System level interconnect with programmable switching

Information

  • Patent Grant
  • 8476928
  • Patent Number
    8,476,928
  • Date Filed
    Wednesday, August 3, 2011
    13 years ago
  • Date Issued
    Tuesday, July 2, 2013
    11 years ago
Abstract
Different functional elements are all located on a same integrated circuit wherein at least one of the functional elements comprises a micro-controller. Configuration registers or configuration memory in the integrated circuit store configuration values loaded by the micro-controller. Connectors are configured to connect the integrated circuit to external signals A system level interconnect also located in the integrated circuit programmably connects together the different functional elements and different connectors according to the configuration values loaded into the configuration registers.
Description
TECHNICAL FIELD

The present disclosure relates generally to programmable devices, and more particularly to a programmable interconnect matrix.


BACKGROUND

Field-programmable gate arrays (FPGAs) and programmable logic devices (PLDs) have been used in data communication and telecommunication systems. Conventional PLDs and FPGAs consist of an array of programmable elements, with the elements program ed to implement a fixed function or equation. Some currently available Complex PLD (CPLD) products comprise arrays of logic cells. Conventional PLD devices have several drawbacks, such high power and large silicon area.


In developing complex electronic systems, there is often a need for additional peripheral units, such as operational and instrument amplifiers, filters, timers, digital logic circuits, analog to digital and digital to analog converters, etc. As a general rule, implementation of these extra peripherals create additional difficulties: extra space for new components, additional attention during production of a printed circuit board, and increased power consumption. All of these factors can significantly affect the price and development cycle of the project.


The introduction of Programmable System on Chip (PSoC) chips feature digital and analog programmable blocks, which allow the implementation of a large number of peripherals. A programmable interconnect allows analog and digital blocks to be combined to form a wide variety of functional modules. The digital blocks consist of smaller programmable blocks and are configured to provide different digital functions. The analog blocks are used for development of analog elements, such as analog filters, comparators, inverting amplifiers, as well as analog to digital and digital to analog converters. Current PSoC architectures provide only a coarse grained digital programmability in which a few fixed functions with a small number of options are available.


SUMMARY

Different functional elements are all located on a same intew-ated circuit wherein at least one of the functional elements comprises a micro-controller. Configuration registers or configuration memory in the integrated circuit store configuration values loaded by the micro-controller or some other data transfer mechanism such as Direct Memory Access (DMA). I/O pins are configured to connect the integrated circuit to external signals. A system level interconnect also located in the integrated circuit programmably connects together the different functional elements and different IO pins according to the configuration values loaded into the configuration registers.


The system level interconnect can dynamically change the connections between the different functional elements and the different TO pins in real-time according to different operational states of the integrated circuit. Any of the different functional elements in the integrated circuit can be connected to any of the different I/O pins and any of the different functional elements can be connected to each other according to the configuration values.


A first set of the functional elements can comprise analog peripherals and a second set of the functional elements can comprise digital peripherals. The system level interconnect can be programmed according to the configuration values to couple an IO pin to one of the analog peripherals while the integrated circuit is in a first state and then couple the same I/O pin to one of the digital peripherals when the integrated circuit is in a second different state.


The functional elements can further include multiple digital blocks that each include programmable logic device sections having uncommitted user programmable logic functions and datapath sections having structural arithmetic elements that together form an arithmetic sequencer. The system level interconnect is programmably configurable to connect different selectable programmable logic device sections in the digital blocks to other different selectable functional elements and to different selectable I/O pins. The system level interconnect is also programmably configurable to connect different selectable datapath sections in the same digital blocks to other different selectable functional elements and to different selectable I/O pins.


A selected I/O pin can operate as an input pin by coupling the selected I/O pin to an input for one of the functional elements while the integrated circuit is in a first operational state. The same I/O pin can also operate as an output pin by coupling the same selected I/O pin to an output for one of the functional elements while the integrated circuit is in a second operational state. Analog or digital signals from different I/O pins can also be synchronously multiplexed to a same functional element through dynamic programming of the I/O pin connections.


This programmable switching consists of channel switches that programmably couple the horizontal channels of the system level interconnect to connect to the different functional elements in the system according to the configuration values. Segmentation switches in the system level interconnect programmably couple the horizontal channels to each other and vertical channels in the system level interrconnect according to the configuration values.


Different sets of interface signals are coupled to different associated functional elements and different associated I/O pins. The interface signals overlap with the different channel lines and programmably couple to the different channel lines according to the configuration values. The interface signals can be shorted together and each of the multiple shorted interface lines can be programmably coupled to multiple different channel lines according to the configuration values. Hold cells are connected to the interface lines and retain a last state prior to the integrated circuit being reconfigured. The hold cells can also set the associated interface lines to weak predetermined states upon receiving a reset signal.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic block diagram illustrating an example PSoC architecture that includes a Universal Digital Block (UDB) array.



FIG. 2 is a schematic block showing an interconnect matrix in the UDB array.



FIG. 3 is a schematic block diagram showing how a pair of UDBs are tightly coupled to a horizontal routing channel.



FIG. 4 is a schematic block diagram showing programmable switches that connect the UDBs in FIG. 3 to the horizontal routing channel.



FIG. 5 is a schematic block diagram showing segmentation elements in the interconnect matrix.



FIG. 6 is a schematic block diagram showing different programmable switches in the segmentation elements of FIG. 5 in more detail.



FIG. 7 is a schematic block diagram that shows how the interconnect matrix of FIG. 2 can connect different interconnect paths to a micro-controller system.



FIG. 8 is a schematic diagram that shows one of the UDBs in more detail.



FIG. 9 is a schematic diagram that shows a datapath in the UDB of FIG. 8 in more detail.



FIG. 10 is a diagram showing a system level interconnect.



FIG. 11 is a more detailed drawing of the system level interconnect.



FIG. 12 is a diagram showing how I/O pins can be reconfigured using the system level interconnect.



FIGS. 13 and 14 are flow diagrams explaining how I/O pins are dynamically reconfigured for different operations.



FIGS. 15 and 16 are more detailed diagrams of a Digital System Interconnect (DSI) used in the system level interconnect shown in FIG. 10.



FIG. 17 shows how holds bits are used on interface lines.





INTRODUCTION

A system level interconnect allows signals to be routed globally on and off the chip and also increases the number of functions that can be supported while improving the overall routing efficiency in a digital programmable system. The system level interconnect is a general purpose routing resource interconnecting I/O pins with on-chip peripherals. The system level interconnect has two components: the interconnect matrix in the Universal Digital Block (UDB) array that connects different UDBs together and a Digital System Interconnect (DSI) that connects the UDB array to other peripherals and I/O pins. The system level interconnect enables on-chip peripherals to be connected to arbitrary input/output pins and then reconfigured on the fly in real time.


DETAILED DESCRIPTION


FIG. 1 is a high level view of a Universal Digital Block (UDB) array 110 contained within a Programmable System on a Chip (PSoC) Integrated Circuit (IC) 100. The UDB array 110 includes a programmable interconnect matrix 130 that connects together the different UDBs 120. The individual UDBs 120 each include a collection of uncommitted logic in the form of Programmable Logic Devices (PLDs) and structural dedicated logic elements that form a datapath 210 shown in more detail in FIGS. 8 and 9.


UDB Array


The UDB array 110 is arranged into UDB pairs 122 that each include two UDBs 120 that can be tightly coupled to a shared horizontal routing channel 132. The UDB pairs 122 can also be programmably connected to the horizontal routing channels 132 of other UDB pairs 122 either in the same horizontal row or in different rows through vertical routing channels 134. The horizontal and vertical routing channels and other switching elements are all collectively referred to as the interconnect matrix 130.


A Digital System Interconnect (DSI) routing interface 112 connects a micro-controller system 170 and other fixed function peripherals 105 to the UDB array 110. The micro-controller system 170 includes a micro-controller 102, an interrupt controller 106, and a Direct Memory Access (DMA) controller 108. The other peripherals 105 can be any digital or analog functional element in PSoC 100. The DSI 112 is an extension of the interconnect matrix 130 at the top and bottom of the UDB array 110.



FIG. 2 shows the interconnect matrix 130 in more detail and includes horizontal routing channels 132 that programmably connect with one or more associated Universal Digital Blocks (UDB) 120. In this example, pairs 122 of UDBs 120 are tightly coupled together through their associated horizontal routing channel 132. However, more than two UDBs 120 can be tightly coupled together through the same horizontal routing channel 132.


The interconnect matrix 130 also includes Horizontal/Vertical (H/V) segmentation elements 125 that programmably interconnect the different horizontal routing channels 132 together. The segmentation elements 125 couple together the horizontal routing channels 132 for the different digital block pairs 122 in the same rows. The segmentation elements 125 also programmably couple together the horizontal routing channels 132 for digital block pairs 122 in different rows through vertical routing channels 134.



FIG. 3 shows one of the UDB pairs 122 in more detail. The UDBs 120A and 120B each contain several different functional blocks that in one embodiment include two Programmable Logic Devices (PLDs) 200, a data path 210, status and control 204, and clock and reset control 202. The operations of these different functional elements are described in more detail below in FIGS. 8 and 9.


The two UDBs 120A. and 120B in UDB pair 122 are tightly coupled together to common routes in the same associated horizontal routing channel 132. Tight coupling refers to the UDB I/O signals 127 in the upper UDB 120A and the corresponding signals 128 in the lower UDB 120B all being directly connected to the same associated horizontal routing channel 132. This tight coupling provides high performance signaling between the two UDBs 120A and 120B. For example, relatively short connections 127 and 128 can be programmably established between the upper UDB 120A and the lower UDB 120B.


In one embodiment, the horizontal routing channels 132 can also have a larger number of routes and connections to the UDBs 120A and 120B than the vertical routing channels 134 shown in FIG. 2. This allows the horizontal routing channels 132 to provide more interconnectivity both between the UDBs 120A and 120B in UDB pair 122 and also provides more interconnectivity between different UDB pairs 122 in the same rows of interconnect matrix 130.


Thus, the interconnect matrix 130 in FIGS. 1 and 2 more effectively uses chip space by providing more traces and connectivity for the shorter/higher performance horizontal routing channels 132 than the relatively longer/lower performance vertical routing channels 134.



FIG. 4 shows switching elements 145 that connect the different I/O signals 127 and 128 for the UDBs 120A and 120B in FIG. 3 to the horizontal routing channel 132. In this example, an output 127A from the upper UDB 120A in the UDB pair 122 drives an input 128A in the lower UDB 120B. A buffer 138 is connected to the UDB output 127A and a buffer 140 is connected to the UDB input 128A. The output 127A and input 128A are connected to vertical wires 146 and 148, respectively that intersect the horizontal routing channel wire 132A with a regular pattern.


At the switch points, RAM bits operate RAM cells 136 and 138 which in turn control Complementary Metal Oxide Semi-conductor (CMOS) transmission gate switches 142 and 144, respectively. The switches 142 and 144 when activated connect the UDB output 127A and the UDB input 128A to horizontal routing channel wire 132A.


The RAM cells 136 and 137 are programmably selectable by the microcontroller 102 (FIG. 1) by writing values into a configuration RAM 410 (FIG. 7). This allows the micro-controller 102 to selectively activate or deactivate any of the gate switches 142 and 144 and connect any I/O 127 or 128 from either of the two universal digital blocks 120A and 120B to different wires in the horizontal channel 132.



FIG. 5 shows the interconnect matrix 130 previously shown in FIGS. 1 and 2 in further detail. The segmentation elements 125 can include different combinations of horizontal segmentation switches 152 and vertical segmentation switches 154. The horizontal segmentation switches 152 programmably couple together adjacent horizontal routing channels 132 located in the same row. The vertical segmentation switches 152 programmably couple together horizontal routing channels 132 located vertically in adjacent rows via vertical routing channels 134.


In addition to the segmentation elements 125, the interconnect matrix 130 includes the switching elements 145 previously shown in FIG. 4 that programmably connect the upper and lower UDBs 120A and 120B with their associated horizontal routing channels 132.


Referring to FIGS. 5 and 6, the segmentation elements 125 comprise arrays of horizontal segmentation switches 152 that are coupled in-between different horizontal routing channels 132 and vertical segmentation switches 154 coupled in-between the vertical routing channels 134. Each segmentation switch 152 and 154 is controlled by two bits 162A and 162B from the configuration RAM 410 (FIG. 7). The two bits 162A and 162B together control a tri-state buffer 164.


When bit 162A is set, the buffer 164A drives one of the horizontal or vertical channel lines 166 from left to right. When bit 162B is set, the buffer 164B drives the same horizontal or vertical channel line 166 from right to left. If neither bit 162A nor bit 162B is set, the buffers 164A and 164B drive line 166 to a high impedance state.


Configuration and Programmability


Any combination of the switching elements 145, horizontal segmentation switches 152, and vertical segmentation switches 154 can be programmably configured to connect together almost any combination of external I/O pins 104 (FIG. 1), UDBs 120, and micro-controller system elements 170 and fixed peripherals 105 (FIG. 1).



FIG. 7 shows different examples of how different types of interconnect paths can be programmed through the interconnect matrix 130. A Random Access Memory (RAM) or a set of configuration registers 410 are directly readable and writeable by the micro-controller 102. A first set of bits in RAM section 412 are associated with the RAM cells 136 and 137 shown in FIG. 4 that control connections between the inputs and output of UDB and their associated horizontal routing channels 132. A second set of bits in RANI section 414 control how the horizontal segmentation switches 152 in FIGS. 5 and 6 connect the horizontal routing channels 132 in the same rows together and other bits in RAM section 414 control how the vertical segmentation switches 154 connect together the horizontal routing channels 132 in different rows.


Pursuant to the micro-controller 102 programming RAM 410, the interconnect matrix 130 is configured with a first interconnect path 176 that connects a UDB 120C to the interrupt controller 106. The UDB 120C can then send interrupt requests to the DMA controller 108 over interconnect path 176. A second interconnect path 178 is established between a peripheral (not shown) in the PSoC chip 100 (FIG. 1) and the DMA controller 108. The peripheral sends DMA requests to the DMA controller 108 over the interconnect path 178 that includes system level interconnect 172 and interconnect matrix 130.


A third interconnect path 180 is also configured by the micro-controller 102 by loading bits into RAM sections 412 and 414. The DMA controller 108 uses the interconnect path 180 to send a DMA terminate signal to UDB 120D. A fourth interconnect path 182 is programmably configured between one of the PSoC 110 pins 104 and a fixed digital peripheral, such as the micro-controller 102. The interconnect path 182 is used to send I/O signals between the micro-controller 102 and the I/O pin 104.


Interconnect paths 176-182 are of course just a few examples of the many different interconnect configurations that can be simultaneously provided by the interconnect matrix 130. This example also shows how different I/O pins 104, UDBs 120, and other peripherals can be connected to the same interrupt line on the interrupt controller 106 or connected to the same DMA line on the DMA controller 108.


Typically, interrupt requests received by an interrupt controller and DMA requests received by a DMA controller can only be connected to one dedicated pin. The interconnect matrix 130 allows any variety of different selectable functional elements or 110 pins to be connected to the same input or output for the interrupt controller 106 or DMA controller 108 according to the programming of RAM 410 by micro-controller 102.


The programmability of the interconnect matrix 130 also allows any number, or all, of the I/O pins 104 to be undedicated and completely programmable to connect to any functional element in PSoC 100. For example, the pin 104 can operate as an input pin for any selectable functional element in FIG. 7. In another interconnect matrix configuration, the same pin 104 can operate as an output pin when connected to a first peripheral and operate as an output pin when connected to a different peripheral.


Universal Digital Block



FIG. 8 is a top-level block diagram for one of the UDBs 120. The major blocks include a pair of Programmable Logic Devices (PLDs) 200. The PLDs 200 take inputs from the routing channel 130 and foul registered or combinational sum of-products logic to implement state machines, control for datapath operations, conditioning inputs and driving outputs.


The PLD blocks 200 implement state machines, perform input or output data conditioning, and create look-up tables. The PLDs 200 can also be configured to perform arithmetic functions, sequence datapath 210, and generate status. PLDs are generally known to those skilled in the art and are therefore not described in further detail.


The datapath block 210 contains highly structured dedicated logic that implements a dynamically programmable ALU, comparators, and condition generation. A status and control block 204 allows micro-controller firmware to interact and synchronize with the UDB 120 by writing to control inputs and reading status outputs.


A clock and reset control block 202 provides global clock selection, enabling, and reset selection. The clock and reset block 202 selects a clock for each of the PLD blocks 200, the datapath block 210, and status and control block 204 from available global system clocks or a bus clock. The clock and reset block 202 also supplies dynamic and firmware resets to the UDBs 120.


Routing channel 130 connects to UDB I/O through a programmable switch matrix and provides connections between the different elements of the UDBs in FIG. 7. A system bus interface 140 maps all registers and RAMs in the UDBs 120 into a system address space and are accessible by the micro-controller 102.


The PLDs 200 and the datapath 210 have chaining signals 212 and 214, respectively that enable neighboring UDBs 120 to be linked to create higher precision functions. The PLD carry chain signals 212 are routed from the previous adjacent UDB 120 in the chain, and routed through each macrocell in both of the PLDs 200. The carry out is then routed to the next UDB 120 in the chain. A similar connectivity is provided for the set of conditional signals generated by the datapath chain 214 between datapath blocks 210 in adjacent UDBs 120.


Referring to FIG. 9, each UDB 120 comprises a combination of user defined control bits that are loaded by the micro-controller 102 into control register 250. The control register 250 is part of the control blocks 202 and 204 described above in FIG. 8. The control register 250 feeds uncommitted programmable logic 200 and control for structure datapath inputs. The same control blocks 202 and 204 described above in FIG. 8 also include associated status registers 256 that allow the micro-controller 102 to selectably read different internal states both the uncommitted logic elements and for structural arithmetic elements 254 within the datapath 210.


The datapath 210 comprises highly structured logic elements 254 that include a dynamically programmable ALU 304, conditional comparators 310, accumulators 302, and data buffers 300. The ALU 304 is configured to perform instructions on accumulators 302, and to perform arithmetic sequences as controlled by a sequence memory. The conditional comparators 310 can operate in parallel with the ALU 304. The datapath 210 is further optimized to implement typical embedded functions, such as timers, counters, pseudo random sequence generators, Cyclic Redundancy Checkers (CRC), Pulse Width Modulators (PWM), etc.


The combination of uncommitted PLDs 200 with a dedicated datapath module 210 allow the UDBs 120 to provide embedded digital functions with more silicon efficient processing. The dedicated committed structural arithmetic elements 254 more efficiently implement arithmetic sequencer operations, as well as other datapath functions. Since the datapath 210 is structural, fewer gates are needed to implement these structural elements 254 and fewer interconnections are needed to connect the structural elements 254 together into an arithmetic sequencer. Implementing the same datapath 210 with PLDs could require a much greater quantity of additional combinational logic and additional interconnections.


The structured logic in the datapath 210 is also highly programmable to provide a wide variety of different dynamically selectable arithmetic functions. Thus, the datapath 210 not only conserves space on the integrated circuit 100 (FIG. 1) but also is highly configurable similar to PLDs. It has an additional advantage of being dynamically configurable and reconfigurable.


The functional configurability of the datapath 210 is provided through the control registers 250 and allow the micro-controller 102 to arbitrarily write into a system state and selectively control different arithmetic functions. The status registers 256 allow the micro-controller 102 to also identify different states associated with different configured arithmetic operations.


The flexible connectivity scheme provided by the routing channel 130 selectively interconnects the different functional element 250, 200, 254, and 256 together as well as programmably connecting these functional element to other UDBs, I/O connections, and peripherals. Thus, the combination of uncommitted logic 200, structural logic 254, and programmable routing channel 130 provide as much functionality and more efficiently uses integrated circuit space.


The interconnect matrix 130 also requires little or no dedicated UDB block routing. All data, state, control, signaling, etc, can be routed through the interconnect matrix 130 in the UDB array 110. The array routing is efficient because there is little or no difference between a local UDB net and a net that spans the UDB array. Horizontal and vertical segmentation allow the array to be partitioned for increased efficiency and random access to the RAM 410 allow high speed configuration or on the fly reconfiguability.


System Level Interconnect



FIG. 10 shows an abstract view of a system level routing architecture in the PSoC Integrated Circuit (IC) 100. The UDB array 110 includes DSI interfaces 112 at the top and bottom of the array 110. The DS′ 112 is an extension of the interconnect matrix 130 described above in FIG. 2 and the combination of the DSI 112 and interconnect matrix 130 within UDB an-ay 110 is referred to generally as a system level interconnect 135.


The different peripherals 102, 105, 106, 108, and 110 are all referred to generally as functional elements 114 and can all be located in the same PSoC IC 100. Examples of fixed digital peripherals include, but are not limited to, timers and counters 105A, a Controller Area Network communications protocol (CAN) 105B, the micro-controller 102, the DMA controller 108, global clocks 105C and 105D, an External Memory Interface (EMIF) 105E, Delta Sigma ADC block (Del SIG) 105F, serial communication blocks 105G and comparators 105I. Fixed analog peripherals can include, but are not limited to Digital-to-Analog Converters (DACs) 105H. I/O pins 104 are alternatively referred to as I/O ports or I/O pins and provide the external signal path for the functional elements 114.


The micro-controller 102 configures the system level interconnect 135 by loading configuration values 116 into configuration registers or configuration memory 410. The system level interconnect 135 then programmably connects together the different functional elements 114 and different I/O pins 104 according to the configuration values 116 loaded into the configuration registers 410.


The system level interconnect 135 is configured by the micro-controller 102 to connect any of the different functional elements 114 to any of the different I/O pins 104 and can also be configured to connect any of the different functional elements 114 to each other according to the loaded configuration values 116. The system level interconnect 135 can also be dynamically reconfigured on-the-fly by the microcontroller 102 in real-time according to different operational states of the IC 100.


Referring to FIG. 11, the system level interconnect 135 includes both the interconnect matrix 130 used in the UDB array 110 and the DST 112. The DSI 112 provides the additional connectivity between the UDB array 110 and the other fixed functional elements 114 and I/O pins 104. The DSI 112 is built from similar functional blocks as the interconnect matrix 130. As with the interconnect matrix 130, the DSI 112 includes multiple horizontal channels 132A that are programmably connected together by segmentation elements 125A. The segmentation elements 125A also connect to other horizontal channels 132 in the UDB array 110.


The horizontal channels 132A in the DSI 112 are programmably connected to the different fixed peripherals 114 and different I/O pins 104 through interface lines 133. For example, FIG. 11 shows the micro-controller 102 and multiple different I/O pins 104A-104E connected to horizontal channels 132A via the interface lines 133. The different segmentation elements 125A in the DSI 112 then couple the horizontal channels 132A to each other and to other horizontal channels 132 in the UDB array 110.


System level routing provides multiple equivalent destinations. For example, routing from the I/O pin 104A to an input of a PLD 200A is facilitated by the fact that all PLD inputs are permutable, i.e., they are all equivalent. The concept of permutability at the destination is applied as a general rule for internal array destinations in the UDBs 120 (PLD inputs, datapath inputs, clock and reset inputs, etc). However, it is also applied to destinations outside the UDB array 110.


The system level interconnect 135 allows any I/O from any UDB 120 to be connected to any other UDB I/O in any other UDB array 110. Further, any I/O from any UDB 120 in UDB array 130 can also be connected to any I/O of any fixed peripheral element 114 or connect to any I/O pin 104. Further, any I/O for any peripheral 114 can also be connected to any I/O of another other peripheral 114 and can also be connected to any I/O pin 104.



