthetic reference solid form associated with a plurality of synthetic reference characteristic features. The synthetic reference solid form may be representative of one or more of: the known authenticity and the known provenance. The method may include comparing the solid form to the synthetic reference solid form by comparing the characteristic data of the solid form to the plurality of synthetic reference characteristic features of the synthetic reference solid form. The method may include calculating a statistical distribution of the reference characteristic data may correspond to the plurality of reference solid forms. The statistical distribution may be calculated by comparing individual members of the plurality of reference solid forms with the synthetic reference solid form. The statistical distribution of the reference characteristic data may include a standard deviation of corresponding reference characteristic features. The standard deviation of corresponding reference characteristic features may be among the plurality of reference solid forms with respect to a corresponding member of the plurality of synthetic reference characteristic features of the synthetic reference solid form. The statistical distribution of the reference characteristic data may include higher order moments of corresponding reference characteristic features. The corresponding reference characteristic features may be among the plurality of reference solid forms with respect to a corresponding member of the plurality of synthetic reference characteristic features of the synthetic reference solid form.
In various embodiments, the method may include providing a plurality of the solid forms to be analyzed. The plurality of solid forms may collectively belong to an unknown authenticity and/or an unknown provenance. The method may include identifying a plurality of the characteristic features corresponding to a plurality of the reference boundaries of the plurality of solid forms. The method may include combining the characteristic data of the plurality of solid forms to create a synthetic solid form associated with a plurality of synthetic characteristic features. The synthetic solid form may be representative of one or more of: the unknown authenticity and the unknown provenance. The method may include calculating a statistical distribution of the characteristic data corresponding to the plurality of solid forms by comparing individual members of the plurality of solid forms with the synthetic solid form. The statistical distribution of the characteristic data may include a standard deviation of corresponding characteristic features. The standard deviation of corresponding characteristic features may be among the plurality of solid forms with respect to a corresponding member of the plurality of synthetic characteristic features of the synthetic solid form. The statistical distribution of the characteristic data may include higher order moments of corresponding characteristic features. The higher order moments of corresponding characteristic features may be among the plurality of solid forms with respect to a corresponding member of the plurality of synthetic characteristic features of the synthetic solid form.
In some embodiments, the class may include one or more of: a known authenticity class, an unknown authenticity class, a known provenance class, and an unknown provenance class. The electronic database may include a representation of one or more of: the known authenticity class, the unknown authenticity class, the known provenance class, and the unknown provenance class. The class may include one or more of: an unknown authenticity class and an unknown provenance class. The method may include classifying the at least one plurality of reference objects of authentication with respect to exogenous known class data such that the electronic database includes a representation of the class as one or more of: a known authenticity class and a known provenance class. The exogenous class data may include secondary identifiers, as described herein, or other information about a class derived from a source other than the characteristic data.
In several embodiments, the method may include conducting the providing, the identifying, the determining, and the preparing with respect to two or more pluralities of reference objects of authentication. Each plurality of the two or more pluralities of reference objects of authentication may collectively belong to a different class, such that the electronic database may include representations of each different class according to the two or more pluralities of reference objects of authentication.
In various embodiments, the method may include determining at least one synthetic reference object of authentication corresponding to the at least one plurality of reference objects of authentication such that the at least one synthetic reference object of authentication may be representative of the class. Determining the at least one synthetic reference object of authentication may include combining the reference authentication data to form corresponding synthetic reference authentication data. Determining the at least one synthetic reference object of authentication may include combining the reference characteristic data to form corresponding synthetic reference characteristic data. Preparing the electronic database may include collecting the synthetic reference data, such that the electronic database may include a representation of the class according to the at least one synthetic reference object of authentication.
In some embodiments, the method may include respectively calculating a statistical distribution of the characteristic data corresponding to the at least one plurality of reference objects of authentication. Calculating a statistical distribution may include comparing individual members of the at least one plurality of reference objects of authentication with the at least one synthetic reference object of authentication. Preparing the electronic database may include incorporating the statistical distribution such that the electronic database may include a representation of the class characterized by the statistical distribution with respect to the at least one synthetic reference object of authentication. Each statistical distribution may include a standard deviation. Each statistical distribution may include a plurality of higher order moments.
