Systems and methods for fabricating 3D soft microstructures

Information

  • Patent Grant
  • 11014804
  • Patent Number
    11,014,804
  • Date Filed
    Wednesday, March 14, 2018
    6 years ago
  • Date Issued
    Tuesday, May 25, 2021
    3 years ago
Abstract
Systems and methods for fabricating 3D soft microstructures. The system comprises injecting a pressurized, curable liquid into certain structural layers induces folding and allows the 2D structures to reconfigure into a 3D form In addition to the injection of a curable liquid that permanently reconfigures the structure of the system, in an embodiment this method also allows for the injection of other liquids into certain actuator layers that enable motion in certain portions of the system Furthermore, the system allows for handling of colored fluids that are passed to visualization layers. The method of creating such a system depends on taking advantage of laser machining of the individual layers to influence the behavior of how different portions bend and move.
Description
FIELD

The present disclosure relates to systems and methods for generating a 3D soft microstructure.


BACKGROUND

Molding is one of the most common techniques for manufacturing soft centimeter-scale devices. However, at smaller scales, the structural complexity that can be obtained is limited by the manufacturability of the mold, thus restricting the design mostly to single degree-of-freedom (DoF) continuum bending structures. 3D printing allows nearly arbitrary geometries, yet the paucity of compatible soft materials and limited resolution engenders mostly static devices below the mesoscale. 4D printing has been proposed to develop dynamically evolving structures exploiting time-dependent shape-shifting of 3D printed, stimuli-responsive materials. Planar manufacturing processes have also been used for fabricating soft devices across different scales, from meter sized soft robots, to millimeter scale soft microdevices. Among planar processes, soft lithography enables dense packing of extremely fine features, leading to devices capable of (fluidic) computation, as widely demonstrated in the field of microfluidics. However, with no means of altering the overall profile or shape, joints are undefinable and large motions are unattainable, relegating most soft lithographic devices to a purely two-dimensional existence. A number of manufacturing methods for developing innovative soft microdevices have also been proposed, such as hydrogel-based micropatterning, electrically assisted ionoprinting, and synthesis of materials responsive to light, temperature and magnetic fields for drug delivery systems.


Previous work has demonstrated the possibility of combining laser cutting and soft lithographic techniques to release simple soft microactuators from an elastomeric matrix, while templateless prototyping of polydimethylsiloxane microfluidic structures exploiting laser machining have also been proposed.


SUMMARY

Systems and methods for fabricating 3D soft microstructures are disclosed herein. A soft microstructure is provided that includes a plurality of elastomeric layers with fluidic networks formed between at least two of the elastomeric layers. At least one of the elastomeric layers comprises at least one structural actuator and at least one functional actuator. The structural actuator is configured to accept a phase-changing material to convert the structural actuator into a permanent structural element by self-folding a portion of the microstructure to form a three dimensional structure from a two dimensional structure. The at least one functional actuator is configured to accept an inert working fluid to allow for motion of the 3D structure formed by the at least one structural actuator.


In some embodiments, any of the plurality of elastomeric layers can contain at least one structural actuator or at least one functional actuator or both at least one structural actuator and the at least one functional actuator.


In some embodiments, the phase-changing material is a curable material that is configured to cause self-folding into a three dimensional structure as the curable material cures. In some embodiments, the phase-changing material is a functional material such that the three dimensional structure is responsive to a stimuli. For example, the stimuli can be ultraviolet light such that the phase-changing material is cured with the UV light, or the stimuli can be thermal energy such that the phase-changing material is cured with the thermal energy.


In some embodiments, a form of the three dimensional structure can be based on a number of the plurality of elastomeric layers. In some embodiments, a form of the three dimensional structure is based on a placement and size of the fluidic networks formed in the plurality of elastomeric layers.


A soft microstructure is provided that includes a plurality of elastomeric layers with fluidic networks formed between at least two of the elastomeric layers. Any of the elastomeric layers can comprise at least one structural actuator and at least one functional actuator. The at least one structural actuator is configured to accept a phase-changing material to convert the structural actuator into a permanent structural element by self-folding a portion of the microstructure to form a three dimensional structure from a two dimensional structure. The at least one functional actuator is configured to accept an inert working fluid to allow for motion of the 3D structure formed by the at least one structural actuator.


In some embodiments, the at least one structural actuator and the at least one functional actuator are formed in the same elastomeric layer. In some embodiments, the at least one structural actuator and the at least one functional actuator are formed in different ones of the plurality of elastomeric layers. In some embodiment, a form of the three dimensional structure is based on a number of the plurality of elastomeric layers. In some embodiments, a form of the three dimensional structure is based on a placement and size of the fluidic networks formed in the plurality of elastomeric layers.


A method of fabricating a soft microstructure is also provided, and comprises applying soft lithographic techniques to form a plurality of elastomeric layers, and forming one or more two dimensional patterns in at least one of plurality of elastomeric layers to form at least one actuator in at least one of the plurality of elastomeric layers. The plurality of elastomeric layers are aligned and the plurality of elastomeric layers are bonded to each other. The plurality of elastomeric layers can form a two dimensional soft microstructure capable of self-folding using one of the least one actuators to form a three dimensional structure.


In some embodiments, forming the one or more two dimensional patterns is achieved by laser cutting. In some embodiments, forming the one or more two dimensional patterns is achieved by a process selected from the group consisting of molding, 3D printing, and stamping.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:



FIG. 1A-FIG. 1J are embodiments of a fabrication workflow for fabricating a soft 2D microstructure that is configured to self-fold into a soft 3D microstructure;



FIG. 2A is an embodiment of a discrete bending actuator;



FIG. 2B is an embodiment of a continuous bending actuator;



FIG. 3 is an embodiment of a microstructure configured to self-fold into a 3D microstructure;



FIG. 4 is an image of an embodiment of a microstructure configured to self-fold into a 3D microstructure;



FIG. 5 is an image of an embodiment of a microstructure that is configured to self-fold into a 3D curved microstructure;



FIG. 6A and FIG. 6B illustrate various embodiments of microstructures configured to self-fold into 3D microstructures;



FIG. 7 is an image of an embodiment of a microstructure that is configured to self-fold into a 3D dome-shaped microstructure;



FIG. 8 is an embodiment of a coordinate system and variables of an actuator;



FIG. 9 illustrates a plot of bend angle as a function of cut distance relating to a transition from out-of-plane bending to in-plane-bending;



FIG. 10, FIG. 11, FIG. 12, and FIG. 13 illustrate an embodiment of a process for building a 2D microstructure that can self-fold into a 3D microstructure;



FIG. 14 is an image of an embodiment of a 2D microstructure;



FIG. 15 is an image of an embodiment of a microstructure that is configured to self-fold into a 3D curved microstructure;



FIG. 16 is a table illustrating various types of curable materials;



FIG. 17 is an exemplary embodiment of a soft microstructure in the form of a spider;



FIG. 18 is an exploded view of layers of the soft microstructure shown in FIG. 17;



FIG. 19A-FIG. 19F illustrates an embodiment of a fabrication process of a plurality of layers forming a body sublaminate, composed of the legs sublaminate and head and eyes;



FIG. 20A-FIG. 20F illustrates an embodiment of a fabrication process of a plurality of layers forming an abdomen sublaminate;



FIG. 21A-FIG. 21J illustrate an exemplary bonding sequence for the embodiment of a microstructure in the form of a spider;



FIG. 22 is an embodiment of the assembly of the sublaminates to form a microstructure using oxygen plasma treatment;



FIG. 23 and FIG. 24 illustrate an embodiment of various layers of a microstructure forming a leg portion of a microstructure in the form of a spider;



FIG. 25, FIG. 26, FIG. 27, and FIG. 28 illustrate an embodiment of a microstructure in the form of the spider, the microstructure being self-folded into a 3D microstructure to illustrate a leg portion of the microstructure;



