The invention generally relates to MEMS devices and, more particularly, the invention relates to improving the signal to noise ratio in a MEMS device.
Microelectromechanical systems (“MEMS”) are used in a growing number of applications. For example, MEMS currently are implemented as gyroscopes for stability control systems in automobiles, as microphones in acoustic systems, and as accelerometers to selectively deploy air bags in automobiles. In simplified terms, such MEMS devices typically have a structure suspended above a substrate, and associated electronics that both senses movement of the suspended structure and delivers the sensed movement data to one or more external devices (e.g., an external computer). The external device processes the sensed data to calculate the property being measured (e.g., pitch angle, an incident acoustic signal, or acceleration).
In many applications, the suspended, movable mass may form a variable capacitor with a fixed electrode. Movement of the mass of, for example, an accelerometer, is represented by a variable capacitance signal the capacitor produces in response to actual acceleration. In multi-dimensional accelerometers, this can produce two or three respective capacitance signals—up to one for each dimension along a Cartesian coordinate system.
State of the art accelerometers use time division multiplexing techniques to forward those multiple variable capacitance signals toward the MEMS output. Time division multiplexing, however, produces aliasing noise, undesirably reducing the signal to noise ratio. Those in the art have responded to this problem by using MEMS devices that produce a sufficiently large signal to overcome the noise produced by this multiplexing technique. This typically requires a larger MEMS device, which often is more expensive, requires more power, and takes up more real estate.
In accordance with one embodiment of the invention, a MEMS system has an input for receiving a plurality of frequency division multiplexed variable capacitance signals, and a readout node electrically coupled with the input. Each variable capacitance signal is produced by a variable capacitor and has data relating to movement of microstructure associated with that variable capacitor. Moreover, each variable capacitance signal is produced by a variable capacitor that is different from the variable capacitor producing any of the other variable capacitance signals. The system further has a mixer electrically coupled with the readout node, and an output electrically coupled with the mixer. The mixer is configured to substantially continuously receive the plural variable capacitance signals. In addition, the output has an output interface for delivering the plurality of variable capacitance signals in parallel. The signals at the output should represent real time signals, as compared to stale sample and hold signals used in prior art systems.
The system may have frequency division multiplexer for producing the plurality of variable capacitance signals. The frequency division multiplexer may produce the plurality of variable capacitance signals to be non-overlapping in frequency. To produce the plurality of variable capacitor signals, the system may have a plurality of variable capacitors that form an accelerometer.
The mixer may include a demodulator for demodulating at a demodulation frequency. In that case, the drive frequencies (driving the plurality of variable capacitance signals) are different than the demodulation frequency. The system also may have a plurality of filters electrically coupled with the mixer. This plurality of filters both filters and delivers each of the plurality of capacitance signals to the output interface.
Some embodiments have a first multiplex signal generator for generating a first multiplex signal at a first frequency, and a second multiplex signal generator for generating a second multiplex signal at a second frequency. These first and second multiplex signal generators may produce at least some of the plurality of variable capacitance signals. The first and second frequencies may be different, or they may be the same. Moreover, if the system has a demodulator demodulating signals at a demodulation frequency, the demodulation signal preferably is different than both the first and second frequencies.
In accordance with other embodiments, a MEMS device has a plurality of variable capacitors for producing a plurality of respective variable capacitor signals, and a frequency division multiplexer coupled with the plurality of variable capacitors. The multiplexer is configured to multiplex the plurality of variable capacitor signals to produce a plurality of multiplexed capacitance signals. The device also has a readout node electrically coupled with the multiplexer for receiving the plurality of frequency division multiplexed capacitance signals, and an output electrically coupled with the readout node. The output is configured to produce each of the capacitance signals in parallel (i.e., a plurality of signals having information in the capacitance signals).
In accordance with another embodiments, a method monitors movement of microstructure in a MEMS device having a first variable capacitor configured to produce a first capacitance signal relative to a first frame of reference, and a second variable capacitor configured to produce a second capacitance signal relative to a second frame of reference. The method thus modulates the first capacitance signal toward a readout node using a first frequency division multiplex signal, and modulates the second capacitance signal toward the same readout node using a second frequency division multiplex signal. The second capacitance signal is modulated at substantially the same time that the first capacitance signal is modulated toward the readout node. The first and second capacitance signals do not interfere with each other.
Those skilled in the art should more fully appreciate advantages of various embodiments of the invention from the following “Description of Illustrative Embodiments,” discussed with reference to the drawings summarized immediately below.
