The invention relates to memory subsystems and in particular, to a buffered memory module interface device with multiple operating modes.
Computer memory subsystems have evolved over the years, but continue to retain many consistent attributes. Computer memory subsystems from the early 1980's, such as the one disclosed in U.S. Pat. No. 4,475,194 to LeVellee et al, of common assignment herewith, included a memory controller, a memory assembly (contemporarily called a basic storage module (BSM) by the inventors) with array devices, buffers, terminators and ancillary timing and control functions, as well as several point-to-point busses to permit each memory assembly to communicate with the memory controller via its own point-to-point address and data bus.
As shown in
As storage systems evolve and become faster and denser, customers are often required to convert all of their storage devices connected to a particular subsystem to the new technology in order to take advantage of the increased speed and density.
Exemplary embodiments of the present invention include various memory subsystem structures, each using a common multi-mode memory buffer device. The buffer device includes a packetized multi-transfer interface which is redriven to permit connection between a first memory assembly and cascaded memory assemblies. The buffer device also includes a memory interface adapted to connect to either a second memory assembly or directly to memory devices.
Further exemplary embodiments include a programmable memory address, command and data buffer device. The buffer device includes instructions to adapt the buffer device for direct attachment to a memory module to enable a buffered memory module mode of operation. The buffer device also includes selectable modes to adapt the buffer device for connection to at least one unbuffered memory module or at least one registered memory module to enable a bus converter mode of operation.
Further exemplary embodiments include a bus to bus converter device having more than one operating mode. The device includes instructions to convert a serialized packetized bus into a parallel memory bus. The device is attached to a standalone buffered memory module or the device is attached to a system board to permit attachment to an unbuffered memory module or to a registered memory module.
Additional exemplary embodiments include a method for providing a buffered memory device with multiple operating modes. The method includes receiving an input signal at the buffered memory device. The method also includes determining a mode associated with the input signal, where the mode identifies a type of memory module. The signal is transmitted to a memory assembly in a format corresponding to the mode.
Additional exemplary embodiments include a storage medium encoded with machine readable computer program code for providing a buffered memory device with multiple operating modes. The storage medium includes instructions for causing a computer to implement a method. The method includes receiving an input signal at the buffered memory device. The method also includes determining a mode associated with the input signal, where the mode identifies a type of memory module. The signal is transmitted to a memory assembly in a format corresponding to the mode.
Referring now to the drawings wherein like elements are numbered alike in the several FIGURES:
Exemplary embodiments of the present invention include a flexible, high speed and high reliability memory system architecture and interconnect structure that includes a single-ended point-to-point interconnection between any two high speed communication interfaces, The memory subsystem may be implemented in one of several structures, depending on desired attributes such as reliability, performance, density, space, cost, component re-use and other elements. The bus-to-bus converter chip, of the present invention, enables this flexibility through the inclusion of multiple, selectable memory interface modes. This maximizes the flexibility of the system designers in defining optimal solutions for each application, while minimizing product development costs and maximizing economies of scale through the use of a common device. In addition, exemplary embodiments of the present invention provide a migration path that allows a system to implement a mix of buffered memory modules and unbuffered and/or registered memory modules from a common buffer device.
Memory subsystems may utilize a buffer device to support buffered memory modules (directly connected to a memory controller via a packetized, multi-transfer interface with enhanced reliability features) and/or existing unbuffered or registered memory modules (in conjunction with the identical buffer device programmed to operate in a manner consistent with the memory interface defined for those module types). A memory subsystem may communicate with buffered memory modules at one speed and with unbuffered and registered memory modules at another speed (typically a slower speed). Many attributes associated with the buffered module structure are maintained, including the enhanced high speed bus error detection and correction features and the memory cascade function. However, overall performance may be reduced when communicating with most registered and unbuffered DIMMs due to the net topologies and loadings associated with them.
