Certain robotic assemblies, such as humanoid robots, exoskeletons (those worn or not worn by an individual), can be relatively expensive and quite heavy, which may require some other system for storing the robotic assembly, such as an exoskeleton when not worn and operated by the individual (i.e., unpowered). This can involve hanging the robotic assembly from an overhead hook or other structural support. In cases where the robotic assembly is not supported and/or restrained when unpowered, the robotic assembly will adopt a pose that is hill defined. Storing a robotic assembly in such a way can result in damage to components of the robotic assembly, and can cause fatigue or injury to individuals that must lift the robotic assembly, such as to attach it to a wearer/user of in the case of an exoskeleton, or to mount it on a support structure. Alternatively, a machine, such as a forklift or powered hoist may be used to lift and hold the robotic assembly when not in use, or while being donned by an individual, as in the case of an exoskeleton.
Reference will now be made to the exemplary embodiments illustrated, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended.
As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. For example, an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result.
As used herein, “adjacent” refers to the proximity of two structures or elements. Particularly, elements that are identified as being “adjacent” may be either abutting or connected. Such elements may also be near or close to each other without necessarily contacting each other. The exact degree of proximity may in some cases depend on the specific context.
As used herein, the singular forms “a,” and, “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a robotic arm” includes one or more of such robotic arms and reference to a “degree of freedom” (DOF) includes reference to one or more of such DOFs (degrees of freedom).
An initial overview of the inventive concepts is set forth below, and then specific examples are described in further detail in the Detailed Description. This initial summary is intended to aid readers in understanding the examples more quickly, but is not intended to identify key features or essential features of the examples, nor is it intended to limit the scope of the claimed subject matter.
The present disclosure sets forth a robotic assembly comprising a first joint comprising first and second support members rotatably coupled together; and a joint position restoration assembly coupled to at least one of the first or second support members, and comprising a first spring, the joint position restoration assembly being operable to apply a restoring torque to the first joint, wherein the joint position restoration assembly is configured to apply the restoring torque based on a current operating joint position within the restoring torque versus joint position profile relative to the first joint that corresponds to known mass properties of at least a portion of the robotic assembly acting on the first joint, such that, when the first joint is not undergoing powered actuation, the joint position restoration assembly operates to apply the restoring torque to position and to support the first joint in a stable support position.
In one example, the joint position restoration assembly can further comprise a mechanical linkage coupled between the first spring and at least one of the first or second support members, the mechanical linkage and the first spring operating together to facilitate application of the restoring torque to restore the first joint to the stable support position.
In one example, the first spring can comprise a linear spring and the mechanical linkage can further comprise a linkage device that operates with the linear spring to form, at least in part, the mechanical linkage.
In one example, one end of the first spring can be coupled to the first support member and the other end of the first spring can be coupled to the linkage device.
In one example, the mechanical linkage can comprise at least one of a simple crank, a four-bar linkage, a planetary transmission, or a roller screw.
In one example, the first spring and the mechanical linkage are collectively configured to provide a restoring torque versus joint position profile and the resulting restoring torque, relative to the first joint.
In one example, the first spring can comprise one of a pneumatic spring, a negator spring, a constant force spring, a linear spring, a rotary spring, a leaf spring, an elastomer spring, a composite flexural spring, a torsion bar, or a coil spring.
In one example, the first spring can be continuously engaged to apply the restoring torque independent of the rotational position of the first joint.
In one example, the robotic assembly can further comprise a second joint comprising the second support member and a third support member rotatably coupled to the second support member; and a second joint position restoration assembly coupled to at least one of the second or third support members, and comprising a second spring, the second joint position restoration assembly being operable to apply a restoring torque to the second joint, wherein the second joint position restoration assembly is configured to apply the restoring torque based on a restoring torque versus joint position profile relative to the second joint that corresponds to known mass properties of at least a portion of the robotic assembly acting on the second joint, such that, when the second joint is not undergoing powered actuation, the second joint position restoration assembly operates to apply the restoring torque to position and to support the second joint in a stable support position.
In one example, the robotic assembly can further comprise a third joint comprising the first support member and a fourth support member rotatably coupled to the first support member; and a third joint position restoration assembly coupled to at least one of the first or fourth support members, and comprising a third spring, the third joint position restoration assembly being operable to apply a restoring torque to the third joint, wherein the third joint position restoration assembly is configured to apply the restoring torque based on a restoring torque versus joint position profile relative to the third joint that corresponds to known mass properties of at least a portion of the robotic assembly acting on the third joint, such that, when the third joint is not undergoing powered actuation, the third joint position restoration assembly operates to apply the restoring torque to position and to support the third joint in a stable support position.
In one example, each of the first, second and third joint position restoration assemblies can be configured to correspond to known mass properties of the robotic assembly acting on the first, second and third joints, respectively, such that the first, second, and third joint position restoration assemblies are cooperatively operable to apply restoring torques to the first, second and third joints, respectively, to position and support the first, second, and third joints in respective stable support positions.
In one example, the first joint position restoration assembly can be coupled to the first and second support members, and the robotic assembly can further comprise a second joint comprising the second support member and a third support member rotatably coupled to the second support member; a third joint comprising the third support member and a fourth support member rotatably coupled to the third support member; and a second joint position restoration assembly coupled to the second and the fourth support members, and comprising a second spring, the second joint position restoration assembly being operable to apply a restoring torque to the second and third joints, wherein, when the first, second and third joints are not undergoing powered actuation, the first and second joint position restoration assemblies cooperatively operate to apply respective restoring torques to each of the first, second and third joints to position and to support the first, second and third joints in respective stable support positions.
In one example, the robotic assembly can comprise one of an exoskeleton, a humanoid robot, or a robotic limb. As such, the joints of the joint position restoration assemblies discussed herein can, but do not necessarily need to, facilitate movement in one or more degrees of freedom that correspond to one or more respective degrees of freedom of an element of a human body. Stated differently, the joints of the joint position restoration assemblies discussed herein may not facilitate movement of the robotic assembly in one or more degrees of freedom that correspond to a degree of freedom of an element of a human body.
In one example, the robotic assembly can further comprise a second joint comprising the second support member and a third support member rotatably coupled to the second support member, wherein the joint position restoration assembly is coupled to the first and third support members, the joint position restoration assembly being operable to apply a restoring torque to the first and second joints to position and to support the first and second joints in respective stable support positions.
In one example, the robotic assembly can comprise a lower body exoskeleton comprising a plurality of lower body support members, including the first and second support members, each rotatably coupled to at least one other support member; a plurality of joints defined by adjacently coupled lower body support members of the plurality of lower body support members; and a plurality of joint position restoration assemblies, each being operably coupled between at least two lower body support members defining at least one of the plurality of joints, such that the plurality of joint position restoration assemblies are cooperatively operable to position and support the plurality of joints in a stable support position.
In one example, the robotic assembly can comprise a full body exoskeleton, the lower body exoskeleton being operable with an upper body exoskeleton, the full body exoskeleton comprising a torso joint coupling the lower body exoskeleton to the upper body exoskeleton; and a joint position restoration assembly comprising a plurality of torso stabilizer springs coupled between the upper body exoskeleton and the lower body exoskeleton, and operable to position and support the upper body exoskeleton in a stable support position relative to the lower body exoskeleton.
In one example, the robotic assembly can comprise an exoskeleton, wherein the joint position restoration assembly can be operable to limit rotation of the first joint to prevent the first and second support members from collapsing when the exoskeleton is not operated by a user.
In one example, the joint position restoration assembly can further comprise a variable mounting position system that facilitates varying of a coupling location of the first spring to at least one of the first and second support members to vary (e.g., in one example optimize) the restoring torque provided by the joint position restoration assembly.
In one example, the robotic assembly can comprise an exoskeleton wearable by a user, wherein the first joint defines at least one degree of freedom corresponding to a degree of freedom of an element of a human body.
In one example, the exoskeleton can further comprises a plurality of joints, including the first joint, wherein at least some of the plurality of joints defines at least one degree of freedom corresponding to a degree of freedom of an element of a human body; a plurality of support members, including the first and second support members, wherein two or more of the plurality of support members are rotatably coupled together about respective joints of the plurality of joints; and a plurality of joint position restoration assemblies, including the joint position restoration assembly, each comprising a spring and a mechanical linkage operable with the spring, and each configured to provide a restoring torque versus joint position profile relative to one or more joints of the plurality of joints that corresponds to known mass properties of at least a portion of the robotic assembly acting on the one or more joints, respectively, wherein each of the plurality of joint position restoration assemblies is operable to apply a restoring torque to at least one of the one or more joints based on a current operating joint position within the restoring torque versus joint position profile to position and support the one or more joints in respective stable support positions.
In one example, the robotic assembly can further comprise a second joint defining a degree of freedom corresponding to a degree of freedom of an element of the human body, wherein the joint position restoration assembly is operable to apply collaborative restoring torques, including the restoring torque, to position and to support the first and second joints in respective stable support positions.
In one example, the robotic assembly can further comprise second and third joints operable with the first joint, and defining respective degrees of freedom corresponding to degrees of freedom of an element of the human body, wherein the joint position restoration assembly is operable to apply collaborative restoring torques, including the restoring torque, to position and to support the first, second and third joints to respective stable support positions.
The present disclosure also sets forth a robotic assembly comprising a first joint comprising first and second support members rotatably coupled together; a first joint position restoration assembly comprising a first spring, and operable to apply a restoring torque to the first joint; a second joint comprising the second support member and a third support member rotatably coupled to the second support member; a third joint comprising the first support member and a fourth support member rotatably coupled to the first support member; and a second joint position restoration assembly coupled to the second and the fourth support members, and comprising a second spring, the second joint position restoration assembly being operable to apply a restoring torque to the second and third joints, wherein, when the first, second and third joints are not undergoing powered actuation, the first and second joint position restoration assemblies cooperatively operate to apply respective restoring torques to each of the first, second and third joints to position and to support the first, second and third joints in respective stable support positions.
In one example, the first and second springs can be referred to as restorative springs operable to facilitate application of the respective restoring torques to restore the first, second and third joints to respective stable support positions, wherein the first and second springs are continuously engaged independent of the rotational positions of the first, second and third joints during operation of the exoskeleton.
In one example, each of the first and second joint position restoration assemblies can be configured to correspond to known mass properties of the robotic assembly acting on the first, second and third joints, respectively, such that the first and second joint position restoration assemblies are cooperatively operable to apply restoring torques to the first, second and third joints, respectively, to position and support the first, second, and third joints in respective stable support positions.
In one example, at least one of the first or second joint position restoration assemblies can further comprise a variable mounting position system that facilitates varying a coupling location of at least one of the first or second joint position restoration assemblies to vary the restorative and gravity compensation functions of the at least one of the first or second joint position restoration assemblies.
In one example, at least one of the first or second joint position restoration assemblies can further comprises a mechanical linkage.