FIG. 11 shows some examples. In a first example, the micro-controller 102 (FIG. 10) configures a first path 501 in the system level interconnect 135 that couples I/O pin 104A to one of the inputs of the PLD 200A in UDB 120A. At the same time, the micro-controller 102 configures a second path 502 in the system level interconnect 135 that connects the I/O pin 104B directly to the pin 104 D.


In this example, the micro-controller 102 also loads configuration values 116 into configuration registers 410 that configure a path 504 in the system level interconnect 135 that connect an output of micro-controller 102 to I/O pin 104E and also configure a path 506 that connects an input of micro-controller 102 to I/O pin 104C. Any combination of different connection paths can be created by loading associated configuration values 116 into the configuration registers 401 shown in FIG. 10.



FIG. 12 is another abstract view of the system level interconnect 135 shown extending around the edge of an integrated circuit 500. In this example, the same or a similar interconnect matrix 130 is used in the UDB array 110 and used in conjunction with the DSI 112. The embodiment in FIG. 12 may also have a separate control bus that extends around the periphery of IC 500 that selectively connects to the different functional elements 114. Prior to configuring the system level interconnect 135, the I/O pins 104 are effectively undedicated and unconnected to any functional element 114. After configuration, the I/O pins 104 provide any type of input and/or output associated with the connected functional element 114.


For example, some pins 104 are configured by the micro-controller 102 to operate as an I/O connection for a Liquid Crystal Display (LCD) function 510A, a multi-level driver (DRV) function 510B, and a general digital I/O function 510C. These different functions 510A-510C can be configured in the PLDs 200, datapaths 210, or fixed peripherals 512 and 514. The functions 510A-510C are shown next to pins to represent the pins 104 being associated with different functional elements in IC 500.


Depending on the operational state of the IC 500, the different configuration values 116 in configuration register 410 (FIG. 10) are changed by the micro-controller 102 to reconnect the pins to the different functions 510A-510C. For example, pin 104A may initially operate as an I/O pin for digital I/O function 510C. Upon detection of a particular signal or state, the micro-controller 102 may then reconfigure the system level interconnect 135 to connect pin 104A to the LCD function 510A.


In another example, the system level interconnect 135 is initially configured to connect pin 104H as a digital input for a digital function 510D in one of the UDBs 120 of UDB array 110. After a particular signal or state is detected in the IC 500, the micro-controller 102 reconfigures the system level interconnect 135 to connect pin 104H to a digital output of a digital function 510E in one of the fixed digital peripherals 514.


Referring to FIGS. 12 and 13, the pin 104H in another example is dynamically configured to operate as an external I/O for a digital function 510D, an analog function 510E, and a LCD function 510F. In operation 520, the micro-controller 102 loads configuration values 116 into configuration registers 410 that configure a LCD driver in the UDB array 110. Other configuration values 116 in the registers 410 are loaded into the configuration registers 410 in operation 522 that configure the system level interconnect 135 to connect pin 104H to the output of LCD driver 510F.


Operation 524 loads configuration values 116 into the registers 410 that configure an analog-to-digital converter in one of the fixed analog peripherals 512. Operation 526 may happen later during a different operating state and loads configuration values into the configuration registers 410 that connect pin 104H to the analog-to-digital converter when the LCD driver 510F is inactivated. Finally, operation 528 loads configuration values into registers 410 that ca-use the same pin 104H to connect to the micro-controller 102 when the LCD driver 510F and the analog-to-digital converter 510E are both inactive.



FIG. 14 further explains how the IC 500 in FIG. 12 operates according to the configuration values 116 loaded into the registers 410. In operation 530, the PSoC IC is reset. When the LCD driver 510H is active in operation 532, pin 104I-1 is connected to the LCD driver output in operation 538. When the LCD driver is inactive but the analog-to-digital converter 510E is active in operation 534, pin 104H is connected to the analog-to-digital converter 510E in operation 540. Otherwise, pin 104H is connected through the system level interconnect 135 to the micro-controller 102 in operation 536. The micro-controller 102 then waits for the LDC driver 510F or the analog-to-digital converter 510E to reactivate and accordingly reconnects pin 104H to the activated function.


In yet another example, the system level interconnect 135 is configured to synchronously multiplex two different analog signals from different I/O pins 104B and 104C to the same fixed analog peripheral 512. The analog peripheral in one example is also an analog-to-digital converter. In this example, a clock in UDB array 110 synchronously causes the micro-controller 102 to reconfigure system level interconnect 135 to toggle connecting pins 104B and 104C to the fixed analog peripheral 512 on a clocked periodic basis. Thus, the system level interconnect 135 in this example operates essentially as an analog multiplexer switching between the analog signal on I/O pin 104B and the analog signal on I/O pin 104C.



FIG. 15 shows the DSI 112 from FIG. 11 in more detail. The segmentation elements 125A are essentially the same as those shown in FIGS. 5 and 6. The segmentation elements 125A connect adjacent horizontal channels 132A together and also connect the horizontal channels 132A to other horizontal channels in the UDB array 110.


Different sets of interface lines 133 are coupled to different associated peripherals 520 or I/O pins 104. The interface lines 133 overlap with multiple different channel lines in associated horizontal channels 132A and programmably couple to the different channel lines according to particular configuration values 116 (FIG. 10) that activate associated switching elements 526.


Multiple different interface lines 133 for the same peripheral 520 or for the same connector 104 are shorted together. For example, interface lines 133A and 133B in FIG. 15 are both shorted together. Shorting multiple interface lines together increases connectivity and allows shorter system level interconnect paths between the peripherals 520, I/O pins 104, and UDB array 110.



FIG. 16 shows the switching elements 526 in FIG. 15 in more detail. Each switching element 526 includes an associated bit 530 that is located in one of the configuration registers 410 shown in FIG. 10. The bits 530 control an associated gate 528 that when activated connect a horizontal channel line 532 to an interface line 534. As shown in FIG. 16, multiple interface switching elements 526 can be attached to the same interface line 534 and at ached to multiple different horizontal channel lines 532. This again increases the connectivity of the peripherals 520 and I/O pins 104 in FIG. 15 with horizontal routing channel 132A. The bits 530 can be loaded into the configuration registers 410 by the micro-controller 102 and can be dynamically changed by the micro-controller 102 during IC operation as described above.



FIG. 17 shows hold cells 549 that retain a last state on associated interface lines 133 prior to the integrated circuit being reconfigured and further set the interface lines 133 to weak predetermined states upon receiving a reset signal 552.


A tile 540 contains the interconnects previously shown in FIG. 16. Multiple different tiles 540 are arranged to connect the different peripherals 520 and I/O pins 104 (FIG. 15) to the horizontal routing channels 132A. The interface lines 133 at the top of each tile are coupled to hold cells 549 and gates 548. The gates 548 ground the interface lines 133 when a sleep signal 550 is asserted.


When a digital value is output on one of the interface lines 133 and the reset value is low, inverter 542 in hold cell 549 inverts the value which is then inverted back by the NOR gate 544. This holds the original digital state on the interface line 133.


Floating signals can cause problems for certain device inputs. For example, the floating state may be incorrectly interpreted as logic high or logic low values and in turn cause operational errors. To avoid this floating condition, the reset line 552 is asserted high causing all of the hold buffers 549 to output a weak zero value on the interface lines 133. A logic one or logic zero signal asserted on any one of the interface lines 133 overrides the weak zero signal and causes the hold cell 549 to latch the new signal state.


The system described above can use dedicated processor systems, micro controllers, programmable logic devices, or microprocessors that perform some or all of the operations. Some of the operations described above can be implemented in software and other operations can be implemented in hardware.


For the sake of convenience, the operations are described as various interconnected functional blocks or distinct software modules. This is not necessary, however, and there can be cases where these functional blocks or modules are equivalently aggregated into a single logic device, program or operation with unclear boundaries. In any event, the functional blocks and software modules or features of the flexible interface can be implemented by themselves, or in combination with other operations in either hardware or software.


Having described and illustrated the principles of the invention in a preferred embodiment thereof, it should be apparent that the invention can be modified in arrangement and detail without departing from such principles. Claim is made to all modifications and variation coming within the spirit and scope of the following claims.

Claims
  • 1. An apparatus, comprising: different functional elements all located in a same integrated circuit wherein at least one of the functional elements comprises a micro-controller;configuration registers or configuration memory in the integrated circuit to store configuration values;different I/O pins configured to connect the integrated circuit to external signals; anda system level interconnect, located in the integrated circuit, configured to programmably connect a first functional element to a first I/O pin and to connect the first functional element to the micro-controller according to the configuration values loaded into the configuration registers or configuration memory.
  • 2. The apparatus of claim 1, wherein the system level interconnect is configured to dynamically change the connections between the different functional elements and the different I/O pins in real time according to different operational states of the integrated circuit.
  • 3. The apparatus of claim 1, wherein the micro-controller is configured to load the configuration values into the configuration registers or configuration memory.
  • 4. The apparatus of claim 1, wherein: the functional elements further include multiple digital blocks that each include an arithmetic sequencer formed from programmable logic device sections comprising uncommitted user programmable logic functions and datapath sections comprising structural arithmetic elements;the system level interconnect is programmably configurable to connect different selectable programmable logic device sections in the digital blocks to other different selectable functional elements and to different selectable I/O pins; andthe system level interconnect is programmably configurable to connect different selectable datapath sections in the digital blocks to other different selectable functional elements and to different selectable I/O pins.
  • 5. The apparatus of claim 1, wherein: the system level interconnect is configured to operate the first I/O pins as an input pin by coupling the first I/O pin to an input for one of the functional elements while the integrated circuit is in a first operational state; andthe system level interconnect is further configured to operate the first I/O pin as an output pin by coupling the first I/O pin to an output for one of the functional elements while the integrated circuit is in a second operational state.
  • 6. The apparatus of claim 1, wherein the system level interconnect is configured to synchronously multiplex analog signals from different I/O pins to a same functional element that operates as an analog to digital converter.
  • 7. The apparatus of claim 1, wherein the system level interconnect comprises horizontal channels configured to: programmably couple to the different functional elements according to the configuration values in the configuration registers or configuration memory; andprogrammably couple to the different I/O pins according to the configuration values in the configuration registers or configuration memory.
  • 8. The apparatus of claim 7, further comprising; a channel switch to programmably couple a first horizontal channel to the first functional element according to the configuration values; anda segmentation switch to programmably couple the first horizontal channel to a second horizontal according to the configuration values.
  • 9. The apparatus of claim 1, further comprising: a first set of interface lines coupled to different associated functional elements; anda second set of interface lines coupled to different associated I/O pins, the first and second sets of interface lines overlapping with multiple different channel lines in associated channels of the system level interconnect and programmably coupled to the different channel lines according to the configuration values.
  • 10. The apparatus of claim 9, further comprising: hold cells configured to retain a last state on associated interface lines and further configured to set the associated interface lines to a weak predetermined state upon receiving a reset signal.
  • 11. An integrated circuit, comprising: an interconnect configured to programmably couple different selectable functional elements to different selectable I/O pins in the integrated circuit according to configuration values, the interconnect configured to be programmably changed in real-time while the integrated circuit is in operation,wherein the interconnect comprises different sets of interface lines and different sets of channel lines, the interface lines selectively coupled to the different selectable functional elements, the different selectable I/O pins, and the different channel lines according to the configuration values.
  • 12. The integrated circuit of claim 11, wherein the different channel lines programmably couple the different functional elements in the integrated circuit and the different I/O pins in the integrated circuit according to the configuration values.
  • 13. The integrated circuit of claim 12, further comprising: segmentation elements to programmably couple the channels together according to the configuration values.
  • 14. The integrated circuit of claim 12, further comprising: an array of universal digital blocks comprising uncommitted programmable logic sections and structural arithmetic logic sections, the interconnect programmably configured to connect different programmable logic sections and different arithmetic logic sections to the different channel lines in the interconnect.
  • 15. An apparatus, comprising: different functional elements comprising a micro-controller, a first peripheral, and a second peripheral, all located in a same integrated circuit;configuration registers or configuration memory in the integrated circuit to store configuration values;different I/O pins configured to connect the integrated circuit to external signals; anda system level interconnect located in the integrated circuit to programmably connect the different functional elements to different I/O pins according to the configuration values loaded into the configuration registers or configuration memory,wherein the system level interconnect is configured to be programmed according to the configuration values to couple a first I/O pin to the first peripheral while the integrated circuit is in a first state and couple the first I/O pin to the second peripheral when the integrated circuit is in a second state.
  • 16. The apparatus of claim 15, further comprising: a first set of interface lines coupled to different associated functional elements; and a second set of interface lines coupled to different associated I/O pins, the first and second sets of interface lines overlapping with multiple different channel lines in associated channels of the system level interconnect and programmably coupled to the different channel lines according to the configuration values.
  • 17. The apparatus of claim 16, wherein multiple interface lines associated with the same functional elements or associated with the same I/O pins are shorted together.
  • 18. The apparatus of claim 17, wherein each of the multiple shorted interface lines are configured to be programmably coupled to different channel lines according to the configuration values.
  • 19. The apparatus of claim 15, wherein the first peripheral comprises an analog peripheral.
  • 20. The apparatus of claim 15, wherein the second peripheral comprises a digital peripheral.
RELATED APPLICATIONS

The application is a continuation of U.S. patent application Ser. No. 11/965,677, filed Dec. 27, 2007 now U.S. Pat. No. 8,026,739, which claims priority to U.S. Provisional Patent Application No. 60/912,399, filed Apr. 17, 2007, both of which are hereby incorporated by reference herein.