In various embodiments, providing the plurality of objects of authentication may include providing an unmarked object of authentication and marking the unmarked object of authentication. The method may include providing the second plurality of objects of authentication. The second plurality of objects of authentication may belong to the second family. Capturing the plurality of characteristic data may include capturing the plurality of characteristic data from the second plurality of objects of authentication belonging to the second family. Analyzing may include performing statistical testing to determine the authentication parameters. Analyzing may include performing statistical testing to determine the separation of the first and second families in a vector space of the authentication parameters. Analyzing may include performing an optimization to choose vectors suitable for maximizing the distance between the first and second families. The vectors may be suitable for discriminating the plurality of objects of authentication of the first family from the second plurality of objects of authentication belonging to the second family.
In various embodiments, characterization module 1802 may include one or more of: an imager, a profilometer, a scatterometer, a polarimeter, and a microscope. Processor 1808 may include one or more of: a local processor, an embedded processor, a distributed processor, a smart phone, a smart watch, a personal computer; and a tablet computer. Processor 1808 may include a portable computing device including one or more of: a smart phone, a smart watch, a personal computer, and a tablet computer. Data storage module 1804 may include one or more of: a memory included by the portable computing device and a remote storage system (e.g., network storage, cloud storage, and the like) accessed by the portable computing device. Characterization module 1802 may include an optical imager included by the portable computing device, e.g., a smart phone camera.
In some embodiments, the reference authentication data may correspond to one or more reference objects of authentication other than the object of authentication. The object of authentication and the one or more reference objects of authentication may include articles of manufacture. The object of authentication may include an article of manufacture and processor 1808 may be programmed to operate characterization module 1802 to capture the characteristic data from a mark on the article of manufacture. The mark may include a font character, glyph, laser marking, and the like. For example, the articles of manufacture may be laser-marked articles.
In several embodiments, processor 1808 may be programmed to derive the authentication data from the characteristic data including analyzing the characteristic data. The analyzing may include using one or more of: an image transform, statistical analysis, principle component analysis, optical character recognition analysis, font reconstruction, image analysis, polynomial spline fitting, Bezier curve spline fitting, Bezier curve extraction/characterization, Scalable Vector Graphic analysis, Unified Font Object analysis, image registration, wavelet analysis, spatial frequency analysis (e.g., Fourier analysis), and the like. Processor 1808 may be programmed to derive the authentication data including one or more authentication parameters by analyzing the characteristic data. Processor 1808 may be programmed to provide the one or more authentication parameters defining one or more authentication functions. Processor 1808 may be programmed to compare the authentication data to the electronic database 1806 by comparing the one or more authentication parameters with one or more reference authentication parameters. The one or more reference authentication parameters may be included by the reference authentication data in the electronic database 1806. Processor 1808 may be programmed to compare the authentication data to the electronic database 1806 by mathematically determining between the authentication data and the reference authentication data one or more of: a similarity and a difference. Processor 1808 may be programmed to compare the authentication data to the electronic database 1806 by performing a statistical testing of one or more of the authentication data and the reference authentication data. Processor 1808 may be programmed to compare the authentication data to the electronic database 1806 by mathematically determining between the authentication data and the reference authentication data one or more of: a similarity and a difference. Processor 1808 may be programmed to access the electronic database 1806 excluding authentication data derived from the object of authentication. The one or more reference objects of authentication may include a plurality of reference objects of authentication belonging to the same family.