The present disclosure further sets forth a method for configuring a robotic assembly, comprising configuring a first joint to comprise first and second support members rotatably coupled together; and configuring a joint position restoration assembly to be operable with the first joint, and to apply a restoring torque based on a restoring torque versus joint position profile relative to the first joint that corresponds to known mass properties of at least a portion of the robotic assembly acting on the first joint, such that when the first joint is not undergoing powered actuation, the joint position restoration assembly operates to apply the restoring torque to position and to support the first joint in a stable support position.
In one example, configuring the joint position restoration assembly to be operable with the first joint can comprise configuring the joint position restoration assembly to comprise a first spring and a mechanical linkage coupled between the first spring and at least one of the first or second support members, the mechanical linkage and the first spring operating together to facilitate application of the restoring torque to restore the first joint to the stable support position.
In one example, configuring the joint position restoration assembly to be operable with the first joint can comprise coupling a first end of the first spring to the first support member and coupling a second end of the first spring to the second support member.
In one example, configuring the joint position restoration assembly to be operable with the first joint can comprise coupling a first end of the first spring to the first support member and coupling a second end of the first spring to a linkage device of the mechanical linkage.
In one example, the method can further comprise configuring a second joint to comprise the second support member and a third support member rotatably coupled to the second support member; and configuring a second joint position restoration assembly to be operable with the second joint, and to apply a restoring torque based on a restoring torque versus joint position profile relative to the second joint that corresponds to known mass properties of at least a portion of the robotic assembly acting on the second joint, such that when the second joint is not undergoing powered actuation, the joint position restoration assembly operates to apply the restoring torque to position and to support the second joint in a stable support position.
In one example, the method can further comprise configuring a third joint to comprise the first support member and a fourth support member rotatably coupled to the first support member; and configuring a third joint position restoration assembly to be operable with the third joint, and to apply a restoring torque based on a restoring torque versus joint position profile relative to the third joint that corresponds to known mass properties of at least a portion of the robotic assembly acting on the third joint, such that when the third joint is not undergoing powered actuation, the joint position restoration assembly operates to apply the restoring torque to position and to support the third joint in a stable support position.
In one example, the method can further comprise configuring a second joint to comprise the second support member and a third support member rotatably coupled to the second support member; configuring a third joint to comprise the third support member and a fourth support member rotatably coupled to the third support member; and configuring a second joint position restoration assembly to be coupled to the second and the fourth support members, the second joint position restoration assembly being operable to apply a restoring torque to the second and third joints, wherein, when the first, second and third joints are not undergoing powered actuation, the first and second joint position restoration assemblies cooperatively operate to apply respective restoring torques to each of the first, second and third joints to position and to support the first, second and third joints in respective stable support positions.
In one example, the method can further comprise configuring a second joint to comprise the second support member and a third support member rotatably coupled to the second support member, and configuring the joint position restoration assembly to be operable with the first and second joints, and to apply respective restoring torques based on the restoring torque versus joint position profile relative to the first and second joints, such that the restoring torque versus joint position profile corresponds to known mass properties of at least a portion of the robotic assembly acting on the first and second joints, and such that when the first and second joints are not undergoing powered actuation, the joint position restoration assembly operates to apply respective restoring torques to position and to support the first and second joints in a stable support position.
In one example, the method can further comprise configuring the joint position restoration assembly to comprise a variable mounting position system that facilitates varying of a coupling location of the first spring to at least one of the first and second support members to vary (e.g. in one example optimize) the restoring torque provided by the joint position restoration assembly.
The present disclosure still further sets forth a robotic assembly, comprising a joint operable to undergo medial/lateral rotation between a stable support position and an actuated position; first and second support members rotatably coupled together about the joint; and a joint position restoration assembly comprising a spring, and coupled to at least one of the first or second support members, the joint position restoration assembly being operable to apply a restoring torque to the joint to return the joint from the actuated position to the stable support position.
In one example, the joint position restoration assembly can be configured to apply the restoring torque to the joint to return the joint in the stable support position upon powered actuation of the joint ceasing.
In one example, the spring can comprise a torsional spring.
In one example, the joint can define a degree of freedom that corresponds to a degree of freedom of medial/lateral rotation of a human leg.
To further describe the present technology, examples are now provided with reference to the figures.
As used herein, the term “joint” refers to the kinematic pairing of two or more links or structural components (e.g., 1) structural support members moveable (e.g., rotatable) relative to one another, 2) input and output members moveable relative to one another and as coupled to structural support members (e.g., those of an actuator, or actuator assembly (e.g., one or more actuators operable with a transmission, clutch, or other components, or a combination of these)), 3) any kind of base platform or a portion of an upper robotic assembly supported by the base platform) of a robotic system or a robotic assembly, or a combination of these, wherein a joint comprises both a structural connection (i.e., how the joint is formed, or rather the structural components making up the joint) and a functional connection (i.e., the degrees of freedom provided or facilitated by the joint). A joint can comprise various types, such as a lower pairing (e.g., revolute, prismatic, screw, cylindrical, universal, or planar), a higher pairing, or a combination of these. A joint can be part of a serial or parallel kinematic chain of links (and in some cases other joints). One or more joints can be arranged to be both in a parallel and a serial arrangement with respect to one or more other joints. A joints can be made to facilitate movement in one degree of freedom or multiple degrees of freedom depending upon its configuration.
As used herein, the term “stable support position” refers to a stabilized, self-supporting position of one or more joints and jointed structural members in a robot or robotic system or assembly, such as an exoskeleton (upper body, lower body/lower base or a combination of these), robotic arm, humanoid robot, teleoperated robot, robotic end effector, parallel mechanisms such as a Stewart platform (where the parallel mechanisms are referred to as joints or jointed structures as they collectively facilitate relative rotational movement between two object, systems, structures, etc.), and others, wherein all or a part of the robot or robotic system or assembly is able to support itself with the one more joints in these stable support positions under influence of an external force, such as a gravitational force (i.e., a gravity-induced torque acting on one or more joints), such as when not being operated or used under power (i.e., the joints are not undergoing powered actuation), as facilitated by the joint restoration assembly or assemblies associated with the joint(s). In other words, a stable support position refers to a position of one or more joints that are able to be maintained in that position without external sources, such as a gravitational forces, operating to rotate the joints (i.e., the joints are self-supporting in that position by overcoming gravitational forces). Example stable support positions can include a self-supporting standing, or self-standing, position (e.g., for a lower or full body exoskeleton), a self-supporting upright or default position (e.g., for an upper or full body exoskeleton, an upper robotic section supported about a base platform), a self-balancing position, or various other self-supporting positions that are not necessarily upright, such as those oriented on an incline relative to a vertical axis from a ground or other support surface. The stable support position can refer to the position of one or more joints of the robotic assembly, one or more structural members associated with one or more joints, or the entire robotic assembly (e.g., exoskeleton as a whole).
As used herein, a “joint position restoration assembly” refers to a system comprising one or more springs (i.e., restorative springs) and a mechanical linkage, these being operable with one or more “joints” of a robotic assembly (e.g., the exoskeleton 100) to provide a spring-based compensation of a gravity-induced load or torque in the form of a restoring torque to the respective joint(s) based on a restoring torque versus joint position profile that corresponds to the pre-determined or known weight or mass properties of at least a portion of the robotic assembly acting on or at the respective joints to position (i.e., restore) the respective joint(s) (and the components of the robotic assembly associated with or making up the respective joints) in/to a stable support position, and to support (i.e., maintain) the respective joint(s) in this position. Stated another way, the joint position restoration assembly refers to a system comprising one or more springs and a mechanical linkage that operates to stabilize (i.e., position and support) one or more degrees of freedom as provided or facilitated by one or more joints, such that the one or more joints and the associated structural components of the robotic assembly are in a stable support position. Indeed, a joint position restoration assembly can be operable to store and release energy and to continuously apply a restoring torque to one or more structural components to compensate for gravity-induced forces acting to move one or more structural components of the robotic assembly relative to one or more other structural components of the robotic assembly in the at least one degree of freedom. The joint position restoration assembly can further comprise linkage devices, mounting members or devices (e.g., mounting brackets) operable with or as part of the springs and/or mechanical linkages, and any other components necessary to operatively couple the joint position restoration assembly to the robotic assembly for its intended function as discussed herein. Some of these may facilitate adjustment of the one or more springs and/or the mechanical linkage, thus forming, at least in part, a variable mounting position system. A “restoring torque,” or simply a torque, refers to the rotating force generated by the joint position restoration assembly, which rotational force is applied to the joint to rotate the joint and the support member components of the joint to achieve the desired stable support position from a current operating position of the joint.
As used herein, a “restoring torque versus joint position profile” refers to a profile of the various joint position and/or robot position dependent rotating forces and/or torques that create a needed or desired restoring torque as generated by the joint position restoration assembly. A restoring torque versus joint position profile corresponds to the pre-determined or known weight or mass properties of at least a portion of the robotic assembly acting on or at a respective joint or joints. A joint or joints can have different restoring torques to be applied depending upon the position of the joint or joints.
As used herein, “mass properties” refers to any properties associated with the mass of all or part of the robotic assembly and/or robotic system that are associated with (i.e., acting on or at) a given joint or combination of joints, and that collectively operate to exert a gravity-induced torque at the joint. Mass properties can include, but are not limited to, the weight or mass of all or part of the robotic assembly or robotic system (including any objects coupled to or otherwise carried by or supported by the exoskeleton), any inertia, any forces or moments, any centers of mass, the angular position of the joint or joints, or other properties as will be apparent to those skilled in the art that act on, or that is/are experienced at, a particular joint or set of joints, and that contribute to the gravity-induced torque at the joint or set of joints.
As used herein, the term “spring” refers to various types of energy storage and return elements. Example “springs” can include, but are not limited to, coil springs, elastomers, elastomer springs, polymer springs, leaf springs, helical springs, negator springs, constant force springs, pneumatic springs, rotary springs, composite flexural springs, torsion bars, or other suitable types. It is intended that the one or more “springs” be operably coupled to structural components on both sides of a joint by the mechanical linkage so as to effectuate rotation in one or more joints. The joint position restoration assembly can further comprise, and the one or more springs can be operably coupled to or a part of, one or more mechanical linkages, such as one configured to convert linear motion to rotary motion, rotary motion to rotary motion, rotary motion to linear motion, rotary motion to eccentric motion, and others. Various types of mechanical linkages are contemplated herein, such as, but not limited to, simple crank type of linkages, four-bar linkages, planetary transmissions, roller screws and others. In one example, the joint position restoration assembly can comprise a mechanical linkage formed simply from various structural support members of the robotic assembly (e.g., the exoskeleton 100) that are rotatable relative to one or more other support members about one or more joints, where the one or more springs are coupled directly to suitable support members of the robotic assembly. In some examples, the one or more springs can form a component of the mechanical linkage. It is noted that the support members can, in some examples, be adjacent one another, but this is not required. Indeed, in other examples, a single spring can be coupled to non-adjacent support members. Thus, a single joint position restoration assembly can provide a restoring torque to one joint or multiple joints, depending upon how it is configured. In another example, other linkage members and/or components not part of the support members of the robotic assembly can be part of the joint position restoration assembly, and can be used to facilitate the functionality of the joint position restoration assembly (e.g., see
The exoskeleton 100 can comprise a plurality of support members (e.g., see support members 102a-d) rotatably coupled together. Respective support members can be rotatably coupled together to define and rotate about a plurality of joints (see joints 104a-d). In the case of the exoskeleton 100, for example, each joint can define a degree of freedom corresponding to a degree of freedom of an element of the human body, such as an ankle (e.g., joint 104a), a knee (e.g., joint 104b), a hip (e.g., joint 104c), and a torso (e.g., joint 104d) (see
The exoskeleton 100 may comprise a backpack or torso structure 105 for supporting components that facilitate operation of the exoskeleton 100, such as a battery pack, computer, controllers, and other components, systems or devices. Note that a particular self-standing exoskeleton of the present disclosure can comprise a full body (combined upper and lower body exoskeleton) or just a lower body exoskeleton. Further note that each of the joints of the exoskeletons of the present disclosure can comprise a joint mechanism or module that includes an actuator of various types, for example, an electric actuator, a pneumatic actuator, a hydraulic actuator, or any others as will be apparent to those skilled in the art for facilitating actuation and rotation of the joint during use, as well as other possible components operable with the actuator, such as quasi-passive elastic actuators, potential energy storage devices, sensors, gear trains, transmissions, clutches, and others, as will be recognized by those skilled in the art.