Although point-to-point interconnects permit higher data rates, overall memory subsystem efficiency must be achieved by maintaining a reasonable number of memory modules 806 and memory devices per channel (historically four memory modules with four to thirty-six chips per memory module, but as high as eight memory modules per channel and as few as one memory module per channel). Using a point-to-point bus necessitates a bus re-drive function on each memory module, to permit memory modules to be cascaded such that each memory module is interconnected to other memory modules as well as to the memory controller 802.
An exemplary embodiment of the present invention includes two uni-directional busses between the memory controller 802 and memory module 806a (“DIMM #1”) as well as between each successive memory module 806b-d (“DIMM #2”, “DIMM #3” and “DIMM #4”) in the cascaded memory structure. The downstream memory bus 904 is comprised of twenty-two single-ended signals and a differential clock pair. The downstream memory bus 904 is used to transfer address, control, data and error code correction (ECC) bits downstream from the memory controller 802, over several clock cycles, to one or more of the memory modules 806 installed on the cascaded memory channel. The upstream memory bus 902 is comprised of twenty-three single-ended signals and a differential clock pair, and is used to transfer bus-level data and ECC bits upstream from the sourcing memory module 806 to the memory controller 802. Using this memory structure, and a four to one data rate multiplier between the DRAM data rate (e.g., 400 to 800 Mb/s per pin) and the unidirectional memory bus data rate (e.g., 1.6 to 3.2 Gb/s per pin), the memory controller 802 signal pincount, per memory channel, is reduced from approximately one hundred and twenty pins to about fifty pins.
Referring to
In addition to inputting the original or re-ordered signals to the bus sparing logic 1136, the bus sparing logic 1126 also inputs the original or re-ordered signals into a downstream bus ECC functional block 1120 to perform error detection and correction for the frame. The downstream bus ECC functional block 1120 operates on any information received or passed through the multi-mode buffer device 1002 from the downstream memory bus 904 to determine if a bus error is present. The downstream bus ECC functional block 1120 analyzes the bus signals to determine if it they are valid. Next, the downstream bus ECC functional block 1120 transfers the corrected signals to a command state machine 1114. The command state machine 1114 inputs the error flags associated with command decodes or conflicts to a pervasive and miscellaneous functional block 1110. The downstream and upstream modules also present error flags and/or error data (if any) to the pervasive and miscellaneous functional block 1110 to enable reporting of these errors to the memory controller, processor, service processor or other error management unit.
Referring to
The command state machine 1114 also determines if the corrected signals (including data, command and address signals) are directed to and should be processed by the memory module 806. If the corrected signals are directed to the memory module 806, then the command state machine 1114 determines what actions to take and may initiate DRAM action, write buffer actions, read buffer actions or a combination thereof. Depending on the type of memory module 806 (buffered, unbuffered, registered), the command state machine 1114 selects the appropriate drive characteristics, timings and timing relationships. The write data buffers 1112 transmit the data signals to a memory data interface 1106 and the command state machine 1114 transmits the associated addresses and command signals to a memory command interface 1108, consistent with the DRAM specification. The memory data interface 1106 reads from and writes memory data 1142 to a memory device. The data timing relationship to the command is different depending on the type of memory module 806. For example, when the memory data interface 1106 issues a command to a registered DIMM memory module 804, the command takes an extra clock cycle as compared to a command issued to an unbuffered DIMM memory module 806. In addition, the memory command interface 1108 outputs six differential clocks on twelve wires. To support the use of both unbuffered and registered memory modules 806, the memory a outputs 1104 and the memory b outputs 1102 from the memory command interface 1108 can be logically configured based on the type of memory module 806. For example, when the multi-mode memory device is in communication with two unbuffered DIMM memory modules 806, the memory a outputs 1104 may be directed to the first unbuffered DIMM memory module 806 and the memory b outputs 1102 may be directed to the second unbuffered DIMM memory module 806.