In various embodiments, processor 1808 may be programmed to capture reference characteristic data from the one or more reference objects of authentication. Processor 1808 may be programmed to derive the reference authentication data from the reference characteristic data of the one or more reference objects of authentication. Processor 1808 may be programmed to store the reference authentication data in the electronic database 1806 in the data storage module 1804. Processor 1808 may be programmed to derive the reference authentication data from the reference characteristic data including analyzing the reference characteristic data using one or more of: an image transform, statistical analysis, principle component analysis, optical character recognition analysis, font reconstruction, image analysis, polynomial spline fitting, Bezier curve spline fitting, Bezier curve extraction/characterization, Scalable Vector Graphic analysis, Unified Font Object analysis, image registration, wavelet analysis, spatial frequency analysis (e.g., Fourier analysis), and the like. Processor 1808 may be programmed to provide the reference authentication data including one or more reference authentication parameters by analyzing the reference characteristic data. Processor 1808 may be programmed to provide the one or more reference authentication parameters defining one or more reference authentication functions. Processor 1808 may be programmed to access the electronic database 1806 including one or more secondary identifiers corresponding to the one or more reference objects of authentication. Processor 1808 may be programmed to correlate the one or more secondary identifiers with the object of authentication according to the authenticity score. The one or more secondary identifiers may include one or more of: a name, a logo, a trademark, a vendor, a lot number, a date of manufacture, and a marking system description.
In some embodiments, processor 1808 may be programmed to report the authentication score. The authentication score may include one or more of: a Boolean value, a binned value, and a probability. Processor 1808 may be programmed to access the electronic database 1806 including provenance data associated with the reference authentication data. Processor 1808 may be programmed to compare the authentication data with the electronic database 1806 to determine a provenance score of the object of authentication. The provenance data may include manufacturing origin data.
In several embodiments, processor 1808 may be programmed to capture the characteristic data by capturing an optical image of the object of authentication. Processor 1808 may be programmed to derive the authentication data by performing optical characterization recognition and font reconstruction of the optical image to provide a reconstructed font. Processor 1808 may be programmed to derive the authentication data by extracting from the reconstructed font one or more parameters of a polynomial spline or a Bezier curve spline representative of the reconstructed font to provide the authentication data comprising a spline font database. The reference authentication data may be derived from reference characteristic data captured from the one or more reference objects of authentication other than the object of authentication.
In various embodiments, processor 1808 may be programmed to capture the characteristic data by capturing an optical image of the object of authentication. Processor 1808 may be programmed to derive the authentication data by performing optical characterization recognition and font reconstruction of the optical image to provide a reconstructed font. Processor 1808 may be programmed to derive the authentication data by extracting from the reconstructed font one or more parameters of a polynomial spline or a Bezier curve spline representative of the reconstructed font to provide the authentication data comprising a spline font database. The authentication data may include the font Bezier curve parameters corresponding to marking system data. The reference authentication data may include reference marking system data. Processor 1808 may be programmed to compare the authentication data with the electronic database 1806 by comparing the marking system data with the reference marking system data to provide the authenticity score for the object of authentication. The authenticity score may correspond to a provenance score for the object of authentication. The reference marking system data may correspond to a marking system used to mark the one or more reference objects of authentication.
In some embodiments, processor 1808 may be programmed to capture the characteristic data by capturing an optical image of the object of authentication. Processor 1808 may be programmed to derive the authentication data by performing optical characterization recognition and font reconstruction of the optical image to provide a reconstructed font. Processor 1808 may be programmed to derive the authentication data by extracting from the reconstructed font one or more parameters of a polynomial spline or a Bezier curve spline representative of the reconstructed font to provide the authentication data comprising a spline font database. The authentication data may include the font Bezier curve parameters corresponding to marking system data. The reference authentication data may include reference marking system data. Processor 1808 may be programmed to compare the authentication data with the electronic database 1806. by comparing the marking system data with the reference marking system data to provide the authenticity score for the object of authentication. The authenticity score may correspond to a provenance score for the object of authentication. The reference marking system data may correspond to a marking system used to mark the one or more reference objects of authentication. The reference marking system data may be derived from statistical testing of the reference authentication data.