Each support member 102a-d can be rotatably coupled to at least one other or one additional support member to form and define a respective joint. In other words, a joint can comprise adjacent support members from the various support members 102a-d rotatably coupled together to (at least partially) to form and define and rotate about respective joints. For instance, support members 102a and 102b can be rotatably coupled together about and can form and define a first joint 104a, which provides the exoskeleton 100 with a degree of freedom corresponding to a degree of freedom of an ankle joint of a human leg for flexion/extension of the foot about the first joint 104a (as noted above, this ankle location on the exoskeleton may include two or more joints, and one spring 106a may be operable with one or more robotic joints). Similarly, support members 102b and 102c can be rotatably coupled together about and can form and define a second joint 104b, which provides the exoskeleton 100 with a degree of freedom corresponding to a degree of freedom of a knee joint of the human leg for flexion/extension about the second joint 104b. Support members 102c and 102d can be rotatably coupled together about and can form and define a third joint 104c (or multiple joints at this hip location), which provides the exoskeleton 100 with a deuce of freedom corresponding to a degree of freedom of a hip joint of the human leg for flexion/extension about the third joint 104c. Although specific support members and respective joints of the exoskeleton 100 are set forth, this is not intended to be limiting in any way. Indeed, it is noted that the present disclosure anticipates and contemplates a variety of different types and configurations of robots and robotic systems and assemblies that can benefit from the technology described herein, and such technology is contemplated for use on these variety of different types and configurations. Indeed, although the examples provided below are examples of exoskeleton type robots or robotic systems, this is not intended to be limiting in any way. The present technology is equally applicable to other types of robots and/or robotic systems, such as humanoid robots, teleoperated robots, robotic arms, robotic end effectors, parallel mechanisms such as a Stewart platform, and other types as will be apparent to those skilled in the art.
It is noted herein that the first, second, and third joints 104a-c shown in the drawings and discussed herein, are not limited to defining one or more degrees of freedom of the robotic assembly corresponding to a one or more degrees of freedom of an element of a human body. Indeed, any combination of or all of such joints can operate within a robotic assembly to define one or more degrees of freedom of the robotic assembly, which do not correspond to any degree of freedom of an element of a human body. Therefore, the example of an exoskeleton and any joints of a joint position restoration assembly that do define one or more degrees of freedom that correspond to one or more degrees of freedom of an element of the human body is not meant to be limiting in any way. This is true of any of the joints discussed herein that are part of any of the example joint position restoration assemblies.
The exoskeleton 100 can include various components that, in various combinations have mass properties (e.g., mass properties M1) that act on or at each respective joint and that, because of gravity forces, cause a resulting gravity induced torque to be applied at each respective joint. The various mass properties acting on or at each joint can be determined prior to designing/tuning a particular joint position restoration assembly with its spring (and any associated linkage device, etc.), so as to ensure that any joint position restoration assembly including one or more springs and linkage configurations associated with a joint of the exoskeleton 100, for the purposes discussed herein, can be configured, and in some cases adjusted (i.e., tuned), to apply a spring-based compensation of a gravity-induced load or torque in the form of a restoring torque to the respective joints based on a current operating position of the joint within the restoring torque versus joint position profile, which profile corresponds to the pre-determined or known mass properties of at least a portion of the exoskeleton acting on the respective joints. Tuning of the joint position restoration assembly can be accomplished in one or more ways, such as tuning of the spring stiffness value of the spring(s), mounting the spring(s) and any associated linkage or linkage device in various locations relative to the joint, and others. As understood in the art, mass properties for one or more joints can be determined based on a number of different parameters and/or factors for a particular component or assembly of components, such as density, volume, mass center of gravity, inertia, rotational position, etc. For purposes of clarity, the mass properties M1 (and others like M2, M3, etc.) are merely shown for illustration purposes in the drawings, and therefore it should be appreciated that the particular “mass properties” associated with or acting on any particular joint(s) of a robotic assembly (for purposes of designing and configuring a joint position restoration assembly for particular joint(s) one or more possible restoring torque versus joint position profile(s) that correspond to the mass properties of at least a portion of the exoskeleton acting on the respective joints) can vary depending on the location and type and configuration of joint(s), and other variables such as support structure size, shape, material, mass, the rotational range of support structures, etc. Still other variables can contribute to the mass properties and gravity induced torque associated with a particular joint of exoskeleton 100, such as resistance from clutches, transmissions, etc. that may be incorporated in a particular robotic joint that would vary the restoring torque versus joint position profile required for a particular spring (and the associated mechanical linkage) to support a portion/section/assembly of the exoskeleton and the joint(s) in a stable support position. In one aspect of a simplified example, the mass properties M1 can be determined relative to at least one of the joints 104a-c, such that the corresponding joint position restoration assembly with its spring and any associated mechanical linkage can be configured to support or restore an associated one of the joints 104a-c in/to a stable support position that facilitates the exoskeleton 100 being supported in/to a self-standing configuration.
With respect to all of the examples discussed herein and shown in the drawings, it is to be understood that various factors can be taken into consideration when designing/tuning a particular joint position restoration assembly see
As indicated above, the exoskeleton 100 can include a plurality of joint position restoration assemblies, each with one or more springs (e.g., see the respective joint position restoration assemblies with springs 106a-c), each one being operably coupled to respective adjacent support members about a joint (note that a spring can instead be coupled to one support structure and to a linkage device that is coupled to one or both support members; see e.g.,
Generally speaking, based on the center of gravity and the gravity-induced torque at each joint of the joints 104a-c at any given joint angle or position caused by the downward, gravitational forces exerted by the components at, near, and/or each joint of the joints 104a-c, a restoring torque can be calculated and implemented or applied for each joint of the joints 104a-c that reacts the loading (i.e., the gravity-induced torque) at each joint for a given position of the joint. In one example, this can be provided by the springs 106a-c. Each spring 106a-c can have a spring stiffness value (and other designed parameters) suitable to provide a spring-based compensation of gravity-induced load or torque present and acting at one or more joints of the joints 104a-c. Indeed, each joint position restoration assembly with its spring 106a-c can be selected and configured, and in some examples tuned, to provide a suitable restoring torque that reacts the gravity-induced loading present at a respective joint of the joints 104a-c that is based on the mass properties of a portion of the exoskeleton as associated with a particular joint. It is noted that gravity-induced loads can result from the mass properties associated with the joint, such as, but not limited to, the mass or weight of all or part of the exoskeleton, the location of such mass relative to a joint (the center of gravity of the mass the joint), as well as any other structures, objects, systems, devices present or existing on or otherwise associated with the exoskeleton. It is further noted that a gravity-induced load or torque can vary (i.e., be greater or less at different times) based on the position of the various support members and the rotational positions of the various joints of the exoskeleton 100 (i.e., the mass properties associated with each joint can change with the position of the joint, thus affecting the magnitude of the gravity-induced torque). As such, the selection, design, placement, and applied restoring torque (i.e., the tuning) of each of the joint position restoration assemblies with their springs 106a-c can take into account the different mass properties at, near, and/or above each different joint. Moreover, the restoring torque applied by each joint position restoration assembly designed to restore a given joint to a desired position (e.g., to achieve the stable support position S1) will need to be greater than the gravity-induced torque exerted as a result of the mass properties of the exoskeleton associated with each respective joint at a given angle or joint position in order to account for friction of the various components of the joints 104a-c (e.g., transmissions, clutches, etc.). It should also be pointed out that the attachment of the springs 106a-c is relevant, inasmuch as it has a direct connection then there will be more restoring torque than is needed in one region of the range of motion of each joint of the joints 104a-c to insure that there is a sufficient amount of restoring torque throughout all of the regions within the full range of motion. Alternatively, the actuator(s) (e.g., motor(s)) actuating the joints 104a-c, or even the operator if still donning the exoskeleton 100, could be employed to make up the difference.