Illustrative embodiments substantially improve the signal-to-noise ratio of a variety of MEMS devices, such as two-axis or three-axis MEMS accelerometers. Accordingly, when implemented as discussed below, smaller MEMS devices can perform functions that currently require larger MEMS devices. This favorably enables use of smaller MEMS devices, thus reducing power and real estate requirements. Details of illustrative embodiments are discussed below.
To those ends, the accelerometer has an accelerometer chip 12 with microstructure that moves in response to an acceleration (discussed in greater detail with respect to
A conventional semiconductor package 16 encloses the accelerometer chip 12 and ASIC 14 within an internal chamber 18 that is substantially isolated from the external environment. The embodiment shown in
Any of a number of different packaging technologies should suffice. For example, among other things, the package 16 could incorporate a ceramic cavity package with a cover/lid, a substrate package having a cover, or a pre-molded or post molded leadframe package.
A lid 24 secured to the base 20 forms the internal chamber 18 for protecting and containing the accelerometer chip 12 and ASIC 14. Among other ways, the lid 24 may be secured to the base 20 using a heated glass frit or other conventional connecting process. Some embodiments may apply a ground potential to the lid 24 to prevent interference with the accelerometer chip 12. To further protect and facilitate accelerometer performance, the internal chamber 18 may be under a vacuum, or have an internal gas to provide squeeze film dampening for the accelerometer microstructure.
The accelerometer shown in
The substrate 28 also has a single fixed electrode directly underneath the mass 26 to form a third variable capacitor 34Z (with the mass 26) that measures acceleration along the Z-axis (i.e., orthogonal to the X and Y axes, or, in other words, orthogonal to the faces of the movable mass 26). This third variable capacitor 34Z is shown schematically in a cut-away view of
Since it detects acceleration in three dimensions, the MEMS system 10 is known in the art as a 3-axis accelerometer. Various embodiments, however, apply to accelerometers that detect acceleration in fewer than three dimensions, such as two-dimension accelerometers.
During operation, circuitry on the ASIC 14 energizes the capacitors 34. For example, the plates of the capacitors 34 may have a net voltage of zero when at rest. Movement of the mass 26 thus changes that voltage, generating a signal (e.g., a non-zero voltage) indicating an acceleration. To transmit signals from all three capacitors 34 across a single line, prior art designs known to the inventor apply a time division multiplex signal (“TDM signal”) to each of these capacitors 34 as they await and detect accelerations. One problem with using TDM signals, as noted above, is that they effectively sample signals, creating aliasing noise in the transmission line. Undesirably, this aliasing noise decreases the signal to noise ratio. Larger MEMS devices thus are required to overcome this noise penalty. Larger MEMS devices, however, are more costly and often less desirable.
To overcome this problem, the inventor discovered that application of substantially constant actuation signals to the variable capacitors 34, as well as substantially constant downstream processing (as discussed herein) mitigates this noise, thus enabling use of smaller accelerometers. More specifically, illustrative embodiments apply frequency division multiplex signals to the variable capacitors 34, thus permitting substantially constant information transmission across the single transmission line to the ASIC 14.
To that end,
The circuitry also includes a mixer 42 that demodulates the three frequency division multiplex signals, and an amplifier 44 that amplifies the signals to levels that are more readily processed. The amplifier 44 directs the signals to a low pass/band pass filter system 46 that, at its output, delivers the three capacitor signals at the same time across parallel output ports 48X, 48Y and 48Z. Unlike TDM systems, the output ports 48X, 48Y, and 48Z deliver three output signals that are continuous and substantially instantaneously accurate—there is no inherent delay, such as the delay required by the serial transmission processes used by TDM processes. This additional benefit therefore provides more up-to-date and accurate acceleration information.
It should be noted that these three output signals may be the exact variable capacitor signals (e.g., other circuitry not shown could produce the exact signal), or processed versions of the variable capacitor signals. In either case, unless explicitly stated otherwise, variable capacitor signals delivered by these output ports 48X, 48Y, and 48Z may be simply referred to as “variable capacitor signals” or “variable capacitance signals” produced by the variable capacitors 34X, 34Y, and 34Z.
Next, step 402 demodulates the signals received from the beam node 36. To that end, the mixer 42 has a pair of switches 50 driven 180 degrees out of phase with each other by a signal Fo. In illustrative embodiments, signal Fo has is an oscillating signal having a different frequency than those of the signals Fx, Fy, and Fz.