In several embodiments, processor 1808 may be programmed to capture the characteristic data by capturing an optical image of the object of authentication. The reference authentication data may include at least one reference authentication image corresponding to the one or more reference objects of authentication. Processor 1808 may be programmed to derive the authentication data by providing the optical image of the markings for the comparing compare the authentication data with the electronic database 1806 by determining a mathematical similarity or difference between the optical image of the markings and the at least one reference authentication image to provide the authenticity score for the object of authentication. The authenticity score may indicate whether the object of authentication has a same origin of manufacture, e.g., provenance, as the one or more reference objects of authentication.
In several embodiments, instructions 1902 may be configured to control the measurement system including one or more of: an imager, a profilometer, a scatterometer, a polarimeter, and a microscope. Instructions 1902 may be configured to control the processor including one or more of: a local processor, an embedded processor, a distributed processor, a smart phone, a smart watch, a personal computer; and a tablet computer.
Instructions 1902 may be configured to control the processor, e.g., as incorporated into aa portable computing device, such as one or more of: a smart phone, a smart watch, a personal computer, and a tablet computer. Instructions 1902 may be configured to control the processor to access the data storage. The data storage may include one or more of: a memory included by the portable computing device and a remote or storage system accessed by the portable computing device. Instructions 1902 may be configured to control the processor to control the measurement system, e.g., an optical imager included by the portable computing device. For example, instructions 1902 may be incorporated into a smart phone as a suitable set of program instructions or “app” for operating a processor, a memory, and a camera of the smart phone. Instructions 1902 may be configured to control the processor to operate a marking system to mark solid forms on objects, e.g., any of the marking systems described herein, such as a laser marking device.
In several embodiments, instructions 1902 may be configured to carry out one or more of any of the methods described herein for authentication, preparing an electronic database including the reference authentication data, and the like.
Images of individual semiconductor packages were captured using a 1 Mb USB camera connected to a laptop. The images were converted to greyscale and registered to common fiducials, then binarized and rendered as black-on-white representations, as shown in
A collection of images from a common source was averaged and thresholded to generate a template glyph, as shown in
The area differences at each control point between the test part and the template were calculated and rank ordered, as shown in graph 2100 in
The embodiments described above enable anti-counterfeiting, authenticity and provenance determination techniques so that authentication tracking and control can be performed throughout the supply chain of the objects. In particular, the authentication data derived from the characteristic data of the object of authentication is compared to the reference authentication data to determine the authenticity. In some embodiments, sorting of the objects may be performed prior to the authentication process. For example, in some embodiments, the reference authentication data may not be readily available and have to be created based on unverified objects before the authentication process may be performed. The unverified objects may be sorted into one or more distinct groups. One or more reference objects may represent the one or more distinct groups, and reference authentication data may be derived from the one or more reference objects and used for the authentication process.
As an example, sorting semiconductor chips or integrated circuit (IC) chips by package markings is discussed below. It should be appreciated that the systems and methods discussed in the present embodiments may be used for sorting and/or authenticating any suitable objects, not limited to IC chips.
In some embodiments, there are characteristic variations in the markings attributed by the differences in the marking tools and/or systems, resulting in variations in recognizable features that distinguish different marking tools and/or systems. Thus, package markings may be used to identify the manufacturing origin of IC chips. Rigorous description of feature space in terms of discrete sampling points on the perimeter of each marking may be used for authentication. The sampling points may be determined using similar methods that enables postscript printing, namely the description of a particular glyph in terms of a spline of Bezier curves on its perimeter.
The creation of a characteristic feature basis describing the package markings also makes it possible to sort IC chips of the same type according to the tool that marked the IC chips without prior information about any of the tools. Sorting according to common data characteristics is generally known as grouping. The difference between grouping and authentication may be when the marking characteristics of a particular tool are known, the feature space of the tool is given, and a sampling basis exists or can be generated. For ungrouped chips, because there is no reference feature basis, a common feature basis is created before the authentication process may be performed.