In still another alternative, as mentioned above, the exoskeleton 100 can comprise a simple or complex linkage to provide closer to a desired restoring torque versus joint position profile across the full range of motion for one or more of the joints 104a-c. This could lead to higher design costs as well as increased weight, but these could be offset by being able to use a smaller spring since its output force would be used optimally across the full range of motion rather than making it strong enough to be suitable throughout the entire range of motion without an advantage of a linkage. Examples of a complex mechanical linkages having a linkage device are provided below regarding the discussion of
As indicated above, each spring 106a-c can have a spring stiffness value and the joint position restoration assemblies with their respective springs 106a-c and any associated kinematic linkages can be configured, and in some cases tuned, to create a desired torque versus joint position profile suitable to provide a spring-based compensation of gravity-induced load or torque present and acting at a respective joint of the joints 104a-c, wherein the springs 106a-c and any linkage kinematics can each be can be configured, and in some cases tuned, to correspond to the mass properties M1 of the exoskeleton 100 associated with each respective joint, such that the springs 106a-c and any linkages are operable to counteract and overcome any degree of gravity-induced torques to restore and/or support (i.e., maintain) the exoskeleton 100 in the stable support position S1 (which stable support position S1 can comprise any desired position throughout a range of operating positions of one or more joints) via the restoring torques applied to the joints 104a-c by the springs 106a-c. Regarding the “tuning” of each joint position restoration assembly with respective springs 106a-c, if the mass properties M1 of the portion of the exoskeleton 100 associated with each respective joint are known, then each joint 104a-c may have a particular “gravity-induced torque” about or at the particular joint (at a particular rotational angle) that is experienced at each joint, for example, when the joint is not powered and when the exoskeleton 100 is not operated by a user (or supported by some other external force), and is under the influence of gravitational forces. The gravity-induced torque applicable at each joint can take into account any inherent resistance existing at the joint (e.g., due to friction, bearings, gear train, cogging torque of an EM motor, and other such factors). In essence, as used herein, “gravity-induced torque” can be described as the torque experienced at a particular powered-off joint subject to gravitational forces exerted due to the mass properties from one or more structural support members 102a-d, the torso structure 105, and/or other relevant components of the exoskeleton 100 that may contribute to the mass properties M1, which gravity-induced torque tends to cause the joint to rotate. For instance, in one non-limiting example, assume a maximum gravity-induced torque of joint 104c (hip joint) is 20 Nm/degrees, which is calculated based on the mass properties acting on or otherwise associated with the joint 104c, and which correspond to the particular angular displacement of the joint 104c at which it is desired for the spring 106c to position and to support (i.e., maintain) the joint 104c in that particular position. Based on this, the joint position restoration assemblies with its spring 106c can be can be configured, and in some cases tuned, so as to generate or meet a suitable restoring torque versus joint position profile (configured or tuned to generate a suitable restoring torque at this particular rotational position of the joint 104c) (e.g., tuning of the spring stiffness value, tuning of the configuration of the spring 106c, and tuning in regards to how the restoring spring 106c is operably coupled to the joint) sufficient to provide and apply a restoring force or torque (again at any given joint rotational position) that counteracts the 20 Nm/degrees gravity-induced torque of the joint 104c (but that does not apply too much torque to over rotate or actuate support member 102d) in such a way that the spring 106c is able to counteract or overcome the gravity-induced torque and achieve a restorative position suitable to position and to support (i.e., maintain) the joint 104c in the stable support position S1 of
Those skilled in the art will recognize that the same principles discussed for joint 104c apply to the tuning or selecting of spring (and possible linkage device) characteristics for the joint position restoration assemblies and respective springs 106a and 106b to generate suitable respective restoring torques to rotate or actuate the respective joints 104a and 104b, and to support (i.e., maintain) them (and the support members defining these) in the stable support position S1 (
Note that the angular position of the respective support members relative to the respective joints 104a-c, when in the stable support position S1 can be any desired, and the torque required to restore any or all of the given joints 104a-c to achieve the stable support position S1 can be greater than or equal to the gravity-induced torque exerted by the mass properties acting on or otherwise associated with each joint of the joints 104a-c at a given angle. However, as noted above, the restoring torque for each of the springs 106a-c will likely be greater than the gravity-induced torque in order to overcome friction of the various components. As mentioned above, in one example, the respective support members relative to the respective joints 104a-c, when in the stable support position S1, can be positioned against limit stops defining a limit of travel of the joints 104a-c. Stated differently, the stable support position S1 can comprise the various support members or components of the joints 104a-c being positioned against physical hard stops that are part of the exoskeleton that limit rotation of the joints 104a-c beyond a certain angular position. In one aspect, this can be accomplished by a plurality of individual or single springs operably connected to the support members defining each respective joint of the joints 104a-c (i.e., a single spring 106a or a multi-spring arrangement connected to the support members 102a and 102b defining the joint 104a, a single spring 106b or multi-spring arrangement connected to the support members 102band 102c defining the joint 104b, and a single spring 106c or a multi-spring arrangement connected to the support members 102d and 102e defining the joint 104c), and acting to move each respective joint of the joints 104a-c. In another example, an arrangement of springs made up of one or more springs can be used to restore the joints to the desired stable support position S1, which can comprise a desired neutral position. The spring arrangement can be configured, such that it would not be possible to position the support members beyond or outside of the neutral position when the springs have reached their full restorative capacity.
The restorative capacity of each spring 106a-c can depend on the particular designed torque versus joint position profile of the various joints and the needed or desired restoring torques to be generated by the joint position restoration assemblies with respective restoring springs 106a-c. In this example, such a profile can be based on, for instance, the spring stiffness or spring constant, the configuration and the mounting locations of the restoring springs 106a-c, as well as the kinematics of the linkages they are operable with (which in this example is the various respective support members of the joints of the exoskeleton). The restoring torque versus joint position profile can take into account any limit stops associated with each joint (and its respective support members) that restrict or prohibit rotation of one or more joints once stabilized by the springs 106a-c in the stable support position S1.
The springs of
It should be appreciated that the particular “known mass properties” corresponding to at least a portion of a particular robotic assembly (e.g., an exoskeleton) and that are associated with a respective joint will depend on the positions of the particular joint through its range of motion relative to the mass of the components associated with the particular joint. For instance, the relevant “mass properties” of the joint 104a of the exoskeleton for purposes of tuning the joint position restoration assembly with its spring 106a and mechanical linkage characteristics to create a restoring torque versus joint position profile that corresponds to the mass properties acting on or otherwise associated with the joint 104a can include the calculated mass of all of the components acting on the joint 104a, such as the mass of support member 102b-d, torso structure 105, and any other component supported by such support members 102b-d and torso structure 105, and their position relative to the joint 104a through the full rotational range of movements of the joint 104a in order to account for any gravity induced torques at each joint at different rotational positions of the joint 104a. The restoring torque versus joint position profile for a given joint can be designed to be based on the largest or maximum gravity-induced torque to potentially be experienced at the joint so that a suitable restoring torque can be generated throughout the full rotational range of the joint. However, this is not intended to be limiting in any way as the restoring torque versus joint position profile can be based on any gravity-induced torque to potentially be experienced at the joint, such as through a less than full rotational range of the joint, or in the event of recruitment of the joint actuator for partial active actuation by the actuator at the joint. It is noted that the weight of support member 102a may not be part of the “mass properties” associated with the joint 104a of the exoskeleton 100 because the ground may support the weight of the support member 102a.
Note that a particular robotic assembly, such as an exoskeleton, of the present disclosure can be a full body (upper and lower body exoskeleton) or just a lower body exoskeleton. As indicated above, each of the joints of the exoskeletons of the present disclosure can comprise a joint mechanism or module that includes one or more electric, pneumatic, or hydraulic actuators (or other types) for facilitating actuation and rotation of the joint during use, and other components operable with the actuator(s), such as sensors, gear trains, clutches, brakes, and other devices, systems or components.
Further note that the angular position of the respective support members relative to the respective joints 104a-c, when in the stable support position S1, will depend on the particular designed restoring torque versus joint position profile provided for the respective joints 104a-c (and may further depend on limit stops associated with a joint).
As will be appreciated from the examples discussed herein, the term “self-standing” exoskeleton (or humanoid robot) can refer to a particular type of stable support position. Self-standing can mean that a particular exoskeleton (e.g., only a lower body exoskeleton, or a combination upper and lower body exoskeleton) can operate to achieve a stable support position (e.g., stable support position S1) where select joints of the exoskeleton are caused to be in a stable support position, such that the exoskeleton is able to stand erect or upright on its own relative to ground. In this position, gravitational forces acting on one or more joints of the exoskeleton having a tendency to generate a gravity-induced torque at the joints are overcome and insufficient to cause gravity-induced torque or rotation of the one or more joints, thus positioning (i.e., restoring) the exoskeleton in/to the self-standing stable support position with the exoskeleton upright relative to ground, wherein this position can be achieved and maintained without the assistance of the powered actuators in the respective joints, meaning that the exoskeleton, not being operated under power, can comprise the joints not undergoing any powered actuation. In some cases, this may include an exoskeleton operable to stand on its own and under its own support without the assistance of an external support, such as from a user, an overhead hanger, a ground-based platform, or other device or structure that may operate to support some or all of the weight of the exoskeleton. Thus, in some cases, the term or phrase “self-standing” can mean that the exoskeleton (or humanoid robot) can balance and can stand or be generally upright on its own (in some cases this can also mean that the exoskeleton is also self-balancing). However, this does not exclude the scenario in which an external support is used. Indeed, an external support may be used to provide at least some support (e.g., balance) to the exoskeleton. In one example, an external support may be used to help balance the exoskeleton once in the stable support position. In another example, the back torso area of an exoskeleton may be leaned against a wall. In this example, a spring associated with an ankle joint may not be required or needed, such as if the exoskeleton is leaned against a wall or other structure when the user exits the exoskeleton. In this configuration, only a spring associated with a knee joint may be required in cases where the back side of the torso area of the exoskeleton can lean against a wall or other structure. Another spring associated with a hip joint may be incorporated to further support the exoskeleton in a self-standing position while a back side of the exoskeleton is leaned against a wall or other structure. In any event, the term “self-standing” is simply intended to mean that the exoskeleton (including the joints and the support members associated with the joints) can be caused to achieve any stable support position desired in which gravity induced torques acting on the one or more joints of the exoskeleton are overcome, at least to some extent, such that one or more joints are restored and maintained in a stable support position positioning the exoskeleton upright relative to ground, wherein this stable support position can be maintained without requiring the exoskeleton to be receiving power, or without requiring active actuation of any powered actuator(s), if present, of the joint.
The exoskeletons exemplified herein can have a gravity compensation component by virtue of utilizing one or more joint position restoration assemblies having respective springs associated with one or more joints. More specifically, assume that a user (wearing an exoskeleton) crouches down and compresses the springs (e.g., 106a and 106b). The one or more joint position restoration assemblies comprising the springs and associated mechanical linkage(s) coupled to or otherwise operable with the springs 106a and 106b can be designed and configured (and in some examples adjusted or tuned) to generate suitable restoring torque versus joint position profiles that correspond to the mass properties of at least a portion of the exoskeleton associated with the respective one or more joints, and that facilitate application of spring-based restoring torques in the respective one or more joints that nearly or exactly compensates for the gravity induced torque exerted on the joints during crouching. Thus, when the user stands up, the springs can release stored energy to apply a restoring torque to the respective joints so that energy is recovered of the system. In this manner, an actuator (e.g., hydraulic or electromagnetic motor) associated with a joint for actuation can be smaller in size and capacity, because less active torque from such actuator is needed to actuate the joint in the opposite direction (e.g., during standing up) because the springs have applied an augmented or supplemental torque to assist with active rotation of the respective joints. As a result, less energy is expended, and less heat is generated, as compared to the same or similarly configured system without such springs (because a larger motor and/or higher gear ratio would be necessary to actuate the joint in the absence of the spring).
In one specific example of the benefits of gravity compensation, assume that an exoskeleton weighs 40 kg, and a user crouches down to pick up a 40 kg payload. As the user crouches, the joint position restoration assemblies with their respective springs will store energy and will nearly or exactly compensate for the gravitational forces acting on the exoskeleton. Once the user picks up the 40 kg payload, the joint position restoration assemblies with their respective springs will release enough energy to assist to lift 40 kg of the exoskeleton, while electromagnetic actuators at the joints (e.g., hip and knee joints) are operated to lift the 40 kg payload. Thus, because of the joint position restoration assemblies and springs, the actuators are only needed to lift the 40 kg, and not the additional 40 kg of the weight of the exoskeleton. Accordingly, in this simplified example, the actuators can be half the capacity than would be required without incorporation of the springs.
