Fourier domain angle-resolved low coherence interferometry (faLCI) system and method that enables data acquisition of angle-resolved and depth-resolved spectra information of a sample, in which depth and size information about the sample can be obtained with a single scan at rapid rates for in vivo applications in particular.
Examining the structural features of cells is essential for many clinical and laboratory studies. The most common tool used in the examination for the study of cells has been the microscope. Although microscope examination has led to great advances in understanding cells and their structure, it is inherently limited by the artifacts of preparation. The characteristics of the cells can only been seen at one moment in time with their structure features altered because of the addition of chemicals. Further, invasion is necessary to obtain the cell sample for examination.
Thus, light scattering spectrography (LSS) was developed to allow for in vivo examination applications, including cells. The LSS technique examines variations in the elastic scattering properties of cell organelles to infer their sizes and other dimensional information. In order to measure cellular features in tissues and other cellular structures, it is necessary to distinguish the singly scattered light from diffuse light, which has been multiply scattered and no longer carries easily accessible information about the scattering objects. This distinction or differentiation can be accomplished in several ways, such as the application of a polarization grating, by restricting or limiting studies and analysis to weakly scattering samples, or by using modeling to remove the diffuse component(s).
As an alternative approach for selectively detecting singly scattered light from sub-surface sites, low-coherence interferometry (LCI) has also been explored as a method of LSS. LCI utilizes a light source with low temporal coherence, such as broadband white light source for example. Interference is only achieved when the path length delays of the interferometer are matched with the coherence time of the light source. The axial resolution of the system is determined by the coherent length of the light source and is typically in the micrometer range suitable for the examination of tissue samples. Experimental results have shown that using a broadband light source and its second harmonic allows the recovery of information about elastic scattering using LCI. LCI has used time depth scans by moving the sample with respect to a reference arm directing the light source onto the sample to receive scattering information from a particular point on the sample. Thus, scan times were on the order of 5-30 minutes in order to completely scan the sample.
Angle-resolved LCI (a/LCI) has been developed as a means to obtain sub-surface structural information regarding the size of a cell. Light is split into a reference and sample beam, wherein the sample beam is projected onto the sample at different angles to examine the angular distribution of scattered light. The a/LCI technique combines the ability of (LCI) to detect singly scattered light from sub-surface sites with the capability of light scattering methods to obtain structural information with sub-wavelength precision and accuracy to construct depth-resolved tomographic images. Structural information is determined by examining the angular distribution of the back-scattered light using a single broadband light source is mixed with a reference field with an angle of propagation. The size distribution of the cell is determined by comparing the osciallary part of the measured angular distributions to predictions of Mie theory. Such a system is described in Cellular Organization and Substructure Measured Using Angle-Resolved Low-Coherence Interferometry, Biophysical Journal, 82, April 2002, 2256-2265, incorporated herein by reference in its entirety.
The a/LCI technique has been successfully applied to measuring cellular morphology and to diagnosing intraepithelial neoplasia in an animal model of carcinogenesis. The inventors of the present application described such a system in Determining nuclear morphology using an improved angle-resolved low coherence interferometry system in Optics Express, 2003, 11(25): p. 3473-3484, incorporated herein by reference in its entirety. The a/LCI method of obtaining structural information about a sample has been successfully applied to measuring cellular morphology in tissues and in vitro as well as diagnosing intraepithelial neoplasia and assessing the efficacy of chemopreventive agents in an animal model of carcinogenesis. a/LCI has been used to prospectively grade tissue samples without tissue processing, demonstrating the potential of the technique as a biomedical diagnostic.
Initial prototype and second generation a/LCI systems required 30 and 5 minutes respectively to obtain similar data. These earlier systems relied on time domain depth scans just as provided in previous LCI based systems. The length of the reference arm of the interferometer had to be mechanically adjusted to achieve serial scanning of the detected scattering angle. The method of obtaining angular specificity was achieved by causing the reference beam of the interferometry scheme to cross the detector plane at a variable angle. This general method for obtaining angle-resolved, depth-resolved backscattering distributions was disclosed in U.S. Pat. No. 6,847,456 entitled “Methods and systems using field-based light scattering spectroscopy,” which is incorporated by reference herein in its entirety.
Other LCI prior systems are disclosed in U.S. Pat. Nos. 6,002,480 and 6,501,551, both of which are incorporated by reference herein in their entireties. U.S. Pat. No. 6,002,480 covers obtaining depth-resolved spectroscopic distributions and discusses obtaining the size of scatterers by observing changes in wavelength due to elastic scattering properties. U.S. Pat. No. 6,501,551 covers endoscopic application of interferometric imaging and does anticipate the use of Fourier domain concepts to obtain depth resolution. U.S. Pat. No. 6,501,551 does not discuss measurement of angularly resolved scattering distributions, the use of scattered light to determine scatterer size by analysis of elastic scattering properties, nor the use of an imaging spectrometer to record data in parallel, whether that data is scattering or imaging data. Finally, U.S. Pat. No. 7,061,622 discusses fiber optic means for measuring angular scattering distributions, but does not discuss the Fourier domain concept. Also because it describes an imaging technique, the embodiments all include focusing optics which limit the region probed.