US Referenced Citations (1228)
Number Name Date Kind
3600690 White Aug 1971 A
3725804 Langan Apr 1973 A
3740588 Stratton et al. Jun 1973 A
3805245 Brooks et al. Apr 1974 A
3810036 Bloedom May 1974 A
3831113 Ahmed Aug 1974 A
3845328 Hollingsworth Oct 1974 A
3940760 Brokaw Feb 1976 A
4061987 Nagahama Dec 1977 A
4134073 MacGregor Jan 1979 A
4138671 Comer et al. Feb 1979 A
4176258 Jackson Nov 1979 A
4250464 Schade, Jr. Feb 1981 A
4272760 Prazak et al. Jun 1981 A
4283713 Philipp Aug 1981 A
4326135 Jarrett et al. Apr 1982 A
4344067 Lee Aug 1982 A
4380083 Andersson et al. Apr 1983 A
4438404 Philipp Mar 1984 A
4454589 Miller Jun 1984 A
4475151 Philipp Oct 1984 A
4497575 Philipp Feb 1985 A
4604363 Newhouse et al. Aug 1986 A
4608502 Dijkmans et al. Aug 1986 A
4656603 Dunn Apr 1987 A
4670838 Kawata Jun 1987 A
4689740 Moelands et al. Aug 1987 A
4692718 Roza et al. Sep 1987 A
4701907 Collins Oct 1987 A
4727541 Mori et al. Feb 1988 A
4736097 Philipp Apr 1988 A
4740966 Goad Apr 1988 A
4755766 Metz Jul 1988 A
4773024 Faggin et al. Sep 1988 A
4794558 Thompson Dec 1988 A
4802103 Faggin et al. Jan 1989 A
4802119 Heene et al. Jan 1989 A
4807183 Kung et al. Feb 1989 A
4809345 Tabata et al. Feb 1989 A
4812684 Yamagiwa et al. Mar 1989 A
4813013 Dunn Mar 1989 A
4827401 Hrustich et al. May 1989 A
4831546 Mitsuta et al. May 1989 A
4833418 Quintus et al. May 1989 A
4868525 Dias Sep 1989 A
4876466 Kondou et al. Oct 1989 A
4876534 Mead et al. Oct 1989 A
4878200 Asghar et al. Oct 1989 A
4879461 Philipp Nov 1989 A
4879688 Turner et al. Nov 1989 A
4885484 Gray Dec 1989 A
4907121 Hrassky Mar 1990 A
4926355 Boreland May 1990 A
4935702 Mead et al. Jun 1990 A
4939637 Pawloski Jul 1990 A
4942540 Black et al. Jul 1990 A
4947169 Smith et al. Aug 1990 A
4953928 Anderson et al. Sep 1990 A
4962342 Mead et al. Oct 1990 A
4964074 Suzuki et al. Oct 1990 A
4969087 Tanagawa et al. Nov 1990 A
4970408 Hanke et al. Nov 1990 A
4972372 Ueno Nov 1990 A
4977381 Main Dec 1990 A
4980652 Tarusawa et al. Dec 1990 A
4999519 Kitsukawa et al. Mar 1991 A
5043674 Bonaccio et al. Aug 1991 A
5049758 Mead et al. Sep 1991 A
5050168 Paterson Sep 1991 A
5053949 Allison et al. Oct 1991 A
5055827 Philipp Oct 1991 A
5059920 Anderson et al. Oct 1991 A
5068622 Mead et al. Nov 1991 A
5073759 Mead et al. Dec 1991 A
5083044 Mead et al. Jan 1992 A
5088822 Warren Feb 1992 A
5095284 Mead Mar 1992 A
5097305 Mead et al. Mar 1992 A
5099191 Galler et al. Mar 1992 A
5107146 El-Ayat Apr 1992 A
5107149 Platt et al. Apr 1992 A
5109261 Mead et al. Apr 1992 A
5119038 Anderson et al. Jun 1992 A
5120996 Mead et al. Jun 1992 A
5122800 Philipp Jun 1992 A
5126685 Platt et al. Jun 1992 A
5127103 Hill et al. Jun 1992 A
5128871 Schmitz Jul 1992 A
5136188 Ha et al. Aug 1992 A
5140197 Grider Aug 1992 A
5142247 Lada, Jr. et al. Aug 1992 A
5144582 Steele Sep 1992 A
5146106 Anderson et al. Sep 1992 A
5150079 Williams et al. Sep 1992 A
5155836 Jordan et al. Oct 1992 A
5159292 Canfield et al. Oct 1992 A
5159335 Veneruso Oct 1992 A
5160699 Anderson et al. Nov 1992 A
5161124 Love Nov 1992 A
5165054 Platt et al. Nov 1992 A
5166562 Allen et al. Nov 1992 A
5175884 Suarez Dec 1992 A
5179531 Yamaki Jan 1993 A
5184061 Lee et al. Feb 1993 A
5198817 Walden et al. Mar 1993 A
5200751 Smith Apr 1993 A
5202687 Distinti Apr 1993 A
5204549 Platt et al. Apr 1993 A
5206582 Ekstedt et al. Apr 1993 A
5220512 Watkins et al. Jun 1993 A
5225991 Dougherty Jul 1993 A
5230000 Mozingo et al. Jul 1993 A
5235617 Mallard, Jr. Aug 1993 A
5241492 Girardeau, Jr. Aug 1993 A
5243554 Allen et al. Sep 1993 A
5245262 Moody et al. Sep 1993 A
5248843 Billings Sep 1993 A
5248873 Allen et al. Sep 1993 A
5258750 Moody et al. Nov 1993 A
5260592 Mead et al. Nov 1993 A
5260979 Parker et al. Nov 1993 A
5270963 Allen et al. Dec 1993 A
5276407 Mead et al. Jan 1994 A
5276739 Krokstad et al. Jan 1994 A
5276890 Arai Jan 1994 A
5280199 Itakura Jan 1994 A
5280202 Chan et al. Jan 1994 A
5289023 Mead Feb 1994 A
5303329 Mead et al. Apr 1994 A
5304955 Atriss et al. Apr 1994 A
5305017 Gerpheide Apr 1994 A
5305312 Fornek et al. Apr 1994 A
5307381 Ahuja Apr 1994 A
5313618 Pawloski May 1994 A
5317202 Waizman May 1994 A
5319370 Del Signore et al. Jun 1994 A
5319771 Takeda Jun 1994 A
5321828 Phillips et al. Jun 1994 A
5324958 Mead et al. Jun 1994 A
5325512 Takahashi Jun 1994 A
5329471 Swoboda et al. Jul 1994 A
5331215 Allen et al. Jul 1994 A
5331315 Crosette Jul 1994 A
5331571 Aronoff et al. Jul 1994 A
5334952 Maddy et al. Aug 1994 A
5335342 Pope et al. Aug 1994 A
5336936 Allen et al. Aug 1994 A
5339213 O'Callaghan Aug 1994 A
5339262 Rostoker et al. Aug 1994 A
5341044 Ahanin et al. Aug 1994 A
5341267 Whitten et al. Aug 1994 A
5345195 Cordoba et al. Sep 1994 A
5349303 Gerpheide Sep 1994 A
5355097 Scott et al. Oct 1994 A
5357626 Johnson et al. Oct 1994 A
5361290 Akiyama Nov 1994 A
5371524 Herczeg et al. Dec 1994 A
5371860 Mura et al. Dec 1994 A
5371878 Coker Dec 1994 A
5371883 Gross et al. Dec 1994 A
5374787 Miller et al. Dec 1994 A
5377333 Nakagoshi et al. Dec 1994 A
5378935 Korhonen et al. Jan 1995 A
5381515 Platt et al. Jan 1995 A
5384467 Plimon et al. Jan 1995 A
5384745 Konishi et al. Jan 1995 A
5384910 Torres Jan 1995 A
5390173 Spinney et al. Feb 1995 A
5392784 Gudaitis Feb 1995 A
5394522 Sanchez-Frank et al. Feb 1995 A
5396245 Rempfer Mar 1995 A
5398261 Marbot Mar 1995 A
5399922 Kiani et al. Mar 1995 A
5408194 Steinbach et al. Apr 1995 A
5408235 Doyle et al. Apr 1995 A
5414308 Lee et al. May 1995 A
5414380 Floyd et al. May 1995 A
5416895 Anderson et al. May 1995 A
5422823 Agrawal et al. Jun 1995 A
5424689 Gillig et al. Jun 1995 A
5426378 Ong Jun 1995 A
5426384 May Jun 1995 A
5428319 Marvin et al. Jun 1995 A
5430395 Ichimaru Jul 1995 A
5430687 Hung et al. Jul 1995 A
5430734 Gilson Jul 1995 A
5432476 Tran Jul 1995 A
5438672 Dey Aug 1995 A
5440305 Signore et al. Aug 1995 A
5451887 El-Avat et al. Sep 1995 A
5453904 Higashiyama et al. Sep 1995 A
5455525 Ho et al. Oct 1995 A
5455731 Parkinson Oct 1995 A
5455927 Huang Oct 1995 A
5457410 Ting Oct 1995 A
5457479 Cheng Oct 1995 A
5463591 Aimoto et al. Oct 1995 A
5479603 Stone et al. Dec 1995 A
5479643 Bhaskar et al. Dec 1995 A
5479652 Dreyer et al. Dec 1995 A
5481471 Naglestad et al. Jan 1996 A
5488204 Mead et al. Jan 1996 A
5491458 Mccune, Jr. et al. Feb 1996 A
5493246 Anderson Feb 1996 A
5493723 Beck et al. Feb 1996 A
5495077 Miller et al. Feb 1996 A
5495593 Elmer et al. Feb 1996 A
5495594 Mackenna et al. Feb 1996 A
5497119 Tedrow et al. Mar 1996 A
5497498 Taylor Mar 1996 A
5499192 Knapp et al. Mar 1996 A
5500823 Martin et al. Mar 1996 A
5517198 Mcewan May 1996 A
5519854 Watt May 1996 A
5521529 Agrawal et al. May 1996 A
5530444 Tice et al. Jun 1996 A
5530673 Tobita et al. Jun 1996 A
5530813 Paulsen et al. Jun 1996 A
5537057 Leong et al. Jul 1996 A
5541878 Lemoncheck et al. Jul 1996 A
5542055 Amini et al. Jul 1996 A
5543588 Bisset et al. Aug 1996 A
5543590 Gillespie et al. Aug 1996 A
5543591 Gillespie et al. Aug 1996 A
5544067 Rostoker et al. Aug 1996 A
5544311 Harenberg et al. Aug 1996 A
5546433 Tran et al. Aug 1996 A
5546562 Patel Aug 1996 A
5552725 Ray et al. Sep 1996 A
5552748 O'Shaughnessy Sep 1996 A
5554951 Gough Sep 1996 A
5555452 Callaway et al. Sep 1996 A
5555907 Philipp Sep 1996 A
5557762 Okuaki et al. Sep 1996 A
5559502 Schutte Sep 1996 A
5559996 Fujioka Sep 1996 A
5563526 Hastings et al. Oct 1996 A
5563529 Seltzer et al. Oct 1996 A
5564010 Henry et al. Oct 1996 A
5564108 Hunsaker et al. Oct 1996 A
5565658 Gerpheide et al. Oct 1996 A
5566702 Philipp Oct 1996 A
5572665 Nakabayashi Nov 1996 A
5572719 Biesterfeldt Nov 1996 A
5574678 Gorecki Nov 1996 A
5574852 Bakker et al. Nov 1996 A
5574892 Christensen Nov 1996 A
5579353 Parmenter et al. Nov 1996 A
5587945 Lin et al. Dec 1996 A
5587957 Kowalczyk et al. Dec 1996 A
5590354 Klapproth et al. Dec 1996 A
5594388 O'Shaughnessy et al. Jan 1997 A
5594734 Worsley et al. Jan 1997 A
5594876 Getzlaff et al. Jan 1997 A
5594890 Yamaura et al. Jan 1997 A
5600262 Kolze Feb 1997 A
5604466 Dreps et al. Feb 1997 A
5608892 Wakerly Mar 1997 A
5614861 Harada Mar 1997 A
5617041 Lee et al. Apr 1997 A
5625316 Chambers et al. Apr 1997 A
5625583 Hyatt Apr 1997 A
5629857 Brennan May 1997 A
5629891 Lemoncheck et al. May 1997 A
5630052 Shah May 1997 A
5630057 Hait May 1997 A
5630102 Johnson et al. May 1997 A
5631577 Freidin et al. May 1997 A
5633766 Hase et al. May 1997 A
5642295 Smayling Jun 1997 A
5646544 Iadanza Jul 1997 A
5646901 Sharpe-Geisler et al. Jul 1997 A
5648642 Miller et al. Jul 1997 A
5651035 Tozun et al. Jul 1997 A
5652893 Ben-Meir et al. Jul 1997 A
5661433 LaRosa et al. Aug 1997 A
5663900 Bhandari et al. Sep 1997 A
5663965 Seymour Sep 1997 A
5664199 Kuwahara Sep 1997 A
5666480 Leung et al. Sep 1997 A
5670915 Cooper et al. Sep 1997 A
5673198 Lawman et al. Sep 1997 A
5675825 Dreyer et al. Oct 1997 A
5677691 Hosticka et al. Oct 1997 A
5680070 Anderson et al. Oct 1997 A
5682032 Philipp Oct 1997 A
5684434 Mann et al. Nov 1997 A
5684952 Stein Nov 1997 A
5686844 Hull et al. Nov 1997 A
5687325 Chang Nov 1997 A
5689195 Cliff et al. Nov 1997 A
5689196 Schutte Nov 1997 A
5691664 Anderson et al. Nov 1997 A
5691898 Rosenberg et al. Nov 1997 A
5694063 Burlison et al. Dec 1997 A
5696952 Pontarelli Dec 1997 A
5699024 Manlove et al. Dec 1997 A
5703871 Pope et al. Dec 1997 A
5706453 Cheng et al. Jan 1998 A
5708589 Beauvais Jan 1998 A
5708798 Lynch et al. Jan 1998 A
5710906 Ghosh et al. Jan 1998 A
5712969 Zimmermann et al. Jan 1998 A
5721931 Gephardt et al. Feb 1998 A
5724009 Collins et al. Mar 1998 A
5727170 Mitchell et al. Mar 1998 A
5728933 Schultz et al. Mar 1998 A
5729704 Stone et al. Mar 1998 A
5730165 Philipp Mar 1998 A
5732277 Kodosky et al. Mar 1998 A
5734272 Belot et al. Mar 1998 A
5734334 Hsieh et al. Mar 1998 A
5737557 Sullivan Apr 1998 A
5737760 Grimmer et al. Apr 1998 A
5745011 Scott Apr 1998 A
5748048 Moyal May 1998 A
5748875 Tzori May 1998 A
5752013 Christensen et al. May 1998 A
5754552 Allmond et al. May 1998 A
5754826 Gamal et al. May 1998 A
5757368 Gerpheide et al. May 1998 A
5758058 Milburn May 1998 A
5760612 Ramirez Jun 1998 A
5761128 Watanabe Jun 1998 A
5763909 Mead et al. Jun 1998 A
5764714 Stansell et al. Jun 1998 A
5767457 Gerpheide et al. Jun 1998 A
5774704 Williams Jun 1998 A
5777399 Shibuya Jul 1998 A
5781030 Agrawal et al. Jul 1998 A
5781747 Smith et al. Jul 1998 A
5784545 Anderson et al. Jul 1998 A
5790882 Silver et al. Aug 1998 A
5790957 Heidari Aug 1998 A
5796183 Hourmand et al. Aug 1998 A
5799176 Kapusta et al. Aug 1998 A
5801958 Dangelo et al. Sep 1998 A
5802073 Platt Sep 1998 A
5802290 Casselman Sep 1998 A
5805792 Swoboda et al. Sep 1998 A
5805897 Glowny Sep 1998 A
5808883 Hawkes Sep 1998 A
5811987 Ashmore, Jr. et al. Sep 1998 A
5812698 Platt et al. Sep 1998 A
5818254 Agrawal et al. Oct 1998 A
5818444 Alimpich et al. Oct 1998 A
5818736 Leibold Oct 1998 A
5819028 Manghirmalani et al. Oct 1998 A
5822387 Mar Oct 1998 A
5822531 Gorczyca et al. Oct 1998 A
5828693 Mays et al. Oct 1998 A
5838583 Varadarajan et al. Nov 1998 A
5841078 Miller et al. Nov 1998 A
5841996 Nolan et al. Nov 1998 A
5844256 Higashino Dec 1998 A
5844404 Caser et al. Dec 1998 A
5848285 Kapusta et al. Dec 1998 A
5850156 Wittman Dec 1998 A
5852733 Chien et al. Dec 1998 A
5854625 Frisch et al. Dec 1998 A
5857109 Taylor Jan 1999 A
5861583 Schediwy et al. Jan 1999 A
5861875 Gerpheide Jan 1999 A
5864242 Allen et al. Jan 1999 A
5864392 Winklhofer et al. Jan 1999 A
5867046 Sugasawa Feb 1999 A
5867399 Rostoker et al. Feb 1999 A
5869979 Bocchino Feb 1999 A
5870004 Lu Feb 1999 A
5870309 Lawman Feb 1999 A
5870345 Stecker Feb 1999 A
5872464 Gradinariu Feb 1999 A
5874958 Ludolph Feb 1999 A
5875293 Bell et al. Feb 1999 A
5877656 Mann et al. Mar 1999 A
5878425 Redpath Mar 1999 A
5880411 Gillespie et al. Mar 1999 A
5880598 Duong Mar 1999 A
5883623 Cseri Mar 1999 A
5886582 Stansell Mar 1999 A
5887189 Bims et al. Mar 1999 A
5889236 Gillespie et al. Mar 1999 A
5889723 Pascucci Mar 1999 A
5889936 Chan Mar 1999 A
5889988 Held Mar 1999 A
5894226 Koyama Apr 1999 A
5894243 Hwang Apr 1999 A
5894565 Furtek et al. Apr 1999 A
5895494 Scalzi et al. Apr 1999 A
5896068 Moyal Apr 1999 A
5896330 Gibson Apr 1999 A
5898345 Namura et al. Apr 1999 A
5900780 Hirose et al. May 1999 A
5901062 Burch et al. May 1999 A
5903718 Marik May 1999 A
5905398 Todsen et al. May 1999 A
5909544 Anderson et al. Jun 1999 A
5911059 Profit, Jr. Jun 1999 A
5914465 Allen et al. Jun 1999 A
5914633 Comino et al. Jun 1999 A
5914708 Lagrange et al. Jun 1999 A
5917356 Casal et al. Jun 1999 A
5920310 Faggin et al. Jul 1999 A
5923264 Lavelle et al. Jul 1999 A
5926566 Wang et al. Jul 1999 A
5929710 Bien Jul 1999 A
5930148 Bjorksten et al. Jul 1999 A
5930150 Cohen et al. Jul 1999 A
5931959 Kwiat Aug 1999 A
5933023 Young Aug 1999 A
5933356 Rostoker et al. Aug 1999 A
5933816 Zeanah et al. Aug 1999 A
5935233 Jeddeloh Aug 1999 A
5935266 Thurnhofer et al. Aug 1999 A
5939904 Fetterman et al. Aug 1999 A
5939949 Olgaard et al. Aug 1999 A
5941991 Kageshima Aug 1999 A
5942733 Allen et al. Aug 1999 A
5943052 Allen et al. Aug 1999 A
5945878 Westwick et al. Aug 1999 A
5949632 Barreras, Sr. et al. Sep 1999 A
5952888 Scott Sep 1999 A
5956279 Mo et al. Sep 1999 A
5959871 Pierzchala et al. Sep 1999 A
5963075 Hiiragizawa Oct 1999 A
5963105 Nguyen Oct 1999 A
5963503 Lee Oct 1999 A
5964893 Circello et al. Oct 1999 A
5966027 Kapusta et al. Oct 1999 A
5966532 Mcdonald et al. Oct 1999 A
5968135 Teramoto et al. Oct 1999 A
5969513 Clark Oct 1999 A
5969632 Diamant et al. Oct 1999 A
5973368 Pearce et al. Oct 1999 A
5974235 Nunally et al. Oct 1999 A
5977791 Veenstra Nov 1999 A
5978584 Nishibata et al. Nov 1999 A
5978937 Miyamori et al. Nov 1999 A
5982105 Masters Nov 1999 A
5982229 Wong et al. Nov 1999 A
5982241 Nguyen et al. Nov 1999 A
5983277 Heile et al. Nov 1999 A
5986479 Mohan Nov 1999 A
5987246 Thomsen et al. Nov 1999 A
5988902 Holehan Nov 1999 A
5994939 Johnson et al. Nov 1999 A
5996032 Baker Nov 1999 A
5999725 Barbier et al. Dec 1999 A
6002268 Sasaki et al. Dec 1999 A
6002398 Wilson Dec 1999 A
6003054 Oshima et al. Dec 1999 A
6003107 Ranson et al. Dec 1999 A
6003133 Moughanni et al. Dec 1999 A
6005814 Mulholland et al. Dec 1999 A
6005904 Knapp et al. Dec 1999 A
6006321 Abbott Dec 1999 A
6006322 Muramatsu Dec 1999 A
6008685 Kunst Dec 1999 A
6008703 Perrott et al. Dec 1999 A
6009270 Mann Dec 1999 A
6009496 Tsai Dec 1999 A
6011407 New Jan 2000 A
6012835 Thompson et al. Jan 2000 A
6014135 Fernandes Jan 2000 A
6014509 Furtek et al. Jan 2000 A
6014723 Tremblay et al. Jan 2000 A
6016554 Skrovan et al. Jan 2000 A
6016563 Fleisher Jan 2000 A
6018559 Azegami et al. Jan 2000 A
6023422 Allen et al. Feb 2000 A
6023565 Lawman et al. Feb 2000 A
6026134 Duffy et al. Feb 2000 A
6026501 Hohl et al. Feb 2000 A
6028271 Gillespie et al. Feb 2000 A
6028959 Wang et al. Feb 2000 A
6031365 Sharpe-Geisler Feb 2000 A
6032268 Swoboda et al. Feb 2000 A
6034538 Abramovici Mar 2000 A
6035320 Kiriaki et al. Mar 2000 A
6037807 Wu et al. Mar 2000 A
6038551 Barlow et al. Mar 2000 A
6041406 Mann Mar 2000 A
6043695 O'Sullivan Mar 2000 A
6043719 Lin et al. Mar 2000 A
6049223 Lytle et al. Apr 2000 A
6049225 Huang et al. Apr 2000 A
6051772 Cameron et al. Apr 2000 A
6052035 Nolan et al. Apr 2000 A
6052524 Pauna Apr 2000 A
6055584 Bridges et al. Apr 2000 A
6057705 Wojewoda et al. May 2000 A
6058263 Voth May 2000 A
6058452 Rangasayee et al. May 2000 A
6061511 Marantz et al. May 2000 A
6066961 Lee et al. May 2000 A
6070003 Gove et al. May 2000 A
6072803 Allmond et al. Jun 2000 A
6075941 Itoh et al. Jun 2000 A
6079985 Wohl et al. Jun 2000 A
6081140 King Jun 2000 A
6094730 Lopez et al. Jul 2000 A
6097211 Couts-Martin et al. Aug 2000 A
6097432 Mead et al. Aug 2000 A
6101457 Barch et al. Aug 2000 A
6101617 Burckhartt et al. Aug 2000 A
6104217 Magana Aug 2000 A
6104325 Liaw et al. Aug 2000 A
6107769 Saylor et al. Aug 2000 A
6107826 Young et al. Aug 2000 A
6107882 Gabara et al. Aug 2000 A
6110223 Southgate et al. Aug 2000 A
6111431 Estrada Aug 2000 A
6112264 Beasley et al. Aug 2000 A
6121791 Abbott Sep 2000 A
6121805 Thamsirianunt et al. Sep 2000 A
6121965 Kenney et al. Sep 2000 A
6125416 Warren Sep 2000 A
6130548 Koifman Oct 2000 A
6130551 Agrawal et al. Oct 2000 A
6130552 Jefferson et al. Oct 2000 A
6130553 Nakaya Oct 2000 A
6133773 Garlepp et al. Oct 2000 A
6134181 Landry Oct 2000 A
6134516 Wang et al. Oct 2000 A
6137308 Nayak Oct 2000 A
6140853 Lo Oct 2000 A
6141376 Shaw Oct 2000 A
6141764 Ezell Oct 2000 A
6148104 Wang et al. Nov 2000 A
6148441 Woodward Nov 2000 A
6149299 Aslan et al. Nov 2000 A
6150866 Eto et al. Nov 2000 A
6154064 Proebsting Nov 2000 A
6157024 Chapdelaine et al. Dec 2000 A
6157270 Tso Dec 2000 A
6161199 Szeto et al. Dec 2000 A
6166367 Cho Dec 2000 A
6166960 Marneweck et al. Dec 2000 A
6167077 Ducaroir et al. Dec 2000 A
6167364 Stellenberg et al. Dec 2000 A
6167559 Furtek et al. Dec 2000 A
6169383 Sabin et al. Jan 2001 B1
6172428 Jordan Jan 2001 B1
6172571 Moyal et al. Jan 2001 B1
6173419 Barnett Jan 2001 B1
6175914 Mann Jan 2001 B1
6175949 Gristede et al. Jan 2001 B1
6181163 Agrawal et al. Jan 2001 B1
6183131 Holloway et al. Feb 2001 B1
6185127 Myers et al. Feb 2001 B1
6185450 Seguine et al. Feb 2001 B1
6185522 Bakker Feb 2001 B1
6185703 Guddat et al. Feb 2001 B1
6185732 Mann et al. Feb 2001 B1
6188228 Philipp Feb 2001 B1
6188241 Gauthier et al. Feb 2001 B1
6188381 van der Wal et al. Feb 2001 B1
6188391 Seely et al. Feb 2001 B1
6188975 Gay Feb 2001 B1
6191603 Muradali et al. Feb 2001 B1
6191660 Mar et al. Feb 2001 B1
6191998 Reddy et al. Feb 2001 B1
6192431 Dabral et al. Feb 2001 B1
6198303 Rangasayee Mar 2001 B1
6201407 Kapusta et al. Mar 2001 B1
6201829 Schneider Mar 2001 B1
6202044 Tzori Mar 2001 B1
6204687 Schultz et al. Mar 2001 B1
6205574 Dellinger et al. Mar 2001 B1
6208572 Adams et al. Mar 2001 B1
6211708 Klemmer Apr 2001 B1
6211715 Terauchi Apr 2001 B1
6211741 Dalmia Apr 2001 B1
6215326 Jefferson et al. Apr 2001 B1
6215352 Sudo Apr 2001 B1
6216254 Pesce et al. Apr 2001 B1
6218859 Pedersen Apr 2001 B1
6219729 Keats et al. Apr 2001 B1
6222528 Gerpheide et al. Apr 2001 B1
6223144 Barnett et al. Apr 2001 B1
6223147 Bowers Apr 2001 B1
6223272 Coehlo et al. Apr 2001 B1
RE37195 Kean May 2001 E
6225866 Kubota et al. May 2001 B1
6236242 Hedberg May 2001 B1
6236275 Dent May 2001 B1
6236278 Olgaard May 2001 B1
6236593 Hong et al. May 2001 B1
6239389 Allen et al. May 2001 B1
6239798 Ludolph et al. May 2001 B1
6240375 Sonoda May 2001 B1
6246258 Lesea Jun 2001 B1
6246410 Bergeron et al. Jun 2001 B1
6249167 Oguchi et al. Jun 2001 B1
6249447 Boylan et al. Jun 2001 B1
6253250 Evans et al. Jun 2001 B1
6253754 Roohparvar Jul 2001 B1
6260087 Chang Jul 2001 B1
6262717 Donohue et al. Jul 2001 B1
6263302 Hellestrand et al. Jul 2001 B1
6263339 Hirsch Jul 2001 B1
6263484 Yang Jul 2001 B1
6271679 McClintock et al. Aug 2001 B1
6272646 Rangasayee et al. Aug 2001 B1
6275117 Abugharbieh et al. Aug 2001 B1
6278568 Cloke et al. Aug 2001 B1
6280391 Olson et al. Aug 2001 B1
6281753 Corsi et al. Aug 2001 B1
6282547 Hirsch Aug 2001 B1
6282551 Anderson et al. Aug 2001 B1
6286127 King et al. Sep 2001 B1
6288707 Philipp Sep 2001 B1
6289300 Brannick et al. Sep 2001 B1
6289478 Kitagaki Sep 2001 B1
6289489 Bold et al. Sep 2001 B1
6292028 Tomita Sep 2001 B1
6294932 Watarai Sep 2001 B1
6294962 Mar Sep 2001 B1
6298320 Buckmaster et al. Oct 2001 B1
6304014 England et al. Oct 2001 B1
6304101 Nishihara Oct 2001 B1
6304790 Nakamura et al. Oct 2001 B1
6307413 Dalmia et al. Oct 2001 B1
6310521 Dalmia Oct 2001 B1
6310611 Caldwell Oct 2001 B1
6311149 Ryan et al. Oct 2001 B1
6314530 Mann Nov 2001 B1
6320184 Winklhofer et al. Nov 2001 B1
6320282 Caldwell Nov 2001 B1
6321369 Heile et al. Nov 2001 B1
6323846 Westerman et al. Nov 2001 B1
6324628 Chan Nov 2001 B1
6326859 Goldman et al. Dec 2001 B1
6332137 Hori et al. Dec 2001 B1
6332201 Chin et al. Dec 2001 B1
6337578 Jefferson et al. Jan 2002 B2
6337579 Mochida Jan 2002 B1
6338109 Snyder et al. Jan 2002 B1
6339815 Feng et al. Jan 2002 B1
6342907 Petty et al. Jan 2002 B1
6345383 Ueki Feb 2002 B1
6347395 Payne et al. Feb 2002 B1
6351789 Green Feb 2002 B1
6353452 Hamada et al. Mar 2002 B1
6355980 Callahan Mar 2002 B1
6356862 Bailey Mar 2002 B2
6356958 Lin Mar 2002 B1
6356960 Jones et al. Mar 2002 B1
6359950 Gossmann et al. Mar 2002 B2
6362697 Pulvirenti Mar 2002 B1
6366174 Berry et al. Apr 2002 B1
6366300 Ohara et al. Apr 2002 B1
6366874 Lee et al. Apr 2002 B1
6366878 Grunert Apr 2002 B1
6369660 Wei et al. Apr 2002 B1
6371878 Bowen Apr 2002 B1
6373954 Malcolm, Jr. et al. Apr 2002 B1
6374370 Bockhaus et al. Apr 2002 B1
6377009 Philipp Apr 2002 B1
6377575 Mullaney et al. Apr 2002 B1
6377646 Sha Apr 2002 B1
6380811 Zarubinsky et al. Apr 2002 B1
6380929 Platt Apr 2002 B1
6380931 Gillespie et al. Apr 2002 B1
6384947 Ackerman et al. May 2002 B1
6385742 Kirsch et al. May 2002 B1
6388109 Schwarz et al. May 2002 B1
6388464 Lacey et al. May 2002 B1
6396302 New et al. May 2002 B2
6396657 Sun et al. May 2002 B1
6397232 Cheng-Hung et al. May 2002 B1
6401230 Ahanessians et al. Jun 2002 B1
6404204 Farruggia et al. Jun 2002 B1
6404224 Azegami et al. Jun 2002 B1
6404445 Galea et al. Jun 2002 B1
6407953 Cleeves Jun 2002 B1
6408432 Herrmann et al. Jun 2002 B1
6411665 Chan et al. Jun 2002 B1
6411974 Graham et al. Jun 2002 B1
6414671 Gillespie et al. Jul 2002 B1
6421698 Hong Jul 2002 B1
6421817 Mohan et al. Jul 2002 B1
6425109 Choukalos et al. Jul 2002 B1
6426677 Prentice Jul 2002 B1
6429882 Abdelnur et al. Aug 2002 B1
6430305 Decker Aug 2002 B1
6433645 Mann et al. Aug 2002 B1
6434187 Beard et al. Aug 2002 B1
6437805 Sojoodi et al. Aug 2002 B1
6438565 Ammirato et al. Aug 2002 B1
6438735 McElvain et al. Aug 2002 B1
6438738 Elayda Aug 2002 B1
6441073 Tanaka et al. Aug 2002 B1
6445211 Saripella Sep 2002 B1
6449628 Wasson Sep 2002 B1
6449755 Beausang et al. Sep 2002 B1
6449761 Greidinger et al. Sep 2002 B1
6452437 Takeuchi et al. Sep 2002 B1
6452514 Philipp Sep 2002 B1
6453175 Mizell et al. Sep 2002 B2
6453461 Chaiken Sep 2002 B1
6456304 Angiulo et al. Sep 2002 B1
6457355 Philipp Oct 2002 B1
6457479 Zhuang et al. Oct 2002 B1
6460172 Insenser Farre et al. Oct 2002 B1
6463488 San Juan Oct 2002 B1
6466036 Philipp Oct 2002 B1
6466078 Stiff Oct 2002 B1
6466898 Chan Oct 2002 B1
6473069 Gerpheide Oct 2002 B1
6473825 Worley et al. Oct 2002 B1
6476634 Bilski Nov 2002 B1
6477691 Bergamaschi et al. Nov 2002 B1
6480921 Mansoorian et al. Nov 2002 B1
6483343 Faith et al. Nov 2002 B1
6487700 Fukushima Nov 2002 B1
6489899 Ely et al. Dec 2002 B1
6490213 Mu et al. Dec 2002 B1
6492834 Lytle et al. Dec 2002 B1
6496969 Feng et al. Dec 2002 B2
6496971 Lesea et al. Dec 2002 B1
6498720 Glad Dec 2002 B2
6499134 Buffet et al. Dec 2002 B1
6499359 Washeleski et al. Dec 2002 B1
6504403 Bangs et al. Jan 2003 B2
