The present invention relates to a system and method for producing bread products. The present invention also relates to bread products that can be manufactured with the system and method.
It is well known to produce a bread product such as a bread loaf from a dough component. Such bread products are typically baked in an oven in a process that results in the transformation of the monolithic dough component into a central interior portion or crumb and a thin but readily discernible exterior surface or crust. In the preparation of a bread product the crust and crumb are finished or baked under identical operating conditions (e.g. temperature time humidity, air movement, etc.). The crust is formed by the Malliard reaction which occurs at the exposed surface of the dough component when the bread product is baked.
It is well-known that the crumb and crust of a baked bread product will typically exhibit different characteristics of, for example, color, texture and taste, notwithstanding that the crumb and crust are formed of the same dough component and baked under identical operating conditions. The crust of a bread product is readily visible and prominent and may in some contexts be an important consideration in customer selection or preference.
That the bread product is baked as a monolithic form constrains the ability in production to establish significant variations in the characteristics of the crust and crumb for a given dough component or bread product of a given shape and size. While it is possible to select from a wide variety of formulations of dough components for a bread product, it is typical that compromises are accepted in terms of desired characteristics of crumb and crust in the preparation of a bread product. For example, if specific desired characteristics of the crumb are intended then it may be difficult or impossible to produce specific desired characteristics of the crust for the bread product. Likewise, it may be difficult to achieve with efficiency and consistency a desired combined characteristic or effect of crust and crumb in a bread product made of a monolithic dough component that is baked under identical operating conditions.
If the crust of the bread product is tasteful while the crumb is unappealing, the effort to produce a quality bread product is not a success. As is not uncommon, if the crumb of the bread product is appealing and tasteful but the crust of the bread product is not attractive or as appealing or tasteful, the effort to produce a quality bread product has still fallen short of the ideal. The ultimate result is likely to produce waste and inefficiency when the bread product is served and consumed (for example, the bread product when served may only be partially consumed by persons who eat the bread crumb but do not eat the bread crust and instead leave some or all of the crust behind on their plates as residual waste).
It is known to provide various treatments for the exterior surface of the dough component of a bread product before and during baking in an effort to alter the formation of the crust. It is also known to produce foodstuffs from layers of dough components. But such treatments and techniques are not understood in widespread implementation for commercially-produced multi-component bread products having one dough component for the crumb and another dough component for the crust.
There is identified an opportunity for an improved system and method of producing a multi-component baked bread product in which one selected dough component forms the interior crumb and another selected dough component provides the exterior surface that forms the crust of the baked bread component. There is identified an opportunity to produce such a bread product with such a system and method in a manner that is suitable for efficient high-volume commercial production. There is identified an opportunity for an improved multi-component baked bread product that provides a crust and crumb that can each be selected to exhibit desired characteristics (e.g. achieved through selection of their respective individual dough components) and that in combination are tasteful and appealing. There is identified an opportunity for an improved system and method to produce a variety of improved multi-component bread products efficiently with consistency and quality and in a variety of forms and types that each are tasteful and appealing to purchasers/consumers (e.g. more likely to be consumed in full, in all portions including the crust).
The present invention relates to a multi-component bread product for commercial production configured to be finished under operating conditions into a baked bread product having a crumb provided from a dough mass and a crust provided at an exterior layer. The bread product comprises a first dough component dispensed as the interior dough mass that will form the crumb of the bread product when the bread product is finished into a baked bread product and a second dough component applied to provide the exterior layer on the dough mass having an exposed surface at which the crust of the bread product will form when the bread product is finished into a baked product. The first dough component is formulated from a first set of ingredients and the second dough component is formulated from a second set of ingredients. When the bread product is finished into a baked bread product the operating conditions produce (a) in the interior dough mass a crumb having certain desired characteristics and (b) in the exterior layer a crust having certain desired characteristics.