Embodiments disclosed herein involve a new a/LCI technique called Fourier domain a/LCI (faLCI), which enables data acquisition at rapid rates using a single scan, sufficient to make in vivo applications feasible. The embodiments disclosed herein obtain angle-resolved and depth-resolved spectra information about a sample, in which depth and size information about the sample can be obtained with a single scan, and wherein the reference arm can remain fixed with respect to the sample due to only one scan required. A reference signal and a reflected sample signal are cross-correlated and dispersed at a multitude of reflected angles off of the sample, thereby representing reflections from a multitude of points on the sample at the same time in parallel.
Since this angle-resolved, cross-correlated signal is spectrally dispersed, the new data acquisition scheme is significant as it permits data to be obtained in less than one second, a threshold determined to be necessary for acquiring data from in vivo tissues. Information about all depths of the sample at each of the multitude of different points on the sample can be obtained with one scan on the order of approximately 40 milliseconds. From the spatial, cross-correlated reference signal, structural (size) information can also be obtained using techniques that allow size information of scatterers to be obtained from angle-resolved data.
The faLCI technique of the disclosed embodiments uses the Fourier domain concept to acquire depth resolved information. Signal-to-noise and commensurate reductions in data acquisition time are possible by recording the depth scan in the Fourier (or spectral) domain. The faLCI system combines the Fourier domain concept with the use of an imaging spectrograph to spectrally record the angular distribution in parallel. Thereafter, the depth-resolution of the disclosed embodiments is achieved by Fourier transforming the spectrum of two mixed fields with the angle-resolved measurements obtained by locating the entrance slit of the imaging spectrograph in a Fourier transform plane to the sample. This converts the spectral information into depth-resolved information and the angular information into a transverse spatial distribution. The capabilities of faLCI have been initially demonstrated by extracting the size of polystyrene beads in a depth-resolved measurement.
Various mathematical techniques and methods are provided for determining size information of the sample using the angle-resolved, cross-correlated signal.
The embodiments disclosed herein are not limited to any particular arrangement. In one embodiment, the apparatus is based on a modified Mach-Zehnder interferometer, wherein broadband light from a superluminescent diode is split into a reference beam and an input beam to the sample by a beamsplitter. In another embodiment, a unique optical fiber probe can be used to deliver light and collect the angular distribution of scattered light from the sample of interest.
The a/LCI method can be a clinically viable method for assessing tissue health without the need for tissue extraction via biopsy or subsequent histopathological evaluation. The a/LCI system can be applied for a number of purposes: early detection and screening for dysplastic epithelial tissues, disease staging, monitoring of therapeutic action and guiding the clinician to biopsy sites. The non-invasive, non-ionizing nature of the optical a/LCI probe means that it can be applied frequently without adverse effect. The potential of a/LCI to provide rapid results will greatly enhance its widespread applicability for disease screening.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosed embodiments, and together with the description serve to explain the principles of the disclosed embodiments.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the disclosed embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the embodiments and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
Embodiments disclosed herein involve a new a/LCI technique called Fourier domain a/LCI (faLCI), which enables data acquisition at rapid rates using a single scan, sufficient to make in vivo applications feasible. The embodiments disclosed herein obtain angle-resolved and depth-resolved spectra information about a sample, in which depth and size information about the sample can be obtained with a single scan, and wherein the reference arm can remain fixed with respect to the sample due to only one scan required. A reference signal and a reflected sample signal are cross-correlated and dispersed at a multitude of reflected angles off of the sample, thereby representing reflections from a multitude of points on the sample at the same time in parallel.
Since this angle-resolved, cross-correlated signal is spectrally dispersed, the new data acquisition scheme is significant as it permits data to be obtained in less than one second, a threshold determined to be necessary for acquiring data from in vivo tissues. Information about all depths of the sample at each of the multitude of different points on the sample can be obtained with one scan on the order of approximately 40 milliseconds. From the spatial, cross-correlated reference signal, structural (size) information can also be obtained using techniques that allow size information of scatterers to be obtained from angle-resolved data.
The faLCI technique of the disclosed embodiments uses the Fourier domain concept to acquire depth resolved information. Signal-to-noise and commensurate reductions in data acquisition time are possible by recording the depth scan in the Fourier (or spectral) domain. The faLCI system combines the Fourier domain concept with the use of an imaging spectrograph to spectrally record the angular distribution in parallel. Thereafter, the depth-resolution of the disclosed embodiments is achieved by Fourier transforming the spectrum of two mixed fields with the angle-resolved measurements obtained by locating the entrance slit of the imaging spectrograph in a Fourier transform plane to the sample. This converts the spectral information into depth-resolved information and the angular information into a transverse spatial distribution. The capabilities of faLCI have been initially demonstrated by extracting the size of polystyrene beads in a depth-resolved measurement.
The key advances of the disclosed embodiments can be broken down into three components: (1) new rapid data acquisition methods, (2) fiber probe designs, and (3) data analysis schemes. Thus, the disclosed embodiments are described in this matter for convenience in its understanding.