In some embodiments, every set of package markings are independently reduced to a set of sampling points using one of the cited methods, preferably a Bezier-curve spline. The same algorithm for finding the best spline fit may be used for each IC chip. Thus, the difference between the fits is deterministic in the sense that the same merit/objective function is applied until the same optimization criterion is met. In order to group the results, a feature-by-feature comparison is necessary, which requires that a common set of feature points be established for the entire set. In one embodiment, this is implemented by finding the average number of sample points for each marking over the entire set, then resolving the description of every marking to the same number of sample points by interpolation on the curve described by the spline. Analysis set forth above may be carried out in any suitable numerical computing environment, such as MATLAB available from MathWorks, Inc, headquartered in Natick, Mass., USA.
In some embodiments, finer features on the IC chips with lots of variations are averaged out, while IC chips with less variations are sampled at points where no significant feature data is found on that IC chip, but is on other IC chips in the set. This common data set can be used in any number of grouping algorithms, which identify groups of patterns in the value (location) of the feature points among the chips in the unsorted set. In some embodiments, spectral methods may be used to create a matrix of pairwise differences between the feature vectors of every marking on every IC chip in the set, then searches for nearly invariant subspaces in the features space among sets of IC chips.
The search is performed over all the eigenspaces of the pairwise similarity matrix, which denumerate the number of groups over the spectrum of eigenvalues. A merit function is constructed to determine the best grouping based on the ratio of dissimilarity within each group relative to dissimilarity between groups. Searching over eigenspaces continues until the peak value is found.
It is non-trivial to effectively sort a large number of objects (IC chips). Instead of the aforementioned Kolmogorov-Smirnoff classifying method, methods of spectral theory are adapted to find the most likely groupings in an arbitrary set of objects. Specifically, “spectral” refers to the spectrum of eigenvalues in a matrix perturbation expansion of the Affinity matrix of the feature space.
Capturing the characteristic data (2302) may include subjecting the plurality of objects to one or more of: imaging, profilometry, polarimetry, scatterometry, and microscopy. Creating a plurality of feature points in a feature space based on the characteristic data (2304) may include reducing the characteristic data to a set of sampling points using one or more of: an image transform, statistical analysis, principle component analysis, optical character recognition analysis, font reconstruction, image analysis, polynomial spline fitting, Bezier curve spline fitting, Bezier curve extraction/characterization, Scalable Vector Graphic analysis, Unified Font Object analysis, image registration, wavelet analysis, and spatial frequency analysis.
Grouping the plurality of objects using spectral methods (2306) may be a non-trivial process and will be discussed below. With reference to step 2308 of the method 2300, the grouping methods discussed below may contribute to building or updating reference data (e.g., the electronic database 1806) useful for authentication of objects. In some embodiments, step 2308 may be omitted if reference data already exists. Step 2310 determining authenticity of an object of the plurality of objects may be carried out using the system 1800. The method 2300 may be carried out in combination with any of the methods 1500, 1600, and 1700 set forth above.
The present disclosure introduces the use of parametric representations of the perimeter curves of two dimensional solid forms as a feature basis that can be used to authenticate the provenance of objects using machine vision classification of their identification markings. The method of authentication classified the markings as either displaying features that match authentic markings or displaying features that differ from the authentic markings outside the range of statistical likelihood.
A further use for the feature-space description of identification markings is presented by the problem or sorting objects into groups that have common provenance without any prior knowledge of the number of groups or the distinguishing feature characteristics of the groups. In order to group markings according to their marking features, a quantitative measure of similarity or dissimilarity of markings based on their features may be constructed, which may involve the creation of a similarity metric on the feature space.
In order to make a quantitative comparison of the marking features on different objects, it is important to distinguish between true dissimilarities and spurious distortions in their images. Such imaging distortions manifest as differences in scale, rotation and skew, which mathematically comprise the affine transformations. Before comparing markings that may have been imaged separately, it is important to remove any differences that correspond to an affine transformation. This may be accomplished by first selecting a representative instance of each marking, then normalizing every marking in the set of objects to be grouped to the best fit to this representative marking under 2D affine transformations.