It should be noted that the signal strength available for the accelerometer generally is proportional to the frequencies of signals Fx, Fy, and Fz. Those frequencies therefore can be selected as a function of the desired output signal strength. Accordingly, the signals Fx, Fy, and Fz can be set relatively high to provide a stronger signal. Of course, this comes with the penalty of causing the accelerometer to consume more power. After the mixer 42, however, the post-mixer signals for the channels used by signal Fx, signal Fy, and signal Fz should have frequencies as shown by the respective equations 1-3 below:
|Fx−Fo| (Equation 1)
|Fy−Fo| (Equation 2)
|Fz−Fo| (Equation 3)
The frequencies of the mixed signals (also referred to herein as “variable capacitor signals”) thus can still be relatively low by appropriate selection of frequency values. For example, the frequencies produced by Equations 1-3 can be lower than about 20 kilohertz. In addition, the signals Fx, Fy, and Fz preferably are non-overlapping in frequency and do not interfere with each other.
The system can generate the signals Fx, Fy, Fz, and Fo can using one or more clocks. For example, in one embodiment, all signals are driven by a single oscillator (not shown). To that end, signals Fx and Fy can be driven by the same frequency, but 90 degrees shifted from one another (i.e., they are orthogonal), while the other signals Fz and Fo are driven by the same oscillator but at different frequencies. For example, the oscillator may run at a frequency of 27.2 megahertz, while the Fx, Fy, Fz, and Fo signals are run at the following frequencies:
Fo=oscillator frequency/56=485.7 kilohertz,
Fx=Fy=oscillator frequency/58=468.96 kilohertz, and
Fz=oscillator frequency/55=494.55 kilohertz.
The signals Fx and Fy thus would be demodulated by Equation 1 as follows:
|Fx−Fo|=|oscillator frequency*(1/58−1/56)|=16.748 kilohertz,
While Fz would be demodulated by Equation 3 as follows:
|Fz−Fo|=|oscillator frequency*(1/55−1/56)|=8.831 kilohertz.
The process thus continues to step 404, in which the amplifier 44 amplifies the mixed signal, and then passes the amplified mixed signal to the filter system 46 (step 406). The filter system 46 preferably includes a low pass filter that filters out high frequency harmonics of the mixed signal. The filter system 46 also has a plurality of band pass filters that each delivers one of the variable capacitor signals to one of the parallel filter output ports 48X, 48Y, and 48Z. Specifically, as noted above, the filter output has three parallel ports: an X-axis port 48X, a Y-axis port 48Y, and a Z-axis port 48Z. Accordingly, one of the band pass filters removes the variable capacitor signals derived from the Y-axis capacitor 34Y and the Z-axis capacitor 34Z to leave the X-axis variable capacitor signal behind for the X-axis port 48X. Corresponding bandpass filters for the Y-axis port 48Y and Z-axis port 48Z perform corresponding filtering operations to respectively produce the Y-axis variable capacitor signal and Z-axis variable capacitor signal.
At this point, the variable capacitors signals at the three respective ports 48A, 48Y, and 48Z are in analog form. A wide variety of applications, however, digitize the signals for further processing by a logic device, such as a microprocessor within an airbag control system. Accordingly, step 408 digitizes the signals at the ports 48A, 48Y, and 48Z, thus concluding the process.
Indeed, accelerometer systems such as those discussed above certainly can benefit by implementing various embodiments of the invention. It should be noted, however, that discussion of an accelerometer system is but one example of many different types of MEMS devices that may benefit from implementing illustrative embodiments of the invention. For example, certain types of MEMS gyroscopes and pressure sensors, among other things, also may benefit from illustrative embodiments. Accordingly, discussion of accelerometers and specific types of accelerometers is for descriptive purposes only and not intended to limit various embodiments of the invention.
Some embodiments implement this process and arrangement for all dimensions—the X-axis, the Y-axis, and Z-axis sensing. Other embodiments, however, may implement this arrangement for fewer than all of the sensing axes. For example, some embodiments may apply frequency division multiplexing processes to only the X-axis and Y-axis signals.
Illustrative embodiments therefore favorably permit use of smaller accelerometer chips, thus reducing the overall size/footprint required within an underlying system (e.g., within an airbag control system). This also reduces power requirements since it uses smaller accelerometer chips than those required in prior art systems. Moreover, use of continuous signals, such as frequency division multiplex signals, provide substantially instantaneous, up-to-date information about the acceleration state of the body being measured—which is in direct contrast to prior art time division multiplex systems, where the data may be stale (e.g., for a three-axis accelerometer, a TDM system may read the acceleration data along a given dimension every third clock cycle).
Although the above discussion discloses various exemplary embodiments of the invention, it should be apparent that those skilled in the art can make various modifications that will achieve some of the advantages of the invention without departing from the true scope of the invention.
This patent application is related to U.S. patent application Ser. No. ______, filed on even date herewith, entitled, “LOW NOISE AMPLIFIER FOR MULTIPLE CHANNELS,” and naming Howard Samuels as inventor, the disclosure of which is incorporated herein, in its entirety, by reference.