Data signals to be transmitted to the memory controller 802 may be temporarily stored in the read data buffers 1116 after a command, such as a read command, has been executed by the memory module 806, consistent with the memory device ‘read’ timings. The read data buffers 1116 transfer the read data into an upstream bus ECC functional block 1122. The upstream bus ECC functional block 1122 generates check bits for the signals in the read data buffers 1116. The check bits and signals from the read data buffers 1116 are input to the upstream data multiplexing functional block 1132. The upstream data multiplexing functional block 1132 merges the data on to the upstream memory bus 902 via the bus sparing logic 1138 and the driver functional block 1130. If needed, the bus sparing logic 1138 may re-direct the signals to account for a defective segment between the current memory module 806 and the upstream receiving module (or memory controller). The driver functional block 1130 transmits the original or re-ordered signals, via the upstream memory bus 902, to the next memory assembly (i.e., memory module 806) or memory controller 802 in the chain. In an exemplary embodiment of the present invention, the bus sparing logic 1138 is implemented using a multiplexor to shift the signals. The driver functional block 1130 provides macros and support logic for the upstream memory bus 902 and, in an exemplary embodiment of the present invention, includes support for a twenty-three bit, high speed, low latency cascade driver bus.
Data, clock and ECC signals from the upstream memory bus 902 are also received by any upstream multi-mode buffer device 1002 in any upstream memory module 806. These signals need to be passed upstream to the next memory module 806 or to the memory controller 802. Referring to
In addition to passing the data and ECC signals to the upstream data multiplexing functional block 1132, the bus sparing functional block 1140 also inputs the original or re-ordered data and ECC signals to the upstream bus ECC functional block 1122 to perform error detection and correction for the frame. The upstream bus ECC functional block 1122 operates on any information received or passed through the multi-mode buffer device 1002 from the upstream memory bus 902 to determine if a bus error is present. The upstream bus ECC functional block 1122 analyzes the data and ECC signals to determine if they are valid. Next, the upstream bus ECC functional block 1122 transfers any error flags and/or error data to the pervasive and miscellaneous functional block 1110 for transmission to the memory controller 802. In addition, once a pre-defined threshold for the number or type of failures has been reached, the pervasive and miscellaneous functional block 1110, generally in response to direction of the memory controller 802, may substitute the spare segment for a failing segment.
The block diagram in
As indicated in
The terms “net topology” in
The memory configurations depicted in
Exemplary embodiments of the present invention provide a multi-mode buffer device 1002 that may be implemented in one of several structures, depending on desired attributes such as reliability, performance, density, space, cost, component re-use and other elements. A bus-to-bus converter module/chip provides this flexibility through the inclusion of multiple, selectable memory interface modes. This may be utilized to maximize the flexibility of the system designers in defining optimal solutions for each installation, while minimizing product development costs and maximizing economies of scale through the use of a common device. In addition, exemplary embodiments of the present invention may be utilized to provide a migration path that allows an installation to implement a mix of buffered memory modules and unbuffered and/or registered memory modules from a common buffer device.
As described above, the embodiments of the invention may be embodied in the form of computer-implemented processes and apparatuses for practicing those processes. Embodiments of the invention may also be embodied in the form of computer program code containing instructions embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other computer-readable storage medium, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention. The present invention can also be embodied in the form of computer program code, for example, whether stored in a storage medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention. When implemented on a general-purpose microprocessor, the computer program code segments configure the microprocessor to create specific logic circuits.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another.