FIG. 29A, FIG. 29B, FIG. 30A, FIG. 30B, FIG. 31A and FIG. 31B illustrate an embodiment of various layers of a microstructure forming a leg portion of a microstructure in the form of a spider;



FIG. 32A is an exemplary embodiment of “legs” of a microstructure after injection of the structural actuators and functional actuators;



FIG. 32B is an exemplary embodiment of the “head” and “eyes” of a microstructure;



FIG. 32C is an exemplary embodiment of the “abdomen” of a microstructure;



FIG. 32D is an exemplary embodiment of an assembled microstructure of a spider;



FIG. 33, FIG. 34A, FIG. 34B, FIG. 35A, FIG. 35B, and FIG. 36 illustrate an embodiment of various layers of a microstructure forming a head and eye portion of a microstructure in the form of a spider;



FIG. 37 is an exemplary embodiment of actuation in an “abdomen” of a spider microstructure;



FIG. 38 is an exemplary embodiment of use of a microfluidic circuit in a spider microstructure;



FIG. 39A, FIG. 39B, FIG. 40A, FIG. 40B, FIG. 41A, FIG. 41B, FIG. 42A, FIG. 42B, FIG. 43A, FIG. 43B, FIG. 44A, FIG. 44B, FIG. 45A and FIG. 45B illustrates an embodiment of various layers of a microstructure forming an abdomen portion of a microstructure in the form of a spider;



FIG. 46, FIG. 47, and FIG. 48 illustrate an embodiment of a microstructure in the form of a spider; and



FIG. 49A, FIG. 49B, FIG. 49C, FIG. 49D, FIG. 49E, FIG. 49F, and FIG. 49G illustrate an embodiment of a sequence of injections for assembly and actuation of a microstructure.





While the above-identified drawings set forth presently disclosed embodiments, other embodiments are also contemplated, as noted in the discussion. This disclosure presents illustrative embodiments by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of the presently disclosed embodiments.


DETAILED DESCRIPTION

The following description provides exemplary embodiments only, and is not intended to limit the scope, applicability, or configuration of the disclosure. Rather, the following description of the exemplary embodiments will provide those skilled in the art with an enabling description for implementing one or more exemplary embodiments. It will be understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the presently disclosed embodiments.


Specific details are given in the following description to provide a thorough understanding of the embodiments. However, it will be understood by one of ordinary skill in the art that the embodiments may be practiced without these specific details. For example, systems, processes, and other elements in the presently disclosed embodiments may be shown as components in block diagram form in order not to obscure the embodiments in unnecessary detail. In other instances, well-known processes, structures, and techniques may be shown without unnecessary detail in order to avoid obscuring the embodiments.


Also, it is noted that individual embodiments may be described as a process which is depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process may be terminated when its operations are completed, but could have additional steps not discussed or included in a figure. Furthermore, not all operations in any particularly described process may occur in all embodiments. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination corresponds to a return of the function to the calling function or the main function.


Subject matter will now be described more fully with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, specific example aspects and embodiments of the present disclosure. Subject matter may, however, be embodied in a variety of different forms and, therefore, covered or claimed subject matter is intended to be construed as not being limited to any example embodiments set forth herein; example embodiments are provided merely to be illustrative. The following detailed description is, therefore, not intended to be taken in a limiting sense.


In general, terminology may be understood at least in part from usage in context. For example, terms, such as “and”, “or”, or “and/or,” as used herein may include a variety of meanings that may depend at least in part upon the context in which such terms are used. Typically, “or” if used to associate a list, such as A, B, or C, is intended to mean A, B, and C, here used in the inclusive sense, as well as A, B, or C, here used in the exclusive sense. In addition, the term “one or more” as used herein, depending at least in part upon context, may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense. Similarly, terms, such as “a,” “an,” or “the,” again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context. In addition, the term “based on” may be understood as not necessarily intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part on context.


A method is provided to increase the structural and (consequently) functional complexity of soft microstructures. By merging multilayer soft lithography and bulk or precision layer micromachining, a fabrication techniques can create a new class of soft microstructures, for example “Microfluidic Origami for Reconfigurable Pneumatic/Hydraulic”(MORPH) systems. In some embodiments, lithographic techniques can be used to manufacture elastomeric layers with embossed features that can be modified by means of laser micromachining. It will be understood that various methods can be used to form 2D patterns in the elastomeric layers beyond laser micromachining, including but not limited to 3D printing, molding, and stamping. After precision alignment and bonding of individual layers, the result is a soft laminate with embedded microfluidic circuitry and a nearly arbitrarily complex profile. Upon pressurization, chambers within the microfluidic circuitry expand to actuate portions of the laminate through preprogrammed motions. Actuation with an inert working fluid (such as air or water) permits recovery of the initial configuration upon depressurization, while the use of a phase-changing material converts deformed actuators into permanent structural elements. Combining both actuation strategies enables the transformation of static 2D laminates into dynamic 3D structures.


A manufacturing process is provided that can enable a process for developing soft complex microstructures. The dimensionally of a soft microstructure can be increased. Starting from a 2D process, a 3D structure can be generated, and in one embodiment can be embedded with functional microfluidic circuitry. With current manufacturing methods, it is not possible to embed this level of complexity at this scale. It can also be possible to integrate multiscale features, from the centimeter to almost nanometer scale as the process combines the scalability of soft lithography and laser cutting. There can be various advantages of the fabrication process described herein, including the use of a purely 2D process, the combination of laser cutting and soft lithography, creating both constant curvature structures and flexure based mechanisms, providing multiple scale features, providing functional microfluidic circuits, and the use of multiple materials including functional materials for stimuli responsive structures.


There is a distinction between structural and functional complexity. In some embodiments, structural complexity is defined in terms of characteristics of the static system, such as the spatial dimensionality (i.e., whether 2D or 3D), the number and diversity of materials involved, and geometric considerations (e.g., shape and minimum feature size). Functional complexity encompasses the dynamic aspects of the system, such as the number of DoF, the achievable motions and deformations, and any embodied computation or intelligence. Previous research has demonstrated instances of functional complexity, for example microfluidic devices able to perform complex computational tasks. However, there are very few examples of soft microstructures that combine both structural and functional complexity. One example, the “Octobot”, is a two DoF autonomous soft robot fabricated by exploiting a multi-step process combining embedded 3D printing and soft lithography. As this example illustrates, the functional complexity of soft microstructures is limited largely by the chosen fabrication methodology.


Leveraging 2D soft lithographic techniques combined with laser cutting, alignment, and lamination by oxygen plasma bonding, a 2D fabrication process can be used to generate complex 3D soft microstructures. In an embodiment, the process includes spinning coat layers of a soft elastomer casted on a SU-8 patterned silicon wafer, removing them from the wafer, aligning the pattern on a laser and cutting features and shapes. The process further includes selectively bonding multiple layers on top of each other to create a 3D network of predesigned channels, and injecting an uncured material into specific channels to actuate fabrication degrees of freedom. For example, a general workflow for the fabrication technique can include forming layers using soft lithography, aligning and laser cutting the layers, plasma bonding the layers with pin alignment, inflation with PDMS, and curing. Fabrication of multi-layer structures that can form complex 3D shapes can include origami-like folding and sealing of the emerged 3D structure, and complex curved surfaces by exploiting the deformation and/or stretchability of the structure or using continuous folds.


The injection of material into the channels and actuators leads to a change in weight of the device and thus there can be an effect due to gravity. This effect is less in the channels as they are very thin (for example, 40 μm thick), but this effect can be felt in the inflated actuators. Such effect will depend on a variety of factors, including but not limited to the mechanical properties of the material composing the device, the geometry of the structure, and the weight of the fluid injected in the actuators. The entity of the effect of gravity depends also on the structural properties of the injected fluid once cured. If the elastic modulus of the injected fluid, once cured, is larger than the bulk material composing the device the effect of gravity is negligible as the injected cured fluid can act as a sort of endoskeleton which can increase the structural stability of the device.