An exemplary apparatus, as well as the steps involved in the process of obtaining angle and depth-resolved distribution data scattered from a sample, are also set forth in
Lenses L3 (31) and L4 (38) are arranged to produce a collimated pencil beam 30 incident on the sample 18 (step 66 in
The light 40 scattered by the sample 18 is collected by lens L4 (32) and relayed by a 4f imaging system comprised of lenses L5 (43) and L6 (44) such that the Fourier plane of lens L4 (32) is reproduced in phase and amplitude at the spectrograph slit 48 (step 68 in
The detected signal 46 is a function of vertical position on the spectrograph slit 48, y, and wavelength λ, once the light is dispersed by the spectrograph 29. The detected signal at pixel (m, n) can be related to the signal 40 and reference fields 16 (Es, Er,) as:
I(λm,yn)=|Er(λm,yn)|2+|Es(λm,yn)|2+2ReEs(λmyn)Ero(λm,yn) cos φ (1)
where φ is the phase difference between the two fields 30, 16 and . . . denotes an ensemble average in time. The interference term is extracted by measuring the intensity of the signal 30 and reference beams 16 independently and subtracting them from the total intensity.
In order to obtain depth resolved information, the wavelength spectrum at each scattering angle is interpolated into a wavenumber (k=2π/λ) spectrum and Fourier transformed to give a spatial cross correlation, ΓSR(z) for each vertical pixel yn:
ΓSB(z,yn)=∫dk eikz Es(k,yn)Ero(k,ya) cos φ. (2)
The reference field 14 takes the form
Er(k)=Eoexp└−((k−ko)/Δk)2┘exp└−((y−yo)/Δy)2┘exp[ikΔl] (3)
where ko (yo and Δk(Δy) represent the center and width of the Gaussian wavevector (spatial) distribution and Δl is the selected path length difference. The scattered field 40 takes the form
where Sj represents the amplitude distribution of the scattering originating from the jth interface, located at depth lj. The angular distribution of the scattered field 40 is converted into a position distribution in the Fourier image plane of lens L4 through the relationship y=f4θ. For the pixel size of the CCD 50 (e.g. 20 μm), this yields an angular resolution (e.g. 0.57 mrad) and an expected angular range (e.g. 228 mrad.).
Inserting Eqs. (3) and (4) into Eq. (2) and noting the uniformity of the reference field 14 (Δy>>>slit height) yields the spatial cross correlation at the nth vertical position on the detector 29:
Evaluating this equation for a single interface yields:
ΓSR(z,yn)=|Eo|2exp[−((z−Δl+lj)Δk)2/8]Sj(ko,θn=yn/f4)cos φ. (6)
Here we have assumed that the scattering amplitude S does not vary appreciably over the bandwidth of the source light 12. This expression shows that we obtain a depth resolved profile of the scattering distribution 40 with each vertical pixel corresponding to a scattering angle.
In the experiments that produced the depth-resolved profile of the sample 18 illustrated in
In addition to obtaining depth-resolved information about the sample 18, the scattering distribution data (i.e. a/LCI data) obtained from the sample 18 using the disclosed data acquisition scheme can also be used to make a size determination of the nucleus using the Mie theory. A scattering distribution 74 of the sample 18 is illustrated in
In order to fit the scattered data 76 to Mie theory, the a/LCI signals are processed to extract the oscillatory component which is characteristic of the nucleus size. The smoothed data 76 are fit to a low-order polynomial (4th order was used for example herein, but later studies use a lower 2nd order), which is then subtracted from the distribution 76 to remove the background trend. The resulting oscillatory component is then compared to a database of theoretical predictions obtained using Mie theory 78 from which the slowly varying features were similarly removed for analysis.
A direct comparison between the filtered a/LCI data 76 and Mie theory data 78 may not be possible, as the chi-squared fitting algorithm tends to match the background slope rather than the characteristic oscillations. The calculated theoretical predictions include a Gaussian distribution of sizes characterized by a mean diameter (d) and standard deviation (ED) as well as a distribution of wavelengths, to accurately model the broad bandwidth source.
The best fit (
As an alternative to processing the a/LCI data and comparing to Mie theory, there are several other approaches which could yield diagnostic information. These include analyzing the angular data using a Fourier transform to identify periodic oscillations characteristic of cell nuclei. The periodic oscillations can be correlated with nuclear size and thus will possess diagnostic value. Another approach to analyzing a/LCI data is to compare the data to a database of angular scattering distributions generated with finite element method (FEM) or T-Matrix calculations. Such calculations may offer superior analysis as there are not subject to the same limitations as Mie theory. For example, FEM or T-Matrix calculations can model non-spherical scatterers and scatterers with inclusions while Mie theory can only model homogenous spheres.
As an alternative embodiment, the disclosed embodiments can also employ optical fibers to deliver and collect light from the sample of interest to use in the a/LCI system for endoscopic applications. This alternative embodiment is illustrated in
The fiber optic a/LCI scheme for this alternative embodiment makes use of the Fourier transform properties of a lens. This property states that when an object is placed in the front focal plane of a lens, the image at the conjugate image plane is the Fourier transform of that object. The Fourier transform of a spatial distribution (object or image) is given by the distribution of spatial frequencies, which is the representation of the image's information content in terms of cycles per mm. In an optical image of elastically scattered light, the wavelength retains its fixed, original value and the spatial frequency representation is simply a scaled version of the angular distribution of scattered light.