6507214 Snyder Jan 2003 B1
6507215 Piasecki et al. Jan 2003 B1
6507857 Yalcinalp Jan 2003 B1
6509758 Piasecki et al. Jan 2003 B2
6512395 Lacey et al. Jan 2003 B1
6516428 Wenzel et al. Feb 2003 B2
6522128 Ely et al. Feb 2003 B1
6523416 Takagi et al. Feb 2003 B2
6525593 Mar Feb 2003 B1
6526556 Stoica et al. Feb 2003 B1
6529791 Takagi Mar 2003 B1
6530065 Mcdonald et al. Mar 2003 B1
6534970 Ely et al. Mar 2003 B1
6535061 Darmawaskita et al. Mar 2003 B2
6535200 Philipp Mar 2003 B2
6535946 Bryant et al. Mar 2003 B1
6536028 Katsioulas et al. Mar 2003 B1
6539534 Bennett Mar 2003 B1
6542025 Kutz et al. Apr 2003 B1
6542844 Hanna Apr 2003 B1
6542845 Grucci et al. Apr 2003 B1
6546297 Gaston et al. Apr 2003 B1
6552933 Roohparvar Apr 2003 B2
6553057 Sha et al. Apr 2003 B1
6554469 Thomson et al. Apr 2003 B1
6556044 Langhammer et al. Apr 2003 B2
6557164 Faustini Apr 2003 B1
6559685 Green May 2003 B2
6560306 Duffy et al. May 2003 B1
6560699 Konkle May 2003 B1
6563391 Mar May 2003 B1
6564179 Belhaj May 2003 B1
6566961 Dasgupta et al. May 2003 B2
6567426 van Hook et al. May 2003 B1
6567932 Edwards et al. May 2003 B2
6570557 Westerman et al. May 2003 B1
6571331 Henry et al. May 2003 B2
6571373 Devins et al. May 2003 B1
6574590 Kershaw et al. Jun 2003 B1
6574739 Kung et al. Jun 2003 B1
6575373 Nakano Jun 2003 B1
6577258 Ruha et al. Jun 2003 B2
6578174 Zizzo Jun 2003 B2
6580329 Sander Jun 2003 B2
6581191 Schubert et al. Jun 2003 B1
6587093 Shaw et al. Jul 2003 B1
6587995 Duboc et al. Jul 2003 B1
6588004 Southgate et al. Jul 2003 B1
6590422 Dillon Jul 2003 B1
6590517 Swanson Jul 2003 B1
6590589 Sluiman et al. Jul 2003 B1
6591369 Edwards et al. Jul 2003 B1
6592626 Bauchot et al. Jul 2003 B1
6594796 Chiang Jul 2003 B1
6594799 Robertson et al. Jul 2003 B1
6597212 Wang et al. Jul 2003 B1
6597824 Newberg et al. Jul 2003 B2
6598178 Yee et al. Jul 2003 B1
6600346 Macaluso Jul 2003 B1
6600351 Bisanti et al. Jul 2003 B2
6600575 Kohara Jul 2003 B1
6601189 Edwards et al. Jul 2003 B1
6601236 Curtis Jul 2003 B1
6603330 Snyder Aug 2003 B1
6603348 Preuss et al. Aug 2003 B1
6604179 Volk et al. Aug 2003 B2
6606731 Baum et al. Aug 2003 B1
6608472 Kutz et al. Aug 2003 B1
6610936 Gillespie et al. Aug 2003 B2
6611220 Snyder Aug 2003 B1
6611276 Muratori et al. Aug 2003 B1
6611856 Liao et al. Aug 2003 B1
6611952 Prakash et al. Aug 2003 B1
6613098 Sorge et al. Sep 2003 B1
6614260 Welch et al. Sep 2003 B1
6614320 Sullam et al. Sep 2003 B1
6614374 Gustavsson et al. Sep 2003 B1
6614458 Lambert et al. Sep 2003 B1
6615167 Devins et al. Sep 2003 B1
6617888 Volk Sep 2003 B2
6618854 Mann Sep 2003 B1
6621356 Gotz et al. Sep 2003 B2
6624640 Lund et al. Sep 2003 B2
6625765 Krishnan Sep 2003 B1
6628163 Dathe et al. Sep 2003 B2
6628311 Fang Sep 2003 B1
6631508 Williams Oct 2003 B1
6634008 Dole Oct 2003 B1
6634009 Molson et al. Oct 2003 B1
6636096 Schaffer et al. Oct 2003 B2
6636169 Distinti et al. Oct 2003 B1
6637015 Ogami et al. Oct 2003 B1
6639586 Gerpheide Oct 2003 B2
6642857 Schediwy et al. Nov 2003 B1
6643151 Nebrigic et al. Nov 2003 B1
6643810 Whetsel Nov 2003 B2
6649924 Philipp et al. Nov 2003 B1
6650581 Hong et al. Nov 2003 B2
6658498 Carney et al. Dec 2003 B1
6658633 Devins et al. Dec 2003 B2
6661288 Morgan et al. Dec 2003 B2
6661410 Casebolt et al. Dec 2003 B2
6661724 Snyder et al. Dec 2003 B1
6664978 Kekic et al. Dec 2003 B1
6664991 Chew et al. Dec 2003 B1
6667642 Moyal Dec 2003 B1
6667740 Ely et al. Dec 2003 B2
6670852 Hauck Dec 2003 B1
6671869 Davidson et al. Dec 2003 B2
6673308 Hino et al. Jan 2004 B2
6677814 Low et al. Jan 2004 B2
6677932 Westerman Jan 2004 B1
6678645 Rajsuman et al. Jan 2004 B1
6678877 Perry et al. Jan 2004 B1
6680632 Meyers et al. Jan 2004 B1
6680731 Gerpheide et al. Jan 2004 B2
6681280 Miyake et al. Jan 2004 B1
6681359 Au et al. Jan 2004 B1
6683462 Shimizu Jan 2004 B2
6683930 Dalmia Jan 2004 B1
6686787 Ling Feb 2004 B2
6686860 Gulati et al. Feb 2004 B2
6690224 Moore Feb 2004 B1
6691193 Wang et al. Feb 2004 B1
6691301 Bowen Feb 2004 B2
6697754 Alexander Feb 2004 B1
6701340 Gorecki et al. Mar 2004 B1
6701487 Ogami et al. Mar 2004 B1
6701508 Bartz et al. Mar 2004 B1
6703961 Mueck et al. Mar 2004 B2
6704381 Moyal et al. Mar 2004 B1
6704879 Parrish Mar 2004 B1
6704889 Veenstra et al. Mar 2004 B2
6704893 Bauwens et al. Mar 2004 B1
6705511 Dames et al. Mar 2004 B1
6711226 Williams et al. Mar 2004 B1
6711731 Weiss Mar 2004 B2
6713897 Caldwell Mar 2004 B2
6714066 Gorecki et al. Mar 2004 B2
6714817 Daynes et al. Mar 2004 B2
6715132 Bartz et al. Mar 2004 B1
6717474 Chen et al. Apr 2004 B2
6718294 Bortfeld Apr 2004 B1
6718520 Merryman et al. Apr 2004 B1
6718533 Schneider et al. Apr 2004 B1
6724220 Snyder et al. Apr 2004 B1
6725441 Keller et al. Apr 2004 B1
6728900 Meli Apr 2004 B1
6728902 Kaiser et al. Apr 2004 B2
6730863 Gerpheide et al. May 2004 B1
6731552 Perner May 2004 B2
6732068 Sample et al. May 2004 B2
6732347 Camilleri et al. May 2004 B1
6738858 Fernald et al. May 2004 B1
6744323 Moyal et al. Jun 2004 B1
6745369 May et al. Jun 2004 B1
6748569 Brooke et al. Jun 2004 B1
6750852 Gillespie et al. Jun 2004 B2
6750876 Atsatt et al. Jun 2004 B1
6750889 Livingston Jun 2004 B1
6754101 Terzioglu et al. Jun 2004 B2
6754723 Kato Jun 2004 B2
6754765 Chang et al. Jun 2004 B1
6754849 Tamura Jun 2004 B2
6757761 Smith et al. Jun 2004 B1
6757882 Chen et al. Jun 2004 B2
6765407 Snyder Jul 2004 B1
6765408 Cheng et al. Jul 2004 B2
6768337 Kohno et al. Jul 2004 B2
6768352 Maher et al. Jul 2004 B1
6769622 Tournemille et al. Aug 2004 B1
6771552 Fujisawa Aug 2004 B2
6774644 Eberlein Aug 2004 B2
6781456 Pradhan Aug 2004 B2
6782068 Wilson et al. Aug 2004 B1
6784821 Lee Aug 2004 B1
6785881 Bartz et al. Aug 2004 B1
6788116 Cook et al. Sep 2004 B1
6788221 Ely et al. Sep 2004 B1
6788521 Nishi Sep 2004 B2
6791377 Ilchmann et al. Sep 2004 B2
6792584 Eneboe et al. Sep 2004 B1
6798218 Kasperkovitz Sep 2004 B2
6798299 Mar et al. Sep 2004 B1
6799198 Huboi et al. Sep 2004 B1
6806771 Hildebrant et al. Oct 2004 B1
6806782 Motoyoshi et al. Oct 2004 B2
6809275 Cheng et al. Oct 2004 B1
6809566 Xin-Leblanc Oct 2004 B1
6810442 Lin et al. Oct 2004 B1
6815979 Ooshita Nov 2004 B2
6816544 Bailey et al. Nov 2004 B1
6817005 Mason et al. Nov 2004 B2
6819142 Viehmann et al. Nov 2004 B2
6823282 Snyder Nov 2004 B1
6823497 Schubert et al. Nov 2004 B2
6825689 Snyder Nov 2004 B1
6825869 Bang Nov 2004 B2
6828824 Betz et al. Dec 2004 B2
6829727 Pawloski Dec 2004 B1
6834384 Fiorella, II et al. Dec 2004 B2
6836169 Richmond et al. Dec 2004 B2
6839774 Ahn et al. Jan 2005 B1
6842710 Gehring et al. Jan 2005 B1
6847203 Conti et al. Jan 2005 B1
6850117 Weber et al. Feb 2005 B2
6850554 Sha et al. Feb 2005 B1
6853598 Chevallier Feb 2005 B2
6854067 Kutz et al. Feb 2005 B1
6856433 Hatano et al. Feb 2005 B2
6859884 Sullam Feb 2005 B1
6862240 Burgan Mar 2005 B2
6864710 Lacey et al. Mar 2005 B1
6865429 Schneider et al. Mar 2005 B1
6865504 Larson et al. Mar 2005 B2
6868500 Kutz et al. Mar 2005 B1
6871253 Greeff et al. Mar 2005 B2
6871331 Bloom et al. Mar 2005 B1
6873203 Latham, II et al. Mar 2005 B1
6873210 Mulder et al. Mar 2005 B2
6876941 Nightingale Apr 2005 B2
6880086 Kidder et al. Apr 2005 B2
6888453 Lutz et al. May 2005 B2
6888538 Ely et al. May 2005 B2
6892310 Kutz et al. May 2005 B1
6892322 Snyder May 2005 B1
6893724 Lin et al. May 2005 B2
6894928 Owen May 2005 B2
6897390 Caldwell et al. May 2005 B2
6898703 Ogami et al. May 2005 B1
6900663 Roper et al. May 2005 B1
6901014 Son et al. May 2005 B2
6901563 Ogami et al. May 2005 B1
6903402 Miyazawa Jun 2005 B2
6903613 Mitchell et al. Jun 2005 B1
6904570 Foote et al. Jun 2005 B2
6910126 Mar et al. Jun 2005 B1
6911857 Stiff Jun 2005 B1
6917661 Scott et al. Jul 2005 B1
6922821 Nemecek Jul 2005 B1
6924668 Mueller et al. Aug 2005 B2
6934674 Douezy et al. Aug 2005 B1
6937075 Lim et al. Aug 2005 B2
6940356 McDonald, II et al. Sep 2005 B2
6941336 Mar Sep 2005 B1
6941538 Hwang et al. Sep 2005 B2
6944018 Caldwell Sep 2005 B2
6949811 Miyazawa Sep 2005 B2
6949984 Siniscalchi Sep 2005 B2
6950954 Sullam et al. Sep 2005 B1
6950990 Rajarajan et al. Sep 2005 B2
6952778 Snyder Oct 2005 B1
6954511 Tachimori Oct 2005 B2
6954904 White Oct 2005 B2
6956419 Mann et al. Oct 2005 B1
6957180 Nemecek Oct 2005 B1
6957242 Snyder Oct 2005 B1
6960936 Cambonie Nov 2005 B2
6961686 Kodosky et al. Nov 2005 B2
6963233 Puccio et al. Nov 2005 B2
6963908 Lynch et al. Nov 2005 B1
6966039 Bartz et al. Nov 2005 B1
6967511 Sullam Nov 2005 B1
6967960 Bross et al. Nov 2005 B1
6968346 Hekmatpour Nov 2005 B2
6969978 Dening Nov 2005 B2
6970844 Bierenbaum Nov 2005 B1
6971004 Pleis et al. Nov 2005 B1
6973400 Cahill-O'Brien et al. Dec 2005 B2
6975123 Malang et al. Dec 2005 B1
6980060 Boerstler et al. Dec 2005 B2
6981090 Kutz et al. Dec 2005 B1
6988192 Snider Jan 2006 B2
6996799 Cismas et al. Feb 2006 B1
7005933 Shutt Feb 2006 B1
7009444 Scott Mar 2006 B1
7010773 Bartz et al. Mar 2006 B1
7015735 Kimura et al. Mar 2006 B2
7017145 Taylor Mar 2006 B2
7017409 Zielinski et al. Mar 2006 B2
7020854 Killian et al. Mar 2006 B2
7023215 Steenwyk Apr 2006 B2
7023257 Sullam Apr 2006 B1
7024636 Weed Apr 2006 B2
7024654 Bersch et al. Apr 2006 B2
7026861 Steenwyk Apr 2006 B2
7030513 Caldwell Apr 2006 B2
7030656 Lo et al. Apr 2006 B2
7030688 Dosho et al. Apr 2006 B2
7030782 Ely et al. Apr 2006 B2
7034603 Brady et al. Apr 2006 B2
7042301 Sutardja May 2006 B2
7043710 Reese et al. May 2006 B2
7047166 Dancea May 2006 B2
7052179 Tesi May 2006 B2
7055035 Allison et al. May 2006 B2
7058921 Hwang et al. Jun 2006 B1
7073158 Mccubbrey Jul 2006 B2
7076420 Snyder et al. Jul 2006 B1
7079166 Hong Jul 2006 B1
7086014 Bartz et al. Aug 2006 B1
7088166 Reinschmidt et al. Aug 2006 B1
7089175 Nemecek et al. Aug 2006 B1
7091713 Erdelyi et al. Aug 2006 B2
7092980 Mar et al. Aug 2006 B1
7093225 Osann, Jr. Aug 2006 B2
7098414 Caldwell Aug 2006 B2
7099818 Nemecek et al. Aug 2006 B1
7100133 Meiyappan et al. Aug 2006 B1
7103108 Beard Sep 2006 B1
7107302 Fridman et al. Sep 2006 B1
7109978 Gillespie et al. Sep 2006 B2
7117485 Wilkinson et al. Oct 2006 B2
7119550 Kitano et al. Oct 2006 B2
7119602 Davis Oct 2006 B2
7124376 Zaidi et al. Oct 2006 B2
7127630 Snyder Oct 2006 B1
7129793 Gramegna Oct 2006 B2
7129873 Kawamura Oct 2006 B2
7132835 Arcus Nov 2006 B1
7133140 Lukacs et al. Nov 2006 B2
7133793 Ely et al. Nov 2006 B2
7138841 Li et al. Nov 2006 B1
7138868 Sanchez et al. Nov 2006 B2
7139530 Kusbel Nov 2006 B2
7141968 Hibbs et al. Nov 2006 B2
7141987 Hibbs et al. Nov 2006 B2
7149316 Kutz et al. Dec 2006 B1
7150002 Anderson et al. Dec 2006 B1
7151528 Taylor et al. Dec 2006 B2
7152027 Andreade et al. Dec 2006 B2
7154294 Liu et al. Dec 2006 B2
7161936 Barrass et al. Jan 2007 B1
7162410 Nemecek et al. Jan 2007 B1
7164288 Leijten-Nowak Jan 2007 B2
7171455 Gupta et al. Jan 2007 B1
7176701 Wachi et al. Feb 2007 B2
7178096 Rangan et al. Feb 2007 B2
7180342 Shutt et al. Feb 2007 B1
7185162 Snyder Feb 2007 B1
7185321 Roe et al. Feb 2007 B1
7188063 Snyder Mar 2007 B1
7193901 Ruby et al. Mar 2007 B2
7199783 Wenstrand et al. Apr 2007 B2
7200507 Chen et al. Apr 2007 B2
7206733 Nemecek Apr 2007 B1
7212189 Shaw et al May 2007 B2
7221187 Snyder et al. May 2007 B1
7227389 Gong et al. Jun 2007 B2
7236921 Nemecek et al. Jun 2007 B1
7250825 Wilson et al. Jul 2007 B2
7256588 Howard et al. Aug 2007 B2
7265633 Stiff Sep 2007 B1
7266768 Ferlitsch et al. Sep 2007 B2
7274212 Burney et al. Sep 2007 B1
7281846 Mcleod Oct 2007 B2
7282905 Chen et al. Oct 2007 B2
7283151 Nihei et al. Oct 2007 B2
7283410 Hsu et al. Oct 2007 B2
7287112 Pleis et al. Oct 2007 B1
7288977 Stanley Oct 2007 B2
7290244 Peck et al. Oct 2007 B2
7295049 Moyal et al. Nov 2007 B1
7298124 Kan et al. Nov 2007 B2
7301835 Joshi et al. Nov 2007 B2
7305510 Miller Dec 2007 B2
7307485 Snyder et al. Dec 2007 B1
7308608 Pleis et al. Dec 2007 B1
7312616 Snyder Dec 2007 B2
7323879 Kuo et al. Jan 2008 B2
7324380 Negut et al. Jan 2008 B2
7342405 Eldridge et al. Mar 2008 B2
7358714 Watanabe et al. Apr 2008 B2
7367017 Maddocks et al. Apr 2008 B2
7373437 Seigneret et al. May 2008 B2
7376001 Joshi et al. May 2008 B2
7376904 Cifra et al. May 2008 B2
7386740 Kutz et al. Jun 2008 B2
7389487 Chan et al. Jun 2008 B1
7392011 Jacomb-Hood Jun 2008 B1
7400183 Sivadasan et al. Jul 2008 B1
7406674 Ogami et al. Jul 2008 B1
7421251 Westwick et al. Sep 2008 B2
7461274 Merkin Dec 2008 B2
7466307 Trent, Jr. et al. Dec 2008 B2
7472155 Simkins et al. Dec 2008 B2
7542533 Jasa et al. Jun 2009 B2
7554847 Lee Jun 2009 B2
7616509 Qureshi et al. Nov 2009 B2
7637658 Gardner et al. Dec 2009 B2
7648271 Doorenbos et al. Jan 2010 B2
7679398 Osann, Jr. Mar 2010 B2
7737724 Snyder et al. Jun 2010 B2
7741865 Sharpe-Geisler et al. Jun 2010 B1
7809545 Ciolfi et al. Oct 2010 B2
7880459 Harvey Feb 2011 B2
7882165 Simkins et al. Feb 2011 B2
7908306 Chieng et al. Mar 2011 B1
7948989 Kapoor May 2011 B2
8024678 Taylor et al. Sep 2011 B1
8026739 Sullam et al. Sep 2011 B2
8183881 Stassart et al. May 2012 B1
20010000634 Keehn et al. May 2001 A1
20010002129 Zimmerman et al. May 2001 A1
20010006347 Jefferson et al. Jul 2001 A1
20010010083 Satoh Jul 2001 A1
20010038392 Humpleman et al. Nov 2001 A1
20010043081 Rees Nov 2001 A1
20010044927 Karniewicz Nov 2001 A1
20010045861 Bloodworth et al. Nov 2001 A1
20010047509 Mason et al. Nov 2001 A1
20020010716 Mccartney et al. Jan 2002 A1
20020016706 Cooke et al. Feb 2002 A1
20020023110 Fortin et al. Feb 2002 A1
20020042696 Garcia et al. Apr 2002 A1
20020052729 Kyung et al. May 2002 A1
20020059543 Cheng et al. May 2002 A1
20020063688 Shaw et al. May 2002 A1
20020065646 Waldie et al. May 2002 A1
20020068989 Ebisawa et al. Jun 2002 A1
20020073119 Richard Jun 2002 A1
20020073380 Cooke Jun 2002 A1
20020080186 Frederiksen Jun 2002 A1
20020085020 Carroll Jul 2002 A1
20020099863 Comeau et al. Jul 2002 A1
20020109722 Rogers et al. Aug 2002 A1
20020116168 Kim Aug 2002 A1
20020121679 Bazarjani et al. Sep 2002 A1
20020122060 Markel Sep 2002 A1
20020129334 Dane et al. Sep 2002 A1
20020133771 Barnett Sep 2002 A1
20020133794 Kanapathippillai et al. Sep 2002 A1
20020138516 Igra Sep 2002 A1
20020144099 Muro et al. Oct 2002 A1
20020145433 Morrise et al. Oct 2002 A1
20020152234 Estrada et al. Oct 2002 A1
20020152449 Lin Oct 2002 A1
20020156885 Thakkar Oct 2002 A1
20020156998 Casselman Oct 2002 A1
20020161802 Gabrick et al. Oct 2002 A1
20020166100 Meding Nov 2002 A1
20020174134 Goykhman Nov 2002 A1
20020174411 Feng et al. Nov 2002 A1
20020191029 Gillespie et al. Dec 2002 A1
20030011639 Webb Jan 2003 A1
20030014447 White Jan 2003 A1
20030025734 Boose et al. Feb 2003 A1
20030033588 Alexander Feb 2003 A1
20030041235 Meyer Feb 2003 A1
20030055852 Wojko Mar 2003 A1
20030056071 Triece et al. Mar 2003 A1
20030058469 Buis et al. Mar 2003 A1
20030061572 McClannahan et al. Mar 2003 A1
20030062889 Ely et al. Apr 2003 A1
20030066057 Rudusky Apr 2003 A1
20030080755 Kobayashi May 2003 A1
20030086300 Noyes et al. May 2003 A1
20030097640 Abrams et al. May 2003 A1
20030105620 Bowen Jun 2003 A1
20030126947 Margaria Jul 2003 A1
20030135842 Frey et al. Jul 2003 A1
20030149961 Kawai et al. Aug 2003 A1
20030229482 Cook et al. Dec 2003 A1
20040000928 Cheng et al. Jan 2004 A1
20040017222 Betz et al. Jan 2004 A1
20040018711 Madurawe Jan 2004 A1
20040034843 Osann Feb 2004 A1
20040054821 Warren et al. Mar 2004 A1
20040153802 Kudo et al. Aug 2004 A1
20040205553 Hall et al. Oct 2004 A1
20040205617 Light Oct 2004 A1
20040205695 Fletcher Oct 2004 A1
20050024341 Gillespie et al. Feb 2005 A1
20050066152 Garey Mar 2005 A1
20050091472 Master et al. Apr 2005 A1
20050134308 Okada et al. Jun 2005 A1
20050143968 Odom et al. Jun 2005 A9
20050240917 Wu Oct 2005 A1
20050248534 Kehlstadt Nov 2005 A1
20050280453 Hsieh Dec 2005 A1
20050283509 Hennedy et al. Dec 2005 A1
20060015862 Odom et al. Jan 2006 A1
20060031768 Shah et al. Feb 2006 A1
20060032680 Elias et al. Feb 2006 A1
20060066345 Leijten-Nowak Mar 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060195498 Dobbek et al. Aug 2006 A1
20060273804 Delorme et al. Dec 2006 A1
20070139074 Reblewski Jun 2007 A1
20070258458 Kapoor Nov 2007 A1
20080042687 Mori et al. Feb 2008 A1
20080086668 Jefferson et al. Apr 2008 A1
20080094102 Osann Apr 2008 A1
20080095213 Lin et al. Apr 2008 A1
20080186052 Needham et al. Aug 2008 A1
20080258759 Snyder et al. Oct 2008 A1
20080258804 Kutz Oct 2008 A1
20080259998 Venkataraman et al. Oct 2008 A1
20080263319 Snyder et al. Oct 2008 A1
20080263334 Synder et al. Oct 2008 A1
20080288755 Synder et al. Nov 2008 A1
20080294806 Swindle et al. Nov 2008 A1
20090322305 De Cremoux Dec 2009 A1
Foreign Referenced Citations (18)
Number Date Country
19710829 Sep 1998 DE
0308583 Mar 1989 EP
368398 May 1990 EP
0450863 Oct 1991 EP
0499383 Aug 1992 EP
0639816 Feb 1995 EP
0639816 Feb 1995 EP
1170671 Jan 2002 EP
1191423 Mar 2002 EP
1205848 May 2002 EP
4083405 Mar 1992 JP
4095408 Mar 1992 JP
5055842 Mar 1993 JP
6021732 Jan 1994 JP
9532478 Nov 1995 WO
9617305 Jun 1996 WO
9834376 Aug 1998 WO
9909712 Feb 1999 WO
Non-Patent Literature Citations (961)
Entry
U.S. Appl. No. 11/322,044, Dec. 26, 2005, Jonathon Stiff.
“An Analog PPL-Based Clock and Data Recovery Circuit with High Input Jitter Tolerance,” Sun, Reprinted from IEEE Journal of Solid-State Circuits, 1988; 4 pages.
“Electronic Circuit Protector-Circuit Breaker:” IBM Technical Disclosure Bulletin; vol. 36, Issue 8, Aug. 1, 1993; 1 page.
“In-Circuit Emulators—descriptions of the major ICEs around,” retrieved on Nov. 14, 2005 from http://www.algonet.se/˜staffann/developer/emulator.htm; 6 pages.
“Microsoft Files Summary Judgement Motions”; Feb. 1999; Microsoft PressPass. retrieved on May 20, 2005 from http://www.microsoft.com/presspass/press/1999/feb99/Feb99/Calderapr.asp; 3 pages.
“New Object Domain R3 Beta Now Available (Build 134)!” Mar. 13, 2001; http://web.archive.org/web/200100331202505/www.objectdomain.com/domain30/index.html; 2 pages.
“OMG XML Metadata Interchange (XMI) Specifications” 2000; 17 pages.
“POD—Piece of Data, Plain Old Documentation, Plain Old Dos . . . ”; retrieved on Nov. 14, 2005 from http://www.auditmypc.com/acronym/POD.asp; 2 pages.
“PSoC Designer, Integrated Development Environment User Guide”, Jul. 17, 2001; Cypress MicroSystems, Revision 1.11; all pages.
“PSoC designer: Integrated development environment, getting stetted 25-minute tutorial, version 1.0,” Cypress Microsystems, Cypress Microsystems, Inc. CMS10008A,luly 3, 2001; 25 pages.
“PSoC technology complete changes 8-bit MCU system design”, Cypress Microsystems, Inc retrieved from <http>://www.archive.org/web/20010219005250/http://cypressmicro.com- /t . . . >, Feb. 19, 2001; 21 pages.
“The Gemini Netlist Comparison Project;” <http://www.cs.washington.edu/research/projects/lis/www/gemini/gemini.html> larry@cs.washington.edu; Mar. 19, 2002; 2 pages.
“VHDL Samples” retrieved on Jan. 29, 2007 from, http://www.csee.umbc.edu/help/VHDL/samples/samples.shtml; 10 pages.
“Webster's Third New International Dictionary,” 1996, G. & C. Merriam Company: 3 pages (including pp. 1328-1329).
A.F. Harvey “DMA Fundamentals on Various PC Platforms,” 2001, 2004, National Instruments Corporation; pp. 1-19; 19 pages.
Adham et al., “Preliminary Outiine of the IEEE P1500 Scalable Architecture for Testing Embedded Cores,” 1999, IEEE; 6 pages.
Andrew S. Tanenbaum with contributions from James R. Goodman, “Structured Computer Organization,” 1999, Prentice Hall, Fourth Edition; 32 pages.
Andrews, “Roadmap for Extending IEEE 1149.1 for Hierarchical Control of today-Stored, Standardized command Set, Test Programs,” IEEE, 1994; 7 pages.
Anonymous. “F/Port: Fast Parallel Port for the PC” Installation Manual Release 7.1, circa 1997, available for download from http://www.fapo.com/fport.htm; 25 pages.
Anonymous, “JEEN JTAG Embedded Ice Ethernet Interface,” Aug. 1999, Embedded Performance, Inc.; 3 pages.
Anonymous: “Lotus Notes FAQ—How do you generate unique document numbers?” Sep. 19, 1999; retrieved from www.keysolutions.com on Jul. 9, 2008; 1 page.
Anonymous, “Warp Nine Engineering—The IEEE 1284 Experts-F/Port Product Sheet,” undated web page found at http://www.fapo.com/fport.htm; printed on Apr. 12, 2005; 2 pages.
Anonymous: “Using Debug”; 1999; Prentice-Hall Publishing; 20 pages.
U.S. Appl. No. 09/207,912: “Circuit(s), Architecture and Method(s) for Operating and/or Tuning a Ring Oscillator,” Monte Mar, filed on Dec. 9, 1998; 23 pages.
U.S. Appl. No. 09/747,231: “Linearized Digital Phase-Locked Loop Method,” Williams et al.; filed on Dec. 21, 2000; 29 pages.
U.S. Appl. No. 09/842,966: “Precision Crystal Oscillator Circuit Used in Microcontroller,” Monte Mar, filed on Apr. 25, 2001; 26 pages.
U.S. Appl. No. 09/943,062: “Apparatus and Method for Programmable Power Management in a Programmable Analog Circuit Block,” Monte Mar, filed on Aug. 29, 2001; 46 pages.
U.S. Appl. No. 09/964,99: “A Novel Band-Gap Circuit for Providing an Accurate Reference Voltage Compensated for Process State, Process Variations and Temperature,” Kutz et al., filed Sep. 26, 2001; 26 pages.
U.S. Appl. No. 09/989,775: “User defined names for registers in memory banks derived from configurations,” Ogami et al., filed on Nov. 19, 2001; 29 pages.
U.S. Appl. No. 10/002,726: “Method and Apparatus for Generatng Microcontroller Configuration Information,” Ogami et al., filed on Nov. 19, 2001; 54 pages.
U.S. Appl. No. 10/074,093: “Configurable Memory for Programmable Logic Circuits,” Lacey et al., filed on Dec. 18, 2001; 25 pages.
U.S. Appl. No. 10/137,497: “Reconfigurable Testing System and Method,” Pleis et al.; filed on May 1, 2002; 40 pages.
U.S. Appl. No. 10/172,670: “Method and System for Programming a Memory Device,” Snyder et al.; filed on Jun. 13, 2002; 66 pages.
U.S. Appl. No. 10/238,966: “Method for Parameterizing a User Module,” Perrin et al., filed on Sep. 9, 2002; 41 pages.
U.S. Appl. No. 10/653,050: “Method and System for Programming a Memory Device,” Snyder et al.; filed on Aug. 29, 2003; 69 pages.
U.S. Appl. No. 11/088,028: “Method and Circuit for Rapid Alignment of Signals,” Moyal et al., filed on Nov. 13, 2007; 34 pages.
U.S. Appl. No. 11/166,622: “Touch Wake for Electronic Devices,” Beard et al., filed on Jun. 23, 2005; 221 pages.
U.S. Appl. No. 11/200,619: “Providing hardware independence to automate code generation of processing device firmware,” Snyder et al.; filed on Aug. 10, 2005; 41 pages.
U.S. Appl. No. 11/201,627: “Method and an apparatus to design a processing system using a graphical user interface,” Ogami et al.; filed on Aug. 10, 2005, 37 pages.
U.S. Appl. No. 11/818,005: “Techniques for Generating Microcontroller Configuration Information,” Ogami et al., filed on Aug. 12, 2007; 61 pages.
U.S. Appl. No. 11/963,661: “Universal Digital Block With Integrated Arithmetic Logic Unit,” Warren Snyder et al., Filed on Dec. 21, 2007; 30 pages.