This application is a continuation application of U.S. Ser. No. 10/903,366 filed Jul. 30, 2004 now U.S. Pat. No. 7,389,375, the contents of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2842682 | Clapper | Jul 1958 | A |
3333253 | Sahulka | Jul 1967 | A |
3395400 | De Witt et al. | Jul 1968 | A |
3825904 | Burk et al. | Jul 1974 | A |
4028675 | Frankenberg | Jun 1977 | A |
4135240 | Ritchie | Jan 1979 | A |
4472780 | Chenoweth et al. | Sep 1984 | A |
4475194 | LaVallee et al. | Oct 1984 | A |
4486739 | Franaszek et al. | Dec 1984 | A |
4641263 | Perlman et al. | Feb 1987 | A |
4654857 | Samson et al. | Mar 1987 | A |
4723120 | Petty, Jr. | Feb 1988 | A |
4740916 | Martin | Apr 1988 | A |
4796231 | Pinkham | Jan 1989 | A |
4803485 | Rypinkski | Feb 1989 | A |
4833605 | Terada et al. | May 1989 | A |
4839534 | Clasen | Jun 1989 | A |
4943984 | Pechanek et al. | Jul 1990 | A |
4985828 | Shimizu et al. | Jan 1991 | A |
5053947 | Heibel et al. | Oct 1991 | A |
5177375 | Ogawa et al. | Jan 1993 | A |
5206946 | Brunk | Apr 1993 | A |
5214747 | Cok | May 1993 | A |
5265212 | Bruce, II | Nov 1993 | A |
5287531 | Rogers, Jr. et al. | Feb 1994 | A |
5347270 | Matsuda et al. | Sep 1994 | A |
5357621 | Cox | Oct 1994 | A |
5375127 | Leak et al. | Dec 1994 | A |
5387911 | Gleichert et al. | Feb 1995 | A |
5394535 | Ohuchi | Feb 1995 | A |
5454091 | Sites et al. | Sep 1995 | A |
5475690 | Burns et al. | Dec 1995 | A |
5513135 | Dell et al. | Apr 1996 | A |
5517626 | Archer et al. | May 1996 | A |
5522064 | Aldereguia et al. | May 1996 | A |
5544309 | Chang et al. | Aug 1996 | A |
5546023 | Borkar et al. | Aug 1996 | A |
5561826 | Davies et al. | Oct 1996 | A |
5592632 | Leung et al. | Jan 1997 | A |
5594925 | Harder et al. | Jan 1997 | A |
5611055 | Krishan et al. | Mar 1997 | A |
5613077 | Leung et al. | Mar 1997 | A |
5627963 | Gabillard et al. | May 1997 | A |
5629685 | Allen et al. | May 1997 | A |
5661677 | Rondeau, II et al. | Aug 1997 | A |
5666480 | Leung et al. | Sep 1997 | A |
5684418 | Yanagiuchi | Nov 1997 | A |
5706346 | Katta et al. | Jan 1998 | A |
5754804 | Cheselka et al. | May 1998 | A |
5764155 | Kertesz et al. | Jun 1998 | A |
5822749 | Agarwal | Oct 1998 | A |
5852617 | Mote, Jr. | Dec 1998 | A |
5870325 | Nielsen et al. | Feb 1999 | A |
5872996 | Barth et al. | Feb 1999 | A |
5917760 | Millar | Jun 1999 | A |
5926838 | Jeddeloh | Jul 1999 | A |
5928343 | Farmwald et al. | Jul 1999 | A |
5930273 | Mukojima | Jul 1999 | A |
5959914 | Gates et al. | Sep 1999 | A |
5973951 | Bechtolsheim et al. | Oct 1999 | A |
5974493 | Okumura et al. | Oct 1999 | A |
5995405 | Trick | Nov 1999 | A |
6003121 | Wirt | Dec 1999 | A |
6011732 | Harrison et al. | Jan 2000 | A |
6038132 | Tokunaga et al. | Mar 2000 | A |