In the fiber optic a/LCI scheme, the angular distribution is captured by locating the distal end of the fiber bundle in a conjugate Fourier transform plane of the sample using a collecting lens. This angular distribution is then conveyed to the distal end of the fiber bundle where it is imaged using a 4f system onto the entrance slit of an imaging spectrograph. A beamsplitter is used to overlap the scattered field with a reference field prior to entering the slit so that low coherence interferometry can also be used to obtain depth resolved measurements.
Turning now to
Light in the reference fiber 14′ emerges from fiber F1 and is collimated by lens L1 (84) which is mounted on a translation stage 86 to allow gross alignment of the reference arm path length. This path length is not scanned during operation but may be varied during alignment. A collimated beam 88 is arranged to be equal in dimension to the end 91 of fiber bundle F3 (90) so that the collimated beam 88 illuminates all fibers in F3 with equal intensity. The reference field 14′ emerging from the distal tip of F3 (90) is collimated with lens L3 (92) in order to overlap with the scattered field conveyed by fiber F4 (94). In an alternative embodiment, light emerging from fiber F1 (14′) is collimated then expanded using a lens system to produce a broad beam.
The scattered field is detected using a coherent fiber bundle. The scattered field is generated using light in the signal arm 82 which is directed toward the sample 18′ of interest using lens L2 (98). As with the free space system, lens L2 (98) is displaced laterally from the center of single-mode fiber F2 such that a collimated beam is produced which is traveling at an angle relative to the optical axis The fact that the incident beam strikes the sample at an oblique angle is essential in separating the elastic scattering information from specular reflections. The light scattered by the sample 18′ is collected by a fiber bundle consisting of an array of coherent single mode or multi-mode fibers. The distal tip of the fiber is maintained one focal length away from lens L2 (98) to image the angular distribution of scattered light. In the embodiment shown in
As illustrated in
It is expected that the above-described a/LCI fiber-optic probe will collect the angular distribution over a 0.45 radian range (approx. 30 degrees) and will acquire the complete depth resolved scattering distribution 110 in a fraction of a second.
There are several possible schemes for creating the fiber probe which are the same from an optical engineering point of view. One possible implementation would be a linear array of single mode fibers in both the signal and reference arms. Alternatively, the reference arm 96 could be composed of an individual single mode fiber with the signal arm 82 consisting of either a coherent fiber bundle or linear fiber array.
The fiber probe tip can also have several implementations which are substantially equivalent. These would include the use of a drum or ball lens in place of lens L2 (98). A side-viewing probe could be created using a combination of a lens and a minor or prism or through the use of a convex minor to replace the lens-minor combination. Finally, the entire probe can be made to rotate radially in order to provide a circumferential scan of the probed area.
Yet another data acquisition embodiment of the disclosed embodiments could be a fa/LCI system is based on a modified Mach-Zehnder interferometer as illustrated in
The scattered light 122 from the sample is collected by lens L1 (115) and, via the Fourier transform property of the lens L1 (115), the angular distribution of the scattered field 122 is converted into a spatial distribution at the distal face of the multimode coherent fiber bundle 116 (e.g. Schott North America, Inc., length=840 mm, pixel size=8.2 μm, pixel count=13.5K) which is located at the Fourier image plane of lens L1 (115). The relationship between vertical position on the fiber bundle, y′, and scattering angle, θ is given by y′=f1θ. As an illustration, the optical path of light scattered 122 at three selected scattering angles is shown in
The angular distribution exiting a proximal end 124 of the fiber bundle 116 is relayed by the 4f imaging system of L2 and L3 (f2=3.0 cm, f3=20.0 cm) to the input slit 48″ of the imaging spectrograph 29″ (e.g. Acton Research, InSpectrum 150). The theoretical magnification of the 4f imaging system is (f3/f2) 6.67 in this example. Experimentally, the magnification was measured to be M=7.0 in this example with the discrepancy most likely due to the position of the proximal face 124 of the fiber bundle 116 with relation to lens L2 (126). The resulting relationship between vertical position on the spectrograph slit 48″, y, and θ is y=Mf1(θ−θmin). The optical path length of the reference arm is matched to that of the fundamental mode of the sample arm. Light 127 exiting the reference fiber 14″ is collimated by lens L4 (128) (e.g. f=3.5 cm, spot size=8.4 mm) to match the phase front curvature of the sample light and to produce even illumination across the slit 48″ of the imaging spectrograph 29″. A reference field 130 may be attenuated by a neutral density filter 132 and mixed with the angular scattering distribution at beamsplitter BS (134). The mixed fields 136 are dispersed with a high resolution grating (e.g. 1200 lines/mm) and detected using an integrated, cooled CCD (not shown) (e.g. 1024×252, 24 μm×24 μm pixels, 0.1 nm resolution) covering a spectral range of 99 nm centered at 840 nm, for example.
The detected signal 136, a function of wavelength, 2, and 0, can be related to the signal and reference fields (Es, Er) as:
I(λm,θn)=|Er(λm,θn)|2+|Es(λm,θn)|2+2ReEs(λm,θn)Erx(λm,θn)cos(φ), (1)
where φ is the phase difference between the two fields, (m,n) denotes a pixel on the CCD, and) . . . denotes a temporal average. I(λm,θn) is uploaded to a PC using LabVIEW manufactured by National Instruments software and processed in 320 ms to produce a depth and angle resolved contour plot of scattered intensity. The processing of the angle-resolved scattered field to obtain depth and size information described above, and in particular reference to the data acquisition apparatus of
The embodiments set forth above represent the necessary information to enable those skilled in the art to practice the disclosed embodiments and illustrate the best mode of practicing the disclosed embodiments. Upon reading the following description in light if the accompanying drawings figures, those skilled in the art will understand the concepts of the disclosed embodiments and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure.