It is possible to stack multiple soft layers, embedding actuators designed for being injected with a phase-changing material, such as a curable material, as well as actuators for actively moving the structure that emerges after the injection and curing of the uncured material. These structural actuators and functional actuators can be formed in any of the elastomeric layers that make up a microstructure, and can be in separate layers and in the same layers, in any amount and in any combination. Microfluidic circuitry can be embedded in the layers. The use of soft layers allows for the creation of a variety of 3D shapes, from simple joint bending and domes to planes with positive and negative curvatures. Through the fabrication degrees of freedom, complex 3D microstructures analogous to a folding-based assembly of a pop-up MEMS can be generated, but are entirely soft. The actuation degrees of freedom can work in combination with the emerged structure to create soft micro-robots capable of locomotion and manipulation.


The process is inspired by the pop-up book MEMS fabrication process in the sense that it exploits a quasi 2-dimensional process to create 3-dimensional structures. In some embodiments, complex 3D structures can be based on the inflation of channels embedded in the 2D structure. The use of soft materials creates completely new opportunities and advantages: the stretchability of the material and the layers allows for continuous folding and the creation of various structures, for example, obtaining curved planes (for example, in the shape of saddle) out of flat surfaces, the networks of fluidic actuated structures can be embedded in the layers, and there is no need for adhesive as only chemical surface functionalization for bonding the layers is used.


This process addresses the challenge of manufacturing 3D soft microstructures, and the resulting soft microstructures can have a variety of uses. It can also be used to develop bioinspired platforms for replicating and studying biological systems. Devices manufactured with this process can be used for novel 3D microfluidic devices where we can exploit either structural and active degrees of freedom of the structure to obtain new flow control strategies. Microfluidic circuitry can be actuated to control, for example, the exposure of chemicals into the microfluidic channels by actuating the structure containing the channel to lift them up when needed. The process can be used for developing a new class of medical devices that can be deployed in the body and are able to adhere to body structures and release drugs locally.


Various other uses range from microfluidic devices to robotics. As some advantages to these devices include low cost, ease of processing, robustness, and impedance matching with humans and natural environments, opportunities present themselves in medicine, macro- and micro-manipulation, exploration, sensing, and biomimetics. In addition, soft microstructures can take the form of, including but not limited to, microfluidic devices to embody logic circuits, soft microstructures with intricate geometries, and soft microactuators that employ exotic materials and that can respond to diverse stimuli.


The fabrication process described herein can enable the fabrication of soft millimeter scale robots that deliver complex 3D structures out 2D manufacturing approach. Unlike molding and 3D printing technologies, the injection induces self-folding provides flexibility in material selection, and accuracy comparable to soft lithography. In some embodiments, the manufacturing process can be used to fabricate soft micro robots with applications in exploration of hard to reach areas.


As explained above, the fabrication method combines features of laser cutting with soft lithography techniques to allow for the creation of soft microstructures. The ideas of microfluidics and laser machining, which are both purely 2D processes, can be combined to allow for the creation of complex 3D soft structures that can include, in some embodiments, embedded working microfluidic circuitry. This manufacturing process could represent an enabling process for developing soft complex microstructures. With current manufacturing methods it is not possible to embed this level of complexity at this scale. It is also possible to integrate multiscale features, form the centimeter to almost nanometer scale since we are combining the scalability of soft lithography and laser cutting.



FIGS. 1A-1J illustrates an embodiment of a process for forming 3D soft microstructures. An elastomer 12 can be poured and spun coat on an SU8 patterned wafer 10, as shown in FIG. 1A, and the elastomer is thermally cured, as shown in FIG. 1B. An adhesive, such as GelPak-8 adhesive, is bonded on a soft layer 14, as shown in FIG. 1C, and the soft layer 14 is peeled off with the adhesive, as shown in FIG. 1D. The layers of the microstructure are aligned, and alignment holes 16 and actuator shapes are laser cut into the layers, as shown in FIG. 1E. In some embodiments, the alignment holes 16 cut into the layers allow the layers to be aligned with manual manipulation of the layers, as the alignment holes allow the layers to be aligned through the use of an alignment tool, such as alignment beams. An oxygen plasma treatment is applied to layers that include embossed features, as shown in FIG. 1F, and an oxygen plasma treatment is applied to blank layers, as shown in FIG. 1G. The soft layers are aligned and bonded with precision dowel pins, as shown in FIG. 1H. An adhesive support is removed, as shown in FIG. 11, and the actuators are released, as shown in FIG. 1J.


Traditional soft actuators can deform in response to a stimulus, including but not limited to pressure change for fluidic actuators and electric field for electroactive materials, and remain in that deformed state for only as long as the input is applied. For instance, a typical bending fluidic actuator is one that is straight under atmospheric pressure, but bends when pressurized. When allowed to depressurize (i.e., when the input is removed), the actuator returns to its initial, undeformed state. In contrast, in some embodiments, elastomeric fluidic actuators can be structurally locked in their deformed states through injection-induced self-folding. Instead of using traditional working fluids such as water or air, phase-changing materials can be used to achieve this behavior. That is, an actuator can be pressurized with a normally fluid material, and then solidify that material, effectively locking the entire structure in its deformed state. For example, UV-curable resin can be used as the phase-changing material, or an uncured form of the bulk elastomer can be used. Using the elastomer precursor can result in a monolithic structure that is entirely soft, and also offers an alternative stimulus for structural locking (i.e., thermal curing rather than UV curing, see supplemental text for additional details). When total recovery of the initial configuration is required, simply using an incompressible fluid (such as water) and closing an input valve would be a viable alternative. While one could inject all microfluidic channels with a phase-changing material that is subsequently solidified, resulting in a 3D, yet entirely static, structure, in some embodiments a combination of working fluids, simultaneously locking some actuators into structural elements, while retaining other actuators to control motion.


There can be a plurality of types of soft micro-actuators. In some embodiments, there can be continuous bending actuators (CBAs), and discrete bending actuators (DBAs). CBAs 30 have a rectangular shaped chamber 32, thus upon pressurization the loading profile along the X direction can be uniform, leading to a continuous bending behavior, as shown in FIG. 2B. In order to obtain a discrete, joint-like bending, trapezoidal chambers 22 can be used to from DBAs 20. In this case, upon pressurizations, the load distribution will present a profile shown in FIG. 2A. The area of membrane under pressure will decrease going from the larger base to the smaller base of the trapezoid. Assuming that the pressure uniformly distributes in the chamber and considering that P=F/A, the force can be larger at the larger base. This can result in an anisotropic deformation of the actuator, presenting a discrete, joint-like bending behavior, as shown in FIG. 2A. DBAs are employed in the structural and actuation DoFs of the legs of the exemplary spider embodiment, as explained in more detail below, whereas the jaws and abdomen elevating and flexing actuators are CBAs.


The microstructures can have a variety of configurations such that the microstructures can self-fold into a variety of structures, which can either self-fold into a temporary or permanent 3D structure depending on the fluid introduced therein. Increasing the dimensionality of soft microstructures is accomplished through injection induced self-folding. In some embodiments shown in FIG. 3 and FIG. 4, a flat 2D structure 40 can be injected with a curable material 42 such that the flat 2D structure 40 can self-fold such that the 2D structure can fold substantially in half into a 3D structure 44. In some embodiments, a flat 2D structure 46 or can be injected with a curable material 48 such that the 2D structure 46 can self-fold into a 3D structure 50 having a curvature (also shown in FIG. 5). In some embodiments, a flat structure can have more than one actuator to increase the dimensionality in more than one direction. For example, as shown in FIG. 6A, a 2D structure 60 can include first and second actuators 62, 64 such that the injection of material therein can self-fold the structure into a 3D structure 66 having a curvature in more than one plane, or first and second actuators 68, 70 can cause self-folding into a 3D structure in the form of a half-sphere 72. In some embodiments, as shown in FIG. 6B and FIG. 7, a flat 2D structure 74 can have a plurality of actuators 76, 78 (some actuators not shown) that are positioned such that the structure can self-fold into a cube 80.


