This invention relates to the processing of semiconductor substrates. More particularly, this invention relates to improvements in the process of forming contacts.
Formation of contacts in multi-level integrated circuits poses many challenges to the semiconductor industry as the drive to increase circuit density continues, due to the reduction in size of the circuit features. Contacts are formed by depositing conductive interconnect material in an opening on the surface of insulating material disposed between two spaced-apart conductive layers. The aspect ratio of such an opening inhibits deposition of conductive interconnect material that demonstrates satisfactory step coverage and gap-fill, employing traditional interconnect material such as aluminum. In addition, diffusion between the aluminum and the surrounding insulating material often occurs, which adversely effects operation of the resulting electrical circuits.
Barrier materials have been introduced to improve both the step coverage and gap-fill of aluminum, while limiting diffusion of the same. Barrier materials must also provide good adhesion properties for aluminum. Otherwise, the thermal and electrical conductance of the resulting contact may be compromised. Examples of barrier materials providing the aforementioned characteristics include TiN, TiW, TiB2, TiC and Ti2N.
However, attempts have been made to provide interconnect material with lower electrical resistivity than aluminum. This has led to the substitution of copper aluminum. Copper, like aluminum, also suffers from diffusion characteristics and may form undesirable intermetallic alloys that reduce the availability of suitable barrier materials.
Tungsten has proved to be a suitable barrier material that effectively prevents diffusion of copper. Typically deposited employing chemical vapor deposition (CVD) techniques, tungsten deposition is attendant with several disadvantages. Tungsten diffuses easily into surrounding dielectric material. In addition, tungsten has proven difficult to deposit uniformly. This has been shown by variance in tungsten layers' thickness of greater than 1%. As result, it is difficult to control the resistivity of a tungsten layer.
What is needed, therefore, are improved techniques to form barrier layers for copper interconnects that include tungsten.
One embodiment of the present invention is directed to a method to form a stacked barrier layer on a substrate disposed in a processing chamber by serially exposing the substrate to first and second reactive gases to form an adhesion layer. The adhesion layer is then serially exposed to third and fourth reactive gases to form a barrier layer adjacent to the adhesion layer. A copper layer is disposed adjacent to the barrier layer. To that end, another embodiment of the invention is directed to a system to carry out the method.
Referring to
Referring both the to
Depending on the specific process, substrate 42 may be heated to a desired temperature prior to layer deposition via a heater embedded within pedestal 38. For example, pedestal 38 may be resistively heated by applying an electric current from an AC power supply 43 to a heater element 44. Substrate 42 is, in turn, heated by pedestal 38, and can be maintained within a desired process temperature range of, for example, about 20° C. to about 750° C., with the actual temperature varying dependent upon the gases employed and the topography of the surface upon which deposition is to occur. A temperature sensor 46, such as a thermocouple, is also embedded in the wafer support pedestal 38 to monitor the temperature of the pedestal 38 in a conventional manner. For example, the measured temperature may be used in a feedback loop to control the electrical current applied to heater element 44 by the power supply 43, such that the wafer temperature can be maintained or controlled at a desired temperature the is suitable for the particular process application. Pedestal 38 is optionally heated using radiant heat (not shown). A vacuum pump 48 is used to evacuate processing chamber 37 and to help maintain the proper gas flows and pressure inside processing chamber 37.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to both
Referring to
The benefits of employing sequential deposition are manifold, including flux-independence of layer formation that provides uniformity of deposition independent of the size of a substrate. For example, the measured difference of the layer uniformity and thickness measured between of 200 mm substrate and a 300 mm substrate deposited in the same chamber is negligible. This is due to the self-limiting characteristics of chemisorption. Further, the chemisorption characteristics contribute to near-perfect step coverage over complex topography.
In addition, the thickness of the layers 58 and 60 may be easily controlled while minimizing the resistance of the same by employing sequential deposition techniques. In one example of the present invention, layers 58 and 60, as well as contact 62 may be deposited in a common processing chamber, for example chambers 12 and 14. To provide added flexibility when depositing layers 58 and 60, as well as contact 62, a bifurcated deposition process may be practiced in which layer 58 is deposited in one process chamber, for example chamber 12, and layer 60 is deposited in a separate chamber, for example chamber 14. This may reduce the deposition time of each of layers 58 and 60 by, inter alia, having each processing chamber 12 and 14 preset to carry-out the process parameters necessary to deposit the requisite refractory metal layers.