Following the affine normalization of the markings, a feature-set description of the markings may be generated according to the methods discussed earlier using Bezier-curve splines, curvelet splines, etc., and using a consistent algorithm for generating the feature coordinates, including selection of the entry-point on the contours, the criteria for feature placement and size, criteria for refining features by subdivision, and the objective function that determines when to terminate the refinement.
Even with a completely consistent algorithm for generating the feature space description of similar markings, some markings will have more feature coordinates than others because of inessential variations, whereas markings with different provenance will present variations in feature coordinates that result from essential variations. In order to create a metric on the feature coordinates for a marking, each character marking are characterized by the same number of feature coordinates, and each similar marking is projected or lifted to a sampling space with the same number of samples. One method of uniformizing the sampling is to find the average number of features for a marking in the set of objects, then interpolating or extrapolating the feature coordinates for each marking in the set to a common basis according to the sampling disparity. In some embodiments, this uniformization can be implemented using MATLAB functions (e.g., interpl).
The distance between equivalent markings on different objects is quantified by introducing a distance metric on the feature space. The appropriate distance metric may depending on the data type, such as Euclidean, Manhattan, Chebyshev, Hamming distance, etc. The aggregate feature vector for each marked object is quantified by concatenating the feature coordinates for each marking in a fixed order and generating equal length vectors for each object. The similarity of two marked objects is represented by the difference between their feature vectors calculated using the distance metric .
The similarities of all object pairs can be arranged in the form of a matrix, which is called the Similarity Matrix. For N objects, the Similarity Matrix comprises an N×N antisymmetric matrix with entries comprising the difference between the aggregate feature vectors for each object ordered by row/column indices. If the objects belonged to k groups which each had identical markings, the elements of the Similarity Matrix would be zero for objects that belong to the same group, and non-zero for objects that belong to different groups. This suggests that the Similarity Matrix can serve a basis for grouping marked objects, provided the scale of the feature-vector distance between objects for the case of non-identical objects belonging to the same group can be distinguished from the scale of the distance between objects in the case of objects belonging to different groups.
Distinguishing the two cases can be formulated mathematically using methods derived from matrix perturbation theory. The method of spectral theory has been developed to distinguish the perturbed degenerate eigenvectors of a square matrix from inequivalent non-degenerate eigenvectors based on the spectrum of eigenvalues of the matrix. See A. Y. Ng, et al., Advances in Neural Information Processing Systems (NIPS) 14, 2002. In this method, the Affinity Matrix comprises an N×N symmetric matrix that extracts the similarity between related eigenvectors relative to the dissimilarity between unrelated eigenvectors through the introduction of a variable scale parameter lambda. The Affinity Matrix is constructed by squaring the Similarity Matrix (e.g., taking the matrix product of the transpose of the Similarity Matrix with the Similarity Matrix), dividing by a scale parameter lambda, and multiplying by minus one, forming an N×N Gaussian kernel that is then exponentiated. The eigenvectors of the Affinity Matrix include normalized column vectors, each of whose entries is the similarity of a particular object to other objects with combinations of feature represented by the direction of eigenvectors of Affinity Matrix
The first k eigenvectors of the Affinity Matrix provide a basis of feature combinations that divide objects into k groups. The direction of the eigenvectors and their corresponding eigenvalues are functions of the scale parameter lambda, and varying the scale parameter has the effect selecting different feature combinations for the feature groupings. Each eigenvector represents an independent dimension in the abstract space of feature groupings, and the coefficients of each row correspond to the location of a particular object in this abstract space. Grouping objects into k groups translates to the problem of finding the best grouping of the objects based on their coordinate locations in the k dimensional Cartesian subspace spanned by the first k eigenvectors of the Affinity Matrix.
Accordingly, finding the optimum grouping of objects using spectral methods is solvable by means of standard clustering algorithms, such as k-means clustering within the space defined by the eigenvectors of the Affinity Matrix. The optimized overall grouping is found by first finding the optimum grouping within each subspace by varying the spectral parameter until the grouping returns the best figure of merit, then successively increasing the size of the subspace until the best global figure of merit results.