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the disclosed embodiments. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application is a continuation application of U.S. patent application Ser. No. 13/042,672 entitled “SYSTEMS AND METHODS FOR ENDOSCOPIC ANGLE-RESOLVED LOW COHERENCE INTERFEROMETRY” filed Mar. 8, 2011, which is herein incorporated by reference in its entirety and which is a continuation of U.S. patent application Ser. No. 12/538,309, now U.S. Pat. No. 7,903,254 entitled “SYSTEMS AND METHODS FOR ENDOSCOPIC ANGLE-RESOLVED LOW COHERENCE INTERFEROMETRY,” filed on Aug. 10, 2009, which is herein incorporated by reference in its entirety and which is a continuation application of U.S. patent application Ser. No. 11/548,468, now U.S. Pat. No. 7,595,889, entitled “SYSTEMS AND METHODS FOR ENDOSCOPIC ANGLE-RESOLVED LOW COHERENCE INTERFEROMETRY,” filed on Oct. 11, 2006, which is herein incorporated by reference in its entirety, which claims priority to U.S. Provisional Patent Application No. 60/725,603 entitled “SYSTEMS AND METHODS FOR ENDOSCOPIC ANGLE-RESOLVED LOW COHERENCE INTERFEROMETRY,” filed on Oct. 11, 2005, also incorporated herein by reference in its entirety. This application is also related to U.S. Pat. No. 7,102,758 entitled “FOURIER DOMAIN LOW-COHERENCE INTERFEROMETRY FOR LIGHT SCATTERING SPECTROSCOPY APPARATUS AND METHOD,” which is incorporated herein by reference in its entirety.
This invention was supported by the National Institute of Health, Grant No. R21-CA-109907, and the National Science Foundation, Grant No. BES-03-48204. The United States Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
2469906 | Wallace | May 1949 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4741326 | Sidall et al. | May 1988 | A |
5184602 | Anapliotis et al. | Feb 1993 | A |
5193525 | Silverstein et al. | Mar 1993 | A |
5386817 | Jones | Feb 1995 | A |
5489256 | Adair | Feb 1996 | A |
5534707 | Pentoney | Jul 1996 | A |
5565986 | Knuttel | Oct 1996 | A |
5601087 | Gunderson et al. | Feb 1997 | A |
5643175 | Adair | Jul 1997 | A |
5771327 | Bar-Or et al. | Jun 1998 | A |
5930440 | Bar-Or | Jul 1999 | A |
5956355 | Swanson et al. | Sep 1999 | A |
6002480 | Izatt et al. | Dec 1999 | A |
6091984 | Perelman et al. | Jul 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6174291 | McMahon et al. | Jan 2001 | B1 |
6233373 | Askins et al. | May 2001 | B1 |
6263133 | Hamm | Jul 2001 | B1 |
6404497 | Backman et al. | Jun 2002 | B1 |
6447444 | Avni et al. | Sep 2002 | B1 |
6501551 | Tearney et al. | Dec 2002 | B1 |
6564087 | Pitris et al. | May 2003 | B1 |
6624890 | Backman et al. | Sep 2003 | B2 |
6697652 | Georgakoudi et al. | Feb 2004 | B2 |
6775007 | Izatt et al. | Aug 2004 | B2 |
6847456 | Yang et al. | Jan 2005 | B2 |
6853457 | Bjarklev et al. | Feb 2005 | B2 |
6855107 | Avni et al. | Feb 2005 | B2 |
6863651 | Remijan et al. | Mar 2005 | B2 |
6879741 | Salerno et al. | Apr 2005 | B2 |
7061622 | Rollins et al. | Jun 2006 | B2 |
7079254 | Kane et al. | Jul 2006 | B2 |
7102758 | Wax | Sep 2006 | B2 |
7190464 | Alphonse | Mar 2007 | B2 |
7355716 | De Boer et al. | Apr 2008 | B2 |
7366372 | Lange | Apr 2008 | B2 |
7391520 | Zhou et al. | Jun 2008 | B2 |
7417740 | Alphonse et al. | Aug 2008 | B2 |
7428050 | Giakos | Sep 2008 | B2 |
7428052 | Fujita | Sep 2008 | B2 |
7474407 | Gutin | Jan 2009 | B2 |
7595889 | Wax et al. | Sep 2009 | B2 |
7616323 | De Lega et al. | Nov 2009 | B2 |
7633627 | Choma et al. | Dec 2009 | B2 |
7636168 | De Lega et al. | Dec 2009 | B2 |
7761139 | Tearney et al. | Jul 2010 | B2 |
7884947 | De Lega et al. | Feb 2011 | B2 |
7903254 | Wax et al. | Mar 2011 | B2 |
8537366 | Wax et al. | Sep 2013 | B2 |
20020143243 | Georgakoudi et al. | Oct 2002 | A1 |
20020171831 | Backman et al. | Nov 2002 | A1 |
20030042438 | Lawandy et al. | Mar 2003 | A1 |
20030137669 | Rollins et al. | Jul 2003 | A1 |
20030153866 | Long et al. | Aug 2003 | A1 |
20030187349 | Kaneko et al. | Oct 2003 | A1 |
20040215296 | Ganz et al. | Oct 2004 | A1 |
20040223162 | Wax | Nov 2004 | A1 |
20050000525 | Klimberg et al. | Jan 2005 | A1 |
