In general, this disclosure related to printing systems and methods of printing on substrates.
Droplet ejection devices are used for depositing droplets on a substrate. Ink jet printers are a type of droplet ejection device. Ink jet printers typically include an ink supply to nozzle path. The nozzle path terminates in a nozzle opening from which ink drops are ejected. Ink drop ejection is controlled by pressurizing ink in the ink path with an actuator, which may be, for example, a piezoelectric deflector, a thermal bubble jet generator, or an electro statically deflected element. A typical printhead has an array of ink paths with corresponding nozzle openings and associated actuators, such that drop ejection from each nozzle opening can be independently controlled. In a drop-on-demand printhead, each actuator is fired to selectively eject a drop at a specific pixel location of an image as the printhead and a printing substrate are moved relative to one another. In high performance printheads, the nozzle openings typically have a diameter of 50 microns or less, e.g., around 35 microns, are separated at a pitch of 100-300 nozzle/inch, have a resolution of 100 to 3000 dpi or more, and provide drop sizes of about 1 to 70 picoliters or less. Drop ejection frequency can be 10 kHz or more.
Printing accuracy is influenced by a number of factors, including the size and velocity uniformity of drops ejected by the nozzles in the head and among multiple heads in a printer. The drop size and drop velocity uniformity are in turn influenced by factors such as the dimensional uniformity of the ink paths, acoustic interference effects, contamination in the ink flow paths, and the actuation uniformity of the actuators.
Generally, the invention relates to printing systems and methods of printing on substrates, In an aspect, a method of printing one or more images using a printhead, the method includes moving a substrate on a transporter, providing a printhead configured to print a plurality of print lines in a direction, rotating an image to an image angle (i.e., about 45 degrees) relative to the direction of the print lines,and printing the image rotated to an image angle onto the substrate.
Implementations may include one or more of the following features. The method can include moving the transporter to a transporter angle (i.e., about 45 degrees) relative to the printhead, the transporter angle substantially equals the image angle.
In another aspect, a method of printing one or more images on a substrate using a printhead, the method includes moving a substrate on a transporter in a direction, rotating at least two orifices on a printhead to an orifice angle (i.e., about 45 degrees) relative to the transporter, the printhead configured to print a plurality of print lines in a direction substantially parallel to the direction of the transporter, rotating an image to an image angel relative to the print lines, and printing the image rotated to an image angle.
Implementations can include one or more of the following features. The method can include orifices that are parallel it a side of the printhead, or orifices that are rotated to the orifice angle relative to a side of the printhead.
In an aspect, a printing system includes a printhead configured to print a plurality of print lines in a direction, a transporter for moving a substrate relative to the printhead, and an image rotated to an image angle (i.e., about 45 degrees) relative to the direction of the print lines, the printhead prints the image onto the substrate.
Implementations can include one or more of the following features. The printing system can include the transporter being rotated to a transporter angle relative to printhead and the transporter angle substantially equals the image angle. The printing system can include and image database for storing images, a digital imager for processing the image, or a computer network through which the image travels to the printhead. The system can also include an ink reservoir or a control unit to control functions. of the printhead, The printhead can include at least two orifices rotated to an orifice angle relative to the transporter. The orifices can be parallel to a side of the printhead or rotated to the orifice angle relative to a side of the printhead.
These printing systems and methods of printing create less noticeable jet-out artifacts. A jet-out artifact is a black space left through an image when a jet becomes inoperative and stops depositing ink. Also, when printing rotated images, if either the transporter or the orifices are rotated, the substrates may be printed closer together. Furthermore, printing rotated images increases jet sustainability. Since more jets are used to print rotated images than are used to print parallel or perpendicular images, it is less likely that jets will dry out or clog. If a jet dries out or clogs, a jet-out artifact may be left on the image.
a is a top view of an image on a substrate.
b is top view of a rotated image of
a is a top view of the image of
b is a top view of the rotated image of
a & b are bottom views of a printhead with orifices parallel to a side of the printhead.
a & b are bottom views of a printhead with orifices aligned at an angle relative to a side of the printhead.
Referring to
More specifically, and discussed in greater detail below, digital imager 18 processes the images 14 by electronically rotating the image 14 relative to the print lines before sending the image 14 to a printhead 24. The printhead 24 prints the image 14 onto a substrate 16 traveling on the transporter 28, which in this embodiment includes a conveyor belt that moves along rollers 30. Additionally, the printing system 10 includes an ink reservoir 32 to store one or more inks, and in this embodiment, includes a control unit 34 for performing different functions, such as monitoring the ink level, managing data transfers, sensing a jet-out, or controlling the temperature of the ink.
The printing system 10 may print one image 14 on one substrate 16, or multiple images on one substrate 16. In a preferred embodiment, the printing system 10 prints one or more images 14 on multiple substrates 16 traveling along the transporter 28.
By rotating an image to be printed on a substrate, jet-out artifacts are less noticeable. If a jet dries out or clogs, a jet-out artifacts may be left on the image. A jet-out artifact is a blank space left through an image when a jet becomes inoperative an stops depositing ink (see
Referring to
Referring to
As shown in
In addition to less noticeable jet-out artifacts, printing rotated images increases jet sustainability. Since more jets are used to print rotated images than are used to print parallel or perpendicular images, it is less likely that jets will dry out or clog. For example, if rows of text are printed and the rows are parallel to the print lines, the jets corresponding to the spaces between the rows of text will not be used, On the other hand, if the rows of text are rotated to angle relative to the print lines, most, if not all, of the jets will be used because the spaces between the rows are no longer parallel to the print lines.
Conversely, in
In
Referring to
Similarly, the printing system 500 in
In some embodiments of
In some embodiments of
Other embodiments are within the scope of the claims. For example, although printing system is shown having one imaging system, in other applications, a number of imaging systems associated with the same or different transporter may by connected to the computer network.
The printing systems may be used to print on substrates of any shape, such as round, rectangular, planar, or nonplanar. Some types of substrates may include food products, such as confectionery, gum, cookies, crackers, yogurt, ice cream, and pastries. Other substrates may include paper products, such as envelopes, stationery, business cards, as well as foil wrappers, candy wrappers, food packaging, textiles, plastic products, or round shaped objects, like golf balls. Also, the substrate may be a paper web. The images printed on the substrates may be text, graphic, or any combination thereof.
Other embodiments may use other printing systems, such as rotary printing, drum printing, thermal bubble jet printing, continuous ink jet, laser printing, and helical printing.
Referring to
Before the images are rotated, they have a rectangular orientation. The images are then rotated and have a skewed rectangular orientation. To make the images rectangular for bitmap rasterization, the skewed regions are filled with zeros. These skewed regions cause the consecutive images to be further apart and make it difficult to print on substrates close together on a conveyor. To move the images closer together, the images are overlaid and combined by “or” logic function. For example, image 2 overlays image 1 and covers a few pixels of image 1. The “or” logic function ensures that the pixels in image 1 that are overlaid by image 2 will still be printed. The images can also be slanted after they are rotated, which permits the images to be overlaid even closer together.
This claims priority to U.S. Application Ser. No. 60/729,940, filed on Oct. 25, 2005.
Number | Date | Country | |
---|---|---|---|
60729940 | Oct 2005 | US |