Referring again to
Although the invention has been described in terms of specific embodiments, one skilled in the art will recognize that various changes to the reaction conditions, i.e., temperature, pressure, film thickness and the like can be substituted. Further, the sequence of gases may utilize a different initial sequence. For example, the initial sequence may include exposing the substrate to the reducing gas before the metal-containing gas is introduced into the processing chamber. In addition, other stacked layers may be deposited, in addition to the refractory-metal layers described above and for purposes other than formation of a barrier layer. Therefore, the scope of the invention should not be based upon the foregoing description. Rather, the scope of the invention should be determined based upon the claims recited herein, including the full scope of equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
4058430 | Suntola et al. | Nov 1977 | A |
4389973 | Suntola et al. | Jun 1983 | A |
4413022 | Suntola et al. | Nov 1983 | A |
4767494 | Kobayashi et al. | Aug 1988 | A |
4806321 | Nishizawa et al. | Feb 1989 | A |
4840921 | Matsumoto | Jun 1989 | A |
4845049 | Sunakawa | Jul 1989 | A |
4859627 | Sunakawa | Aug 1989 | A |
4861417 | Mochizuki et al. | Aug 1989 | A |
4876218 | Pessa et al. | Oct 1989 | A |
4993357 | Scholz | Feb 1991 | A |
5082798 | Arimoto | Jan 1992 | A |
5130269 | Kitahara et al. | Jul 1992 | A |
5166092 | Mochizuki et al. | Nov 1992 | A |
5225366 | Yoder | Jul 1993 | A |
5250148 | Nishizawa et al. | Oct 1993 | A |
5256244 | Ackerman | Oct 1993 | A |
5270247 | Sakuma et al. | Dec 1993 | A |
5278435 | Van Hove et al. | Jan 1994 | A |
5281274 | Yoder | Jan 1994 | A |
5290748 | Knuuttila et al. | Mar 1994 | A |
5294286 | Nishizawa et al. | Mar 1994 | A |
5300186 | Kitahara et al. | Apr 1994 | A |
5306666 | Izumi | Apr 1994 | A |
5316793 | Wallace et al. | May 1994 | A |
5330610 | Eres et al. | Jul 1994 | A |
5336324 | Stall et al. | Aug 1994 | A |
5338389 | Nishizawa et al. | Aug 1994 | A |
5374570 | Nasu et al. | Dec 1994 | A |
5395791 | Cheng et al. | Mar 1995 | A |
5443033 | Nishizawa et al. | Aug 1995 | A |
5443647 | Aucoin et al. | Aug 1995 | A |
5458084 | Thorne et al. | Oct 1995 | A |
5480818 | Matsumoto et al. | Jan 1996 | A |
5483919 | Yokoyama et al. | Jan 1996 | A |
5484664 | Kitahara et al. | Jan 1996 | A |
5526244 | Bishop | Jun 1996 | A |
5532511 | Nishizawa et al. | Jul 1996 | A |
5580380 | Liu et al. | Dec 1996 | A |
5637530 | Gaines et al. | Jun 1997 | A |
5693139 | Nishizawa et al. | Dec 1997 | A |
5705224 | Murota et al. | Jan 1998 | A |
5711811 | Suntola et al. | Jan 1998 | A |
5730802 | Ishizumi et al. | Mar 1998 | A |
5804488 | Shih et al. | Sep 1998 | A |
5851849 | Comizzoli et al. | Dec 1998 | A |
5855680 | Soininen et al. | Jan 1999 | A |
5866795 | Wang et al. | Feb 1999 | A |
5879459 | Gadgil et al. | Mar 1999 | A |
5916365 | Sherman | Jun 1999 | A |
5972179 | Chittipeddi et al. | Oct 1999 | A |
5989623 | Chen et al. | Nov 1999 | A |
6015590 | Suntola et al. | Jan 2000 | A |
6025627 | Forbes et al. | Feb 2000 | A |