20050004453 | Tearney et al. | Jan 2005 | A1 |
20050053974 | Lakowicz et al. | Mar 2005 | A1 |
20050182291 | Hirata | Aug 2005 | A1 |
20060132790 | Gutin | Jun 2006 | A1 |
20060158657 | De Lega et al. | Jul 2006 | A1 |
20060158659 | Colonna De Lega et al. | Jul 2006 | A1 |
20060164643 | Giakos | Jul 2006 | A1 |
20060241577 | Balbierz et al. | Oct 2006 | A1 |
20060256343 | Choma et al. | Nov 2006 | A1 |
20060285635 | Boppart et al. | Dec 2006 | A1 |
20070002327 | Zhou et al. | Jan 2007 | A1 |
20070015969 | Feldman et al. | Jan 2007 | A1 |
20070027391 | Kohno | Feb 2007 | A1 |
20070086013 | De Lega et al. | Apr 2007 | A1 |
20070091318 | Freishlad et al. | Apr 2007 | A1 |
20070133002 | Wax et al. | Jun 2007 | A1 |
20070139656 | Wan | Jun 2007 | A1 |
20070165234 | Podoleanu | Jul 2007 | A1 |
20070201033 | Desjardins et al. | Aug 2007 | A1 |
20070270792 | Hennemann et al. | Nov 2007 | A1 |
20080037024 | Backman et al. | Feb 2008 | A1 |
20080058629 | Seibel et al. | Mar 2008 | A1 |
20080174784 | Colonna De Lega et al. | Jul 2008 | A1 |
20080249369 | Seibel et al. | Oct 2008 | A1 |
20080255461 | Weersink et al. | Oct 2008 | A1 |
20090009759 | Backman et al. | Jan 2009 | A1 |
20090073456 | Wax et al. | Mar 2009 | A1 |
20090075391 | Fulghum, Jr. | Mar 2009 | A1 |
20110157596 | Wax et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
12836086 | Feb 2001 | CN |
0243005 | Oct 1987 | EP |
1021126 | Jul 2004 | EP |
61210910 | Sep 1986 | JP |
99-18845 | Apr 1999 | WO |
00-42912 | Jul 2000 | WO |
2007-133684 | Nov 2007 | WO |
Entry |
---|
Wax, Adam, Real-time a/LCI measurements for detecting pre-cancerous cells, Optical Society of America FiO and Laser Science Frontiers in Optics 2004 and Laser Science XX, Oct. 10-14, 2004. |
Pyhtila, J., et al., Real-time data acquisition angle-resolved low coherence interferometry system, Biomedical Engineering Society, 2004 BMES Annual Fall Meeting, Biomedical Engineering: New Challenges for the Future, Oct. 13-16, 2004. |
Bouma, Brett Eugene, Declaration Under 37 C.F.R. 1.131 filed in U.S. Appl. No. 11/677,278, Feb. 1, 2010. |
Tuchin, V., Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2000, pp. 40-44, 91-98. |
Vabre, L, et al., Imagery of local defects in multilayer components by short coherence length interferometry, Optics Letters, pp. 1899-1901, Nov. 1, 2002, vol. 27, No. 21. |
Duke University, European Patent Application No. 11176357.9, Extended European Search Report, Mar. 23, 2012. |
Duke University, Australian Patent Application No. 2011244958, Examination Report No. 1, Aug. 3, 2012. |
Duke University, Indian Appl. No. 649/MUMNP/2008, First Examination Report, Nov. 29, 2012. |
Xie, Tuqiang et al., “Fiber-Optic-Bundle-Based Optical Coherehence Tomography,” Optic Letters, vol. 30, No. 14, Jul. 15, 2005. |
Pyhtila, John W. et al., “Fourier-Domain Angle-Resolved Low Coherence Interferometry Through an Endoscopic Fiber Bundle for Light-Scattering Spectroscopy,” Optics Letters, vol. 31, No. 6, Mar. 15, 2006. |
Pyhtila, John W. et al., “Rapid, Depth-Resolved Light Scattering Measurements using Fourier Domain, Angle-Resolved Low Coherence Interferometry,” Optics Express, vol. 12, No. 25, Dec. 13, 2004. |
Pyhtila, John W. et al., “Determining Nuclear Morphology Using an Improved Angle-Resolved Low Coherence Interferometry System,” Optics Express, vol. 11, No. 25, Dec. 15, 2003. |
Hausler, G. et al., “Coherence Radar and Spectral Radar—New Tools for Dermatological Diagnosis,” Journal of Biomedical Optics, vol. 3, Jan. 1998. |
Wax, Adam et al., “Cellular Organization and Substructure Measured Using Angle-Resolved Low-Coherence Interferometry,” Biophysical Journal, Apr. 2002, pp. 2256-2264, vol. 82. |
Pyhtila, John W. et al., “Experimental Calibration of a New Angle-Resolved Low Coherence Interferometry System,” http://www.fitzpatrick.duke.edu/Events/AnnualMeetings/04.ThePhysicalNatureofInformation/posters/htm, 2003. |
Wax, Adam et al., “Measurement of Angular Distributions by Use of Low-Coherence Interferometry for Light-Scattering Spectroscopy,” Optics Letters, Mar. 15, 2001, pp. 322-324, vol. 26, No. 6. |