Another benefit of incorporating joint position restoration assemblies with their respective springs with an exoskeleton is that the system is safer, because if power is accidentally terminated to the exoskeleton, then the joint position restoration assemblies and springs can help hold the exoskeleton in a standing or upright position, which can prevent injury to the user (if the exoskeleton is being worn) and others in proximity to the exoskeleton.
More specific examples of exoskeletons having one or more joint position restoration assemblies with one or more springs are set forth below. However, the discussion above pertaining to
It is further noted that, although robotic assemblies in the form of exoskeletons are specifically discussed and shown in the drawings, this is not intended to be limiting in any way with regards to the type of robotic assembly in which the present technology can be implemented. Indeed, it is contemplated that the present technology can be implemented in any type of robotic assembly, including, but not limited to, humanoid robots, robotic limbs, such as robotic arms, and any others as will be apparent to those skilled in the art.
Each support member 202a-e can be rotatably coupled to at least one other or one additional support member to form and define a respective joint. In other words, a joint can comprise adjacent support members from the various support members 202a-e rotatably coupled together. For instance, support members 202a and 202b can be rotatably coupled together about and can form and define a first joint 204a, which provides the exoskeleton 200 with a degree of freedom corresponding to a degree of freedom of an ankle joint of a human leg for flexion/extension of the foot about the first joint 204a. Similarly, support members 202b and 202c can be rotatably coupled together about and can form and define a second joint 204b, which provides the exoskeleton 200 with a degree of freedom corresponding to a degree of freedom of a knee joint of the human leg for flexion/extension about the second joint 204b. And, support members 202c and 202d can be rotatably coupled together about and can form and define a third joint 204c, which provides the exoskeleton 200 with a degree of freedom corresponding to a degree of freedom of a hip joint of the human leg for flexion/extension about the third joint 204c. Finally, support members 202d and 202e can be rotatably coupled together about and can form and define a fourth joint 204d, which provides the exoskeleton 200 with a degree of freedom corresponding to a degree of freedom of a torso joint (e.g., side-to-side movement about the fourth joint 204d (see e.g.,
The exoskeleton 200 can include mass properties M2 acting on or otherwise associated with each respective joint, which can include the mass properties of some or all of the components of the exoskeleton 200. The exoskeleton 200 can comprise one or more joint position restoration assemblies, each comprising one or more springs (e.g., see springs 206a and 206b), each one being operably coupled to one or more support members about one or more joints, wherein some cases the springs are operable with a linkage device and linkage mechanism that are part of the joint position restoration assembly, and in some cases the springs are coupled directly to the support members, which then function as part of the joint position restoration assembly. In the example exoskeleton 200 shown, first and second joint position restoration assemblies comprising respective springs 206a and 206b can be operably coupled to respective support members 202a-d, as shown, where the first and second joint position restoration assemblies cooperatively operate to apply respective restoring torques to each of the joints 204a-c to position and to support (i.e., maintain) the exoskeleton 200 in the stable support position S2, which may be considered a restorative position of the exoskeleton 200 and the joints 204a-c. In this example, two joint position restoration assemblies are operable to position and support three joints in the stable support position S2 by applying restorative torques to each of the joints 204a-c. Each of the first and second joint position restoration assemblies, with their respective spring 206a and 206b (including their configuration, mounting location, equilibrium position, etc., as well as any linkages associated with these), can be configured, and in some cases tuned, to provide a restoring torque versus joint position profile that corresponds to the mass properties M2 of the exoskeleton 200 acting on or otherwise associated with each respective joint, such that the joint position restoration assemblies with their respective springs 206a and 206b are operable to collaboratively or collectively position and support (i.e., maintain) the exoskeleton 200 in the stable support position S2 via the restoring torques applied to the joints 204a-c by the springs 206a and 206b. Regarding the “tuning” of each joint position restoration assembly, if the mass properties M2 of the portion of the exoskeleton 200 acting on or otherwise associated with each respective joint are known, then each joint 204a-c may have a particular gravity-induced torque about or at the joint (at a particular rotational angle) that is experienced at each joint when the joint is not powered and when the exoskeleton 200 is not operated by a user (or supported by some other external force), and is under the influence of gravitational forces and parasitic torque. That is, the joint torque includes gravity-induced torque of each joint along with inherent resistance of the joint (e.g., due to friction from bearings and gear train, togging torque of an EM motor, and other such factors). The gravity-induced torque is the torque experienced at the particular joint due to gravitational forces exerted on the mass of one or more structural support members 202a-c, the torso structure 205, and other relevant components of the exoskeleton 200 that may contribute to the mass properties M2. For instance, in one non-limiting example, assume a maximum gravity-induced torque of joint 204c (hip joint) is 20 Nm/degrees, which is calculated based on the mass properties associated with the joint 204b (knee joint). Based on this, the joint position restoration assembly having the spring 206b can be configured or in some examples tuned, so as to generate a suitable restoring torque versus joint position profile (to facilitate generation and application of a suitable restoring torque at the particular rotational positions of the joints 204b and 204c) sufficient to apply a restoring force or torque that counteracts the 20 Nm/degrees gravity-induced torque at the joints 204b and 204c, so that the spring 206b can position (i.e., restore) to a restorative position and/or maintain in such a position both the joints 204b and 204c. The same principle applies to the tuning or selecting of joint position restoration assembly having the spring 206a (with the design of possible linkages) to position and to support (i.e., maintain) the joint 204a via a restoring torque applied by the spring 206a to restrict or prohibit rotation of the joint 204a once in the stable support position S2. In this manner, both springs 206a and 206b can cooperate to support the exoskeleton 200 in the stable support position S2. As indicated, and as applicable to the examples discussed herein, the joint position restoration assemblies are intended to operate when the robotic assembly is not being used under power to actuate the joints. This can mean not actively actuating any of the joints with a user donning the robotic assembly in the case of an exoskeleton, or when there is no user. Or, this can mean when the joints are not actively being actuated in the case of a humanoid, robotic arm, or other type of robotic assembly not an exoskeleton.
In this particular example, though not intending to be limiting in any way, the springs 206a and 206b can each comprise a (near) constant force spring in the form of a negator spring. However, other spring types can be utilized and are contemplated, such as the one or more of the different spring types set forth above. As such, the negator type springs shown are not intended to be limiting in any way. Indeed, the springs 206a and 206b can comprise pneumatic springs, coil springs, for example, or any other as discussed herein. Each of the negator springs can comprise a support housing (e.g., see respective support housings 208a and 208b) and an internal rotational spring operably coupled to a flexible cable or tether (e.g., see flexible cables 212a and 212b, respectively) that is wound inside the support housing 208b. In this manner, the internal rotational spring is configured to cause or exert a constant or continuous pulling force on the flexible tether 212b, such that a force is required to pull the flexible tether 212b from within the support housing 208b.
As shown, support housing 208a can be attached to or otherwise supported by support member 202b by suitable means (e.g., fastened), and support housing 208b can be attached to or otherwise supported by support member 202d by suitable means. The flexible tether 212a can be attached to a respective tether attachment mount 214a on support member 202a designed to receive, interface with and couple the flexible tether 212a, so that a constant or continuous restoring torque can be applied to the ankle joint 204a between the support members 202a and 202b. Likewise, the flexible tether 212b can be attached to a respective tether attachment mount 214b on support member 202b designed to receive, interface with and couple the flexible tether 212b, so that a constant or continuous restoring torque can be applied to the knee and hip joints 204b and 204c between the support members 202b and 202d. The support housing 208b can act as a pivot structural member to provide a pivot point to the flexible tether 212b to, so that the springs 206b can properly apply the restoring torque to both knee and hip joints 204b and 204c to maintain their respective positions. Thus, the spring 206b, being attached to support member 202d, is configured to apply restoring torques to the hip joint 204c and also to the knee joint 204b. This is because the tether attachment mount 214b is attached to the support member 202b adjacent the support housing 208a of the spring 206a, such that the support housing 208a is situated between the tether attachment mount 214b and the support housing 208b of the spring 206b, and also because support member 202c is linked between support member 202d (supporting the support housing 208b) and between support member 202b (supporting the tether attachment mount 214b). In one example, a particular attachment mount can comprise an eccentric surface that can provide a simple means to shape a restoring torque versus joint position profile as a function of joint position. Those skilled in the art will recognize that attachment points for the springs and the tether mounts can vary, or be different on different exoskeletons, humanoid robots, or other robotic assemblies, and as such, those illustrated in the figures and discussed above are not intended to be limiting in any way.
Each support member 302a-e can be rotatably coupled to at least one other or on additional support member to form and define a respective joint. In other words, a joint can comprise adjacent support members from the various support members 302a-e rotatably coupled together. For instance, support members 302a and 302b can be rotatably coupled together about and can form and define a first joint 304a, which provides the exoskeleton 300 with a degree of freedom corresponding to a degree of freedom of an ankle joint of a human leg for flexion/extension of the foot about the first joint 304a. Similarly, support members 302b and 302c can be rotatably coupled together about and can form and define a second joint 304b, which provides the exoskeleton 300 with a degree of freedom corresponding to a degree of freedom of a knee joint of the human leg for flexion/extension about the second joint 304b. And, support members 302c and 302d can be rotatably coupled together about and can form and define a third joint 304c, which provides the exoskeleton 300 with a degree of freedom corresponding to a degree of freedom of a hip joint of the human leg for flexion/extension about the third joint 304c. Finally, support members 302d and 302e can be rotatably coupled together about and can form and define a fourth joint 304d, which provides the exoskeleton 300 with a degree of freedom corresponding to a degree of freedom of a torso joint or movement of the human body, such as for side-to-side movement about the fourth joint 304d (see e.g.,
The exoskeleton 300 can include mass properties M3 associated with each respective joint, which can include the mass properties of some or all of the components of the exoskeleton 300. As an overview, the exoskeleton 300 can comprise one or more joint position restoration assemblies, each comprising one or more springs (e.g., see springs 306a and 306b), each one being operably coupled to one or more support members about one or more joints, wherein some cases the springs are operable with a linkage device and linkage mechanism that are part of the joint position restoration assembly, and in some cases the springs are coupled directly to the support members, which then function as part of the joint position restoration assembly. In the example exoskeleton 300 shown, first and second joint position restoration assemblies comprising respective springs 306a-b can be operably coupled to respective support members 302a-c, as shown, where the first and second joint position restoration assemblies cooperatively operate to apply respective restoring torques to the joints 304a-b to position and to support (i.e., maintain) the exoskeleton 300 in the stable support position S3, which may be considered a restorative position of the exoskeleton 300 and the joints 304a-c. Each joint position restoration assembly with its respective springs 306a and 306b and any linkages can be configured, and in some examples tuned, so as to provide or facilitate a suitable restoring torque versus joint position profile that corresponds to the mass properties M3 of the exoskeleton 300 associated with each respective joint, such that the first and second joint position restoration assemblies are operable to counteract and overcome any gravity-induced torques to position (i.e., restore) and to support (i.e., maintain) the exoskeleton 300 to/in the stable support position S3 via the restoring torques applied to the joints 304a and 304b by the first and second joint position restoration assemblies with their respective springs 306a and 306b as based on the restoring torque versus joint position profile. Regarding the configuration or tuning of each joint position restoration assembly, if the mass properties M3 of the portion of the exoskeleton 300 associated with each respective joint are known, then each joint 304a-c may have a particular known gravity-induced torque about or at the joint (at a particular rotational angle) that is experienced at each joint when the joint is not powered and when the exoskeleton 300 is not operated by a user or operator, and is under the influence of gravitational forces and parasitic torque. That is, the joint torque includes gravity-induced torque of each joint along with inherent resistance of the joint (e.g., due to friction from bearings and gear train, cogging torque of an EM motor, and other such factors). The gravity-induced torque is the torque experienced at the particular joint due to gravitational forces exerted on the mass of one or more structural support members 302a-c, the torso structure 305, and other relevant components of the exoskeleton 300 that may contribute to the mass properties M3. For instance, in one non-limiting example, assume a maximum gravity-induced torque of joint 304b (hip joint) is 20 Nm/degrees, which is calculated based on the mass properties associated with the joint 304b. Based on this, the joint position restoration assembly having the spring 306b can be configured, or in some examples tuned, so as to generate a suitable restoring torque versus joint position profile sufficient to facilitate application of a restoring force or torque that counteracts the 20 Nm/degrees gravity-induced torque at the joint 304b, so that the spring 306b can position (i.e., restore) the joint 304b to a restorative position and maintain the joint 304b in such position. The same principle applies to the tuning or selecting of the joint position restoration assembly having the spring 306a (and possible linkages) to position (i.e., restore) and to support (i.e., maintain) the joint 304a in its stable support position via restoring torques applied by the spring 306a to restrict or prohibit rotation of the joint 304a once supported in the stable support position S3. In this manner, both springs 306a and 306b can cooperate together to position (i.e., restore) and to support (i.e., maintain) the exoskeleton 300 in the stable support position S3. As indicated, and as applicable to all of the robotic assembly examples discussed herein, the joint position restoration assemblies are intended to operate when the robotic assembly is not being used under power to actuate the joints. This can mean not actively actuating any of the joints with a user donning the robotic assembly in the case of an exoskeleton, or when there is no user. Or, this can mean when the joints are not actively being actuated in the case of a humanoid, robotic arm, or other type of robotic assembly not an exoskeleton.