6036773 | Wang et al. | Mar 2000 | A |
6042652 | Hyun et al. | Mar 2000 | A |
6043177 | Falconer et al. | Mar 2000 | A |
6071808 | Merchant et al. | Jun 2000 | A |
6084302 | Sandhu | Jul 2000 | A |
6113977 | Soininen et al. | Sep 2000 | A |
6124158 | Dautartas et al. | Sep 2000 | A |
6130147 | Major et al. | Oct 2000 | A |
6139700 | Kang et al. | Oct 2000 | A |
6140237 | Chan et al. | Oct 2000 | A |
6140238 | Kitch | Oct 2000 | A |
6144060 | Park | Nov 2000 | A |
6183563 | Choi et al. | Feb 2001 | B1 |
6197683 | Kang et al. | Mar 2001 | B1 |
6200893 | Sneh | Mar 2001 | B1 |
6207487 | Kim et al. | Mar 2001 | B1 |
6218298 | Hoinkis | Apr 2001 | B1 |
6231672 | Choi et al. | May 2001 | B1 |
6284646 | Leem | Sep 2001 | B1 |
6287965 | Kang et al. | Sep 2001 | B1 |
6333260 | Kwon et al. | Dec 2001 | B1 |
6335280 | van der Jeugd | Jan 2002 | B1 |
6342277 | Sherman | Jan 2002 | B1 |
6348376 | Lim et al. | Feb 2002 | B2 |
6355561 | Sandhu et al. | Mar 2002 | B1 |
6358829 | Yoon et al. | Mar 2002 | B2 |
6368954 | Lopatin et al. | Apr 2002 | B1 |
6369430 | Adetutu et al. | Apr 2002 | B1 |
6372598 | Kang et al. | Apr 2002 | B2 |
6391785 | Satta et al. | May 2002 | B1 |
6399491 | Jeon et al. | Jun 2002 | B2 |
6416577 | Suntoloa et al. | Jul 2002 | B1 |
6420189 | Lopatin | Jul 2002 | B1 |
6423619 | Grant et al. | Jul 2002 | B1 |
6432821 | Dubin et al. | Aug 2002 | B1 |
6447607 | Soininen et al. | Sep 2002 | B2 |
6447933 | Wang et al. | Sep 2002 | B1 |
6451119 | Sneh et al. | Sep 2002 | B2 |
6451695 | Sneh | Sep 2002 | B2 |
6455421 | Itoh et al. | Sep 2002 | B1 |
6458701 | Chae et al. | Oct 2002 | B1 |
6468924 | Lee et al. | Oct 2002 | B2 |
6475276 | Elers et al. | Nov 2002 | B1 |
6475910 | Sneh | Nov 2002 | B1 |
6478872 | Chae et al. | Nov 2002 | B1 |
6481945 | Hasper et al. | Nov 2002 | B1 |
6482262 | Elers et al. | Nov 2002 | B1 |
6482733 | Raaijmakers et al. | Nov 2002 | B2 |
6482740 | Soininen et al. | Nov 2002 | B2 |
6511539 | Raaijmakers et al. | Jan 2003 | B1 |
6534395 | Werkhoven et al. | Mar 2003 | B2 |
6548424 | Putkonen | Apr 2003 | B2 |
6551929 | Kori et al. | Apr 2003 | B1 |
6599572 | Saanila et al. | Jul 2003 | B2 |
6607976 | Chen et al. | Aug 2003 | B2 |
6632279 | Ritala et al. | Oct 2003 | B1 |
6686271 | Raaijmakers et al. | Feb 2004 | B2 |
20010002280 | Sneh | May 2001 | A1 |
20010009140 | Bondestam et al. | Jul 2001 | A1 |
20010009695 | Saanila et al. | Jul 2001 | A1 |
20010013312 | Soininen et al. | Aug 2001 | A1 |
20010014371 | Kilpi | Aug 2001 | A1 |
20010024387 | Raaijmakers et al. | Sep 2001 | A1 |
20010028924 | Raajimakers et al. | Oct 2001 | A1 |
20010029094 | Mee-Young et al. | Oct 2001 | A1 |
20010042523 | Kesala | Nov 2001 | A1 |
20010050039 | Park | Dec 2001 | A1 |
20010054377 | Lindfors et al. | Dec 2001 | A1 |
20010054730 | Kim et al. | Dec 2001 | A1 |
20010054769 | Raaijmakers et al. | Dec 2001 | A1 |
20020000196 | Park | Jan 2002 | A1 |
20020000598 | Kim et al. | Jan 2002 | A1 |
20020004293 | Soinnen et al. | Jan 2002 | A1 |
20020007790 | Park | Jan 2002 | A1 |
20020019121 | Pyo | Feb 2002 | A1 |
20020021544 | Cho et al. | Feb 2002 | A1 |