U.S. Appl. No. 11/965,291: “Universal Digital Block Interconnection and Channel Routing,” Snyder et al., filed on Dec. 27, 2007; 31 pages.
U.S. Appl. No. 11/968,145: “Dynamically Configurable and Re-Configurable Data Path,” Warren Synder et al., Filed on Dec. 31, 2007; 36 pages.
U.S. Appl. No. 11/985,340: “Method and Circuit for Rapid Alignment of Signals,” Moyal et al., filed on Nov. 13, 2007; 34 pages.
U.S. Appl. No. 11/986,338: Reconfigurable Testing System n Method, Pleis et al., filed on Nov. 20, 2007 41 pages.
U.S. Appl. No. 12/004,833: “Systems and Methods for Dynamically Reconfiguring a Programmable System on a Chip,” Memula, Suresh et al., Filed on Dec. 21, 2007; 50 pages.
U.S. Appl. No. 12/057,149: “Power Management Architecture, Method and Configuration System,” Kenneth Ogami, filed on Mar. 27, 2008; 41 pages.
U.S. Appl. No. 12/058 534: “System and Method for Controlling a Target Device,” Kenneth Ogami et al., filed on Mar. 28, 2008; 55 pages.
U.S. Appl. No. 12/058,589: “Configuration of Programmable IC Design Elements,” Best et al., filed on Mar. 28, 2008, 19 pages.
U.S. Appl. No. 12/056,586: “System and Method for Monitoring a Target Device,” Kenneth Ogami et al., filed on Mar. 28, 2008; 56 pages.
U.S. Appl. No. 12/060,176: “Programmable System-On-Chip Hub,” Scott Allen Swindle et al., Filed on Mar. 31, 2008; 39 pages.
U.S. Appl. No. 12/804,391: “Clock Driven Dynamic Datapath Chaining” Warten Synder et al., Filed on Apr. 16, 2008; 31 pages.
U.S. Appl. No. 12/356,468: “System and Method for Dynamically Generating a Configuration Datasheet,” Anderson et al.; filed on Jan. 20, 2009; 27 pages.
U.S. Appl. No. 12/765,400: “Autonomous Control in a Programmable System,” Sullam et al., filed on Apr. 22, 2010; 30 pages.
U.S. Appl. No. 12/786,412 “Universal Digital Block Interconnection and Channel Routing,” Warren Snyder et al., Filed on May 24, 2010: 31 pages.
U.S. Appl. No. 13/099,334 “Universal Digital Block Interconnection and Channel Routing,” Warren Snyder et al., Filed on May 2, 2011; 32 pages.
Application No. 200880012232.1 “Universal Digital Block Interconnection and Channel Routing,” Warren Snyder et al., Filed on Apr. 17, 2008.
Application No. PCT/US08/60673 “Clock Driven Dynamic Datapath Chaining,” Filed on Apr. 17, 2008; 24 pages.
Application No. PCT/US08/60680 “Universal Digital Block Interconnection and Channel Routing,” Filed on Apr. 17, 2008; 25 pages.
Application No. PCT/US08/60685 “Universal Digital Block With Integrated Arithmetic Logic Unit,” Filed on Apr. 17, 2008; 24 pages.
Application No. PCT/US08/60696 “Dynamically Configurable and Re-Configurable Data Path,” Filed on Apr. 17, 2008; 29 pages.
Ashok Bindra, “Programmable SoC Delivers a New Level of System Flexibility”; Electronic Design; Nov. 6, 2000; 11 pages.
Atmel Corporation: AT9OSC Summary: “Secure Microcontrollers for Smart Cards.” Oct. 1999, 7 pages.
Azim et al, “A Custom DSP Chip to implement a Robot Motion Controller Proceedings of the IEEE Custom Integrated Circuits Conference,” May 1988, pp, 8.7.1-8.7.5; 6 pages.
Bakker et al, “Micropower CMOS Temperature Sensor with Digital Output,” IEEE Journal of Solid-State Circuits, Jul. 1996; 3 pages.
Balough at al , “White Paper: Comparing IP lntegration Approaches for FPGA Implementation,” Feb. 2007, Version 1.1, Altera, pp. 1-7 7 pages.
Bauer et al.; “A Reconfigurable Logic Machine for Fast Event-Driven Simulation”; Jun. 1998; Design Automation Conference Proceedings; 8 pages.
Burogs et al., “Power Converter Analysis and Design using Matlab. A Transfer Function Approach,” Proceedings of IEEE International Symposium on Industrial Electronics 1998, vol. 2, pp. 552-557; 6 pages.
Bursky, “FPGA Combines Multiple Interfaces and Logic,” Electronic Design, vol. 48 No. 20, Oct. 2, 2000, pp. 74-78; 5 pages.
Catthoor et al., “Architectural Strategies for an Application-Specific Synchronous Multiprocessor Environment,” IEEE transactions on Acoustics, Speech, and Signal Processing; vol. 36, No. 2, Feb. 1988, pp. 265-284; 20 pages.
Chapweske, Adam, “The PS/2 Mouse Interface,” PS/2 Mouse Interfacing, 2001, retrieved on May 18, 2006; 11 pages.
Charles Melear, “Using Background Modes for Testing, Debugging and Emulation of Miorocontrollers,” IEEE, 1997, pp. 90-97; 8 pages.
Charles, Jr. et al., “Wirebonding: Reinventing the Process for MCMs,” Apr. 1998, IEEE 7th International Conference on Multichip Modules and High Density Packaging, pp. 300-302; 3 pages.
Ching et al, “An In-Curcuit-Emulator for TMS320C25,” IEEE, 1994, pp. 51-56; 6 pages.
Cover Pages Technology Reports XML and Electronic Design Automation (EDA); Aug. 2000; retrieved from http://xml.coverpages.org on Mar. 23, 2005; 5 pages.
Cypress MicroSystem, Inc. “Cypress Customer Forums” retrieved from <http://www.cypress.com/forums/messageview>; Nov. 30, 2004; 1 page.
Cypress MicroSystem, Inc. “PsoC Designer: Integrated Development Environment User Guide”; Rev. 1,18; Sep. 8, 2003; 193 pages.
Cypress MicroSystems, Inc. “Cypress MicroSystems Unveils Programmable System-On-A-Chip for Embedded Internet, Communications, and Consumer Systems” Nov. 13, 2000; 3 pages.
Cypress Semiconductor Corporation, “CY8C21x34 Data Sheet,” CSR User Module, CSR V.1.0; Oct. 6, 2005; 36 pages.
Cypress Semiconductor Corporation, “Cypress Introduces PSoC(TM)-Based Capacitive Touch Sensor Solution,” Cypress Press Release; May 31, 2005; <http://www.cypress.com/portal/server>; retrieved on Feb. 5, 2007; 4 pages.
Cypress Semiconductor Corporation, “FAN Controller CG6457AM and CG6462AM,” PSoC Mixed Signal Array Preliminary Data Sheet; May 24, 2005; 25 pages.
Cypress Semiconductor Corporation, “PSoC CY8C20x34 Technical Reference Manual (TRM),” PSoC CY8C20x34 TRM, Version 1.0, 2006; 218 pages.
Cypress Semiconductor Corporation, “PSoC Mixed-Signal Controllers,” Production Description <http://www.cypress.com/portal/server>; retrieved on Sep. 27, 2005; 2 pages.
Cypress Semiconductor Corporation, “Release Notes srn017,” Jan. 24, 2007; 3 pages.
Dahl et al., “Emulation of the Sparcle Microprocessor with the MIT Virtual Wires Emulation System,” 1994. IEEE, pp. 14-22; 9 pages.
Daniel B. Sedory, “A Guide to DEBUG,” 2004, retrieved on May 20, 2005 from http://www.geocites.com/thestarman3/asm/debug/debug2.htm, pp. 1-11; 7 pages.
Dirk Killat, “A One-Chip Solution for Electronic Ballasts in Fluorescent Lamps,” Power Electronics, http://powerelectronics.com/mag/power—onechip—solution—electronic/, dated Mar. 1, 2004, accessed Sep. 13, 2005; 4 pages.
Durham et al., “Circuit Architectures for High Linearity Monolithic Continuous-Time Filtering:” IEEE, 1992; 7 pages.
Durham et al., “High-Linearity Conitnuous-Time Filter in 5-V VLSI CMOS,” IEEE, 1992; 8 pages.
Durham et al., “Integrated Continuous-Time Balanced Filters for 16-bit DSP Interfaces,” IEEE, 1993; 6 pages.
Duvvuru et al., “Evaluation of a Branch Target Address Cache,” 1995, IEEE, pp. 173-180; 8 pages.
Ebeling et al., “Validating VLSI Circuit Layout by Wireiist Comparison,” Sep. 1983, In the Proceedings of the IEEE International Conference on Computer Aided Design (ICCAD-83), pp. 172-173; 2 pages.
Ebling, “Gemini II: A Second Generation Layout Validation Program;” 1988; in proceedings of the lEEE International Conference on Computer Aided Design (ICCAD-88); 4 pages.
Efstathiou, “Analog Electronics: Basic Circuits of Operational Amplifiers,” <http://web.archive.org/web/20021231045232> Dec. 31 , 2002, version, retrieved from the Internet Archives; 10 pages.
Electronic Tools Company, E-Studio User Manuel; 2000; retrieved from http://web.archive.org for site http://e-tools.com on Mar. 23, 2005; 77 pages.
Frank Goodenough, “Analog Counterparts of FPGAS Ease System Design,” Electronic Design, Penton Publishing, Cleveland, OH, Oct. 14, 1994, vol. 42, No. 21, pp. 63-66, 68; 10 pages.
Fred Eady, “PSoC 101,” Circuit Cellar, Aug. 2004, accessed Sep. 13, 2005, http://www.circuitcellar.com/library/print/0804/eady169/2.htm; 4 pages.
From U.S. Appl. No. 10/033,027; “Programmable Microcontroller (PSoC) Architecture (Mixed Analog/Digital)”; Aug. 7, 2001; U.S Appl. No. 09/924,734 Snyder et al.; 28 pages.
Ganapathy et al., “Hardware Emulation for Functional Verification of K5”, Jun. 1996, 33rd Design Automation Conference Proceedings, Jun. 3-7, 1996, pp. 315-318; 4 pages.
Ghosh et al., “A Low Overhead Design for Testability and Test Generation Technique for Core-based Systems,” IEEE, 1997; 10 pages.
Haberl et al., “Self Testable Boards with Standard IEEE 1149.5 Module Test and Maintenance (MTM) Bus Interface,” IEEE, 1994; 6 pages.
Hamblen, “Rapid Prototyping Using Field-Programmable Logic Devices” Jun. 2000, IEEE; 9 pages.
Harbaurn et al. “Design of a Flexible Coprocessor Unit” Proceedings of the Euromicro Conference, XX XX, Sep. 1999, pp. 335-342; 10 pages.
Harrison et al.; “Xilinx FPGA Design in a Group Environment Using VHDS and Synthesis Tools”; Colliquium on Digital System Design Using Synthesis Techniques; Feb. 15, 1996; 4 pages.
Hintz et al., “Microcontrollers,” 1992, McGraw-Hill, pp. 29-37; 11 pages.
Hong et al., “An FPGA-Based Hardware Emulator for Fast Fault Emulation,” IEEE, 1997, pp. 345-348; 4 pages.
Hong et al., “Hierarchial System Test by an IEEE 1149.5 MTM-Bus Slave-Module Interface Core,” IEEE, 2000; 14 pages.
Hsieh et al., “Modeling Micro-Controiler Peripherais for High-Level Co-Simulation and Synthesis.” IEEE, 1997, pp. 127-130; 4 pages.
Huang et al., “Iceberg: An Embedded In-Circuit Emulator Synthesizer for Microcontrollers”, Proceedings of the 36th Design Automation Conference, Jun. 1999, pp. 580-585; 6 pages.
Hwang et al , “Integrated circuit for automatically varying resistance in computer system, has pair of transistors connected in parallel with respective resistors such that resistors are bypassed when corresponding transistors are enabled,” Derwent information LTD; 2002; 2 pages.
International Search Report and Written Opinion of the International Searching Authority for PCT/US05/28898, filed Aug. 12, 2005, mailed Mar. 6, 2007; 6 pages.
International Search Report for International Application No. PCT/US2006/09572 dated Jan. 10, 2008; 2 pages.
International Search Report for International Application No. PCT/US05/28793 mailed Dec. 16, 2007; 8 pages.
International Search Report for International Application No. PCT/US08/60680 dated Aug. 15, 2008; 2 pages.
International Search Report for International Application No. PCT/US08/60685 dated Sep. 17, 2008; 5 pages.
International Search Report for International Application No. PCT/US08/60695 dated Jul. 22, 2009; 3 pages.
International Search Report for International Application No. PCT/US08/60696 dated Sep. 22, 2008; 5 pages.
International Search Report for International Application No. PCT/US10/33626 mailed Jun. 24, 2010; 3 pages.
International Search Report of the International Searching Authority for lnternational Application No. PCT/US08/60681 dated Sep. 12, 2008; 2 pages.
International Search Report of the International Searching Authority for International Application No. PCT/US08/60698 dated Sep. 5, 2008; 2 pages.
International Written Opinion for International Apptication No. PCT/US08/60685 dated Sep. 17, 2008; 4 pages.
International Written Opinion of the International Searching Authority for International Appitcation No. PCT/US2006/09572 dated Jan. 10, 2008; 7 pages.
International Written Opinion of the International Searching Authority for International Application No. PCT/US08/60698 dated Sep. 5, 2008; 2 pages.
Ito et al., “A Comparison of Microcontrollers Targeted to FPGA-Based Embedded Applications”, Sep. 2000, Proceedings of 13th Symposium on Integrated Circuits and Systems Design, Sep. 18-24, 2000, pp. 397-402; 6 pages.
John Mangino, “Using DMA with High Performance Peripherals to Maximize System Performance,” 2007, Texas Instruments, pp. 1-23; 23 pages.
Jonathan B. Rosenburg, “How Debuggers Work” John Wiley & Sons, Inc. 1996; 259 pages.
Julio Faure et al.; “A Novel Mixed Signal Programmable Device With On-Chip Microprocessor”, 1997, IEEE 1997 Custom Integrated Circuits Conference, pp. 103-106; 4 pages.
Jung et al., “A Register File with Transposed Access Mode,” 2000, IEEE; 2 pages.
Khan et al.; “FPGA Architectures for Asic Hardware Emulators”; IEEE 1993, pp, 336-340, 5 pages.
Kory Hopkins, “Definition;” Jan. 16, 1997; <http://www.cs.sfu.ca/cs/people/GradStudent.html>; 1 page.
Kutz et al, “Novel Method and System for Interaction Between a Processor and a Power on Reset Circuit to Dynamically Control Power States in a Microcontroller”, Jun. 22, 2001, U.S. Appl. No. 09/887,923.
Larsson, “A 2-1600-MHz CMOS Clock Recovery PLL with Low-V dd Capability,” IEEE Journal of Solid-State Circuits, vol. 34, No. 12, Dec. 1999; 10 pages.
Lee, Mark; “EMC Design Considerations for PSoC CapSense Applications,” Cypress Semiconductor Corporation, Application Note An2318; Sep. 16, 2005; 6 pages.
Lutovac et al. “Symbolic Computation on Digital Filter Transfer Function Using MATLAB,” Proceedings of 23rd International Conference on Microelectronics, vol. 2 NIS, Yugoslavia, May 2002, pp. 651-654; 4 pages.
M. Mooris Mano, “Computer System Architecture,” 1982, Prentice-Hall, 2nd Edition, pp. 261-264 and 435-440; 14 pages.
Maneatis, “Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques,” IEEE Journal of Solid-State Circuits, vol. 31, No. 11, Nov. 1996, pp. 1723-1732; 10 pages.
Maroufi et al., “Solving the I/O Bandwidth Problem in System on a Chip Testing,” IEEE, 2000; 6 pages.
Marsh, “Smart Tools Illuminate Deeply Embedded Systems,” EDN, vol. 45, No. 3, Feb. 3, 2000, pp. 129-138; 7 pages.
Microsoft Computer Dictionary “ActiveX” 2002; Microsoft Press; 5th Edition; 3 pages.
Microsoft Press Computer User's Dictionary; 1998; 3 pages (including p. 18).
Monte Mar et al., “An architecture for a configurable Mixed-signal device”, 2003, IEEE Journal of Solid-State Circuits, vol. 3, pp. 565-568; 4 pages.
Morrison, Gate, “IBM Eyes Merchant Packaging Services,” Jul. 13, 2998, Electronic News, available at http://www.findarticles.com; 4 pages.
Nam et al., “Fast Development of Source-Level Debugging System Using Hardware Emulation,” IEEE, 2000, pp. 400-404; 4 pages.
Nouta et al. “Design and FPGA-Implementation of Wave Digital Bandpass Filters with Arbitrary Amplitude Transfer Characteristics,” Proceedings of IEEE International Symposium on Industrial Electronics; 1998, vol. 2; 5 pages.
Oh et al., “Emulator Environment Based on an FPGA Prototyping Board,” IEEE, Jun. 21-23, 2000, pp. 72-77; 6 pages.
Ohlrich et al., “Sub-Gemini: Identifying Subcircuits using a Fast Subgraph Isomorphism Algorithm;” Jun. 1993; in proceedings of the 30th IEEE/ACM Design Automation Conference; 7 pages.
Papachristou et al., “Microprocessor Based Testing for Core-Based System on a Chip,” IEEE, 1999; 6 pages.
Pasternak, “In-Circuit-Emulation in ASIC Architecture Core Designs,” IEEE, 1989, pp. P6-4.1-P6-4.4; 4 pages.
PCT International Search Report for PCT/US05/28791 filed Aug. 12, 2005, mailed Mar. 31, 2008; 4 pages.
PCT International Written Opinion for PCT/US05/28791, filed Aug. 12, 2005, mailed Mar. 31, 2008; 8 pages.
PCT Written Opinion of the International Searching Authority for PCT/US2005/028793, filed Aug. 12, 2005, mailed Nov. 19, 2007; 7 pages.
USPTO Advisory Action for U.S. Appl. No. 11/968,145 dated Oct. 6, 2011; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 12/060,176 dated Sep. 7, 2012, 3 pages.
USPTO Advisory Action for U.S. Appl. No. 12/138,577 dated Oct. 29, 2010; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 12/239,450 dated Aug. 14, 2012.
USPTO U.S. Appl. No. 08/865,342: “Programmable Clock Generator,” Mann et al., filed on May 29, 1997; 41 pages.
USPTO U.S. Appl. No. 09/047,595: “Roving Range Control to Limit Receive PLL Frequency of Operation,” Paul H. Scott, filed on Mar. 29, 1998; 35 pages.
USPTO U.S. Appl. No. 09/048,905: “Programmable Clock Generator,” Mann et al., filed on Mar. 26, 1998; 42 pages.
USPTO U.S. Appl. No. 09/216,460: “Circuit and Method for Controlling an Output of a Ring Oscillator,” Abugharbieh et al., filed on Dec. 18, 1998; 21 pages.
USPTO U.S. Appl. No. 09/275,336: “Programmable Oscillator Scheme,” Mar et al., filed on Mar. 24, 1999; 25 pages.
USPTO U.S. Appl. No. 09/398,956: “Frequency Acquisition Rate Control in Phase Lock Loop Circuits,” Moyal et at., filed on Sep. 17, 1999; 35 pages.
USPTO U.S. Appl. 09/404,891: “Method, Architecture and Circuitry for Controlling Pulse Width in a Phase and/or Frequency Detector,” Scott et al., filed on Sep. 24, 1999; 17 pages.
USPTO U.S. Appl. No. 09/470,665: “Digital Phase/Frequency Detector, and Clock Generator and Data Recovery PLL Containing the Same,” Kamal Dalmia, filed on Dec. 23, 1999; 26 pages.
USPTO U.S. Appl. No. 09/471,576: “Reference-Free Clock Generation and Data Recovery PLL,” Kemal Dalmia, filed on Dec. 23, 1999; 30 pages.
USPTO U.S. Appl. No. 09/471,914: “Reference-Free Clock Generator and Data Recovety PLL,” Dalmia et al., filed on Dec. 23, 1999; 32 pages.
USPTO U.S. Appl. No. 09/475,808: “Configurable Memory for Programmable Logic Circuits,” Lacey et al., filed on Dec. 30, 1999; 24 pages.
USPTO U.S. Appl. No. 09/475,879: “Programmable Logic Device,” Lacey et al.; filed on Dec. 30, 1999; 50 pages.
USPTO U.S. Appl. No. 09/538,989: “Memory Based Phase Locked Loop,” Rengarajan S. Krishnan, filed on Mar. 30, 2000; 27 pages.
USPTO U.S. Appl. No. 09/608,753: “PLL Lockout Watchdog,” Wilson et al., filed on Aug. 24, 2004; 24 pages.
USPTO U.S. Appl. No. 09/721,316: “Pogammabe Oscillator Scheme,” Mar et al., filed on Nov. 22, 2000; 26 pages.
USPTO U.S. Appl. No. 09/826,397: “Method and Circuit for Allowing a Microprocessor to Change its Operating Frequency on-the-Fly,” Bert Sullam, filed on Apr. 21, 2001; 24 pages.
USPTO U.S. Appl. No. 09/849,164: “Reduced Static Phase Error CMOS PLL Charge Pump,” Jonathon Stiff, filed on May 4, 2001; 30 pages.
USPTO U.S. Appl. No. 09/855,868: “Protecting Access to Microcontroller Memory Blocks,” Warren Snyder, filed on May 14, 2001; 28 pages.
USPTO U.S. Appl. No. 09/875,599: “Method and Apparatus for Programming a Flash Memory,” Warren Snyder, filed on Jun. 5, 2001; 23 pages.
USPTO U.S. Appl. No. 09/887,923: “Novel Method and System for Interacting between a Processor and a Power on Reset to Dynamically Control Power States in a Microcontroller,” Kutz et al., filed on Jun. 22, 2001; 44 pages.
USPTO U.S. Appl. No. 09/887,955: “Novel Power on Reset Circuit of Microcontroller,” Kutz et al., filed on Jun. 22, 2001; 42 pages.
USPTO U.S. Appl. No. 09/893,048: “A Microcontroller haying an On-Chip High Gain Amplifier,” Kutz et al., filed on Jun. 26, 2001; 22 pages.
USPTO U.S. Appl. No. 09/893,050: “Multiple Use of Microcontroller Pad,” Kutz et al., filed on Jun. 26, 2001; 21 pages.
USPTO U.S. Appl. No. 09/693,161: “Architecture of a PLL with Dynamic Frequency Control on a PLD,” Michael T. Moore, filed on Jun. 27, 2001; 32 pages.
USPTO U.S. Appl. No. 09/909,045; “Digital Configurable Macro Architecture,” Warren Snyder, filed on Jul. 18, 2001; 37 pages.
USPTO U.S. Appl. No. 09/909,047: “A Programmable Analog System Architecture,” Monte Mar, filed on Jul. 18, 2001; 60 pages.
USPTO U.S. Appl. No. 09/909,109: “Configuring Digital Functions in a Digital Configurable Macro Architecture,” Warren Snyder, filed on Jul. 18, 2001; 38 pages.
USPTO U.S. Appl. No. 09/912,768: “A Microcontroller having a Dual Mode Relax Oscillator that is Trimmable,” James Shutt; filed on Jul. 24, 2001; 33 pages.
USPTO U.S. Appl. No. 09/922,419:“A Power Supply Pump Circuit for a Microcontroller,” Kutz et al., filed on Aug. 3, 2011; 38 pages.
USPTO U.S. Appl. No. 09/922,579: “A Method for a Efficient Supply to a Microcontroller,” Kutz et al., filed on Aug. 3, 2001; 37 pages.
USPTO U.S. Appl. No. 09/923,461: “Non-interfering Multiply-Mac (Multiply Accumulate) Circuit,” Warren Snyder, filed on Aug. 6, 2001; 25 pages.
USPTO U.S. Appl. No. 09/924,734: “Programmable Microcontroller (PSoC) Architecture (Mixed Analog/Digital)”, Snyder et al., filed on Aug. 7, 2001; 28 pages.
USPTO U.S. Appl. No. 09/929,891: “Programming Architecture for a Programmable Analog System,” Mar et al., filed on Aug. 14, 2001; 82 pages.
USPTO U.S. Appl. No. 09/930,021: “Programmable Methodology and Architecture for a Programmable Analog System”; Mar et al., filed on Aug. 14, 2001; 87 pages.
USPTO U.S. Appl. No. 09/935,454: “Method and Apparatus for Local and Global Power Management in a Programmable Analog Circuit,” Monte Mar, filed on Aug. 22, 2001; 56 pages.
USPTO U.S. Appl. No. 09/943,149: “Method for Phase Locking in a Phase Lock Loop,” Moyal et al., filed on Aug. 30, 2001; 25 pages.
USPTO U.S. Appl. No. 09/953,423: “A Configurable Input/Output Interface for a Microcontroller,” Warren Snyder, filed on Sep. 14, 2001; 28 pages.
USPTO U.S. Appl. No. 09/957,084: “A Crystal-Less Oscillator with Trimmable Analog Current Control for Increased Stability,” Mar et al., filed on Sep. 19, 2001; 28 pages.
USPTO U.S. Appl. No. 09/969,311: “Method for Synchronizing and Resetting Clock Signals Supplied to Multiple Programmable Analog Blocks,” Bert Sullam, filed on Oct. 1, 2001; 57 pages.
USPTO U.S. Appl. No. 09/969,313: “Architecture for Synchronizing and Resetting Clock Signals Supplied to Multiple Analog Programmable Analog Blocks,” Bert Sullan, filed on Oct. 1, 2001; 50 pages.
USPTO U.S. Appl. No. 09/972,003: “Test Architecture for Microcontroller Providing for a Serial Communication Interface,” Warren Snyder, filed on Oct. 5, 2001; 32 pages.
USPTO U.S. Appl. No. 09/972,133: “Method for Entering Circuit Test Mode,” Warren Snyder, filed on Oct. 5, 2001; 30 pages.
USPTO U.S. Appl. No. 09/972,319: “Method for Applying Instructions to Microprocessor in Test Mode,” Warren Snyder, filed on Oct. 5, 2001; 31 pages.
USPTO U.S. Appl. No. 09/973,535: “Architecture for Decimatlon Algorithm,” Warren Snyder, filed on Oct. 9, 2001; 26 pages.
USPTO U.S. Appl. No. 09/975,030: “Emulator Chip-Board Architecture for Interface,” Snyder et al., filed on Oct. 10, 2001; 37 pages.
USPTO U.S. Appl. No. 09/975,104: “Capturing Test/Emulation and Enabling Real-Time Debugging Using FPGA for In-Circuit Emulation,” Warren Snyder, filed on Oct. 10, 2001; 35 pages.
USPTO U.S. Appl. No. 09/975,105: “Host to FPGA Interface in an In-Circuit Emulation System,” Craig Nemecek, filed on Oct. 10, 2001; 44 pages.
USPTO U.S. Appl. No. 09/975,115: “In-System Chip Emulator Architecture,” Snyder et al., filed on Oct. 10, 2001; 38 pages.
USPTO U.S. Appl. No. 09/975,338: “Method for Breaking Execution of a Test Code in DUT and Emulator Chip Essentially Simultaneously and Handling Complex Breakpoint Events,” Nemecek et al., filed on Oct. 10, 2001; 34 pages.