The present invention also relates to a system to produce a multi-component bread product with an interior dough mass formed from a first dough component and an exterior layer formed from a second dough component. The system comprises (a) a mixing station configured to mix a first dough component from a first set of ingredients and to mix a second dough component from a second set of ingredients; (b) a forming station configured to form the bread product by dispensing the first dough component into the interior dough mass and applying the second dough component as the exterior layer onto the interior dough mass; (c) a finishing station configured to finish the bread product into a bread product for commercial distribution. When the bread product is baked into a baked bread product under operating conditions the interior dough mass will form the crumb of the baked bread product and the crust of the baked bread product will form at an external surface of the exterior layer applied to the dough mass. The first set of ingredients and the second set of ingredients are selected so that when the bread product is finished into baked bread under the operating conditions the crumb exhibits certain desired characteristics and the crust exhibits certain desired characteristics.
The present invention further relates to a method of producing a multi-component bread product for commercial distribution to be finished under operating conditions into a baked bread product. The method comprises the steps of: (a) mixing a first dough component from a first set of ingredients; (b) mixing a second dough component from a second set of ingredients; (c) forming the bread product by dispensing first dough component into an interior dough mass and depositing second dough component as an exterior layer onto the interior dough mass; (d) finishing the bread product into a finished bread product. The bread product is baked into a baked bread product under operating conditions. The interior dough mass will form the crumb of the baked bread product and the crust of the baked bread product will form at an external surface of the exterior layer applied to the dough mass. The first set of ingredients and the second set of ingredients can be selected so that when the bread product is finished into a baked bread product the operating conditions produce the crumb having certain desired characteristics and the crust having certain desired characteristics.
The present invention further relates to an apparatus configured to produce a multi-component bread product with an interior dough mass formed from a first dough component mixed from a first set of ingredients and an exterior layer formed from a second dough component mixed from a second set of ingredients. The apparatus comprises a dispenser to dispense the first dough component into the interior dough mass and a dispenser to apply the second dough component as the exterior layer onto the interior dough mass. When the bread product is baked into a baked bread product under operating conditions the interior dough mass will form the crumb of the baked bread product and the crust of the baked bread product will form at an external surface of the exterior layer applied to the dough mass. The first set of ingredients and the second set of ingredients are selected so that when the bread product is finished into baked bread under the operating conditions the crumb exhibits certain desired characteristics and the crust exhibits certain desired characteristics.
The summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
Referring to
According to a preferred embodiment, the first dough component and the second dough component (which typically will be baked simultaneously in identical operating conditions of temperature, time, humidity, air movement, etc. when the baked product is produced) can be independently selected so that each of the crust and the crumb independently will exhibit desired characteristics and the crust-crumb combination will produce a desired composite characteristic for the multi-component baked bread product. According to a preferred embodiment, the baked bread product will comprise a multi-component bread product formed of dough components that together provide a desired effect or characteristic, e.g. texture, consistency, flavor, aroma, color, shape, size, mass/density, shelf-life, etc. According to particularly preferred embodiments, for example, a bread product of a particular form may be produced with one type of base dough component for the crumb and multiple different available options for the dough component for the crust, each crust-crumb combination of which can be selected for a purpose achieved in the baked bread product (e.g. to suit tastes of customers, to produce desired aesthetic affects, to enhance shelf-life, or to obtain other desired effects or combinations of desired effects in the composite baked bread product). As indicated, the ability to independently select separate dough components for the crumb and the crust of a baked bread product allows for production of as many different types of bread products as there are corresponding different compatible crust-crumb combinations available (e.g. through different combinations of dough components). According to exemplary and other embodiments, the system and method allows the selection of the respective dough components for the base and layer to be based on considerations and preferences of the persons who are designing or producing the bread product (and such persons may have widely-varying intent, tastes and preferences for the characteristics to be exhibited).