Wax, Adam et al., “Determination of Particle Size Using the Angular Distribtion of Backscattered Light as Measured with Low-Coherence Interferometry,” Journal of the Optical Society of America, Apr. 2002, pp. 737-744, vol. 19, No. 4. |
Wax, Adam et al., “In Situ Detection of Neoplastic Transformation and Chemopreventive Effects in Rat Esophagus Epithelium Using Angle-Resolved Low-Coherence Interferometry,” Cancer Research, Jul. 11, 2003, pp. 3556-3559, vol. 63, No. 13. |
Leitgeb, R. et al., “Performance of Fourier Domain vs. Time Domain Optical Coherence Tomography,” Optics Express, vol. 11, No. 8, Apr. 21, 2003, pp. 889-894. |
de Boer, Johannes F. et al., “Improved Signal-To-Noise Ratio in Spectral-Domain Compared with Time-Domain Optical Coherence Tomography,” Optics Letters, vol. 28, No. 21, Nov. 1, 2003, pp. 2067-2069, http://oa.osa.org/abstract.cfm?id=86605. |
Choma, Michael A. et al., “Sensitivity Advantage of Swept Source and Fourier Domain Optical Coherence Tomography,” Optics Express, vol. 11, No. 18, Sep. 8, 2003, pp. 2183-2189. |
Kim, Y.L. et al., “Simultaneous Measurement of Angular and Spectral Properties of Light Scattering for Characterization of Tissue Microarchitecture and its Alteration in Early Precancer,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, Issue 2, Mar./Apr. 2003, pp. 243-256, http://ieeexplore.ieee.org/xpl/freeabs—all.jsp?tp=&arnumber=1238988&isnumber=27791. |
Roy, Hemant K. et al., “Four-Dimensional Elastic Light-Scattering Fingerprints as Preneoplastic Markers in the Rat Model of Colon Carcinogenesis,” Gastroenterology, vol. 126, Issue 4, Apr. 2004, pp. 1071-1081, http://www.gastrojoumal.org/article/PIIS0016508501000290/abstract. |
Wax, Adam et al., “In Situ Monitoring of Neoplastic Transformation and Assessing Efficacy of Chemopreventive Agents in Rat Esophagus Epithelium Using Angle-Resolved Low-Coherence Interferometry,” Abstract as presented to the American Association for Cancer Research at their 2004 Annual Meeting, Mar. 27, 2004. |
Wax, Adam et al., “Prospective Grading of Neoplastic Change in Rat Esophagus Epithelium Using Angle-Resolved Low-Coherence Interferometry,” Journal of Biomedical Optics, vol. 10(5), Sep./Oct. 2005, pp. 051604-1 through 051604-10. |
Brown, William J. et al., “Review and Recent Development of Angle-Resolved Low-Coherence Interferometry for Detection of Precancerous Cells in Human Esophageal Epithelium,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, No. 1, Jan./Feb. 2008, pp. 88-97. |
Wax, Adam et al., “Fourier-Domain Low-Coherence Interferometry for Light-Scattering Spectroscopy,” Optic Letters, vol. 28, No. 14, Jul. 15, 2003, pp. 1230-1232. |
Backman, V. et al., “Measuring Cellular Structure at Submicrometer Scale with Light Scattering Spectroscopy,” IEEE J. Sel. Top. Quantum Electron, vol. 7, Issue 6, Nov./Dec. 2001, pp. 887-893. |
Backman, V. et al., “Detection of Preinvasive Cancer Cells,” Nature 406, Jul. 6, 2000, pp. 35-36. |
Wojtkowski, M. et al., “Full Range Complex Spectral Optical Coherence Tomography Technique in Eye Imaging,” Optics Letters, vol. 27, Issue 16, Aug. 15, 2002, pp. 1415-1417. |
Wojtkowski, M. et al., “In Vivo Human Retinal Imaging by Fourier Domain Optical Coherence Tomography,” J. Biomed. Opt., vol. 7, No. 3, Jul. 1, 2002, pp. 457-463. |
Leitgeb, R. et al., “Spectral Measurement of Absorption by Spectroscopic Frequency-Domain Optical Coherence Tomography,” Optic Letters, vol. 25, Issue 11, Jun. 1, 2000, pp. 820-822. |
Morgner, U. et al., “Spectroscopic Optical Coherence Tomography,” Optic Letters, vol. 25, Issue 2, Jan. 15, 2000, pp. 111-113. |
Amoozegar, Cyrus et a., “Experimental Verification of T-matrix-based Inverse Light Scattering Analysis for Assessing Structure of Spheroids as Models of Cell Nuclei,” Applied Optics, vol. 48, No. 10, Apr. 1, 2009, 7 pages. |
Graf, R. N. et al., “Parallel Frequency-Domain Optical Coherence Tomography Scatter-Mode Imaging of the Hamster Cheek Pouch Using a Thermal Light Source,” Optics Letters, vol. 33, No. 12, Jun. 15, 2008, pp. 1285-1287. |
Robles, Francisco et al., “Dual Window Method for Processing Spectroscopic OCT Signals with Simultaneous High Spectral and Temporal Resolution,” Optical Society of America, 2008, 12 pages. |