The merit function for k groups may provide a measure of how close together objects within a group are relative to how far apart the groups are in the k-dimensional subspace of the N-dimensional space of eigenvectors of the Affinity Matrix. The data for constructing such a merit function is supplied by the k-means clustering function in MATLAB, which returns the variables idx, C, sumd, and D that characterize the best partitioning of objects into k groups, where idx is the list of assignments of each object to one of k groups, C is the location of the centroid of each group in the coordinate space of eigenvectors of the Affinity Matrix, sumd comprises the sum of distances of each object in a group to the group centroid, and D represents the distance of each object to the centroid of every group.
An exemplary embodiment of the merit function for determining the optimum grouping of objects, formulated using the values returned by the k-means clustering algorithm, is provided by the following MATLAB formula:
merit_fcn=norm(sum_C./size(C,1),1)/norm(sumD./clust_num(1:length(sumD))
If the figure of merit is greatest for two groups, it is necessary to calculate the merit of a single group relative to two groups. In the exemplary case, this is performed by first calculating the value of the spectral parameter that optimizes grouping every object within a single group. The single grouping is considered to be optimal when the standard deviation of the affinity values of all the objects relative to their mean affinity value is minimized; the intra-group spacing is calculated as twice the minimum value of the standard deviation. This value is compared to the distance between the centroids of two groups for the value of the spectral parameter that optimize the two-group figure of merit; the lesser of the two distances determines the better grouping.
The optimum grouping of objects according to the methods of the invention may be implemented by the following steps. Step 1 may include expressing each marking on every object in terms of feature coordinates. Step 2 may include resampling the feature coordinates of each marking so that the same marking on every object is described by the same number of feature coordinates. Step 3 may include creating an aggregate feature vector for each object by concatenating the feature coordinates for each marking in a prescribed order. Step 4 may include assigning a distance metric to the feature vectors as appropriate to the data type (e.g. Euclidean distance, Hamming distance, etc.). Step 5 may include generating the Similarity Matrix for the objects by taking the distance between the feature vectors of the objects ordered by row/column indices. Step 6 may include generating the Affinity Matrix among the objects by multiplying the Similarity Matrix by its transpose, multiplying by minus one, dividing by a variable spectral parameter lambda, and exponentiating the resulting matrix Gaussian kernel. Step 7 may include finding the normalized eigenvalues of the Affinity Matrix and order them according to the magnitude of their eigenvalues. Step 8 may include applying a clustering algorithm to the rows of eigenvector columns of the Affinity Matrix starting with the first two columns. Step 9 may include calculating the figure of merit for the grouping using a merit function that measures the aggregate ratio of the distance between groups to the distance of objects within a group to the group centroid. Step 10 may include varying the spectral parameter and recalculating the figure of merit until the largest figure of merit is obtained for the grouping. Step 11 may include increasing the number of groups by one, repeating steps 9 and 10, and iterating until the magnitude of the figure of merit begins to decrease. Step 12 may include determining that the number of groups that maximizes the figure of merit represents the optimal grouping of objects according to their feature characteristics. If the optimum number of groups is two, comparing the distance between the centroids of the two groups to the standard deviation of the elements of the principle eigenvector, and if the two-group centroids are farther apart than twice the standard deviation of the elements of the principle eigenvector, all the objects belong to a single group.
In view of the foregoing, with reference to the method 2300, the step 2306 grouping the plurality of objects using spectral methods may include resampling the plurality of feature points so that each of the plurality of objects is described by the same number of feature coordinates. The step 2306 may include concatenating the plurality of feature points in a prescribed order to create feature vectors; selecting a distance metric on the feature vectors; and constructing a Similarity Matrix of pair-wise differences between the feature vectors for all of the plurality of objects. The step 2306 may include constructing an Affinity Matrix comprising the negative of the square of the distances between all of the plurality of objects calculated using the distance metric, divided by a variable spectral parameter, and exponentiated; and calculating eigenvectors of the Affinity Matrix, wherein the eigenvectors are column vectors normalized to unity and rank ordered according to corresponding eigenvalues.