The tolerances of the manufacturing method in terms of minimum achievable cut distance and distortions introduced during the process can be analyzed, and demonstrated minimum cutting distances of 40 μm and misalignment errors down to 4 μm/mm. Thus, there is the possibility of using the laser cut path to define the motion of actuatable sections of the structure (i.e. a soft actuator). The motion of a typical bending actuator is defined by the relative bending stiffnesses of the portions of the actuator above and below the neutral axis. Referring to FIG. 8, and noting that the actuators in this case are monolithic (i.e., all of the same material, and thus all of the same elastic modulus), the bending motion is defined by the relative thicknesses of the material above and below the bladder. With the membrane thickness m being the smallest dimension (i.e., smaller than the adjacent wall thickness d), a typical actuator can bend about the y-axis. This can be referred to as out-of-plane bending, as the actuator bends out of the plane of its defining geometry. This behavior remains dominant until the minimum cut distance d becomes similar in magnitude to the membrane thickness m. When d≈m, the bending axis begins to rotate, as m is no longer the actuator's smallest dimension. Further decreasing the minimum cut distance below the membrane thickness causes the bending axis to rotate further, until d is appreciably smaller than m and the bending axis is fully about the z-axis (normal to the plane defining the actuator geometry). This can be referred to as in-plane bending, as the bending deformation is entirely within the plane of the actuator. To quantify this behavior, visual tracking of multiple actuators can be performed, varying the minimum cut distance.



FIG. 9 shows a transition from out-of-plane bending to in-plane-bending as the minimum cut distance approaches and subsequently passes below the membrane thickness. Thus, 3D actuator motion can be programmed by the choice of the 2D layer geometries.


To quantify this behavior, visual tracking of various actuators can be performed. The actuators can be manufactured using the same procedure as for the soft layers, for example, that compose the spider, as described in more detail below. Actuators can be fabricated with minimum cut distances ranging from three times the membrane thickness down to the smallest distance that can be fabricated successfully, determined in part by thermal damage effects. The final bend angle is defined as the inverse tangent of the deflection along the z-axis with respect to deflection along the y-axis (FIG. 9). As such, a typical out-of-plane bending actuator (i.e., one that bends entirely about the y-axis) would have a bend angle of 90 degrees. Similarly, an actuator that demonstrates fully in-plane bending (i.e., one that bends entirely about the z-axis) would have a bend angle of 0 degrees. The data in FIG. 9 shows that there is a transition from out-of-plane bending to in-plane bending as the minimum cut distance approaches and subsequently passes below the membrane thickness.


The data is quite spread out within the transition region from out-of-plane to in-plane bending. This can occur, in addition to material irregularities and manufacturing imperfections, due to the hyperelastic nature of the material. As the actuator is pressurized, the thinnest portion (whether that is the membrane defined lithographically or the sidewall defined by laser cutting) can expand to a much larger degree than the rest of the actuator. When the minimum cut path distance is of similar magnitude to the membrane thickness, complex, hybrid motions can be observed in which an actuator can transition from one bending mode to another throughout the course of a single inflation. This behavior can be due to a strain stiffening effect, where the elastic modulus increases with deformation. As such, it is not only the geometry of the actuator but also the time-varying mechanical properties of the material that influences bending motion.


The 2D structures can be built in a variety of ways. FIG. 10, FIG. 11, FIG. 12, and FIG. 13 illustrate an embodiment of a process for building the 2D structure. As shown in FIG. 10, the device includes a blank layer 90, one or more base layers 92, a decoupling layer 94, and one or more actuator layers 96. The decoupling layer 94 is provided to decouple the base layer 92 from the actuator layer 96 so any fluid delivered to one of those layers is separated from the other. FIG. 11 and FIG. 12 illustrate the formation of channels 98, 100 in the base layer 92 and the actuator layer 96 (seen in both the top view and the cross-sectional view of the layers). The connections between the layers and channels can be seen in the side view of the layered 2D structure 102 shown in FIG. 12. FIG. 13 illustrates the injection of a fluid, such as a curable material into the base layer of the structure. FIG. 14 illustrates an exemplary embodiment of the built 2D structure, and FIG. 15 illustrates the 2D structure after being injected such that the structure self-folds into a 3D structure.


The dimensionality of the soft microstructures can be increased through the injection of a material to induce self-folding of the microstructure. Various materials can be injected, including but not limited to phase-changing materials, such as a curable material. Exemplary materials are shown in FIG. 16, and include but are not limited to silicone gel and elastomers. The injected material can be a functional material to have stimuli responsive structures.


The form and actuation capability of the microstructures can vary widely based on a variety of factors, including but not limited to the number of base and actuator layers, the location and size of the channels formed in the layers, and the complexity of the shape of the structure. In an embodiment shown in FIG. 17, an exemplary microstructure 110 in the form of a spider is shown, and various components of the spider can illustrate various capabilities of the fabrication method of forming a microstructure, such as the spider. FIG. 18 illustrates an exploded view of the various layers of the microstructure 110 that form the spider.


The embodiment of a peacock spider-inspired MORPH system is composed of 12 soft layers. There are two sublaminates (each composed of six soft layers). A first sublaminate is the body sublaminate as shown in FIG. 19A-19F, composed of the legs sublaminate and head and eyes. The fabrication process of the soft layers for the spider body sublaminate include a structural layer 120 for the legs (FIG. 19A), a blank layer 122 for the legs (FIG. 19B), an actuation layer 124 for the legs (FIG. 19C), a layer 126 for the head (FIG. 19D), a layer 128 for the eyes (FIG. 19E), and piping layer 130 (FIG. 19F). The second sublaminate is the abdomen sublaminate as shown in FIG. 20A-20F. The fabrication process of the soft layers for the spider abdomen sublaminate include a decoupling layer 140 (FIG. 20A), an abdomen layer 142 for an elevating actuator (FIG. 20B), a blank layer 144 for the abdomen (FIG. 20C), a flexing actuator layer 146 for the abdomen (FIG. 20D), DNA strand 1 layer 148 (FIG. 20E), and DNA strand 2 layer 150 (FIG. 20F). In some embodiments, each soft layer is individually manufactured using soft lithography and the thermally cured silicone elastomer is peeled off from the SU-8 patterned silicon wafer using an adhesive substrate or carrier. The substrate consists of a Gel-Pak 8 film, Gel-Pak, a flexible but not stretchable substrate material with a tacky surface to hold the layers during processing and/or assembly. Each layer is then covered with a transparent layer of polyester film (3.6 μm Mylar, Chemplex Industries, Inc.) to preserve cleanliness during laser machining and protect the silicone elastomer for storage. Subsequently, the elastomer is cut using a precision laser micromachining system according to a specific design pattern after alignment to fiducials defined during soft lithography. Alignment holes are laser cut through the carrier to be used for future pin alignment. The protective polyester film is removed right before the plasma treatment phase to expose the soft layer, achieve chemical surface functionalization, and bonding. Layers are realigned and bonded together using O2 plasma (35 W for 30 s) treatment (Pico BR PCCE 7″, Diener electronic GmbH+Co. KG).


The bonding sequence for the peacock spider is illustrated in FIG. 21A-FIG. 21J. For the body of the spider (FIG. 21A-21E), the bottommost is the actuation layer for the legs that is assembled together with the legs blank layer (FIG. 21A). Subsequently, a structural layer for the legs (FIG. 21B), head (FIG. 21C), eyes (FIG. 21D), and piping layers (FIG. 21E) follow. As regards to the abdomen layers (FIG. 21F-21J), the topmost is the DNA strand layer that is assembled together with another DNA strand layer (FIG. 21F) to form a double DNA helix (for example, that is merely decorative, and can be any image, logo, etc., and can be an optional decorative layer to the microstructure). Subsequently, abdomen flexing actuator (FIG. 21G), abdomen blank (FIG. 21H), abdomen elevating actuator (FIG. 21I), and decoupling layers (FIG. 21J) will follow. As a last step, the body and abdomen sublaminates are assembled together to form a soft microstructure 160 following the same procedure described above (FIG. 22). The microstructure such as the spider can be designed with a modular approach so that the various sublaminates can be assembled separately and then bonded together at the end to ease the fabrication process and guarantee a higher manufacturing yield.