One or more of the restorative springs 306a and 306b can comprise any of the spring types discussed herein, or that would be apparent to one skilled in the art. In the example shown, one or more of the springs 306a and 306b can comprise a linear spring in the form of a pneumatic spring, which includes a piston translatable through a support housing that contains a gas chamber, such as in the traditional configuration of a pneumatic compression spring. In another example, one or more of the springs 306a and 306b can comprise a linear spring in the form of a substantially balanced pressure pneumatic cylinder and piston, such as a commercially available nitrogen cylinder spring device, which may provide the advantage of maintaining a substantially constant spring force during the stroke of the nitrogen cylinder spring device. Other spring types can be utilized and are contemplated, such as the one or more of the different spring types set forth above. As such, the linear type springs shown are not intended to be limiting in any way. The spring 306a can have one end 314a pivotally coupled to the first support member 302a, and the other end 314b pivotally coupled to the second support member 302b (in a suitable manner of pivotally mounting an end of a pneumatic spring to a support member). Alternatively, one end of the spring (306a,b) can be coupled to a support member, and the other end can be coupled to a linkage device of a mechanical linkage that converts linear movement of the spring to rotational movement to rotate the joint (see e.g.,
Similarly, the spring 306b can have one end 316a pivotally coupled to the second support member 302b, and the other end 316b pivotally coupled to the third support member 302c. Thus, the spring 306b can apply a restoring torque to the joint 304b to rotate or actuate the joint 304b to the stable support position S3. Again, once the operator steps out of the exoskeleton 300 and it is powered down, the spring 306b releases stored energy and expands to move the joint 304b to the position of
In one example, and as part of the tuning function to provide a suitable restoring torque versus joint position profile, the mounting points of each spring 306a or 306b can be varied by way of a variable mounting position system, which can be part of the joint position restoration assembly, to vary (e.g., optimize) the restorative and gravity compensation aspects of the springs for a particular self standing exoskeleton, and even to accommodate different users having varying heights. For instance, the end 316a of the spring 306b can be mounted at a different position on the second support member 302b, such as at mounting point 317 (see
With reference to
The upper robotic assembly 354 can comprise any type of robotic assembly, such as a robotic exoskeleton, a humanoid robot, a robotic limb, or any others as will be apparent to those skilled in the art. The base platform 358 can comprise any type of structural support member or system configured to support the upper robotic assembly 354. In one example, the base platform 358 can comprise a lower robotic assembly, such as a lower body exoskeleton (e.g., see
In another example, the base platform 358 can comprise a mobile platform, capable of powered locomotion, or capable of being supported on a mobile vehicle. The mobile platform can comprise any type of vehicle or other mobile base. The mobile platform can comprise and support a power source, various drive system(s) to provide and facilitate locomotion and steering of the mobile platform, a pump, a generator, a fuel supply, a controller, user interface devices, communications systems (e.g., those facilitating remote or teleoperation of the upper robotic assembly 354 and the mobile platform), or any other device, object or system facilitating operation of both the mobile platform and the upper robotic assembly 354. In some cases, the mobile platform can further be configured to support one or more users. Thus, the upper robotic assembly 354 as supported by the mobile platform in accordance with the present disclosure can be a mobile, self-contained system capable of also supporting a user to operate the system. Indeed, the mobile platform can be configured to comprise or support all of the necessary elements, components, systems and/or subsystems to make up a fully or self-contained system that can be operated by the user and moved from location to location as desired.
In another example, the base platform 358 can comprise a boom or other moveable structure configured to position the upper robotic assembly 354 in a variety of positions within a zone of operation (i.e., the area in which the boom is able to locate or position the upper robotic assembly 354 via movement of the boom). The boom can be configured to move within a two or three-dimensional zone of operation. Moreover, the boom can be configured to move in up to six degrees of freedom, thus facilitating the positioning of the upper robotic assembly in a number of positions and orientations within a two or three dimensional zone of operation.
In still another example, the base platform 358 can comprise a fixed, stationary type of base platform for supporting the upper robotic assembly 354 in a fixed location. Those skilled in the art will recognize still other types of base platforms that could be used to support the upper robotic assembly 354. As such, those discussed herein are not intended to be limited in any way.
Examples of such robotic systems comprising an upper robotic assembly rotatably connected to a base platform are discussed below with respect to
More specifically regarding
In another example, the upper body exoskeleton 401a can comprise additional support members (e.g., additional upper body support members) rotatably coupled to additional support members of the lower body exoskeleton 401b, and that are part of and that define a second joint (not shown) that defines and that is configured to move within at least one degree of freedom of movement, and that facilitates movement of the upper body exoskeleton 401a relative to the lower body exoskeleton 401b in at least one degree of freedom (and is some examples two or more degrees of freedom). The first and second joints can be in a parallel or series arrangement. The first joint 404 and the second joint, with their respective support members, can operate together to support the upper and lower body exoskeletons 401a, 401b, and to facilitate their rotation, relative to one another. This example illustrates that the upper and lower body exoskeletons 401a and 401b can be rotatably coupled to one another via a plurality of joints. Although not discussed in detail, each of these joints can be operable with a respective joint position restoration assembly (or two or more joints can be operable with a single joint position restoration assembly) where the one or more joint position restoration assemblies can comprise similar elements as, and that can function similar to, the joint position restoration assembly discussed below with respect to joint 404 to apply respective restoring torques to the respective first and second joints. In one aspect, the first joint can define a degree of freedom that corresponds to a first degree of freedom of a human torso, and the second joint can define a degree of freedom that corresponds to a second degree of freedom of a human torso. In still another example, the upper body exoskeleton 401a can comprise additional support members (e.g., additional upper body support members) rotatably coupled to additional support members of the lower body exoskeleton 401b, and that are part of and that define a third joint (not shown) that defines at least one degree of freedom of movement of the upper body exoskeleton 401a relative to the lower body exoskeleton 401b. The first joint 404, the second joint, and the third joint, with their respective support members, can operate together to support the upper and lower body exoskeletons 401a, 401b, and to facilitate their rotation, relative to one another. This example illustrates that the upper and lower body exoskeletons 401a and 401b can be rotatably coupled to one another via a plurality of joints, each able to be configured to move in one or more degrees of freedom. Although not discussed in detail, each of the first, second and third joints can be operable with a respective joint position restoration assembly (or a single joint position restoration assembly can be operable with the second and third joints), where each joint position restoration assembly can comprise similar elements as, and that can function similar to, the joint position restoration assembly discussed below with respect to joint 404 to apply independent and respective restoring torques to the respective first, second and third joints. In one aspect, the first joint can define a degree of freedom that corresponds to a first degree of freedom of a human torso, the second joint can define a degree of freedom that corresponds to a second degree of freedom of a human torso, and the third joint can define a degree of freedom that corresponds to a third degree of freedom of a human torso.
In the case of the exoskeleton 400, the joint 404 can define a degree of freedom corresponding to at least one degree of freedom of an element of a human body, such as lateral or side-to-side torso motion, and/or forward-to-back torso motion, and/or rotational torso motion in any combination, or a combination of all of these. In this regard, note that joint 404 in the drawings is a schematic representation of a joint that may rotate in one, two, or three degrees of freedom. Further note that more than one joint (i.e., a plurality of joints) may be incorporated to facilitate rotation of the upper body exoskeleton 401a relative to the lower body exoskeleton 401b, such as a joint situated above joint 404 and that is wholly supported by support member(s) of the upper body exoskeleton 401a for twisting rotation, for instance. As indicated above, in any robotic system, such as humanoid or others, the joint 404 does not necessarily need to define one or more degrees of freedom corresponding to one or more degrees of freedom of an element of the human body. Indeed, the joint 404 can define and facilitate movement of the upper and lower body exoskeletons 401a and 401b of the exoskeleton 400 relative to one another, whether these correspond to one or more degrees of freedom of an element of the human body or not. This is true for all of the joints in this or any of the other examples discussed herein, whether the joints are part of a lower or upper body portion of a robotic system. In one example however, the upper body exoskeleton 401a can comprise a torso section, wherein the second support member 402b of the upper body section is included within the torso section, such that the first joint defines a degree of freedom corresponding to a degree of freedom of rotation of the torso section of the human body.
The second support member 402b can support a backpack or other structural support for supporting components that facilitate operation of the exoskeleton 400, such as batteries, computers, controllers, and other devices, systems or components. The second support member 402b can support left and right exoskeleton arms 405a and 405b. Note that the second support member 402b is shown as a single structural support member, but this is not intended to be limiting in any way as the second support member 402b can be comprised of a number of different structural members or components coupled together to form a torso area or portion of an upper body exoskeleton.