The step 2306 may include associating each of the plurality of objects with a row in eigenvector columns according to the ordering of the plurality of objects in the Affinity Matrix. The step 2306 may include applying a clustering algorithm to rows of the first two eigenvector columns to identify two clusters of the plurality of objects grouped with respect to their affinity values in each eigenvector column. The step 2306 may include calculating a figure of merit for grouping of the plurality of objects into the two clusters found by the clustering algorithm and varying the variable spectral parameter until the best figure of merit is found.
Furthermore, in step 2306, finding the best figure of merit may include successively adding an additional eigenvector column and applying the clustering algorithm to find the number of clusters of the plurality of objects grouped with respect to their affinity values in each eigenvector column, wherein the number of clusters equals the number of eigenvector columns for each successive addition of an eigenvector column to the eigenvector columns. Finding the best figure of merit may include calculating a figure of merit for each successive grouping of the plurality of objects with respect to their affinity values in each eigenvector column and varying the variable spectral parameter until the best figure of merit is found for each grouping of the plurality of objects, wherein the number of groups equals the number of eigenvector columns for each successive addition of an eigenvector column. Finding the best figure of merit may include terminating the calculation when the best figure of merit found is less than a previous best figure of merit with one fewer eigenvector columns. In some embodiments, the optimum number of groups is two, which is determined by: comparing the distance between the centroids of the two optimum groups to a standard deviation of the affinity values of each object represented in the principle eigenvector. When the distance between the centroids is greater than twice the standard deviation of the affinity values of the plurality of objects appearing in the principle eigenvector, assigning all of the plurality of objects to a single group. When the distance between the centroids is less than twice the standard deviation of the affinity values of the plurality of objects appearing in the principle eigenvector, assigning the plurality of objects to the two groups.
In some embodiments, finding the best figure of merit may be a process of finding the tightest grouping, with “tightness” measured by the intra-distances between objects within groups relative to inter-distances between the groups. The grouping of the objects may be determined based on the measured tightness. For example, based on the measured tightness, it may be determined that grouping the objects in two groups is more accurate than grouping the objects in one group.
The method 2300 for sorting objects may be carried out by a sorting module 1810.
In some embodiments, it may be very time-consuming and/or computationally intensive to authenticate every single objects, especially when the number of objects is very large. In these embodiments, the objects may be sorted into one or more distinct groups prior to authenticating the objects. For example, without a sorting process, every single one of a large number of objects is compared to the authentication data to determine the authenticity. Instead, if the large number of objects are first sorted into distinct groups, only the representative objects from each groups are compared to the authentication data. If the representative objects are determined authentic, objects in the entire group are authentic.
It should thus be noted that the matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense. The following claims are intended to cover all generic and specific features described herein, as well as all statements of the scope of the present method and system, which, as a matter of language, might be said to fall there between.
This application claims priority to and is a continuation-in-part of U.S. patent application Ser. No. 16/188,413, filed on Nov. 13, 2018 which claims priority to and is a continuation of U.S. patent application Ser. No. 14/981,888, filed on Dec. 28, 2015 which claims priority to U.S. patent application Ser. No. 14/656,705, filed on Mar. 12, 2015, which claims priority to U.S. Provisional Patent Application No. 61/952,122, filed on Mar. 12, 2014, the entire contents of each of these applications are incorporated herein by reference.
This invention was made with Government support under Contract W911NF-14-C-0038 awarded by the U.S. Department of Energy. The Government may have certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61952122 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14981888 | Dec 2015 | US |
Child | 16188413 | US | |
Parent | 14656705 | Mar 2015 | US |
Child | 14981888 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16188413 | Nov 2018 | US |
Child | 16395646 | US |