6049476 | Laudon et al. | Apr 2000 | A |
6076158 | Sites et al. | Jun 2000 | A |
6078515 | Nielsen et al. | Jun 2000 | A |
6081868 | Brooks | Jun 2000 | A |
6085276 | VanDoren et al. | Jul 2000 | A |
6096091 | Hartmann | Aug 2000 | A |
6128746 | Clark et al. | Oct 2000 | A |
6145028 | Shank et al. | Nov 2000 | A |
6170047 | Dye | Jan 2001 | B1 |
6170059 | Pruett et al. | Jan 2001 | B1 |
6173382 | Dell et al. | Jan 2001 | B1 |
6185718 | Dell et al. | Feb 2001 | B1 |
6215686 | Deneroff et al. | Apr 2001 | B1 |
6219288 | Braceras et al. | Apr 2001 | B1 |
6219760 | McMinn | Apr 2001 | B1 |
6233639 | Dell et al. | May 2001 | B1 |
6260127 | Olarig et al. | Jul 2001 | B1 |
6262493 | Garnett | Jul 2001 | B1 |
6292903 | Coteus et al. | Sep 2001 | B1 |
6301636 | Schultz et al. | Oct 2001 | B1 |
6308247 | Ackerman et al. | Oct 2001 | B1 |
6317352 | Halbert et al. | Nov 2001 | B1 |
6321343 | Toda | Nov 2001 | B1 |
6338113 | Kubo et al. | Jan 2002 | B1 |
6349390 | Dell et al. | Feb 2002 | B1 |
6357018 | Stuewe et al. | Mar 2002 | B1 |
6370631 | Dye | Apr 2002 | B1 |
6378018 | Tsern et al. | Apr 2002 | B1 |
6381685 | Dell et al. | Apr 2002 | B2 |
6393528 | Arimilli et al. | May 2002 | B1 |
6408398 | Freker et al. | Jun 2002 | B1 |
6442698 | Nizar | Aug 2002 | B2 |
6446174 | Dow | Sep 2002 | B1 |
6467013 | Nizar | Oct 2002 | B1 |
6473836 | Ikeda | Oct 2002 | B1 |
6477614 | Leddige et al. | Nov 2002 | B1 |
6483755 | Leung et al. | Nov 2002 | B2 |
6484271 | Gray | Nov 2002 | B1 |
6487102 | Halbert et al. | Nov 2002 | B1 |
6487627 | Willke et al. | Nov 2002 | B1 |
6493250 | Halbert et al. | Dec 2002 | B2 |
6496540 | Widmer | Dec 2002 | B1 |
6496910 | Baentsch et al. | Dec 2002 | B1 |
6499070 | Whetsel | Dec 2002 | B1 |
6502161 | Perego et al. | Dec 2002 | B1 |
6507888 | Wu et al. | Jan 2003 | B2 |
6510100 | Grundon et al. | Jan 2003 | B2 |
6513091 | Blackmon et al. | Jan 2003 | B1 |
6530007 | Olarig | Mar 2003 | B2 |
6532525 | Aleksic et al. | Mar 2003 | B1 |
6546359 | Week | Apr 2003 | B1 |
6549971 | Cecchi et al. | Apr 2003 | B1 |
6553450 | Dodd et al. | Apr 2003 | B1 |
6557069 | Drehmel et al. | Apr 2003 | B1 |
6564329 | Cheung et al. | May 2003 | B1 |
6584576 | Co | Jun 2003 | B1 |
6587912 | Leddige et al. | Jul 2003 | B2 |
6590827 | Chang et al. | Jul 2003 | B2 |
6594748 | Lin | Jul 2003 | B1 |
6601121 | Singh et al. | Jul 2003 | B2 |
6601149 | Brock et al. | Jul 2003 | B1 |
6604180 | Jeddeloh | Aug 2003 | B2 |
6611905 | Grundon et al. | Aug 2003 | B1 |
6622217 | Gharacorloo et al. | Sep 2003 | B2 |
6625687 | Halber et al. | Sep 2003 | B1 |
6625702 | Rentscler et al. | Sep 2003 | B2 |
6628538 | Funaba et al. | Sep 2003 | B2 |
6631439 | Saulsbury et al. | Oct 2003 | B2 |
6671376 | Koto et al. | Dec 2003 | B1 |
6678811 | Rentscler et al. | Jan 2004 | B2 |