USPTO U.S. Appl. No. 09/977,111: “A Frequency Doubler Circuit with Trimmable Current Control,” Shutt et al., filed on Oct. 11, 2001; 35 pages.
USPTO U.S. Appl. No. 09/981,448: “Oscillator Tuning Method,” Lane T. Hauck, filed on Oct. 17, 2001; 28 pages.
USPTO U.S. Appl. No. 09/989,574: “Method and System for using a Graphics user Interface for Programming an Electronic Device,” Bartz et al., filed on Nov. 19, 2001; 43 pages.
USPTO U.S. Appl. No. 09/989,761: “Storing of global parameter defaults and using them over town or more design projects,” Ogami et al., filed on Nov. 19, 2001; 37 pages.
USPTO U.S. Appl. No. 09/989,781: “System and method for decoupling and iterating resources associated with a module,” Ogami et al., filed on Nov. 19, 2001; 40 pages.
USPTO U.S. Appl. No. 09/989,808: “Automatic generation of application program interfaces, source code, interrupts, and data sheets for microcontroller programming,” Bartz et al., filed on Nov. 19, 2001; 67 pages.
USPTO U.S. Appl. No. 09/989,815: “A Data Driven Method and System for Monitoring Hardware Resource Usage for Programming an Electric Device,” Bartz el al., filed on Nov. 19, 2001; 36 pages.
USPTO U.S. Appl. No. 09/989,816: “Datasheet Browsing and Creation with Data-Driven Datasheet Tabs within a Microcontroller Design Tool” Bartz et al, filed on Nov. 19, 2001; 55 pages.
USPTO U.S. Appl. No. 09/989,619: “System and method for creating a boot file utilizing a boot template,” Ogami et al., filed on Nov. 19, 2001; 43 pages.
USPTO U.S. Appl. No. 09/996,834: “A System and a Method for Communication bewteen and Ice and a Production Microcontroller while in a Halt State,” Craig Nemecek, filed on Nov. 15, 2001; 33 pages.
USPTO U.S. Appl. No. 09/998,859: “A System and a Method for Checking Lock Step Consistency between in Circuit Emulation and a Microcontroller while Debugging Process is in Progress,” Craig Nemecek, filed on Nov. 15, 2001; 33 pages.
USPTO U.S. Appl. No. 10/000,383: “System and Method of Providing a Programmable Clock Architecture for an Advanced Microcontroller,” Sullam et al., filed on Oct. 24, 2001; 34 pages.
USPTO U.S. Appl. No. 10/001,477: “Breakpoint Control in an In-Circuit Emulation System,” Roe et al., filed on Nov. 1, 2001; 43 pages.
USPTO U.S. Appl. No. 10/001,478: “In-Circuit Emulator and POD Synchronized Boot,” Nemecek et al., filed on Nov. 1, 2001; 44 pages.
USPTO U.S. Appl. No. 10/001,568: “Combined In-Circuit Emulator and Programmer,” Nemecek et al., filed on Nov. 1, 2001; 47 pages.
USPTO U.S. Appl. No. 10/007,717: “Conditional Branching in an In-Circuit Emulation System,” Craig Nemecek, filed on Nov. 1, 2001; 43 pages.
USPTO U.S. Appl. No. 10/004,039: “In-Circuit Emulator with Gatekeeper for Watchdog Timer,” Nemecek et al., filed on Nov. 14, 2001; 46 pages.
USPTO U.S. Appl. No. 10/004,197: “In-Circuit Emulator with Gatekeeper Based Halt Control,” Nemecek et al., filed on Nov. 14, 2001; 47 pages.
USPTO U.S. Appl. No. 10/011,214: “Method and Circuit for Synchronizing a Write Operation between an On-Chip Microprocessor and an On-Chip Programmable Analog Device Operating at Different Frequencies,” Sullam et al., filed on Oct. 25, 2001; 49 pages.
USPTO U.S. Appl. No. 10/033,027: “Microcontrollable Programmable System on a Chip,” Warren Snyder; filed on Oct. 22, 2001; 117 pages.
USPTO U.S. Appl. No. 10/083,442: “Method Architecture for a Low Gain PLL with Wide Frequency Range.” Meyers et al., filed on Feb. 26, 2002; 28 pages.
USPTO U.S. Appl. No. 10/109,979: “Graphical user interface with logic unifying functions,” Anderson et al., filed on Mar. 29, 2002; 100 pages.
USPTO U.S. Appl. No. 10/113,064: “Method and System for Debugging through Supervisory Operating Codes and Self Modifying Codes,” Roe et al., filed on Mar. 29, 2002; 36 pages.
USPTO U.S. Appl. No. 10/113,065: “System and Method for Automatically Matching Components in a Debugging System,” Nemecek et al., filed on Mar. 29, 2002; 32 pages.
USPTO U.S. Appl. No. 10/226,911: “Calibration of Integrated Circuit Time Constants,” Gehring et al.; filed on Aug. 22, 2002; 32 pages.
USPTO U.S. Appl. No. 10/272,231: “Digital Configurable Macro Architecture,” Warren Snyder, filed on Oct. 15, 2002; 36 pages.
USPTO U.S. Appl. No. 10/288,003L “Low Voltage Differential Signal Driver Circuit and Method,” Roper et al., filed on Nov. 4, 2002; 30 pages.
USPTO U.S. Appl. No. 10/293,392: “Low Voltage Receiver Circuit and Method for Shifting the Differential Input Signals of the Receiver Depending on a Common Mode Voltage of the Input Signals,” Maher et al., filed on Nov. 13, 2002; 23 pages.
USPTO U.S. Appl. No. 10/305,589: “Current Controlled Delay Circuit,” Jonathon Stiff, filed on Nov. 26, 2002; 24 pages.
USPTO U.S. Appl. No. 10/324,455: “Programmable Oscillator Scheme,” Mar et al., filed on Dec. 20, 2002; 23 pages.
USPTO U.S. Appl. No. 10/327,217: “Single Ended Clock Signal Generator Having a Differential Output,” Richmond et al., filed on Dec. 20, 2002; 27 pages.
USPTO U.S. Appl. No. 10/803,030: “Programmable Microcontrollable Architecture (Mixed Analog/Digital),” Snyder et al., filed on Mar. 16, 2004; 40 pages.
USPTO U.S. Appl. No. 10/871,582: “LVDS Input Circuit with Extended Common Mode Range,” Reinschmidt et al., filed on Jun. 17, 2004; 25 pages.
USPTO U.S. Appl. No. 11/125,554: “A Method for a Efficient Supply to a Microcontroller,” Kutz et al., filed on May 9, 2005; 41 pages.
USPTO U.S. Appl. No. 11/132,894: “Open Loop Bandwidth Test Architecture and Method for Phase Locked Loop (PLL),” Jonathon Stiff, filed on May 19, 2005; 38 pages.
USPTO U.S. Appl. No. 11/201,922: “Design model for a hardware device-independent method of defining embedded firmware for programmable systems,” McDonald et al., filed on Aug. 10, 2005; 31 pages.
USPTO U.S. Appl. No. 11/273,708: “Capacitance Sensor Using Relaxation Oscillators,” Snyder et al., filed on Nov. 14, 2005; 33 pages.
USPTO U.S. Appl. No. 11/322,044: “Split charge pump PLL architecture,” Jonathon Stiff, filed on Dec. 28, 2005; 19 pages.
USPTO U.S. Appl. No. 11/337,272: “Successive Approximate Capacitance Measurement Circuit,” Warren Snyder; filed on Jan. 20, 2006; 29 pages.
USPTO U.S. Appl. No. 11/415,588: “Voltage Controlled Oscillator Delay Cell and Method,” Sivadasan et al., filed on May 1, 2006; 24 pages.
USPTO U.S. Appl. No. 11/644,100: “Differentiate-to-single ended signal converter circuit and method,” Jonathon Stiff, filed on Dec. 21, 2006; 33 pages.
USPTO U.S. Appl. No. 11/698,660: “Configurable Bus,” Kutz et al., filed on Jan. 25, 2007; 35 pages.
USPTO U.S. Appl. No. 11/709,866: “Input/Output Multiplexer Bus,” Dennis Sequine, filed on Feb. 21, 2007; 33 pages.
USPTO U.S. Appl. No. 11/850,260: “Circuit and Method for Improving the Accuracy of a Crystal-less Oscillator Having Dual-Frequency Modes,” Wright et al., filed on Sep. 5, 2007; 33 pages.
USPTO U.S. Appl. No. 11/983,291: “Successive Approximate Capacitance Measurement Circuit,” Warren Snyder, filed on Nov. 7, 2007; 26 pages.
USPTO U.S. Appl. No. 12/132,527: “System and Method for Performing Next Placements and Pruning of Deallowed Placements for Programming an Integrated Circuit,” Ogami et al., filed on Jun. 31, 2008, 44 pages.
USPTO U.S. Appl. No. 12/218,404: “Voltage Controlled Oscillator Delay Cell and Method,” Sivadasan et al., filed on Jul. 14, 2008; 23 pages.
USPTO Ex Parte Qualyle Action for U.S. Appl. No. 09/992,076 dated Jun. 18, 2007; 6 pages.
USPTO Ex Parte Quayle Action for U.S. Appl. No. 09/975,115 dated Aug. 20, 2009; 7 pages.
USPTO Final Rejection for U.S. Appl. No. 09/975,105 dated Jul. 13, 2006; 7 pages.
USPTO Final Rejection for U.S. Appl. No. 09/975,115 dated Feb. 21, 2007; 25 pages.
USPTO Final Rejection for U.S. Appl. No. 09/975,115 dated May 12, 2008; 33 pages.
USPTO Final Rejection for U.S. Appl. No. 09/975,115 dated Jun. 23, 2006; 20 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,765 dated Mar. 31, 2009; 18 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,765 dated Apr. 3, 2007; 12 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,765 dated Apr. 4, 2008; 16 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,765 dated Apr. 17, 2006; 12 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,767 dated Jan. 11, 2007; 12 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,767 dated Jan. 15, 2009; 21 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,767 dated Apr. 6, 2005; 13 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,767 dated Dec. 27, 2007 21 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,771 dated Feb. 27, 2007; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 09/969,771 dated Mar. 28, 2006; 9 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,771 dated Apr. 6, 2005; 7 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,771 dated Dec. 10, 2008; 12 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,771 dated Dec. 27, 2007; 15 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,777 dated Jan. 30, 2008; 14 pages.
USPTO Final Rejection for U.S. Appl. No. 09/89,777 dated Mar. 13, 2007; 24 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,777 dated Dec. 21, 2005; 29 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,778 dated Mar. 16, 2009; 26 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,778 dated Jan. 8, 2009; 25 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,778 dated Feb. 5, 2007; 17 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,778 dated Feb. 15, 2006; 9 pages.
USPTO Final Rejection for U.S. Appl. No. 09/969,778 dated Dec. 20, 2007; 14 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,782 dated Jul. 9, 2008; 10 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,782 dated JUl. 24, 2007; 9 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,782 dated Sep. 21, 2006; 10 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,782 dated Nov. 3, 2005; 11 pages.
USPTO Final Rejection for U.S. Appl. No. 09/992,076 dated Jan. 30, 2007; 32 pages.
USPTO Final Rejection for U.S. Appl. No. 09/992,076 dated Mar. 17, 2006; 16 pages.
USPTO Final Rejection for U.S. Appl. No. 09/994,600 dated Feb. 13, 2006; 13 pages.
USPTO Final Rejection for U.S. Appl. No. 09/994,600 dated May 4, 2005; 16 pages.
USPTO Final Rejection for U.S. Appl. No. 09/994,600 dated Oct. 17, 2007; 13 pages.
USPTO Final Rejection for U.S. Appl. No. 09/994,600 dated Dec. 8, 2006; 14 pages.
USPTO Final Rejection for U.S. Appl. No. 09/994,601 dated Apr. 17, 2008; 24 pages.
USPTO Final Rejection for U.S. Appl. No. 09/994,601 dated May 18, 2007, 17 pages.
USPTO Final Rejection for U.S. Appl. No. 09/994,601 dated Mar. 8, 2006; 11 pages.
USPTO Final Rejection for U.S. Appl. No. 09/994,601 dated Mar. 24, 2005; 10 pages.
USPTO Final Rejection for U.S. Appl. No. 09/998,848 dated Jun. 14, 2005; 17 pages.
USPTO Final Rejection for U.S. Appl. No. 09/998,848 dated Jul. 25, 2006; 16 pages.
USPTO Final Rejection for U.S. Appl. No. 09/998,848 dated Aug. 10, 2007; 14 pages.
USPTO Final Rejection for U.S. Appl. No. 09/998,848 dated Nov. 24, 2008; 15 pages.
USPTO Final Rejection for U.S. Appl. No. 09/998,859 dated Nov. 19, 2003; 5 pages.
USPTO Final Rejection for U.S. Appl. No. 10/001,477 dated Jun. 30, 2008; 15 pages.
USPTO Final Rejection for U.S. Appl. No. 10/001,477 dated Jul. 23, 2007; 16 pages.
USPTO Final Rejection for U.S. Appl. No. 10/001,477 dated Aug. 24, 2006; 13 pages.
USPTO Final Rejection for U.S. Appl. No. 10/001,477 dated Oct. 24, 2005, 13 pages.
USPTO Final Rejection for U.S. Appl. No. 10/002,217 dated Feb. 6, 2008; 10 pages.
USPTO Final Rejection for U.S. Appl. No. 10/002,217 dated Mar. 7, 2007; 12 pages.
USPTO Final Rejection for U.S. Appl. No. 10/002,217 dated Nov. 17, 2005; 17 pages.
USPTO Final Rejection for U.S. Appl. No. 10/008,096 dated Feb. 10, 2005; 15 pages.
USPTO Final Rejection for U.S. Appl. No. 10/008,096 dated Jun. 16, 2008; 23 pages.
USPTO Final Rejection for U.S. Appl. No. 10/008,096 dated Sep. 4, 2007; 19 pages.
USPTO Final Rejection for U.S. Appl. No. 10/008,096 dated Oct. 13, 2006; 17 pages.
USPTO Final Rejection for U.S. Appl. No. 10/008,096 dated Nov. 25, 2005; 17 pages.
USPTO Final Rejection for U.S. Appl. No. 10/033,027 dated Jun. 8, 2007; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 10/033,027 dated Aug. 9, 2006; 6 pages.
USPTO Final Rejection for U.S. Appl. No. 10/033,027 dated Oct. 31, 2005; 24 pages.
USPTO Final Rejection for U.S. Appl. No. 10/113,065 dated Oct. 26, 2005; 17 pages.
USPTO Final Rejection for U.S. Appl. No. 10/238,966 dated Sep. 27, 2007; 9 pages.
USPTO Final Rejection for U.S. Appl. No. 11/968,145 dated Aug. 2, 2010; 6 pages.
USPTO Final Rejection for U.S. Appl. No. 09/404,891 dated Dec. 8, 2004; 7 pages.
USPTO Final Rejection for U.S. Appl. No. 09/475,879 dated Oct. 11, 2001; 10 pages.
USPTO Final Rejection for U.S. Appl. No. 09/875,599 dated Feb. 15, 2006; 18 pages.
USPTO Final Rejection for U.S. Appl. No. 09/875,599 dated Mar. 29, 2005; 20 pages.
USPTO Final Rejection for U.S. Appl. No. 09/875,599 dated Apr. 26, 2004; 15 pages.
USPTO Final Rejection for U.S. Appl. No. 09/875,599 dated Aug. 25, 2004; 17 pages.
USPTO Final Rejection for U.S. Appl. No. 09/875,599 dated Nov. 21, 2005; 16 pages.
USPTO Final Rejection for U.S. Appl. No. 09/893,050 dated Aug. 30, 2004; 13 pages.
USPTO Final Rejection for U.S. Appl. No. 09/912,768 dated Nov. 7, 2004; 13 pages.
USPTO Final Rejection for U.S. Appl. No. 09/930,021 dated Aug. 31, 2004; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 09/943,062 dated Jan. 18, 2008; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 09/943,062 dated Apr. 30, 2004; 9 pages.
USPTO Final Rejection for U.S. Appl. No. 09/943,062 dated Jun. 27, 2003; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 09/943,149 dated May 7, 2003; 10 pages.
USPTO Final Rejection for U.S. Appl. No. 09/957,084 dated Jan. 29, 2004; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 09/957,084 dated Apr. 23, 2003; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 09/969,311 dated Apr. 7, 2003; 7 pages.
USPTO Final Rejection for U.S. Appl. No. 09/972,133 dated Mar. 30, 2006; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 09/972,133 dated Jun. 29, 2005; 10 pages.
USPTO Final Rejection for U.S. Appl. No. 09/975,104 dated Feb. 15, 2006; 7 pages.
USPTO Final Rejection for U.S. Appl. No. 09/975,338 dated Jan. 18, 2006; 12 pages.
USPTO Final Rejection for U.S. Appl. No. 09/975,338 dated Jan. 31, 2006; 21 pages.
USPTO Final Rejection for U.S. Appl. No. 09/975,338 dated Feb. 27, 2007; 23 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,570 dated May 30, 2003; 9 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,571 dated Jan. 26, 2005; 11 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,761 dated Aug. 26, 2004; 7 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,761 dated Oct. 3, 2003; 7 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,762 dated Jan. 26, 2007; 13 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,762 dated Mar. 14, 2006; 19 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,767 dated Jan. 18, 2011; 24 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,767 dated Dec. 7, 2009; 22 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,771 dated Jan. 4, 2011; 12 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,771 dated Nov. 25, 2009; 12 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,782 dated May 15, 2009; 10 pages.
USPTO Final Rejection for U.S. Appl. No. 09/994,601 dated Jan. 5, 2010; 13 pages.
USPTO Final Rejection for U.S. Appl. No. 09/998,848 dated Dec. 10, 2009; 16 pages.
USPTO Final Rejection for U.S. Appl. No. 10/001,478 dated Apr. 20, 2009; 16 pages.
USPTO Final Rejection for U.S. Appl. No. 10/001,478 dated Jun. 4, 2008; 18 pages.
USPTO Final Rejection for U.S. Appl. No. 10/001,478 dated Sep. 5, 2006; 19 pages.
USPTO Final Rejection for U.S. Appl. No. 10/001,478 dated Sep. 17, 2007; 15 pages.
USPTO Final Rejection for U.S. Appl. No. 10/001,568 dated Oct. 26, 2005; 16 pages.
USPTO Final Rejection for U.S. Appl. No. 10/002,726 dated Mar. 27, 2006; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 10/002,726 dated Nov. 30, 2005; 10 pages.
USPTO Final Rejection for U.S. Appl. No. 10/004,039 dated Nov. 22, 2005; 19 pages.
USPTO Final Rejection for U.S. Appl. No. 10/004,197 dated Nov. 23, 2005; 17 pages.
USPTO Final Rejection for U.S. Appl. No. 10/011,214 dated Jan. 21, 2005; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 10/113,064 dated Oct. 18, 2005; 22 pages.
USPTO Final Rejection for U.S. Appl. No. 10/113,581 dated May 11, 2009; 21 pages.
USPTO Final Rejection for U.S. Appl. No. 10/113,581 dated Jun. 11, 2008; 14 pages.
USPTO Final Rejection for U.S. Appl. No. 10/113,581 dated Jul. 13, 2007; 15 pages.
USPTO Final Rejection for U.S. Appl. No. 10/113,581 dated Aug. 10, 2006; 13 pages.
USPTO Final Rejection for U.S. Appl. No. 10/118,682 dated May 3, 2004; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 10/118,682 dated Oct. 12, 2005; 11 pages.
USPTO Final Rejection for U.S. Appl. No. 10/137,497 dated Mar. 13, 2006; 15 pages.
USPTO Final Rejection for U.S. Appl. No. 10/137,497 dated May 5, 2005; 13 pages.
USPTO Final Rejection for U.S. Appl. No. 10/256,829 dated Jan. 27, 2006; 24 pages.
USPTO Final Rejection for U.S. Appl. No. 10/256,829 dated Jun. 1, 2007; 16 pages.
USPTO Final Rejection for U.S. Appl. No. 10/256,829 dated Jun. 23, 2009; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 10/272,231 dated Nov. 5, 2003; 5 pages.
USPTO Final Rejection for U.S. Appl. No. 10/288,003 dated Oct. 6, 2004; 6 pages.
USPTO Final Rejection for U.S. Appl. No. 10/305,589 dated Oct. 21, 2004; 7 pages.
USPTO Final Rejection for U.S. Appl. No. 10/327,207 dated Mar. 2, 2006; 13 pages.
USPTO Final Rejection for U.S. Appl. No. 10/329,162 dated Aug. 25, 2006; 12 pages.
USPTO Final Rejection for U.S. Appl. No. 10/329,162 dated Sep. 21, 2005; 12 pages.
USPTO Final Rejection for U.S. Appl. No. 10/329,162 dated Dec. 15, 2004; 10 pages.
USPTO Final Rejection for U.S. Appl. No. 10/871,582 dated Feb. 1, 2006; 5 pages.
USPTO Final Rejection for U.S. Appl. No. 11/166,622 dated Mar. 10, 2009; 11 pages.
USPTO Final Rejection for U.S. Appl. No. 11/166,622 dated Mar. 18, 2010; 12 pages.
USPTO Final Rejection for U.S. Appl. No. 11/166,622 dated Dec. 7, 2010; 12 pages.
USPTO Final Rejection for U.S. Appl. No. 11/200,619 dated Jan. 4, 2010; 18 pages.
USPTO Final Rejection for U.S. Appl. No. 11/200,619 dated Mar. 3, 2009; 14 pages.
USPTO Final Rejection for U.S. Appl. No. 11/201,627 dated Apr. 29, 2008; 21 pages.
USPTO Final Rejection for U.S. Appl. No. 11/201,627 dated May 24, 2010; 26 pages.
USPTO Final Rejection for U.S. Appl. No. 11/201,627 dated Jul. 7, 2009; 19 pages.
USPTO Final Rejection for U.S. Appl. No. 11/201,922 dated Apr. 30, 2008; 10 pages.
USPTO Final Rejection for U.S. Appl. No. 11/273,708 dated Jul. 5, 2007; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 11/322,044 dated Sep. 21, 2007; 14 pages.
USPTO Final Rejection for U.S. Appl. No. 11/322,044 dated Oct. 19, 2009; 10 pages.
USPTO Final Rejection for U.S. Appl. No. 11/337,272 dated Feb. 21, 2007; 11 pages.
USPTO Final Rejection for U.S. Appl. No. 11/415,588 dated Oct. 19, 2007; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 11/644,100 dated May 19, 2010; 13 pages.
USPTO Final Rejection for U.S. Appl. No. 11/644,100 dated Aug. 19, 2009; 12 pages.
USPTO Final Rejection for U.S. Appl. No. 11/644,100 dated Nov. 18, 2008; 12 pages.
USPTO Final Rejection for U.S. Appl. No. 11/698,660 dated Feb. 16, 2010; 14 pages.
USPTO Final Rejection for U.S. Appl. No. 11/698,660 dated May 28, 2009; 12 pages.
USPTO Final Rejection for U.S. Appl. No. 11/698,660 dated Sep. 3, 2010; 19 pages.
USPTO Final Rejection for U.S. Appl. No. 11/799,439 dated Dec. 18, 2008; 6 pages.
USPTO Final Rejection for U.S. Appl. No. 11/850,260 dated Aug. 21, 2009; 9 pages.
USPTO Final Rejection for U.S. Appl. No. 11/857,947 dated Jan. 4, 2011; 14 pages.
USPTO Final Rejection for U.S. Appl. No. 11/857,947 dated Oct. 14, 2009; 22 pages.
USPTO Final Rejection for U.S. Appl. No. 11/865,672 dated Dec. 30, 2009; 6 pages.
USPTO Final Rejection for U.S. Appl. No. 11/963,661 dated May 6, 2011; 7 pages.
USPTO Final Rejection for U.S. Appl. No. 11/963,661 dated Jun. 22, 2010; 11 pages.
USPTO Final Rejection for U.S. Appl. No. 11/963,661 dated Sep. 4, 2012; 26 pages.
USPTO Final, Rejection for U.S. Appl. No. 11/968,145 dated Jul. 29, 2011; 5 pages.
USPTO Final Rejection for U.S. Appl. No. 11/983,291 dated Aug. 21, 2009; 10 pages.
USPTO Final Rejection for U.S. Appl. No. 12/060,176 dated Jan. 24, 2012; 25 pages.
USPTO Final Rejection for U.S. Appl. No. 12/060,176 dated Jan. 21, 2012; 26 pages.
USPTO Final Rejection for U.S. Appl. No. 12/060,176 dated Oct. 12, 2010; 22 pages.
USPTO Final Rejection for U.S. Appl. No. 12/060,176 dated Nov. 8, 2011; 24 pages.
USPTO Final Rejection for U.S. Appl. No. 12/104,676 dated Dec. 3, 2010; 9 pages.
USPTO Final Rejection for U.S. Appl. No. 12/132,527 dated Oct. 14, 2010; 8 pages.
USPTO Final Rejection for U.S. Appl. No. 13/099,334 dated Oct. 17, 2012; 5 pages.
USPTO Final Rejection for U.S. Appl. No. 09/989,767 dated Mar. 6, 2006; 15 pages.
USPTO Miscellaneous Action for U.S. Appl. No. 09/943,062 dated Jan. 30, 2006; 2 pages.
USPTO Miscellaneous ActiOn for U.S. Appl. No. 09/989,819 dated Dec. 14, 2001; 1 page.
USPTO Miscellaneous Action for U.S. Appl. No. 10/001,478 dated Feb. 23, 2010; 5 pages.
USPTO Miscellaneous Action for U.S. Appl. No. 10/113,581 dated Jun. 23, 2010; 6 pages.
USPTO Miscellaneous Action for U.S. Appl. No. 10/327,207 dated May 13, 2003; 1 page.
USPTO Miscellaneous Action for U.S. Appl. No. 10/327,217 dated Feb. 10, 2004; 1 page.
USPTO Miscellaneous Action for U.S. Appl. No. 11/201,922 dated Oct. 1, 2009; 2 pages.
USPTO Miscellaneous Action with SSP for U.S. Appl. No. 09/930,021 dated Oct. 1, 2001; 1 page.
USPTO Non-Final Rejection for U.S. Appl. No. 10/001,477 dated May 11, 2005; 10 pages.
USPTO Non-Final Office Rejection for U.S. Appl. No. 10/002,217 dated Oct. 2, 2006; 21 pages.