The exoskeleton 400 can include mass properties M4 acting on or otherwise associated with each respective joint, which in this case can include the mass properties of the components of the robotic system associated with the joint 404, including the left and right exoskeleton arms 405a and 405b, that generate a gravity induced torque within the joint 404 that may tend to rotate or otherwise move the upper body section out of or away from a centered, default position. The exoskeleton 400 can comprise one or more joint position restoration assemblies, each having one or more springs and a mechanical linkage (with or without a linkage device). In this example, the exoskeleton 400 comprises a joint position restoration assembly comprising first and second springs 406a and 406b (e.g., torso stabilizer springs), operably coupled to respective adjacent support members 402a and 402b and operable with the joint 404 to apply respective restoring torques to the joint 404 (e.g., which can be an active, actuatable robotic joint or a passive robotic joint). The joint position restoration assembly with its springs 406a and 406b can further comprise at least one of a mechanical linkage (which in some examples can be adjustable), which linkage can further comprise a linkage device that operates with the spring to form, at least in part, the mechanical linkage. A spring stiffness of the springs 406a and 406b (which in some examples can be adjustable), an equilibrium position (i.e., zero force and/or torque position) (which in some cases can be adjustable), and any other characteristic or property of the joint position restoration assembly can be configured, or in some examples tuned, to generate a suitable restoring torque versus joint position profile that corresponds to the mass properties M4 acting on or at the joint 404, and that facilitates application of a spring-based restoring torque that compensates for the gravity-induced load or torque at the joint 404, such that the joint position restoration assembly with its springs 406a and 406b are each operable to position (i.e., restore) and to support (i.e., maintain) the upper body exoskeleton 401a in any desired position (i.e., the stable default position S4), such as a generally upright or vertical position (the centered, default position shown in
The springs 406a and 406b can each comprise an elastic element configured to store and release energy and can comprise any of the types of springs discussed herein and identified above (or others as will be apparent to those skilled in the art), such as elastomers, an elastomer spring, a polymer, a leaf spring(s), a helical spring, a negator spring, a substantially constant force spring, a pneumatic spring, a rotary spring, a composite flexural spring, a torsion bar, or others. The springs 406a and 406b can include mounting portions 416a and 416b, respectively, which are mounted or attached to the second support member 402b, or a linkage device can be coupled between an end of a spring and a support member (see e.g.,
The joint position restoration assembly, with its associated restoring torque versus joint position profile, can be configured, and in some examples tuned, to allow the upper exoskeleton 401a to rotate to the left and right about joint 404, such as when the exoskeleton 400 is worn and operated by a user, so that the springs 406a and 406b can compress to a certain degree and not substantially interfere with the intended use of the exoskeleton (and also act as a gravity compensation component, such as discussed above). Thus, during use of the exoskeleton 400, the second support member 402b may be rotated to the left or right about the joint 404, such as during a lifting task with one arm. If the second support member 402b rotates to the right, as shown in
In another example, and as indicated above, the joint 404 can be configured to move in two or more degrees of freedom, with the first spring 406a configured to facilitate application of a first restoring torque to the joint by the joint position restoration assembly in a first degree of freedom of movement, and the second spring 406b configured to facilitate application of a respective second restoring torque to the joint by the joint position restoration assembly in a second degree of freedom of movement. In this example, the first and second springs 406a and 406b operative in a cooperative manner to support the exoskeleton 400 in the stable support position, which can be the default position shown in
Note that the lower body exoskeleton 401b may be configured like any of the examples discussed herein, or others. In this manner, the lower and upper body exoskeletons, defining a full body exoskeleton, can be a full body “self-standing” exoskeleton having a plurality of joint position restoration assemblies with respective springs and mechanical linkages (for lower body joints, and for the torso joint(s)) that cooperate together to position (i.e., restore) and to support (i.e., maintain) the exoskeleton in a stable support position (lower body), and the generally upright, default centered position (upper body) (these being stable support positions as discussed herein). Thus, when a user desires to re-use or again don the full body self-standing exoskeleton, the user can merely “step into” the exoskeleton 400 with comfort and ease because the exoskeleton 400 is already in a standing position or an upright position. Thus, an external system, such as a hoist or hanger, is not necessarily needed or required to support the exoskeleton 400 in such a position. This may be useful in applications where such external systems to support or hoist the exoskeleton are not readily available.
The second support member 502b can support a backpack or other structural support for supporting components that operate the exoskeleton, such as batteries, computers, controllers, etc. The second support member 502b can support left and right exoskeleton arm sections or members 505a and 505b. Note that the second support member 502b is shown as a single structural support device, but it may include a number of structural components coupled together to form a portion of an upper body exoskeleton.
The exoskeleton 500 can include mass properties M5 associated with each respective joint, which in this case is the mass properties of the components of the robotic assembly associated with joint 504, including the left and right exoskeleton arms 505a and 505b, that generates a gravity induced torque on the joint 504 that may tend to rotate the upper body exoskeleton 501a to the left or right side of a centered, default position. The exoskeleton 500 can comprise one or more joint position restoration assemblies, each having one or more springs, and each associated and operable with one or more joints. In this example, the exoskeleton 500 comprises a joint position restoration assembly comprising springs 506a and 506b (e.g., torso stabilizer springs) operably coupled to respective adjacent support members 502a and 502b operable with the joint 504 to apply a restoring torque to the joint 504 (e.g., which can be an active, actuatable robotic joint or a passive robotic joint). The joint position restoration assembly with its spring 506a and 506b can further comprise or be operable with at least one of a mechanical linkage (which in some examples can be adjustable), a spring stiffness of the springs 506a and 506b (which in some examples can be adjustable), an equilibrium position (i.e. zero force and/or torque position) (which in some cases can be adjustable), and any other characteristic or property that can be configured, and in some examples tuned to generate a suitable restoring torque versus joint position profile that corresponds to the mass properties M5 of the upper body exoskeleton 501 acting on or at the joint 504, and that provides a spring-based restoring torque that compensates for the gravity-induced load or torque at the joint 504, such that the joint position restoration assembly with its springs 506a and 506b are each operable to position (i.e., restore) and to support (i.e., maintain) the upper body exoskeleton 501a in a generally upright or vertical position (i.e., the stable default position S5) via the restoring torques applied to the joint 504 by the respective springs 506a and 506b. For instance, if the mass properties M5 of the upper body exoskeleton 501a of the exoskeleton 500 associated with the joint 504 would exert a gravity-induced torque at the joint 504 of 20 Nm/degrees in the position shown, then the joint position restoration assembly with its spring 506a (and also similarly spring 506b) can be configured, and in some examples tuned so as to generate a suitable restoring torque versus joint position profile sufficient to apply a restoring force or torque that counteracts and overcomes the 20 Nm/degrees of gravity-induced torque at the joint 504, so that the joint position restoration assembly with its springs 506a and 506b can position (i.e., restore) and to support (i.e., maintain) the joint 504 in an upright stable, default position (i.e., to prevent rotation of the joint in a rotational direction toward the ground).
The springs 506a and 506b can each comprise an elastic element and can comprise any type of spring discussed herein and identified above, such as a pneumatic spring mechanism or device, or a nitrogen spring mechanism or device, a coil spring, or any others apparent to those skilled in the art. The springs 506a and 506b can include mounting portions 516a and 516b, respectively, that mount or attach to the second support member 502b, and which can include a common mounting portion that fixedly attaches the springs 506a and 506b to each other (or about the same axis) and to the support member 402b. This helps to prevent rotation of the springs 506a and 506b while the second support member 502b moves or pivots about joint 504, such as during normal operation of the exoskeleton 500. The springs 506a and 506b can further include respective gas chambers 518a and 518b that house and support a compressible gas, and can include respective moveable pistons 520a and 520b (supporting cylinders (not shown)) moveable through the gas chambers 518a and 518b to facilitate compression and expansion of gas therein, in the traditional sense of a pneumatic spring, or such as with a (substantially constant) nitrogen cylinder spring device. The movable pistons 520a and 520b can be attached to the first support member 502a in a suitable manner.
The joint position restoration assembly, with its associated restoring torque versus joint position profile, can be configured, and in some examples tuned to allow the upper body 501a to rotate to the left and right about joint 504 when the exoskeleton 500 is worn and operated by a user, so that the springs 506a and 506b can compress to a certain degree and not substantially interfere with the intended use of the exoskeleton (and also act as a gravity compensation component, such as discussed above). Thus, during use of the exoskeleton 500 the second support member 502b may be rotated to the left or right about the joint 504, such as during a lifting task with one arm. If the second support member 502b rotates to the right, as shown in
Note that the lower body exoskeleton 501b may be configured like any of the examples discussed herein, or others. In one example, the lower and upper body exoskeletons, defining a full body exoskeleton, can be a full body “self-standing” exoskeleton having one or more joint position restoration assemblies having respective one or more springs and mechanical linkages (for lower body joints, and for the torso joint(s)) that cooperate together to position (i.e., restore) and to support (i.e., maintain) the exoskeleton in a stable support position, which in one example, can comprise a self-standing position (lower body), or the generally upright, default centered position (upper body) (these being the stable supports positions discussed herein). Thus, when a user desires to re-use or again don the full body self-standing exoskeleton 500, the user can merely “step into” the exoskeleton 500 with comfort and ease because the exoskeleton 500 is already in a standing position and an upright position. Thus, an external system, such as a hoist or hanger, is not needed or required to re-use (or don) the exoskeleton 500.
The exoskeleton 600 can include mass properties M6 associated with the joint 604, and which can include the left and right exoskeleton arms 605a and 605b. The mass properties can generate a gravity induced torque on the joint 604 that may tend to rotate the upper body exoskeleton 601a to the left or right side of a centered, default position. The exoskeleton 600 can comprise one or more joint position restoration assemblies. In the example shown, the exoskeleton 600 can comprise a joint position restoration assembly comprising the spring 606 operably coupled to respective adjacent support members 602a and 602b and configured to apply a restoring torque to the joint 604 (which can be an actuated or passive joint), as defined by the spring 606, in one example. The spring 606 can have a spring stiffness value that can be configured, and in some examples tuned to generate a suitable restoring torque versus joint position profile that corresponds to the mass properties M6 of the upper body exoskeleton 601a acting on or at the joint 604, and that facilitates generation of a spring-based restoring torque by the joint position restoration assembly that compensates for the gravity-induced load or torque at the joint 604, such that the joint position restoration assembly with its spring 606 is operable to position (i.e., restore) and to support (i.e., maintain) the upper body exoskeleton 601a in a generally upright or vertical position (i.e., stable default position S6) via the restoring torque applied to the joint 604 by the spring 606. For instance, if the mass properties M6 of the upper body exoskeleton 601a of the exoskeleton 600 acting on or otherwise associated with the joint 604 would exert a gravity-induced torque on the joint 604 of 20 Nm/degrees in the position shown, then the joint position restoration assembly with its spring 606 can be configured, and in some examples tuned, so as to generate a suitable restoring torque versus joint position profile sufficient to facilitate generation and application of a restoring force or torque that counteracts and overcomes the 20 Nm/degrees gravity-induced torque at the joint 604 so that the joint position restoration assembly with its spring 606 can position (i.e., restore)) the joint 604 in an upright stable, default position, and to maintain it in this static or stable position (i.e., to prevent rotation of the joint in a direction away from the stable default position).