20020031618 | Sherman | Mar 2002 | A1 |
20020037630 | Agarwal et al. | Mar 2002 | A1 |
20020041931 | Suntola et al. | Apr 2002 | A1 |
20020048635 | Kim et al. | Apr 2002 | A1 |
20020048880 | Lee | Apr 2002 | A1 |
20020052097 | Park | May 2002 | A1 |
20020055235 | Agarwal et al. | May 2002 | A1 |
20020061612 | Sandhu et al. | May 2002 | A1 |
20020074588 | Lee | Jun 2002 | A1 |
20020076507 | Chiang et al. | Jun 2002 | A1 |
20020076837 | Hujanen et al. | Jun 2002 | A1 |
20020081844 | Jeon et al. | Jun 2002 | A1 |
20020086106 | Park et al. | Jul 2002 | A1 |
20020086111 | Byun et al. | Jul 2002 | A1 |
20020086507 | Park et al. | Jul 2002 | A1 |
20020090829 | Sandhu | Jul 2002 | A1 |
20020092471 | Kang et al. | Jul 2002 | A1 |
20020094689 | Park | Jul 2002 | A1 |
20020105088 | Yang et al. | Aug 2002 | A1 |
20020106536 | Lee et al. | Aug 2002 | A1 |
20020106846 | Seutter et al. | Aug 2002 | A1 |
20020108570 | Lindfors | Aug 2002 | A1 |
20020109168 | Kim et al. | Aug 2002 | A1 |
20020117399 | Chen et al. | Aug 2002 | A1 |
20020121241 | Nguyen et al. | Sep 2002 | A1 |
20020121342 | Nguyen et al. | Sep 2002 | A1 |
20020121697 | Marsh | Sep 2002 | A1 |
20020134307 | Choi | Sep 2002 | A1 |
20020135071 | Kang et al. | Sep 2002 | A1 |
20020155722 | Satta et al. | Oct 2002 | A1 |
20020162506 | Sneh et al. | Nov 2002 | A1 |
20020177282 | Song | Nov 2002 | A1 |
20020182320 | Leskala et al. | Dec 2002 | A1 |
20020187256 | Elers et al. | Dec 2002 | A1 |
20020187631 | Kim et al. | Dec 2002 | A1 |
20020190168 | Hall et al. | Dec 2002 | A1 |
20030013300 | Byun | Jan 2003 | A1 |
20030013320 | Kim et al. | Jan 2003 | A1 |
20030031807 | Elers et al. | Feb 2003 | A1 |
20030032281 | Werkhoven et al. | Feb 2003 | A1 |
20030049942 | Haukka et al. | Mar 2003 | A1 |
20030054631 | Raajimakers et al. | Mar 2003 | A1 |
20030072975 | Shero et al. | Apr 2003 | A1 |
20030082300 | Todd et al. | May 2003 | A1 |
20030101927 | Raajimakers | Jun 2003 | A1 |
20030104126 | Fang et al. | Jun 2003 | A1 |
20030129826 | Werkhoven et al. | Jul 2003 | A1 |
20030134508 | Raajimakers et al. | Jul 2003 | A1 |
20030143839 | Raajimakers et al. | Jul 2003 | A1 |
20030143841 | Yang et al. | Jul 2003 | A1 |
20030165615 | Asitonen et al. | Sep 2003 | A1 |
20030168750 | Basceri et al. | Sep 2003 | A1 |
20030173586 | Moriwaki et al. | Sep 2003 | A1 |
20030186495 | Saanila et al. | Oct 2003 | A1 |
20030205729 | Basceri et al. | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
0799641 | Oct 1997 | EP |
1 167 569 | Jan 2002 | EP |
2355747 | May 2001 | GB |
2001-111000 | Dec 2000 | JP |
WO9100510 | Jan 1991 | WO |
WO 9851838 | Nov 1998 | WO |
9851838 | Nov 1998 | WO |
WO9901595 | Jan 1999 | WO |
9901595 | Jan 1999 | WO |
WO9929924 | Jun 1999 | WO |
9929924 | Jun 1999 | WO |
WO 9965064 | Dec 1999 | WO |
0015865 | Mar 2000 | WO |
WO0015865 | Mar 2000 | WO |
WO 0054320 | Sep 2000 | WO |
0079576 | Dec 2000 | WO |
WO 0117692 | Mar 2001 | WO |
WO 0201628 | Jan 2002 | WO |
WO 0208488 | Jan 2002 | WO |
0245167 | Jun 2002 | WO |
WO 0245871 | Jun 2002 | WO |
02067319 | Aug 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20020197863 A1 | Dec 2002 | US |