The layers of the microstructure that form the leg portion are shown in more detail in FIG. 23 and FIG. 24, which illustrates a structural layer 172, a blank layer 170, and an actuation layer 174 of the microstructure 160. FIG. 24 illustrates movement of a “leg” of the microstructure 160 using curable material to self-fold the 2D structure into a 3D structure, and an actuation fluid to actuate the 3D structure to provide movement to the “leg” of the microstructure. The “legs” of the microstructure include a plurality of channel therein in both the structural layer and the actuation layer. The channels formed in the structural layer are configured to receive a fluid, such as a curable material, to allow the microstructure to self-fold into a 3D microstructure. FIG. 25, FIG. 26, FIG. 27, and FIG. 28 illustrate a variety of views of the microstructure in 2D and in 3D after the structural layer has been injected with a material to fold the microstructure into its 3D form. The channels formed in the actuation layer are configured to receive an actuation fluid that is used to move the “leg” of the 3D microstructure. The actuation fluid can be any fluid that can be injected into the channel, including but not limited to water. A more detailed view of fabrication of the layers of the “legs” of the microstructure as shown in FIG. 19A-19F are shown in FIGS. 29A-B, FIGS. 30A-B, and FIGS. 31A-B. FIG. 29A illustrates the fabrication workflow of the actuation layer 174, and includes channels formed there for receiving a fluid to actuate the 3D microstructure. FIG. 29B illustrates a top view of the actuation layer of FIG. 29A. FIG. 26 and FIG. 27 illustrate exemplary views of the 3D microstructure as fluid is injected into the actuation layer to allow the microstructure to move. Injecting actuation fluid into different channels in the actuation layer allows control and movement of different portions of the microstructure, for example, different “legs” thereof. FIG. 30A illustrates the fabrication workflow of the decoupling layer positioned between the actuation layer 174 and the structural layer 172, and includes an outline of the shape formed in the actuation layer. FIG. 30B illustrates a top view of the decoupling layer of FIG. 30A. FIG. 31A illustrates the fabrication workflow of the structural layer 172, and includes channels formed therein for receiving the injected fluid, such as the curable material, to allow the microstructure to self-fold into a 3D microstructure. FIG. 31B illustrates a top view of the structural layer of FIG. 31A.



FIGS. 32A-32D illustrate another embodiment of the leg sublaminate, which is a three-layer laminate with two sets of actuators: one embedded on the top and one on the bottom layer. Due to their relative positions, the actuators on the first and third layers act antagonistically. For example, actuators on the first layer bend the legs up, while actuators on the third layer bend the legs down. The third layer can be injected with phase-changing material, permanently deforming the legs into a bent configuration. By actuating the first layer, pressurized fluid at the joints forces the legs into a straight configuration (FIG. 32A). When the pressure is relieved, the legs return to the bent configuration. This actuation strategy can mimic the biomechanics of an actual spider, whose legs are bent when not actively being straightened by internal turgor pressure, as is the case for the curled legs of a dead spider.


The layers of the microstructure that form the head and eye portion as shown in FIG. 19A-19F are shown in FIG. 33, FIG. 34A, FIG. 34B, FIG. 35A, and FIG. 35B, which illustrate a structural layer and a blank layer of the microstructure. FIG. 33 illustrates an embodiment of the microstructure of the head and eyes after the use of curable material to self-fold the 2D structure into a 3D structure. FIG. 34A illustrates a structural layer of the head portion of the microstructure, and includes a channel formed therein for receiving a material, such as the curable material, to fold the microstructure into a 3D form. FIG. 34B illustrates a top view of the structural layer in FIG. 34A. FIG. 35A illustrates the structural layer of the head portion of the microstructure, and a second structural layer of the eye portion of the microstructure that includes a plurality of channels formed therein relating to the “eyes” of the microstructure. Curable material injected into the “head” structural layer self-folds the microstructure such that the head forms a dome shape, as shown in FIG. 36. FIG. 35B is a top view of the layers in FIG. 35A. This change in structure of the “head” from a flat 2D structure to a 3D dome causes a change in the dimension of the channel in the “eye” structural layer due to the deformation of the “head” structural layer. Thus, a first layer of the microstructure can self-fold into a 3D structure, which can cause a change in the shape and thus the resistance in channel formed in other structural or actuation layers of the microstructure. This allows the self-folding of the microstructure to controllably change the resistance in the channels formed in various layers of a microstructure.


As explained above, the middle sublaminate contains the head and eyes. These layers collectively demonstrate the ability to achieve hierarchical structures, as the eyes are further deformations on an already deformed head. The deformation induced in the head layer leads to a change in the geometry of the channels laying on top of it (FIG. 32B).


The topmost sublaminate is the abdomen. This sublaminate highlights multiple functionalities, including multi-layer fluid handling of a microfluidic circuit, different colored fluid patterns, and coordinated bending actuation that results in a structure with negative Gaussian curvature. In this structure, the use of laser cutting on top of channels embossed in the soft layers can be used to allow flow across the laminate. Mimicking the behavior of the peacock spider, three sets of independent actuators are responsible for the abdomen movement. As shown in FIG. 37, one elevating actuator 182 raises the abdomen 180 from a flat to a lifted configuration, and two flexing actuators 184, 186 bend the abdomen 180 outwards. To demonstrate colored fluid patterns and imitate the colorful abdomen of the animal, a DNA double helix (as shown in FIG. 32C) is integrated on top of this sublaminate and colored fluid is injected through the 3D network of channels 188 created by the combination of laser cut vias and microfluidic channels (FIG. 38). The circuit is designed to be open and double-ended, to demonstrate the possibility of continuously exchanging colors. As explained above, this is merely an optional decorative addition to the microstructure, and can in the form of an image that can be created by the channels.


The layers of the microstructure that form the abdomen portion of the microstructure are also shown in FIGS. 39A-B, FIGS. 40A-B, FIGS. 41A-B, FIGS. 42A-B, FIGS. 43A-B, FIGS. 44A-B, and FIGS. 45A-B, with the complete microstructure shown in FIG. 46, FIG. 47, and FIG. 48. A top view of a structural layer 190 is shown in FIG. 39A, that includes a plurality of channels configured to couple to channels formed in upper layers. A side view of the structure layer is shown in FIG. 39B. A top view of a decoupling layer 192, shown in FIG. 40A, is disposed over a portion of the structural layer 190, as seen in the side view of the layers shown in FIG. 40B. An actuator layer 194 is positioned over the decoupling layer, as shown in the top view of the layers in FIG. 41A, and includes channels formed therein that are configured to lift a “tail” portion of the spider microstructure. A side view of the way in which the layers are stacked is shown in FIG. 41B. A blank layer 196, shown in the top view of the layers in FIG. 42A, is positioned over the actuator layer of FIG. 41A. A side view showing the way in which the layers are stacked is shown in FIG. 42B.



FIG. 42A shows the blank layer that separates the actuation layer shown in FIG. 41A and an actuation layer 198 shown in FIG. 43A. This layer also features a plurality holes that allow fluid to travel between layers. A side view showing the way in which the layers are stacked is shown in FIG. 43B.



FIG. 43A shows the second actuator layer 198 in the abdomen portion of the microstructure (the first actuator layer being that shown in FIG. 41A). Whereas the actuator layer 194 of FIG. 41A lifts the “tail”, the actuator layer 198 of FIG. 43A bends the two sides of the “tails” in a direction perpendicular to the direction of the lifting. This layer also features a plurality holes that allow fluid to travel between layers.