The spring 606 can comprise an elastic element configured to store and release energy, such as a coil spring 607 (or a different type of spring and elastic element, such as an elastomer, an elastomer spring, a polymer, a leaf spring, a helical spring, a negator spring, a constant force spring, a pneumatic spring, a rotary spring, a composite flexural spring, a torsion bar, or others as discussed herein and identified above or that would be apparent to those skilled in the art). The spring 606 can include a mounting portion 616 that mounts or attaches the spring 606 to the second support member 602b, and which can include a mount body and receive a fastener that fixedly attaches the spring 606 to the support member 602b. The spring 606 can further include a cover body 618 that surrounds or wraps around the coil spring 607, such as a flexible bellows or other flexible component. The other end of the spring 606 can be attached or mounted to the first support member 602a by suitable means, such as by a bracket 609 fastened to the first support member 602a that supports the end of the spring 606. Thus, the second support member 602b can bend or move about the spring 606, as illustrated in
The joint position restoration assembly with its associated restoring torque versus joint position profile can be configured to allow the upper body 601a to rotate about the joint 604 when the exoskeleton 600 is worn and operated by a user, so that the spring 606 can compress or bend (i.e., flex) to a certain degree and not substantially interfere with the intended use of the exoskeleton (and also act as a gravity compensation component, such as discussed above). Thus, during use of the exoskeleton 600, and in one example, the second support member 602b may be rotated to the forward and to the right about the joint 604, such as during a lifting task with one arm. If the second support member 602b rotates to the right, as shown in
Note that the lower body exoskeleton 601b may be configured like any of the examples discussed herein, or others. In this manner, the lower and upper body exoskeletons, defining a full body robotic exoskeleton, can be a full body “self-standing” exoskeleton having a plurality of joint position restoration assemblies having respective one or more springs and linkages (for lower body joints, and for the torso joint(s)) that cooperate together to position (i.e., restore) and to support (i.e., maintain) the exoskeleton in a stable default position, such as a standing position (lower body), and the generally upright position (upper body). Thus, when a user desires to re-use and again don the full body self-standing exoskeleton 600, the user can merely “step into” the exoskeleton 600 with comfort and ease because the exoskeleton 600 is already in a standing position, and an upright position. Thus, an external system, such as a hoist or hanger, is not needed or required to support the exoskeleton 600 in such a position.
As indicated above, the particular robotic system configurations discussed above and shown in
Note that the right leg exoskeleton 700 can be accompanied by a left leg exoskeleton that is a mirror copy of the right leg exoskeleton 700, and both can be operably coupled to a backpack or torso structure (e.g., 305) to for a lower body exoskeleton, and for supporting components that facilitate operation of the lower body exoskeleton. Further note that each joint 704a-c can be an actuator joint module having an electric motor, gear train(s), elastic component, sensor(s), etc., that make up a module or assembly for actuating the joint about the respective axis of rotation 705a-c. Thus, the support members 702a-d can each comprise a rigid housing that houses and supports components of each actuator joint module.
Each support member 702a-d can be rotatably coupled to at least one other or one additional support member to form and define a respective joint. In other words, adjacent support members from the various support members 702a-d can be coupled together to define a joint. For instance, support members 702a and 702b can be rotatably coupled together about and can form and define a first joint 704a, which provides the exoskeleton 700 with a degree of freedom corresponding to a degree of freedom of an ankle joint of a human leg for flexion/extension of the foot about the first joint 704a. Similarly, support members 702b and 702c can be rotatably coupled together about and can form and define a second joint 704b, which provides the exoskeleton 700 with a degree of freedom corresponding to a degree of freedom of a knee joint of the human leg for flexion/extension about the second joint 704b. And, support members 702c and 702d can be rotatably coupled together about and can form and define a third joint 704c, which provides the exoskeleton 700 with a degree of freedom corresponding to a degree of freedom of a hip joint of the human leg for flexion/extension about the third joint 704c. Finally, support member 702d can be rotatably coupled to another support member (e.g., 304e of
The exoskeleton 700 can include mass properties M7 associated with each respective joint, which can include the mass properties of some or all of the components of the exoskeleton 700 (and other components not shown, such as the upper body exoskeleton components). As an overview, the exoskeleton 700 can include one or more joint position restoration assemblies, each comprising one or more springs (e.g., see spring 706), each one being operably coupled to one or more support members about one or more joints, such as to respective adjacent support members about a joint. In the example exoskeleton 700 shown, the spring 706 can operate to apply a restoring torque to respective joints 704b and 704c to position (i.e., restore) and to support (i.e., maintain) the exoskeleton 700 in the stable support position S7, which may be considered a restorative position of the exoskeleton 700. The joint position restoration assembly with its spring 706 can be configured to provide a suitable restoring torque versus joint position profile that corresponds to the mass properties M7 of the exoskeleton 700 (and others) associated with or otherwise acting on the joint 704b, such that the spring 706 is operable to position (i.e., restore) and to support (i.e., maintain) the exoskeleton 700 in the stable support position S7 via the restoring torques applied to the joint 704b by the spring 706. Regarding the configuration or tuning of the joint position restoration assembly with its spring 706, if the mass properties M7 of the portion of the exoskeleton 700 associated with the joint 704b are known, then each joint 704a-c may have a particular gravity-induced torque (at a particular rotational angle) that is experienced at each joint when the joints are not powered and when the exoskeleton 700 is not actuated by a user or operator, and is under the influence of gravitational forces and parasitic torque. That is, the joint torque includes gravity-induced torque of each joint along with inherent resistance of the joints (e.g., due to friction from bearings and gear train, cogging torque of an EM motor, and other such factors), which is the torque experienced at each particular joint due to gravitational forces exerted on the mass of one or more structural support members 702a-d, the torso structure, and other relevant masses of the exoskeleton 700 that may contribute to the mass properties M7. For instance, in one non-limiting example, assume a maximum gravity-induced torque of joint 704b (knee joint) is 20 Nm/degrees, which is calculated based on the mass properties of the components acting on or otherwise associated with the joint 704b. Based on this, the joint position restoration assembly with its spring 706 can be configured, and in some examples tuned, so as to provide a suitable restoring torque versus joint position profile (at this particular rotational position) sufficient to facilitate generation and application of a restoring force or torque that counteracts and overcomes the 20 Nm/degree gravity-induced torque at the joint 704b, so that the joint position restoration assembly with its spring 706 (and possible linkage devices) can support and restore to a restorative position and/or maintain in such position the joint 704b. The same principle applies to the configuration and/or tuning of a spring (not shown) that may be coupled to support members 702a and 702b to position (i.e., restore) and to support (i.e., maintain) the joint 704a via restoring torques applied by the spring to restrict or prohibit rotation of the joint 704a once supported in the stable support position S7 (see (e.g., 306a of
The spring 706 can comprise any type of spring as discussed herein as will be apparent to those skilled in the art. In one example, the spring 706 can comprise a linear spring in the form of a pneumatic spring, which includes a piston rod 709 translatable through a support housing 711 that contains a gas chamber, such as in the traditional configuration of a pneumatic compression spring. In another example, the spring 706 can comprise a linear spring in the form of a nitrogen cylinder spring device, which may provide the advantage of maintaining a substantially constant spring force during the stroke of the nitrogen cylinder spring device. The spring 706 can be mounted directly or indirectly to the second support body. In the example shown, the spring 706 can have one end 714a pivotally coupled to a spring support body 707a (as part of the support and restore to a restorative position and/or maintain in such position the joint) via a stator pin 708a (forming a linkage device including the spring and support member 702d), which facilitates rotation of the piston rod 709 relative to the support body 707a during operation. Note that
As shown in
More specifically, assume a torsional spring 810 (
The benefit of the joint position restoration assembly examples of
It should be appreciated that various other linkage devices can be implemented in any of the joint position restoration assemblies discussed herein to suit a particular design to operate with a spring to apply a torque or force that restores or actuates a joint to a desired restorative rotational position (e.g., linkages that convert motion from linear to linear, rotary to linear, linear to rotary, and rotary to rotary, depending on the type of spring and linkage device implemented).
Both the examples of
Note that the various rod ends and connection points of the springs, linkages, etc. discussed herein can comprise spherical rod ends or bearings that help facilitate slight rotation in additional degrees of freedom, which may be useful in cases where one spring can restore a joint(s) in multiple degrees of freedom.
It is noted that the specific types, placement and function of the springs discussed herein are not intended to be limiting in any way. Indeed, those skilled in the art will recognize that, for example, depending upon the type and configuration of a particular exoskeleton, that different types of springs, different number of springs, different relative placement of springs, and/or different sizes of springs can be selected to provide the most efficient and suitable arrangement about the joints of the exoskeleton to achieve restoring and/or supporting and maintaining the exoskeleton in a stable support position (e.g., an upright or standing position), such that the exoskeleton is self-supporting in these positions under the influence of gravitational forces.
It is further noted that, although the present disclosure focuses on exoskeletons, that the technology discussed herein is not intended to be limited to exoskeleton type robots or robotic assemblies. Indeed, those skilled in the art will recognize that other types of robots or robotic devices or robotic assemblies and systems (e.g., humanoid robots, teleoperated robots, robotic limbs (e.g., robotic arms), robotic end effectors, parallel mechanisms such as a Stewart platform, and others) can benefit from the technology discussed herein, namely to place one or more joints and the support members operating about and defining the one or more joints in a stable support position, which position does not necessarily need to be an upright or standing position. For example, a stable support position may include placing and supporting one or more jointed support members about any orientation. In addition, the stable support position can be subjected to forces in addition to or other than gravitational forces in which the stable support position is intended to overcome and in which the jointed support members are intended to be self-supporting with respect to. Therefore, an upright or standing stable support position is not intended to be limiting in any way.
Reference was made to the examples illustrated in the drawings and specific language was used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the technology is thereby intended. Alterations and further modifications of the features illustrated herein and additional applications of the examples as illustrated herein are to be considered within the scope of the description.
Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more examples. In the preceding description, numerous specific details were provided, such as examples of various configurations to provide a thorough understanding of examples of the described technology. It will be recognized, however, that the technology may be practiced without one or more of the specific details, or with other methods, components, devices, etc. In other instances, well-known structures or operations are not shown or described in detail to avoid obscuring aspects of the technology.
Although the disclosure may not expressly disclose that some embodiments or features described herein may be combined with other embodiments or features described herein, this disclosure should be read to describe any such combinations that would be practicable by one of ordinary skill in the art. The use of “or” in this disclosure should be understood to mean non-exclusive or, i.e., “and/or,” unless otherwise indicated herein.
Although the subject matter has been described in language specific to structural features and/or operations, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features and operations described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims. Numerous modifications and alternative arrangements may be devised without departing from the spirit and scope of the described technology.