It is generally known to form a multi-layer effect in a dough-based product with application of a sheet layer or laminate. Such known principles are adapted and applied according to exemplary embodiments of the system and method for producing a bread product. For example, as shown representationally in
Referring to
Referring to
According to an exemplary embodiment, shown schematically in
According to an exemplary embodiment, the dough component may be allowed a period of time to proof (e.g. ferment or leaven) prior to being dispensed for application or encapsulation with the layer. As indicated schematically in
As shown schematically in
As indicated schematically in
According to any preferred embodiment, the forming station/apparatus is configured to apply a dough component (layer) that will provide the exterior surface to become the crust of a baked bread product to a dough component (dough base or dough ball) that will become the crumb of the baked bread product in a suitable manner as to form a two-component baked bread product when baked that exhibits a desired characteristic or set of characteristics of crust-crumb combination (see
As indicated schematically in
As shown schematically in
As indicated for example in
Referring to
The operation of the mixing station is shown according to an exemplary embodiment in
The operation of the forming station is shown schematically in
The operation of a forming station is shown in
According to alternative embodiments, the forming operation may comprise other steps such as proofing (e.g. allowing the dough product to leaven/rise, see
According to an exemplary embodiment, the system including the forming station may be configured so that a variety of different forms and types of bread products can be produced at the production facility. The apparatus employed in the forming station (e.g. as shown schematically in
The operation of a finishing station is shown schematically in
The operation of a packing station to prepare the product for commercial distribution is shown schematically in
According to exemplary and other embodiments, the system and method can be adapted (in whole or in part or parts) to be incorporated in improvements of any of a wide variety of known/conventional and other production systems and methods currently in use in the production of bread products. For example, apparatus of the system and method (e.g. including any fixture/tool or station as shown in the FIGURES) may be adapted and/or installed and included in improvements of existing/in-use or future-developed systems and methods of manufacturing bread products so that such bread products may be produced in an improved form and manner (e.g. including any bread product as shown in the FIGURES) according to exemplary and other embodiments. According to an exemplary embodiment, an existing or future system and method for producing bread products may be adapted and modified/improved to include an apparatus to deposit or form a layer on a dough base to produce a multi-component bread product that when baked has a crumb formed of one dough component (from the dough base) and a crust formed at the surface of another dough component (at the exterior of the layer).
As shown schematically in
Referring to
As shown schematically in
As indicated schematically in
According to other exemplary embodiments, the co-extrusion system or extrusion system may be of any type suitable for formation and handling of a multi-component bread product. As indicated, sizing and arrangement and configuration of the elements of the system can be adapted/modified or adjusted to form set bread products that have a desired overall shape and proportion and a desired thickness of the dough component for the layer applied to the dough component for the center portion as desired or designed for the purpose or requirements. According to any preferred embodiment, the ingredients for each dough component of the multi-component bread product may be selected and formulated so that the baked bread product exhibits desired characteristics of crust and crumb (as well as properties to facilitate the forming and finishing operations).
Ingredients for each dough component of the multi-component bread product may be formulated as suitable for the types of bread product as well as culinary considerations (of taste, texture, color, etc.) and to facilitate the efficient operations of forming process. According to exemplary embodiments, the operations of the forming process may be adapted for suitability to the dough components of the bread product; for example, a thick layer of dough component intended for a bread product to form a relatively thick crust may be applied to a dough base in a system such as shown in
According to a preferred embodiment, the layer providing the exterior surface forming the crust will be of a thickness in a range between approximately 1 and 3 mm. According to any preferred embodiment, the layer forming the crust will be formulated to produce an intended effect and result in terms of the characteristics of the crust upon baking (e.g. through the Malliard reaction or other effect). As indicated, according to other exemplary embodiments, the thickness of the crust, and the intended effect achieved through the Malliard reaction (or other reaction or effect), the formulation of the dough composition for the layer can be modified or adapted over a wide range of types, shapes, tastes, purposes, etc. of bread products. As also indicated, the crust may form at or through some or all of the layer depending upon the thickness of the layer and the operating conditions of baking (e.g. temperature, time, humidity, air movement, etc.) as well as upon the formulation of the dough component for the layer (e.g. the crust may form only at an outer surface but not entirely through the entire layer).
Dough components may also be selected and combined by other characteristics intended to facilitate the forming operation (such as viscosity, flow-ability, density, adhesion, etc.). Operating conditions for baking or par-baking in the finishing operation (e.g. temperature, time, humidity, air movement, etc.) may also be adjusted or adapted to facilitate or establish characteristics of the dough components (e.g. to facilitate adhesion of the layer to the surface of the dough ball). Surface treatments or other preparations may be employed at or upon the interface of the dough base to the layer to facilitate the forming process (e.g. other ingredients may be applied to the surface of the dough base before deposition of the dough component for the layer).