FIG. 44A shows a visualization layer 200. As the penultimate layer in the laminate, colored liquid that passes through the wide microchannel in this layer are visible. The colored liquid is passed to this layer via the holes in the preceding layers (FIGS. 39-43). This layer also features a plurality holes that allow fluid to travel between layers. A side view showing the way in which the layers are stacked is shown in FIG. 44B.



FIG. 45A shows a second visualization layer 202. As the final layer in the exemplary laminate, colored liquid that passes through the wide microchannel in this layer are visible. The colored liquid is passed to this layer via the holes in the preceding layers (FIGS. 39-44). A side view showing the way in which the layers are stacked is shown in FIG. 45B.


In some embodiments, visualization layers can have a variety of functions in a microstructure. In some embodiments, one or more visualization layers can add visual aesthetics to a microstructure. For example, on the bioinspiration side, they can mimic to some degree the colorful nature of the exemplary microstructure modeled after a peacock spider (as shown in FIGS. 39-44) as colored liquid can be passed through the channels in the visualization layers, and the colored liquid can be visible to the naked eye (as shown in FIG. 47). In an embodiment, the visualization layers can assist in demonstrating fluid interaction between the different layers of a microstructure. For example, as shown in FIG. 18, fluid in the layer named “DNA strand 1” (as shown in FIG. 18 and FIG. 45) is injected in the “Channels layer” (as shown in FIG. 18 and FIG. 39), which is a full six layers below. In the intermediate layers, the fluid travels vertically between layers (via holes) and horizontally within layers (via channels). Thus, the visualization layers demonstrate that the microstructure can achieve non-trivial fluid handling. In some embodiments, if the visualization layers (“DNA strand 1” layer as shown in FIG. 45A and “DNA strand 2” layer as shown in FIG. 44A) stand in for some generic multilayer microfluidic circuit, it can be demonstrated that microfluidic action can be achieved in a transformed plane, as a historically 2D system (microfluidics) is being transformed into a new geometric structure. As such, the visualization layers can show the way in which fluid can move around in the transformed structure.



FIG. 46, FIG. 47, and FIG. 48 show the fabricated microstructure. FIG. 46 and FIG. 47 show the final tail section of the exemplary microstructure. FIG. 48 shows the complete fabricated microstructure before the structural layers have been injected with a curable material. This multilayer laminate consists of structural layers, actuator layers, and visualization layers.


When assembled together, the three sublaminates (along with the optional additional layers, such as the visualization layers) make up a full MORPH system composed of 12 layers individually cut and collectively assembled (FIG. 32D). The device has nine independently controllable DoFs and five structural DoFs. The sequence of injection of the structural DoFs is shown in FIG. 49A-49G. FIG. 49A illustrates a flat configuration of the microstructure. FIG. 49B illustrates the legs after structural DOF inflation. FIG. 49C illustrates injection of the head and fluid in the eyes. FIG. 49D illustrates actuation of the abdomen, FIG. 49E illustrates dyed fluid added to the circuit for coloring the device, and FIG. 49F illustrates actuation of the abdomen. FIG. 49G illustrates an isometric view of the microstructure with the abdomen DoFs active. The size of the microstructure can vary. For example, the overall size of the device is 25 mm in width and the minimum feature size is 40 μm (height of the microfluidic channels). The thickness of the soft laminate in the flat configuration is ≈2.8 mm and the spider reaches a height of ≈20 mm upon injection of phase-changing materials in the leg sublaminate and injection of the abdomen elevating actuator. Structurally, this fully-3D multi-material soft system features an intricate profile and internal geometry consisting of feature sizes that, taking advantage of the scalability of soft lithographic techniques, can extend to the nanoscale. Functionally, the spider is highly reconfigurable, with nine individual DoFs to control motion in multiple distinct directions, and incorporates a multilayer microfluidic circuit with a 3D channel network that can be used to perform electrically-analogous fluidic computation.


Thus, it is possible to form microfluidic channels in one or more layers of a microstructure. The microfluidic circuitry is configured to actively reorient themselves in response to the self-folding of the 2D microstructure into a 3D microstructure. It will be understood that the overall size of the device can vary, along with the number of degrees of freedom and layers thereof depending on the application intended for a microstructure.


While various embodiments have been described for purposes of this disclosure, such embodiments should not be deemed to limit the teaching of this disclosure to those embodiments. Various changes and modifications may be made to the elements and operations described above to obtain a result that remains within the scope of the systems and processes described in this disclosure. All patents, patent applications, and published references cited herein are hereby incorporated by reference in their entirety. It should be emphasized that the above-described embodiments of the present disclosure are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the disclosure. Many variations and modifications may be made to the above-described embodiment(s) without departing substantially from the spirit and principles of the disclosure. It will be appreciated that several of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. All such modifications and variations are intended to be included herein within the scope of this disclosure, as fall within the scope of the appended claims.


The described embodiments are to be considered in all respects only as illustrative and not restrictive and the scope of the presently disclosed embodiments is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosed devices and/or methods.

Claims
  • 1. A soft microstructure, comprising: a plurality of elastomeric layers with fluidic networks formed between at least two of the elastomeric layers, at least one of the elastomeric layers comprising: at least one structural actuator configured to accept a phase-changing material to convert the structural actuator into a permanent structural element by self-folding a portion of the microstructure to form a three dimensional structure from a two dimensional structure, andat least one functional actuator configured to accept an inert working fluid to allow for motion of the 3D structure formed by the at least one structural actuator.
  • 2. The soft microstructure of claim 1, wherein any of the plurality of elastomeric layers contains at least one structural actuator or at least one functional actuator or both at least one structural actuator and the at least one functional actuator.
  • 3. The soft microstructure of claim 1, wherein the phase-changing material is a curable material that is configured to cause self-folding into a three dimensional structure as the curable material cures.
  • 4. The soft microstructure of claim 1, wherein the phase-changing material is a functional material such that the three dimensional structure is responsive to a stimuli.
  • 5. The soft microstructure of claim 4, wherein the stimuli is ultraviolet light such that the phase-changing material is cured with the UV light.
  • 6. The soft microstructure of claim 4, wherein the stimuli is thermal energy such that the phase-changing material is cured with the thermal energy.
  • 7. The soft microstructure of claim 1, wherein a form of the three dimensional structure is based on a number of the plurality of elastomeric layers.
  • 8. The soft microstructure of claim 1, wherein a form of the three dimensional structure is based on a placement and size of the fluidic networks formed in the plurality of elastomeric layers.
  • 9. A soft microstructure, comprising: a plurality of elastomeric layers with fluidic networks formed between at least two of the elastomeric layers, any of the elastomeric layers comprising: at least one structural actuator configured to accept a phase-changing material to convert the structural actuator into a permanent structural element by self-folding a portion of the microstructure to form a three dimensional structure from a two dimensional structure, andat least one functional actuator configured to accept an inert working fluid to allow for motion of the 3D structure formed by the at least one structural actuator.
  • 10. The soft microstructure of claim 9, wherein the at least one structural actuator and the at least one functional actuator are formed in the same elastomeric layer.
  • 11. The soft microstructure of claim 9, wherein the at least one structural actuator and the at least one functional actuator are formed in different ones of the plurality of elastomeric layers.
  • 12. The soft microstructure of claim 9, wherein a form of the three dimensional structure is based on a number of the plurality of elastomeric layers.
  • 13. The soft microstructure of claim 9, wherein a form of the three dimensional structure is based on a placement and size of the fluidic networks formed in the plurality of elastomeric layers.
RELATED APPLICATIONS

This application is a national stage filing under 35 U.S.C. § 371 of international PCT application, PCT/US2018/022494, filed Mar. 14, 2018, which claims priority to and the benefit of U.S. Provisional Patent Application No. 62/471,134, filed Mar. 14, 2017, the entirety of each are hereby incorporated by reference for all purposes.