6684320 | Mohamed et al. | Jan 2004 | B2 |
6697919 | Gharacorloo et al. | Feb 2004 | B2 |
6704842 | Janakiraman et al. | Mar 2004 | B1 |
6721185 | Dong et al. | Apr 2004 | B2 |
6721944 | Chaudhry et al. | Apr 2004 | B2 |
6738836 | Kessler et al. | May 2004 | B1 |
6741096 | Moss | May 2004 | B2 |
6748518 | Guthrie et al. | Jun 2004 | B1 |
6754762 | Curley | Jun 2004 | B1 |
6766389 | Hayter et al. | Jul 2004 | B2 |
6775747 | Venkatraman | Aug 2004 | B2 |
6779075 | Wu et al. | Aug 2004 | B2 |
6791555 | Radke et al. | Sep 2004 | B1 |
6792495 | Garney et al. | Sep 2004 | B1 |
6807650 | Lamb et al. | Oct 2004 | B2 |
6832286 | Johnson et al. | Dec 2004 | B2 |
6834355 | Uzelac | Dec 2004 | B2 |
6839393 | Sidiropoulos | Jan 2005 | B1 |
6854043 | Hargis et al. | Feb 2005 | B2 |
6865646 | David | Mar 2005 | B2 |
6871253 | Greeff et al. | Mar 2005 | B2 |
6874102 | Doody et al. | Mar 2005 | B2 |
6877076 | Cho et al. | Apr 2005 | B1 |
6877078 | Fujiwara et al. | Apr 2005 | B2 |
6882082 | Greeff et al. | Apr 2005 | B2 |
6889284 | Nizar et al. | May 2005 | B1 |
6898726 | Lee | May 2005 | B1 |
6918068 | Vail et al. | Jul 2005 | B2 |
6938119 | Kohn et al. | Aug 2005 | B2 |
6944084 | Wilcox | Sep 2005 | B2 |
6948091 | Bartels et al. | Sep 2005 | B2 |
6949950 | Takahashi et al. | Sep 2005 | B2 |
6977536 | Chin-Chieh et al. | Dec 2005 | B2 |
6993612 | Porterfield | Jan 2006 | B2 |
7024518 | Halbert et al. | Apr 2006 | B2 |
7039755 | Helms | May 2006 | B1 |
7047384 | Bodas et al. | May 2006 | B2 |
7051172 | Mastronarde et al. | May 2006 | B2 |
7073010 | Chen et al. | Jul 2006 | B2 |
7076700 | Rieger | Jul 2006 | B2 |
7093078 | Kondo | Aug 2006 | B2 |
7096407 | Olarig | Aug 2006 | B2 |
7103792 | Moon | Sep 2006 | B2 |
7113418 | Oberlin et al. | Sep 2006 | B2 |
7114109 | Daily et al. | Sep 2006 | B2 |
7127629 | Vogt | Oct 2006 | B2 |
7133790 | Liou | Nov 2006 | B2 |
7133972 | Jeddeloh | Nov 2006 | B2 |
7136958 | Jeddeloh | Nov 2006 | B2 |
7155623 | Lefurgy et al. | Dec 2006 | B2 |
7162567 | Jeddeloh et al. | Jan 2007 | B2 |
7165153 | Vogt | Jan 2007 | B2 |
7177211 | Zimmerman | Feb 2007 | B2 |
7181584 | LeBerge | Feb 2007 | B2 |
7194593 | Schnepper | Mar 2007 | B2 |
7197594 | Raz et al. | Mar 2007 | B2 |
7200832 | Butt et al. | Apr 2007 | B2 |
7206962 | Deegan | Apr 2007 | B2 |
7216196 | Jeddeloh | May 2007 | B2 |
7227949 | Heegard et al. | Jun 2007 | B2 |
7234099 | Gower et al. | Jun 2007 | B2 |
7240145 | Holman | Jul 2007 | B2 |
7260685 | Lee et al. | Aug 2007 | B2 |
7266634 | Ware et al. | Sep 2007 | B2 |
7313583 | Porten et al. | Dec 2007 | B2 |
7321979 | Lee | Jan 2008 | B2 |
20010029566 | Woo | Oct 2001 | A1 |
20020019926 | Huppenthal et al. | Feb 2002 | A1 |
20020059439 | Arroyo et al. | May 2002 | A1 |
20020103988 | Dornier | Aug 2002 | A1 |