Specific formulations of the dough component (or dough components) for a bread product according to exemplary embodiments, can be determined by the type of bread product intended to be produced and desired characteristics intended to be obtained in the bread product. According to any exemplary embodiment, formulations of a dough component may be adjusted or adapted for particular purposes as determined by the situation or need. As also understood to those of skill in the art, independent of the specific formulations of the dough components, other factors can affect the texture or flavor of a baked bread product, for example, mixing techniques, fermentation time, and the operating conditions of the baking/cooking procedure. According to any preferred embodiment, each dough component may be formulated to produce desired effects in the baked bread product, such as flavor, aroma, texture, consistency, color, shape, size, mass/density, shelf-life, etc.
Formulations for the dough components are expressed (by weight) in what is called a “baker's percentage” where the flour (or type of flour) that makes up the bulk of the formula is expressed as 100 percent (one unit) and all other ingredients are scale-based (by weight) on the unit of flour of the formulation of the dough component. As an example, a formulation for a baguette may be expressed as shown in TABLE 1. As indicated, the percentages of each ingredient may be adjusted within ranges and to suit the operating conditions for baking the bread product; suitable substitutions may also be employed for certain ingredients as or if necessary or appropriate.
Flour and water with a suitable amount of salt mixed to a suitable consistency will generally formulate a dough component suitable to produce bread products using the processes outlined in the exemplary embodiments. Other functional ingredient such as improvers and additives and garnishes, etc., may also be included in the formulation of the dough component for a bread product. Prehydrated starches and flours and flavorful liquids (instead of water) could be used according to other exemplary embodiments of a dough composition. According to any preferred embodiment, the dough component will be formulated to withstand the processes while yielding a baked bread product that is flavorful and functional for the intended purpose.
Other tools and techniques could be employed to affect and alter the flavor and texture of the end (baked) bread product made from the dough components. For example, according to exemplary embodiments, part of the mix of ingredients of the dough components could be pre-gelatinized; additives and garnishes (e.g. nuts, cheese, dry fruit, etc.) could be used; other known means for adjusting or improving the blend of flour and ingredients in a dough component could be used. As known to those of skill in the art, there are a wide range of ingredients and options for formulating a suitable dough component or dough components; no suitable formulation of dough component for a bread product is intended to be excluded according to the exemplary embodiments.
To provide a rich or dense enriched dough component for the dough component (to which the outer layer would be applied) as the crust of the baked bread product an example formulation may comprise the formulation shown in TABLE 2.
As indicated, the percentages of each ingredient may be adjusted within ranges and to suit the operating conditions for baking the bread product; suitable substitutions may also be employed for certain ingredients as or if necessary or appropriate.
Composition of batter (liquid) that could be deposited into a mold to form the baked bread product may be formulated from ingredients. A composition or formulation of a batter or slurry that could be applied to the dough (e.g. by spray or sputtering or brush or rollers, etc.) may comprise flour 100 percent and water 500 percent.
According to other exemplary embodiments, the variation of proportion of water to flour may be adjusted according to the apparatus and operating conditions for the process/procedure.
As indicated, the percentages of each ingredient may be adjusted within ranges and to suit the operating conditions for baking the bread product; suitable substitutions may also be employed for certain ingredients as or if necessary or appropriate.
According to other exemplary embodiments, as indicated, the formulation of ingredients for the dough component of bread products (including the type or source of flour) and various other ingredients may be varied widely to suit the intent and/or other needs or requirements for a particular application or bread product such as to enhance rise (leavening) and extensibility (e.g. workability of the dough component for the process/procedures).
According to any exemplary embodiment, improvers for the dough components that serve a functional role in the preparation or manufacture of a baked bread product may be employed. Such improvers may comprise the additives and ingredients listed in TABLE 3.
Composition of an example dough component used (for base or fill) in the bread product may comprise any of a wide variety of ingredients and flour types (e.g., wheat flour, rice flour, etc.), along with sugar, yeast, salt, water, oil, etc. in suitable percentages, according to various exemplary embodiments selected and formulated to provide suitable characteristics for the bread product.