USPTO Non-Final Office Rejection for U.S. Appl. No. 10/002,217 dated May 19, 2005; 15 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,105 dated Jan. 19, 2006; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,105 dated Apr. 19, 2005; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975;115 dated Jan. 7, 2008; 30 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,115 dated Jan. 11, 2006; 15 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,115 dated Feb. 11, 2005; 86 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,115 dated Jul. 27, 2005; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,115 dated Jul. 31, 2007; 28 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,115 dated Oct. 9, 2008; 34 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,115 dated Oct. 31, 2006; 19 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,765 dated Sep. 19, 2007; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,765 dated Sep. 28, 2008; 17 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,765 dated Oct. 2, 2006; 13 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,765 dated Oct. 5, 2005; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,767 dated Jul. 2, 2007; 22 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,767 dated Jul. 17, 2006; 12 pages.
USPTO Non-Final Rejectiol for U.S. Appl. No. 09/989,767 dated Jul. 24, 2006; 21 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,771 dated May 28, 2008; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,771 dated Jul. 16, 2007; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,771 dated Aug. 23, 2006; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,771 dated Sep. 12, 2005; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,771 dated Sep. 22, 2004; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,777 dated Apr. 11, 2006; 21 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,777 dated Jul. 5, 2005; 36 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,777 dated Sep. 11, 2007; 18 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,777 dated Sep. 13, 2006; 18 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,778 dated Mar. 29, 2005; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,778 dated Jul. 14, 2008; 24 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,778 dated Jul. 19, 2007; 18 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,778 dated Sep. 1, 2005; 10 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,778 dated Sep. 18, 2006; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,782 dated Jan. 29, 2007; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,782 dated Mar. 28, 2008; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,782 dated Apr. 29, 2005; 11 pages.
USPTO Non-final Rejection for U.S. Appl. No. 09/989,782 dated Oct. 6, 2004; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,782 dated Nov. 26, 2008; 10 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,782 dated Dec. 14, 2007; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/992,076 dated Jun. 1, 2005; 20 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/992,076 dated Aug. 10, 2006; 19 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/992,076 dated Nov. 21, 2005; 29 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/994,600 dated May 15, 2007; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/994,600 dated Jul. 17, 2006; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/994,600 dated Aug. 23, 2005; 13 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/994,600 dated Oct. 21, 2004; 37 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/994,601 dated Oct. 4, 2007; 20 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/994,601 dated Sep. 21, 2005; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/994,601 dated Nov. 14, 2006; 15 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/994,601 dated Jul. 29, 2004; 10 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/998,834 dated Sep. 20, 2004; 11 pages.
USPTO Nen-Final Rejection for U.S. Appl. No. 09/998,848 dated Jan. 26, 2008; 17 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/998,848 dated Jan. 29, 2007; 13 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/998,848 dated Feb. 22, 2008; 15 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/998,848 dated Dec. 21, 2004; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/998,859 dated May 15, 2003; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/998,859 dated May 28, 2003; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/998;859 dated Nov. 4, 2004; 6 pages.
USPTO Non-final Rejection for U.S. Appl. No. 10/001,477 dated Jan. 22, 2007; 15 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/001,477 dated Mar. 2, 2006; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/001,477 dated Dec. 6, 2007; 13 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/002,217 dated Apr. 3, 2006; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/008,096 dated Mar. 7, 2007; 19 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/008,096 dated Apr. 17, 2006; 18 pages.
USPTO Nan-Final Rejection for U.S. Appl. No. 10/008,096 dated Jun. 14, 2004; 24 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/008,096 dated Jun. 24, 2005; 15 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/008,096 dated Dec. 12, 2007; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/033,027 dated Apr. 20, 2005; 20 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/033,027 dated Apr. 26, 2006; 26 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/033,027 dated Oct. 18, 2004; 17 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/033,027 dated Dec. 18, 2008; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/033,027 dated Dec. 21, 2006; 31 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/113,065 dated May 20, 2005; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/238,966 dated Apr. 6, 2006; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/238,966 dated Apr. 19, 2007; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/238,966 dated Jun. 30, 2008; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/238,966 dated Oct. 20, 2006; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/238,966 dated Dec. 26, 2007; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/404,891 dated Jan. 5, 2004; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/404,091 dated Mar. 5, 2003; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/404,891 dated Jun. 25, 2004; 6 pages.
USPTO Nan-Final Rejection for U.S. Appl. No. 09/404,891 dated Jul. 10, 2003; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/404,891 dated Oct. 11, 2002, 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/475,808 dated Jun. 6, 2001; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/475,879 dated Mar. 8, 2001; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/826,397 dated Apr. 21, 2004; 6 pages.
USPTO Non-final Rejection for U.S. Appl. No. 09/855,868 dated Aug. 26, 2004; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/875,599 dated May 31, 2006; 18 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/875,599 dated Oct. 27, 2003; 13 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/875,599 dated Dec. 3, 2004; 16 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/887,923 dated May 25, 2004; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/887,955 dated May 26, 2004; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/893,048 dated Jan. 12, 2006; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/893,048 dated Jul. 27, 2005; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/893,048 dated Oct. 6, 2004; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/893,050 dated Jan. 5, 2005; 13 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/893,050 dated Jan. 15, 2004; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/909,047 dated Jul. 6, 2004; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/912,788 dated Apr. 11, 2005; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/912,788 dated Jun. 22, 2004; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/922,579 dated Aug. 18, 2004; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/923,461 dated Jul. 16, 2004; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/929,891 dated Sep. 13, 2004; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/930,021 dated Apr. 26, 2004; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/943,062 dated Jan. 27, 2003; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/943,082 dated Jun. 22, 2007; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/943,062 dated Sep. 11, 2002; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/943,062 dated Dec. 8, 2003; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/943,149 dated Aug. 28, 2003; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/943,149 dated Nov. 20, 2002; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/953,423 dated Feb. 6, 2004; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/957,084 dated Aug. 23, 2002; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/957,084 dated Aug. 27, 2003; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/969,311 dated Sep. 21, 2004; 4 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/969,311 dated Nov. 6, 2002; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/969,313 dated May 6, 2005; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/972,003 dated Feb. 2, 2004; 10 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/972,003 dated Aug. 19, 2003; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/972,133 dated Mar. 8, 2005; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/972,133 dated Nov. 25, 2005; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/972,319 dated Sep. 16, 2004; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,030 dated Mar. 29, 2005; 13 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,030 dated Oct. 20, 2005; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,104 dated Mar. 21, 2005; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,104 dated Jun. 16, 2006; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,104 dated Aug. 16, 2005; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,338 dated Apr. 30, 2010; 2 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975.338 dated Aug. 14, 2007; 19 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,338 dated Sep. 6, 2006; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,570 dated Jan. 2, 2003; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,570 dated Jan. 26, 2005; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,570 dated Mar. 25, 2004; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,570 dated Oct. 7, 2003; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,571 dated May 23, 2005; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,571 dated Jul. 12, 2004; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,761 dated Mar. 10, 2004; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,761 dated Apr. 18, 2003; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,762 dated Jul. 23, 2007; 15 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,762 dated Jul. 27, 2005; 15 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,762 dated Aug. 10, 2006; 18 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,767 dated May 12, 2009; 21 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,767 dated Jul. 9, 2010; 22 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,767 dated Oct. 6, 2004; 15 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,771 dated Apr. 30, 2009; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,771 dated Jul. 20, 2010; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,782 date Oct. 27, 2009; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,808 dated Apr. 14, 2005; 8 pages.
USPTO Non-final Rejection for U.S. Appl. No. 09/989,808 dated Oct. 19, 2005; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,817 dated Jan. 12, 2005; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,817 dated Jun. 8, 2004; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/989,819 dated Jul. 13, 2004; 4 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/994,601 dated Jul. 9, 2009; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/998,848 dated Jun. 21, 2010; 15 pages.
USPTO Nan-Final Rejection for U.S. Appl. No. 09/998,848 dated May 12, 2009; 16 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/001,478 dated Jan. 30, 2008; 19 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/001,478 dated Mar. 15, 2006; 19 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/001,478 dated Apr. 2, 2007; 17 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/001,478 dated May 16, 2005; 13 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/001,478 dated Aug. 4, 2009; 17 pages.
USPTO Nori-Final Rejection for U.S. Appl. No. 10/001,478 dated Oct. 20, 2008; 18 pages.
USPTO Non-Final Rejertion for U.S. Appl. No. 10/001,568 dated May 19, 2005; 16 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/002,217 dated Aug. 3, 2007; 10 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/002,726 dated Jun. 10, 2005; 10 pages.
USPTO Nen-Final Rejection for U.S. Appl. No. 10/002,726 dated Aug. 28, 2006; 10 pages.
USPTO Nan-Final Rejection for U.S. Appl. No. 10/002,726 dated Dec. 13, 2004; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/004,039 dated Apr. 11, 2006; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/004,039 dated Jun. 6, 2005; 17 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/004,197 dated Apr. 3, 2006; 13 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/004,197 dated Jun. 6, 2005; 21 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/011,214 dated Aug. 13, 2004; 10 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/109,979 dated Jun. 30, 2005; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/113,064 dated Apr. 6, 2006; 19 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/113,064 dated Apr. 25, 2005; 15 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/113,581 dated Jan. 10, 2007; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/113,581 dated Feb. 24, 2006; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/113,581 dated Aug. 12, 2005; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/113,581 dated Sep. 1, 2009; 18 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/113,581 dated Nov. 26, 2008; 20 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/113,581 dated Nov. 27, 2007; 15 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/118,682 dated Jan. 12, 2005; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/118,682 dated Feb. 25, 2004; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/118,682 dated Jun. 16, 2005; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/118,682 dated Sep. 24, 2004; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/118,682 dated Nov. 3, 2003; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/137,497 dated Aug. 2, 2006; 21 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/137,497 dated Sep. 22, 2005; 21 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/137,497 dated Nov. 5, 2004; 17 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/226,911 dated Mar. 19, 2004; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/256,829 dated Jan. 7, 2009; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/256,829 dated May 3, 2006; 16 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/256,829 dated Jun. 26, 2008; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/256,829 dated Jul. 26, 2005; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/256,829 dated Oct. 26, 2009; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/256,829 dated Nov. 2, 2006, 13 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/272,231 dated Jul. 14, 2003; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/293,392 dated Oct. 16, 2003; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/305,589 dated Oct. 7, 2003; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/324,455 dated Aug. 21, 2003; 4 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/324,455 dated Nov. 6, 2003; 4 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/327,207 dated Jul. 21, 2006; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/327,207 dated Sep. 20, 2005; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/327,217 dated Apr. 30, 2004; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/329,162 dated Jan. 29, 2007; 10 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/329,162 dated Mar. 10, 2006; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/329,162 dated Apr. 21, 2005; 10 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/329,162 dated Aug. 2, 2004; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/653,050 dated Apr. 6, 2004; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/803,030 dated Jun. 8, 2005; 4 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/871,582 dated Sep. 7, 2005; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/088,028 dated Jun. 16, 2006; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/125,554 dated Dec. 11, 2006; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/132,894 dated Dec. 19, 2006; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/166,622 dated Jun. 22, 2010; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/166,622 dated Sep. 29, 2009; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/200,619 dated Jan. 31, 2011; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/200,619 dated Jun. 17, 2009; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/200,619 dated Aug. 27, 2008; 13 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/201,627 dated Sep. 30, 2010; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/201,627 dated Nov. 16, 2007; 16 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/201,627 dated Dec. 12, 2008; 17 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/201,627 dated Dec. 24, 2009; 22 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/201,922 dated Jun. 11, 2010; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/201,922 dated Oct. 15, 2007; 10 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/201,922 dated Oct. 21, 2008; 12 pages.
Robert A. Blauschild, “WP 3.5. An Integrated Time Reference,” ISSCC94/Session 3, Analog Techniques/Paper WP 3.5, Feb. 1994, pp, 56-58; 4 pages.
Robinson, Gordon, D., “Why 1/49.1 (JTAG) Really Works”, May 1994, Conference Proceedings Electro/94 International, May 10-12, 1994, Combined Volumes, pp. 749-754; 6 pages.
Sedra, Adel S. et al., “Microelectronic Circuits,” 3rd Edition, Oxford University Press, pp. xiii-xx and 861-883, 1991; 20 pages.
Seguine, Ryan; “Layout Guideitnes for PSoC CapSense,” Cypress Semiconductor Corporation, Application Note AN2292; Jul. 22, 2005; 13 pages.
Shahbahrami et al., “Matrix Register File and Extended Subwords: Two Techniques for Embedded Media Processors,” ACM, May 2005; 9 pages.
SIPO 2 month Office Action for Application No. 200880012232.1 dated Apr. 23, 2012; 3 pages.
SIPO 4 month Office Action for Application No. 200880012232.1 dated May 6, 2011; 2 pages.
Snyder et al., “Xilinx's A-to-Z Systems Platform” Cahners Microprocessor, The Insider's Guide to Microprocessor Hardware, Feb. 6, 2001; 9 pages.
Song et al., “A 50% Power Reduction Scheme for CMOS Relaxation Osciilator,” IEEE, 1999, pp, 154-157; 4 pages.
Specks et al., “A Mixed Digital-Analog 16B Microcontroller with 0.5MB Flash Memory, On-Chip Power Supply, Physical Nework Interface, and 40V I/O for Automotive Single-Chip Mechatronics,” IEEE, Feb. 9, 2000; 1 page.
Stallman at al., “Debugging with the GNU Source-Level Debugger”; Jan. 1994; retrieved on May 2, 2005 from http://www.cs.utah.edu; 4 pages.
Stan Augarten; “The Chip Collectio—Introduction—Smithsonian Institute”; “State of the Art”; “The First 256-Bit Static RAM”; retrieved on Nov. 14, 2005 from http://smithsonianchips.si.edu/augarten/p24.htm; 2 pages.
Stephen Walters, “Computer-Aided Prototyping for ASIC-Based Systems,” 1991, IEEE Design & Test of Computers, vol. 8, Issue 2, pp. 4-10; 8 pages.
U.S. Appl. No. 60/243,708: “Advanced Programmable Microcontroller Device,” Snyder et al., filed Oct. 26, 2000; 277 pages.
The Written Opinion of the International Search Report for International Application No. PCT/US10/33626 mailed Jun. 24, 2010; 5 pages.
Tan et al., “Fine Pitch and Wirebonding and Reliability of Aluminum Capped Copper Bond Pads,” May 2000, IEEE Electronic Components and Technology Conference, pp. 1674-1680; 7 pages.
USPTO Advisory Action for U.S. Appl. No. 09/989,778 dated May 15, 2006; 4 pages.
USPTO Advisory Action for U.S. Appl. No. 09/998,848 dated Sep. 7, 2005; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 10/001,477 dated Oct. 10, 2008; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 09/475,879 dated Mar. 4, 2002; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 09/475,879 dated Dec. 31, 2001; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 09/875,599 dated Jun. 8, 2005; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 09/943,062 dated Mar. 27, 2008; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 09/943,062 dated Sep. 25, 2003; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 09/969,311 dated Jul. 21, 2003; 2 pages.
USPTO Advisory Action for U.S. Appl. No. 09/975,338 dated Aug. 31, 2005; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 09/975,338 dated May 15, 2006; 4 pages.
USPTO Advisory Action for U.S. Appl. No. 09/989,570 dated Aug. 14, 2003; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 09/989,771 dated Feb. 3, 2010; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 09/989,778 dated Jun. 17, 2009; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 09/994,601 dated Mar. 23, 2010; 2 pages.
USPTO Advisory Action for U.S. Appl. No. 09/998,848 dated Feb. 24, 2010; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 10/001,478 dated Jun. 30, 2009; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 10/329,162 dated Mar. 29, 2005; 2 pages.
USPTO Advisory Action for U.S. Appl. No. 11/166,622 dated May 27, 2009; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 11/200,619 dated May 11, 2009; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 11/201,627 dated Aug. 5, 2010; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 11/201,627 dated Sep. 21, 2009; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 11/322,044 dated Nov. 30, 2007; 2 pages.