20030009632 | Arimilli et al. | Jan 2003 | A1 |
20030028701 | Rao et al. | Feb 2003 | A1 |
20030033364 | Garnett et al. | Feb 2003 | A1 |
20030051055 | Parrella et al. | Mar 2003 | A1 |
20030056183 | Kobayashi | Mar 2003 | A1 |
20030084309 | Kohn | May 2003 | A1 |
20030090879 | Doblar et al. | May 2003 | A1 |
20030105938 | Cooksey et al. | Jun 2003 | A1 |
20040049723 | Obara | Mar 2004 | A1 |
20040098549 | Dorst | May 2004 | A1 |
20040117588 | Arimilli et al. | Jun 2004 | A1 |
20040123222 | Widmer | Jun 2004 | A1 |
20040128474 | Vorbach | Jul 2004 | A1 |
20040148482 | Grundy et al. | Jul 2004 | A1 |
20040165609 | Herbst et al. | Aug 2004 | A1 |
20040199363 | Bohizic et al. | Oct 2004 | A1 |
20040230718 | Polzin et al. | Nov 2004 | A1 |
20040260909 | Lee et al. | Dec 2004 | A1 |
20040260957 | Jeddeloh et al. | Dec 2004 | A1 |
20050023560 | Ahn et al. | Feb 2005 | A1 |
20050044305 | Jakobs et al. | Feb 2005 | A1 |
20050050237 | Jeddeloh et al. | Mar 2005 | A1 |
20050071542 | Weber et al. | Mar 2005 | A1 |
20050080581 | Zimmerman et al. | Apr 2005 | A1 |
20050081129 | Shah et al. | Apr 2005 | A1 |
20050086441 | Meyer et al. | Apr 2005 | A1 |
20050125702 | Huang et al. | Jun 2005 | A1 |
20050125703 | Lefurgy et al. | Jun 2005 | A1 |
20050138246 | Chen et al. | Jun 2005 | A1 |
20050138267 | Bains et al. | Jun 2005 | A1 |
20050144399 | Hosomi | Jun 2005 | A1 |
20050149665 | Wolrich et al. | Jul 2005 | A1 |
20050166006 | Talbot et al. | Jul 2005 | A1 |
20050177677 | Jeddeloh | Aug 2005 | A1 |
20050216678 | Jeddeloh | Sep 2005 | A1 |
20050223196 | Knowles | Oct 2005 | A1 |
20050248997 | Lee | Nov 2005 | A1 |
20050259496 | Hsu et al. | Nov 2005 | A1 |
20050289377 | Luong et al. | Dec 2005 | A1 |
20060036826 | Dell et al. | Feb 2006 | A1 |
20060036827 | Dell et al. | Feb 2006 | A1 |
20060080584 | Hartnett et al. | Apr 2006 | A1 |
20060085602 | Huggahalli et al. | Apr 2006 | A1 |
20060095592 | Borkenhagen | May 2006 | A1 |
20060095679 | Edirisooriya | May 2006 | A1 |
20060107175 | Dell et al. | May 2006 | A1 |
20060112238 | Jamil et al. | May 2006 | A1 |
20060161733 | Beckett et al. | Jul 2006 | A1 |
20060195631 | Rajamani | Aug 2006 | A1 |
20060288172 | Lee et al. | Dec 2006 | A1 |
20070025304 | Leelahakriengkrai et al. | Feb 2007 | A1 |
20070160053 | Coteus et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
0229316 | Jul 1987 | EP |
0470734 | Feb 1992 | EP |
1429340 | Jun 2004 | EP |
2396711 | Jun 2004 | GB |
59153353 | Sep 1984 | JP |
0432614 | Nov 1992 | JP |
10011971 | Jan 1998 | JP |
9621188 | Jul 1996 | WO |
0004481 | Jan 2000 | WO |
0223353 | Mar 2002 | WO |
2005038660 | Apr 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080133797 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10903366 | Jul 2004 | US |
Child | 12029641 | US |