Keener, Justin D. et al., “Application of Mie Theory to Determine the Structure of Spheroidal Scatterers in Biological Materials,” Optics Letters, vol. 32, No. 10, May 15, 2007, pp. 1326-1328. |
Chalut, Kevin J. et al., “Application of Mie Theory to Assess Structure of Spheroidal Scattering in Backscattering Geometries,” J. Opt. Soc. Am. A, vol. 25, No. 8, Aug. 2008, pp. 1866-1874. |
Chalut, Kevin J. et al., “Light Scattering Measurements of Subcellular Structure Provide Noninvasive Early Detection of Chemotherapy-induced Apoptosis,” not yet published, 2009, 25 pages. |
Chalut, Kevin J., et al., “Label-Free, High-Throughput Measurements of Dynamic Changes in Cell Nuclei Using Angle-Resolved Low Coherence Interferometry,” Biophysical Journal, vol. 94, Jun. 2008, pp. 4948-4956. |
Giacomelli, Michael G. et al., “Application of the T-matrix Method to Determine the Structure of Spheroidal Cell Nuclei with Angle-resolved Light Scattering,” Optics Letters, vol. 33, No. 21, Nov. 1, 2008, pp. 2452-2454. |
Wax, Adam, “Studying the Living Cell Using Light Scattering and Low-Coherence Interferometry,” Laser Biomedical Research Center, MIT Spectroscopy Laboratory, presented at Case Western Reserve University 2002, Feb. 1, 2002. |
Pyhtila, John W. et al., “Polarization Effects on Scatterer Sizing Accuracy Analyzed with Frequency-Domain Angle-Resolved Low-Coherence Interferometry,” Applied Optics, vol. 46, No. 10, Apr. 1, 2007. |
Pyhtila, John W. et al., “Coherent Light Scattering by In Vitro Cell Arrays Observed with Angle-Resolved Low Coherence Interferometry,” SPIE, vol. 5690, 2005. |
Wax, Adam et al., “Angular Light Scattering Studies Using Low-Coherence Interferometry,” SPIE, vol. 4251, 2001. |
Grant Progress Report for “In Vivo Detection of Pre-Cancerous Lesions Using a/LCI”, Dec. 2005, pp. 1-9. |
Wax, Adam, Proposal submitted to National Institutes of Health for “In Vivo Detection of Pre-Cancerous Lesions Using a/LCI,” Nov. 19, 2003, pp. 1-64. |
Wax, Adam, “In Vivo Detection of Pre-Cancerous Lesions Using a/LCI,” Abstract, printed from Computer Retrieval of Information on Scientific Projects (CRISP), Aug. 1, 2004, 2 pages. |
Wax, Adam, “Coherence and Spectroscopy Studies for Biomed Imaging,” Abstract, printed from http://www.researchgrantdatabase.com, 2000, 1 page. |
Wax, Adam, “Assessing Nuclear Morphology in Thick Tissues Using FLCI,” Abstract, printed from http://www.researchgrantdatabase.com, Apr. 14, 2006, 1 page. |
Wax, Adam, “Assessing Deployment of Microbicidal Gels with Label-Free Optical Measurement,” Abstract, printed from http://www.researchgrantdatabase.com, Jul. 1, 2007, 2 pages. |
Wax, Adam et al., Angle-Resolved Low Coherence Interferometry for Detection of Dysplasia in Barrett's Esophagus, Gastroenterology, published online Jun. 21, 2011, pp. 443-447.e2, vol. 141, issue 2. |
Zhu, Y., et al., “Development of angle-resolved low coherence interferometry for clinical detection of dysplasia,” Journal of Carcinogenesis, vol. 10, Issue 1, published online Aug. 23, 2011, p. 19. |
Wax, Adam et al., “Nuclear morphology measurements with angle-resolved low coherence interferometry for application to cell biology and early cancer detection,”Analytical Cellular Pathology 1, published Aug. 12, 2011, 16 pages. |
Duke University, Japanese Application No. 2008-535655, Office Action, Oct. 16, 2012. |
Duke University, Canadian Application No. 2,786,755, Office Action, Dec. 16, 2013. |
Duke University, Indian Application No. 649/MUMNP/2008, Office Action, Mar. 4, 2014. |
Duke University, Australian Application No. 2011244958, Notice of Acceptance, May 8, 2014. |
Duke University, Canadian Application No. 2,786,755, Canadian Office Action, Jul. 21, 2014. |
Number | Date | Country | |
---|---|---|---|
20130265582 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
60725603 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13042672 | Mar 2011 | US |
Child | 13868215 | US | |
Parent | 12538309 | Aug 2009 | US |
Child | 13042672 | US | |
Parent | 11548468 | Oct 2006 | US |
Child | 12538309 | US |