USPTO Advisory Action for U.S. Appl. No. 11/337,272 dated Apr. 3, 2007; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 11/415,588 dated Jan. 14, 2008; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 11/644,100 dated Feb. 9, 2009; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 11/644,100 dated Jul. 21, 2010; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 11/698,660 dated Jul. 31, 2009; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 11/698,680 dated Nov. 10, 2010; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 11/799,439 dated Mar. 20, 2009; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 11/818,005 dated Jul. 30, 2010; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 11/850,260 dated Nov. 2, 2009; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 11/963,661 dated Jun. 30, 2011; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 11/963,661 dated Aug. 27, 2010; 3 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/201,922 dated Dec. 28, 2010; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/273,708 dated Mar. 19, 2007; 16 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/322,044 dated Apr. 11, 2008; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/322.044 dated Apr. 24, 2007; 13 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/322,044 dated May 4, 2009; 18 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/322,044 dated Nov. 25, 2008; 15 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/337,272 dated May 17, 2007; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/337,272 dated Oct. 24, 2006; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/415,588 dated Jun. 13, 2007, 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/644,100 dated Mar. 9, 2009; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/644,100 dated Apr. 14, 2008; 10 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/644,100 dated Sep. 15, 2010; 10 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/644,100 dated Dec. 16, 2009; 13 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/698,660 dated May 21, 2010; 15 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/698,660 dated Oct. 7, 2009; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/698,660 dated Dec. 2, 2008; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/698,660 dated Dec. 13, 2010; 20 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/709,886 dated Nov. 7, 2008; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/799,439 dated May 29, 2008; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/799,439 dated Nov. 2, 2007; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/818,005 dated Oct. 26, 2010; 10 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/818,005 dated Nov. 23, 2009; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/850,280 dated Jan. 14, 2010; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/850,260 dated Mar. 6, 2009; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/857,947 dated Feb. 3, 2010; 23 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/857,947 dated Mar. 30, 2009; 18 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/857,947 dated Jul. 21, 2010; 15 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/859,547 dated Oct. 1, 2009; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/865,672 dated Jul. 17, 2009; 6 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/963,661 dated Feb. 4, 2010; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/963,661 dated May 15, 2012; 19 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/963,661 dated Dec. 3, 2010; 18 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/963,661 dated Dec. 29, 2011; 16 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/965,291 dated Dec. 17, 2008; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/965,677 dated Mar. 10, 2009; 10 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/967,240 dated Jun. 10, 2009; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/967,243 dated Sep. 17, 2009; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/968,145 dated Jan. 5, 2011; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/968,145 dated Mar. 4, 2010; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/983,291 dated Mar. 9, 2009; 9 pages.
USPTO Nan-Final Rejection for U.S. Appl. No. 12/004,833 dated Dec. 21, 2010; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/058,534 dated Jan. 11, 2011; 17 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/058,569 dated Aug. 2, 2010; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/060,128 dated Apr. 29, 2009; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/080,176 dated Mar. 30, 2010; 22 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/080,176 dated Apr. 6, 2011; 23 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/060,176 dated May 1, 2012; 25 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/060,176 dated Nov. 20, 2012; 26 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/060,176 dated Mar. 30, 2010; 22 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/104,391 dated Oct. 20, 2011; 4 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/104,672 dated Aug. 26, 2009; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/104,678 dated Jul. 2, 2010; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/132,527 dated Apr. 29, 2010; 7 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/136,557 dated Mar. 15, 2010; 10 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/218,404 dated Sep. 30, 2008; 8 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/786,412 dated Jan. 31, 2011; 1 page.
USPTO Non-Final Rejection for U.S. Appl. No. 13/099,334 dated May 25, 2012; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 13/303,112 dated Oct. 11, 2012; 20 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 09/975,338 dated Apr. 5, 2005; 13 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 10/288,003 dated Apr. 7, 2004; 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/975,105 dated Dec. 4, 2006; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,777 dated Jul. 7, 2008; 23 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,777 dated Sep. 15, 2008; 28 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,777 dated Nov. 4, 2008; 3 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/992,076 dated Nov. 13, 2008; 15 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/992,076 dated Nov. 29, 2007; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/992,076 dated Mar. 26, 2008; 23 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/992,076 dated Jul. 29, 2008; 6 pages.
USPTO Notice of AHowance for U.S. Appl. No. 09/994,600 dated May 14, 2008:; 22 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/994,601 dated Nov. 12, 2008; 35 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/994,601 dated Dec. 22, 2008; 15 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/998,834 dated May 19, 2005; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/998,859 dated Mar. 14, 2005; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/001,477 dated Nov. 10, 2008; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/002,217 dated Jan. 28, 2009; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/002,217 dated Jun. 6, 2008; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/008,096 dated Dec. 22, 2008; 24 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/033,027 dated Mar. 31, 2009; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/113,065 dated Apr. 6, 2008; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/238,966 dated Jan. 27, 2009; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/404,891 dated Mar. 4, 2005; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/475,808 dated Nov. 8, 2001; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/475,879 dated Oct. 22, 2004; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/826,397 dated Oct. 7, 2004; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/855,868 dated Apr. 25, 2005; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/875,599 dated Oct. 17, 2006; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/887,923 dated Sep. 27, 2004; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/887,955 dated Oct. 12, 2004; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/893,048 dated Jul. 25, 2006; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/893,050 dated Jul. 5, 2005; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/909,047 dated Feb. 15, 2005; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/909,047 dated May 11, 2005; 25 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/912,768 dated Sep. 13, 2005; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/922,579 dated Dec. 28, 2004; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/923,461 dated May 12, 2005; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/929,891 dated Jun. 15, 2005; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/929,891 dated Dec. 23, 2005; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/930,021 dated Nov. 26, 2004; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/943,062 dated Jun. 29, 2010; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/943,149 dated Jan. 12, 2004; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/953,423 dated Jul. 12, 2004; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/957,084 dated May 18, 2004; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/969,311 dated Mar. 1, 2005; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/969,313 dated Oct. 4, 2005; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/972,003 dated Jul. 14, 2004; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/972,133 dated Jun. 9, 2006; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/972,319 dated Dec. 30, 2004; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/975,030 dated Feb. 6, 2006; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/975,104 dated Oct. 19, 2006; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/975,115 dated Jan. 29, 2010; 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/977,111 dated Sep. 28, 2006; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,570 dated May 19, 2005; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,570 dated Sep. 10, 2004; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,571 dated Sep. 13, 2005; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,761 dated Jan. 14, 2005; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,762 dated Jan. 2, 2008; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,762 dated Feb. 22, 2010; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,762 dated Mar. 25, 2009; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,762 dated Jun. 2, 2008; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,762 dated Oct. 24, 2008; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,762 dated Jul. 16, 2009; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,762 dated Oct. 30, 2009; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,765 dated Mar. 31, 2010; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,765 dated Sep. 3, 2009; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,766 dated Dec. 22, 2009; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,777 dated Jan. 15, 2010; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,777 dated Aug. 6, 2009; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,777 dated Mar. 9, 2009; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,808 dated Feb. 13, 2008; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,817 dated May 9, 2005; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/989,819 dated Jan. 11, 2005; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/992,076 dated Feb. 27, 2009; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/994,600 dated Jan. 4, 2010; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/994,600 dated Apr. 3, 2009; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/994,600 dated Jun. 25, 2009; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 09/998,848 dated Jan. 13, 2010; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/001,477 dated Mar. 23, 2010; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/001,477 dated Aug. 26, 2009; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/001,477 dated Dec. 4, 2009; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/001,477 dated May 8, 2009; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/001,478 dated Jun. 2, 2010; 11 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/001,568 dated Mar. 17, 2006; 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/002,217 dated Oct. 14, 2008.
USPTO Notice of Allowance for U.S. Appl. No. 10/002,217 dated Jan. 11, 2010; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/002,217 dated Jun. 8, 2009; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/002,217 dated Sep. 17, 2009; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/002,726 dated Feb. 6, 2007; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/004,039 dated Aug. 15, 2006; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/004,197 dated Feb. 9, 2007; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/004,197 dated Oct. 6, 2006; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/008,096 dated Feb. 1, 2010; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/008,096 dated Jun. 5, 2009; 12 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/008,096 dated Oct. 21, 2009; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/011,214 dated Apr. 11, 2005; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/024,093 dated Sep. 10, 2002; 3 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/033,027 dated Feb. 18, 2010; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/033,027 dated Sep. 2, 2009; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/109,979 dated Mar. 14, 2006; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/113,064 dated Sep. 21, 2006; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/113,581 dated Mar. 5, 2010; 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/113,581 dated Sep. 3, 2010; 11 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/118,682 dated Apr. 3, 2006; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/137,497 dated Jan. 24, 2007; 12 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/137,497 dated Jul. 20, 2007; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/226,911 dated Aug. 20, 2004; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/238,966 dated Feb. 1, 2010; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/238,966 dated Aug. 5, 2009; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/256,829 dated May 10, 2010; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/256,829 dated Jan. 29, 2007; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/272,231 dated Mar. 8, 2004; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/288,003 dated Jan. 14, 2005; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/293,392 dated Mar. 10, 2004; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/305,589 dated Feb. 4, 2005; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/324,455 dated Feb. 12, 2004; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/327,207 dated Jun. 11, 2007; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/327,207 dated Dec. 26, 2006; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/327,217 dated Aug. 12, 2004; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/329,162 dated Jul. 5, 2007; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/653,050 dated Jul. 29, 2004; 3 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/803,030 dated Jan. 8, 2007; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/871,582 dated Mar. 30, 2006; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/088,028 dated Jan. 26, 2007; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/088,028 dated Jul. 2, 2007; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/125,554 dated Feb. 7, 2008; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/125,554 dated Apr. 24, 2007; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/132,894 dated Apr. 26, 2007; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/201,627 dated Jan. 20, 2011; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/201,922 dated Apr. 9, 2009; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/273,708 dated Aug. 9, 2007; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/337,272 dated Aug. 15, 2007; 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/415,588 dated Mar. 11, 2008; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/644,100 dated Jan. 6, 2011; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/709,866 dated Feb. 16, 2010; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/709,866 dated Apr. 7, 2009; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/709,866 dated Aug. 4, 2009; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/799,439 dated Feb. 5, 2010; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/799,439 dated Jun. 25, 2009; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/850,260 dated Jul. 2, 2010; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/857,947 dated Jul. 8, 2011; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/857,947 dated Dec. 23, 2011; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/965,291 dated Apr. 15, 2010; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/965,291 dated Sep. 21, 2009; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/965,291 dated Oct. 5, 2009; 2 pages.
USPTO Notice of Allowance for Appication No. 11/965,291 dated Jan. 13, 2010; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/965,291 dated May 5, 2009; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/965,677 dated Feb. 12, 2010; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/965,677 dated Sep. 9, 2009; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/965,677 dated May 12, 2011; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/965,677 dated May 19, 2010; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/965,677 dated Sep. 15, 2010; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/965,677 dated Nov. 2, 2009; 4 ppages.
USPTO Notice of Allowance for U.S. Appl. No. 11/983,291 dated Oct. 22, 2009; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/985,340 dated Feb. 19, 2010; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/985,340 dated Jun. 2, 2009; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/985,340 dated Jun. 9, 2010; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/985,340 dated Nov. 9, 2009; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/986,338 dated Feb. 16, 2010; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/986,338 dated Oct. 19, 2009; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/986,338 dated May 7, 2009; 1 page.
USPTO Notice of Allowance for U.S. Appl. No. 12/057,149 dated Nov. 30, 2010; 7 pages.
USPTO Notioe of Allowance for U.S. Appl. No. 12/058,569 dated Dec. 13, 2010; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/060,128 dated Oct. 19, 2009; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/104,391 dated Dec. 1, 2011; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/104,391 dated Dec. 7, 2012; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/104,672 dated Jan. 11, 2010; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/218,404 dated Feb. 16, 2010; 7 pages.
USPTO Notice of Ailowance for U.S. Appl. No. 12/218,404 dated Mar. 19, 2009; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/218,404 dated Jul. 10, 2009; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/218,404 dated Nov. 3, 2009; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/099,334 dated Nov. 23, 2012; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 10/238,966 dated Apr. 19, 2007; 4 pages.
USPTO Requirement for Restriction for U.S. Appl. No. 11/985,340 dated Mar. 16, 2009; 7 pages.
USPTO Requirement for Restriction/Election for U.S. Appl. No. 09/969,313 dated Mar. 18, 2005; 6 pages.
USPTO Requirement for Restriction/Electio, for U.S. Appl. No. 09/972,003 dated May 6, 2004; 4 pages.
USPTO Requirement for Restriction/Election for U.S. Appl. No. 11/337,272 dated Sep. 11, 2006; 5 pages.
USPTO Requirement for Restriction/Election for U.S. Appl. No. 11/818,005 dated Jul. 14, 2009; 5 pages.
USPTO Requirement Restriction for U.S. Appl. No. 10/118,682 dated Apr. 28, 2005; 4 pages.
USPTO Requirement Restriction for U.S. Appl. No. 12/004,833 dated Sep. 22, 2010; 6 pages.
Van Ess, David; “Simulating a 555 Timer with PSoC,” Cypress Semiconductor Corporation, Application Note AN2286, May 19, 2005; 10 pages.
Varma et al., “A Structured Test Re-Use Methodology for Core-Based System Chips,” IEEE, 1998; 9 pages.
Vixel, “InSpeed SOC 320 Embedded Storage Switch,” 2003, Vixel, pp. 1-5; 5 pages.
Wang, et al. “Synthesizing Operating System Based Device Drivers in Embedded Systems,” Oct. 1-3, 2003; ACM, pp. 37-44; 8 pages.
Wikipedia—Main Page, retrieved on Mar. 8, 2006 from http://en.wikipedia.org/wiki/Main—Page and http://en.wikipedia.org/wiki/Wikipedia:Introduction; 5 pages.
Wikipedia—Processor register, retreved on Mar. 7, 2006 from http://en.wikipedia.org/wiki/Processor—register; 4 pages.
Wikipedia “XML” retrieved on Jan. 29, 2007 from http://en.wikipedia.org/wiki/XML; 16 pages.
Wikipedia.org, “Von Neumann architecture”; retrieved from http://en.wikipedia.org/wiki/Von—Neumann—architecture on Jan. 22, 2007; 4 pages.
Written Opinion of the International Search Authority for International Application No. PCT/US08/60680 dated Aug. 15, 2008; 4 pages.
Written Opinion of the International Searching Authority for International Application No. PCT/US08/60681 dated Sep. 12, 2008; 4 pages.
Written Opinion of the International Searching Authority for International Application No. PCT/US08/60895 mailed Jul. 22, 2009; 6 pages.
Written Opinion of the International Searching Authority for International Application No. PCT/US08/60696 mailed Sep. 22, 2008; 4 pages.
Xerox, “Mesa Debugger Documentation,” Apr. 1979; Xerox Systems Development Department; Version 5.0, pp. 1-30; 33 pages.
Xilinx, Virtex-II Pro Platform FPGA Developers Kit, “How Data2BRAM Fits in Hardware and Software Flows,” Chapter 2: Using Data2BRAM, Jan. 2003 Release; 2 pages.
Yoo et al., “Fast Hardware-Software Coverification by Optimistic Execution of Real Processor, Proceedings of Design, Automation and Test in Europe Conference and Exhibition,” Mar. 2000, pp. 663-668; 8 pages.
York et al., “On-chip Support Needed for SOC Debug,” Electronic Engineering Times, Jun. 1999, pp. 104, 110, 2 pages.
Zorian et al., “Testing Embedded-Core Based System Chips,” IEEE, 1998; 14 pages.
Zorian, “Test Requirements for Embedded Core-based Systems and IEEE P1500,” IEEE, 1997; 9 pages.
SIPO Office Action for Application No. 200880012232.1 dated Dec. 5, 2012; 2 pages.
USPTO Notice of Allowance for U.S. Appl. No. 11/965,677 dated Jan. 6, 2011; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/099,334 dated Jan. 24, 2013; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/099,334 dated Mar. 1, 2013; 5 pages.
Provisional Applications (1)
Number Date Country
60912399 Apr 2007 US
Continuations (1)
Number Date Country
Parent 11965677 Dec 2007 US
Child 13197624 US