As indicated, any ranges provided for ingredients of any dough component according to various exemplary embodiments are approximate; percentage ranges of ingredients could be varied (even widely) according to other exemplary and alternative embodiments. According to various exemplary embodiments, in the formulation of a dough component, bread flour could be replaced with and all-purpose flour or “00” durum flour or other functional flour for the system/method or product. For example, the flour for the dough component could be a blend with constituents/ingredients mixed in a range; for example, approximately 50 percent bread flour and approximately 50 percent all-purpose flour would provide a more tender consistency; small percentages (e.g. around 10 percent of the flour) could include whole wheat flour or other whole grain flours (e.g. quinoa, etc.), in formulations of the dough component that can be adapted according to cultural/popular tastes or other appeal. Such formulations may be developed for the system and method to give the final product distinct texture and flavors (or as part of a marketing strategy targeting certain customer desires, such as for a product that can be considered or perceived as healthier, etc.).
According to various exemplary embodiments, water could be provided in any of a range of percentages; for example, according to one exemplary embodiment, water may be in a range of between approximately 60 and 75 percent (as workable). Other formulations may alter combinations of water and improvers; for example, a wetter dough component (approximately 75 percent hydration) would be more workable if it included approximately 5 percent (vital) wheat gluten. flavorful liquid could be substituted for water (in some form); for example, a tomato-water stock or a mushroom stock may be used to flavor the dough component; other desired flavors may also be put into the dough component through ingredients or other ranges of other additives that are flavorful. According to an exemplary embodiment, tomato/mushroom powders (e.g. approximately 3-5 percent) could be added to the dough component; additions of dried powders (e.g. tomato, mushroom, etc.) would start to build flavors into the dough component before other ingredients are mixed into the dough component. According to various exemplary embodiments, salt could be in approximately a 1-2 percent range. Sugars or other sweeteners may be added to the dough component.
According to various exemplary embodiments, instant yeast concentrations could range up to approximately 1 percent (e.g. depending on how quickly one is trying to manufacture the product). According to an alternative embodiment, fresh yeast may be used (e.g. usually used at about three times the weight of instant yeast, and thus approximately 1-3 percent). Other leavening agents could be used in conjunction with the yeast; for example, encapsulated leavening agents (e.g. in concentrations of approximately 0.25-0.75 percent) may be provided to aid in rise during baking (e.g. will not activate until the dough component reaches a certain temperature).
According to other exemplary embodiments, the dough component for the dough base could be produced using any number of proprietary blends commercially available from suppliers (for example, including various combinations and blends of the ingredients in TABLE 3). According to another exemplary embodiment, the system and method could be implemented and/or adapted to produce non-gluten bread products; for example, gluten-free flours such as rice, oat, amaranth, potato, sorghum, and tapioca could be used in various formulations of a dough component. Gums such as xanthan or carrageenan could be provided as improvers/ingredients for the dough component according to exemplary embodiments. According to an exemplary embodiment, esters (in powder/granular form) may be added as an improver/ingredient to the dough component (e.g. to add fermentative flavor).
It is important to note that the construction and arrangement of the elements of the inventions as described in system and method and as shown in the figures above is illustrative only. Although some embodiments of the present inventions have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible without materially departing from the novel teachings and advantages of the subject matter recited. Accordingly, all such modifications are intended to be included within the scope of the present inventions. Other substitutions, modifications, changes and omissions may be made in the design, variations in the arrangement or sequence of process/method steps, operating conditions and arrangement of the preferred and other exemplary embodiments without departing from the spirit of the present inventions.
In the description, reference is made to the accompanying drawings, which form a part of the specification. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented in the application.
While various aspects and embodiments have been disclosed in the application, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed in the application are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the claims as presented and/or amended.
(a) U.S. Patent Application Ser. No. ______, entitled SYSTEM AND METHOD FOR PRODUCING BREAD PRODUCTS, naming N. Myhrvold, H. Zhou and S. Fahey-Burke as inventors, filed Aug. 23, 2013, with Docket no. 0712-038-002-000000, is related to and incorporated by reference in the present application; and (b) U.S. Patent Application Ser. No. ______, entitled SYSTEM AND METHOD FOR THE MANUFACTURE OF PIZZA PRODUCTS, naming N. Myhrvold, A. Chan, H. Zhou and S. Fahey-Burke as inventors, filed Aug. 23, 2013, with Docket no. 0712-038-003-000000, is related to and incorporated by reference in the present application.