STATEMENT OF GOVERNMENT SUPPORT

This invention was made with government support under FA8650-15-C-7548 awarded by the Department of Defense/Defense Advanced Research Projects Agency. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/022494 3/14/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2018/170170 9/20/2018 WO A
US Referenced Citations (397)
Number Name Date Kind
3387305 Shafer Jun 1968 A
3411511 Marino Nov 1968 A
3831467 Moore Aug 1974 A
4023215 Moore May 1977 A
4252112 Joyce Feb 1981 A
4370977 Mauldin et al. Feb 1983 A
4682776 Mitchell et al. Jul 1987 A
4697808 Larson et al. Oct 1987 A
4724827 Schenck Feb 1988 A
4760850 Phillips et al. Aug 1988 A
5020790 Beard et al. Jun 1991 A
5282460 Boldt Feb 1994 A
5485402 Smith et al. Jan 1996 A
5584799 Gray Dec 1996 A
5599283 Lindenmeyer et al. Feb 1997 A
5667461 Hall Sep 1997 A
5826578 Curchod Oct 1998 A
5865714 Marlowe Feb 1999 A
5865770 Schectman Feb 1999 A
5955667 Fyfe Sep 1999 A
6123649 Lee et al. Sep 2000 A
6129691 Ruppert Oct 2000 A
6168634 Schmitz Jan 2001 B1
6213922 Afanasenko et al. Apr 2001 B1
6500138 Irby et al. Dec 2002 B1
6517503 Naft et al. Feb 2003 B1
6633783 Dariush et al. Oct 2003 B1
6635024 Hatton et al. Oct 2003 B2
6666831 Edgerton et al. Dec 2003 B1
6689075 West Feb 2004 B2
6741911 Simmons May 2004 B2
6783555 Kuhn et al. Aug 2004 B2
6790165 Huang Sep 2004 B2
6796926 Reinkensmeyer et al. Sep 2004 B2
6812624 Pei et al. Nov 2004 B1
6955692 Grundei Oct 2005 B2
6989669 Low et al. Jan 2006 B2
7034432 Pelrine et al. Apr 2006 B1
7034527 Low et al. Apr 2006 B2
7049732 Pei et al. May 2006 B2
7056297 Dohno et al. Jun 2006 B2
7064472 Pelrine et al. Jun 2006 B2
7090650 Ou et al. Aug 2006 B2
7153242 Goffer Dec 2006 B2
7153246 Koscielny et al. Dec 2006 B2
7166953 Heim et al. Jan 2007 B2
7190141 Ashrafiuon et al. Mar 2007 B1
7199501 Pei et al. Apr 2007 B2
7211937 Kornbluh et al. May 2007 B2
7224106 Pei et al. May 2007 B2
7229390 Fujii et al. Jun 2007 B2
7233097 Rosenthal et al. Jun 2007 B2
7252644 Dewald et al. Aug 2007 B2
7259503 Pei et al. Aug 2007 B2
7259553 Arns, Jr. et al. Aug 2007 B2
7307418 Low et al. Dec 2007 B2
7331906 He et al. Feb 2008 B2
7341295 Veatch et al. Mar 2008 B1
7355519 Grold et al. Apr 2008 B2
7367958 McBean et al. May 2008 B2
7368862 Pelrine et al. May 2008 B2
7378878 Pelrine et al. May 2008 B2
7390309 Dariush Jun 2008 B2
7410471 Campbell et al. Aug 2008 B1
7411332 Kornbluh et al. Aug 2008 B2
7429253 Shimada et al. Sep 2008 B2
7436099 Pei et al. Oct 2008 B2
7445606 Rastegar et al. Nov 2008 B2
7456549 Heim et al. Nov 2008 B2
7476185 Drennan Jan 2009 B2
7494450 Solomon Feb 2009 B2
7521840 Heim Apr 2009 B2
7521847 Heim Apr 2009 B2
7537573 Horst May 2009 B2
7549969 van Den Bogert Jun 2009 B2
7567681 Pelrine et al. Jul 2009 B2
7578799 Thorsteinsson et al. Aug 2009 B2
7595580 Heim Sep 2009 B2
7598651 Kornbluh et al. Oct 2009 B2
7598652 Kornbluh et al. Oct 2009 B2
7626319 Heim Dec 2009 B2
7650204 Dariush Jan 2010 B2
7652386 Donelan et al. Jan 2010 B2
7654973 Firsov Feb 2010 B2
7679267 Heim Mar 2010 B2
7684896 Dariush Mar 2010 B2
7705521 Pelrine et al. Apr 2010 B2
7737685 Low et al. Jun 2010 B2
7750532 Heim Jul 2010 B2
7758481 Drennan Jul 2010 B2
7774177 Dariush Aug 2010 B2
7775999 Brown Aug 2010 B2
7785279 Sankai Aug 2010 B2
7785656 Pei et al. Aug 2010 B2
7787646 Pelrine et al. Aug 2010 B2
7804227 Pelrine et al. Sep 2010 B2
7857774 Sankai Dec 2010 B2
7860562 Endo et al. Dec 2010 B2
7883546 Kazerooni et al. Feb 2011 B2
7887471 McSorley Feb 2011 B2
7897168 Chen et al. Mar 2011 B2
7911761 Biggs et al. Mar 2011 B2
7915790 Heim et al. Mar 2011 B2
7918808 Simmons Apr 2011 B2
7921541 Pei et al. Apr 2011 B2
7923064 Pelrien et al. Apr 2011 B2
7923902 Heim Apr 2011 B2
7947004 Kazerooni et al. May 2011 B2
7952261 Lipton et al. May 2011 B2
7977923 Pelrine et al. Jul 2011 B2
7981508 Sharma et al. Jul 2011 B1
7985193 Thorsteinsson et al. Jul 2011 B2
7990022 Heim Aug 2011 B2
7998040 Kram et al. Aug 2011 B2
8048007 Roy Nov 2011 B2
8057410 Angold et al. Nov 2011 B2
8058861 Pelrine et al. Nov 2011 B2
8060337 Kulach et al. Nov 2011 B2
8075633 Herr et al. Dec 2011 B2
8083644 Purdy et al. Dec 2011 B2
8096965 Goffer et al. Jan 2012 B2
8114034 Ikeuchi et al. Feb 2012 B2
8125755 Garcia et al. Feb 2012 B2
8127437 Lipton et al. Mar 2012 B2
8142370 Weinberg et al. Mar 2012 B2
8147436 Agrawal et al. Apr 2012 B2
8164232 Kornbluh et al. Apr 2012 B2
8183739 Heim May 2012 B2
8222799 Polyakov et al. Jul 2012 B2
8231687 Bedard et al. Jul 2012 B2
8235869 Rastegar et al. Aug 2012 B2
8246559 Hoffman et al. Aug 2012 B2
8248750 Biggs et al. Aug 2012 B2
8274244 Horst et al. Sep 2012 B2
8283839 Heim Oct 2012 B2
8287477 Herr et al. Oct 2012 B1
8292836 Matsuoka et al. Oct 2012 B2
8299634 Donelan et al. Oct 2012 B2
8311623 Sanger Nov 2012 B2
8316526 Pei et al. Nov 2012 B2
8316719 Majidi et al. Nov 2012 B2
8323355 Latour Dec 2012 B2
8325458 Prahlad et al. Dec 2012 B2
8348875 Goffer et al. Jan 2013 B2
8376971 Herr et al. Feb 2013 B1
8409117 Cheng et al. Apr 2013 B2
8436508 Kornbluh et al. May 2013 B2
8438757 Roser May 2013 B2
8460001 Chuang Jun 2013 B1
8467904 Dariush Jun 2013 B2
8488295 Garcia et al. Jul 2013 B2
8508109 Pelrine et al. Aug 2013 B2
8551029 Herr et al. Oct 2013 B1
8551184 Herr Oct 2013 B1
8562691 Endo et al. Oct 2013 B2
8564926 Prahlad et al. Oct 2013 B2
8573982 Chuang Nov 2013 B1
8585620 McBean et al. Nov 2013 B2
8597369 Hansen et al. Dec 2013 B2
8608479 Liu Dec 2013 B2
8608674 Krebs et al. Dec 2013 B2
8622938 Sankai Jan 2014 B2
8663133 Johnson et al. Mar 2014 B2
8665578 Pelrine et al. Mar 2014 B2
8679575 Biggs et al. Mar 2014 B2
8715208 Hodgins et al. May 2014 B2
8764850 Hansen et al. Jul 2014 B2
8766925 Perlin et al. Jul 2014 B2
8773148 Sankai et al. Jul 2014 B2
8847611 Ulmen et al. Sep 2014 B2
8905955 Goffer et al. Dec 2014 B2
8920517 Smith et al. Dec 2014 B2
8926534 McBean et al. Jan 2015 B2
8938289 Einav et al. Jan 2015 B2
8961439 Yang et al. Feb 2015 B2
8975888 Pelrine et al. Mar 2015 B2
8981621 Pelrine et al. Mar 2015 B2
8986233 Aoki et al. Mar 2015 B2
9044346 Langlois et al. Jun 2015 B2
9072941 Duda et al. Jul 2015 B2
9101323 Einarsson et al. Aug 2015 B2
9144528 Agrawal et al. Sep 2015 B2
9149370 Herr et al. Oct 2015 B2
9195794 Dariush Nov 2015 B2
9198821 Unluhisarcikli et al. Dec 2015 B2
9221177 Herr et al. Dec 2015 B2
9227108 Chuang Jan 2016 B1
9228822 Majidi et al. Jan 2016 B2
9231186 Büsgen et al. Jan 2016 B2
9266233 Kornbluh et al. Feb 2016 B2
9333097 Herr et al. May 2016 B2
9351900 Walsh et al. May 2016 B2
9387096 Sverrisson et al. Jul 2016 B2
9403272 Kornbluh et al. Aug 2016 B2
9427864 Kornbluh et al. Aug 2016 B2
10028881 Yamamoto et al. Jul 2018 B2
10115319 Walsh et al. Oct 2018 B2
10278883 Walsh et al. May 2019 B2
10427293 Asbeck et al. Oct 2019 B2
10434030 Asbeck et al. Oct 2019 B2
20010007845 Afanasenko et al. Jul 2001 A1
20030009120 MacAllister Jan 2003 A1
20030030397 Simmons Feb 2003 A1
20030064869 Reinkensmeyer et al. Apr 2003 A1
20030092545 Koscielny et al. May 2003 A1
20030096310 Hansen et al. May 2003 A1
20030120183 Simmons Jun 2003 A1
20030125781 Dohno et al. Jul 2003 A1
20040043879 Huang Mar 2004 A1
20040064195 Herr Apr 2004 A1
20040087418 Eldridge May 2004 A1
20040106881 McBean et al. Jun 2004 A1
20040116260 Drennan Jun 2004 A1
20040147378 Conklin et al. Jul 2004 A1
20040191321 Guan et al. Sep 2004 A1
20040204294 Wilkinson et al. Oct 2004 A2
20050010150 Firsov Jan 2005 A1
20050049865 Yaxin et al. Mar 2005 A1
20050070834 Herr et al. Mar 2005 A1
20050101448 He et al. May 2005 A1
20050107725 Wild et al. May 2005 A1
20050157893 Pelrine et al. Jul 2005 A1
20050184878 Grold et al. Aug 2005 A1
20050288157 Santos-Munne et al. Dec 2005 A1
20060079817 Dewald et al. Apr 2006 A1
20060108755 Smyler et al. May 2006 A1
20060136206 Ariu et al. Jun 2006 A1
20060192465 Kornbluh et al. Aug 2006 A1
20060249315 Herr et al. Nov 2006 A1
20070004570 Afanasenko et al. Jan 2007 A1
20070004571 Gonzalez Jan 2007 A1
20070066918 Dewald et al. Mar 2007 A1
20070111868 Fujii et al. May 2007 A1
20070123997 Herr et al. May 2007 A1
20070135279 Purdy et al. Jun 2007 A1
20070276270 Tran Nov 2007 A1
20080000317 Patton et al. Jan 2008 A1
20080039756 Thorsteinsson et al. Feb 2008 A1
20080062589 Drabing Mar 2008 A1
20080071386 McBean et al. Mar 2008 A1
20080075930 Kornbluh et al. Mar 2008 A1
20080097269 Weinberg et al. Apr 2008 A1
20080156363 Ikeuchi et al. Jul 2008 A1
20080173365 Unger et al. Jul 2008 A1
20080218132 Pelrine et al. Sep 2008 A1
20080224564 Pelrine et al. Sep 2008 A1
20080255488 Agrawal et al. Oct 2008 A1
20080289952 Pelrine et al. Nov 2008 A1
20080294019 Tran Nov 2008 A1
20080300118 Wehrell Dec 2008 A1
20090042702 Toronto et al. Feb 2009 A1
20090221928 Einav et al. Sep 2009 A1
20090255531 Johnson et al. Oct 2009 A1
20090256817 Perlin et al. Oct 2009 A1
20090306548 Bhugra et al. Dec 2009 A1
20090311190 Gracias Dec 2009 A1
20090319054 Sankai Dec 2009 A1
20100000547 Johnson et al. Jan 2010 A1
20100007240 Kornbluh et al. Jan 2010 A1
20100024180 Pei et al. Feb 2010 A1
20100026143 Pelrine et al. Feb 2010 A1
20100030343 Hansen et al. Feb 2010 A1
20100038983 Bhugra et al. Feb 2010 A1
20100056966 Toth Mar 2010 A1
20100144490 Purdy et al. Jun 2010 A1
20100152630 Matsuoka et al. Jun 2010 A1
20100185259 Shiba et al. Jul 2010 A1
20100185301 Hansen et al. Jul 2010 A1
20100204804 Garrec Aug 2010 A1
20100271051 Sankai et al. Oct 2010 A1
20100274364 Pacanowsky et al. Oct 2010 A1
20100280628 Sankai Nov 2010 A1
20100286796 Clausen Nov 2010 A1
20100295417 Wood Nov 2010 A1
20100298834 Hildebrandt Nov 2010 A1
20100319215 Roser Dec 2010 A1
20100324698 Sverrisson et al. Dec 2010 A1
20110004322 Sankai Jan 2011 A1
20110009793 Lucero et al. Jan 2011 A1
20110022349 Kulach et al. Jan 2011 A1
20110025170 Rosenthal et al. Feb 2011 A1
20110033835 Endo et al. Feb 2011 A1
20110040216 Herr et al. Feb 2011 A1
20110062948 Arns, Jr. et al. Mar 2011 A1
20110071647 Mahon Mar 2011 A1
20110093089 Martin Apr 2011 A1
20110105966 Kazerooni et al. May 2011 A1
20110150966 Chen et al. Jun 2011 A1
20110152696 Ryan Jun 2011 A1
20110154641 Pelrine et al. Jun 2011 A1
20110155307 Pelrine et al. Jun 2011 A1
20110174524 Sharma et al. Jul 2011 A1
20110193362 Prahlad et al. Aug 2011 A1
20110201978 Jeon et al. Aug 2011 A1
20110209337 Pei et al. Sep 2011 A1
20110245738 Agrawal et al. Oct 2011 A1
20110282255 Nace Nov 2011 A1
20110295384 Herr et al. Dec 2011 A1
20110295385 Herr et al. Dec 2011 A1
20110313331 Dehez et al. Dec 2011 A1
20120019223 Pelrine et al. Jan 2012 A1
20120023638 Leicester Feb 2012 A1
20120056903 Shinohara et al. Mar 2012 A1
20120071797 Aoki et al. Mar 2012 A1
20120100286 Sharma et al. Apr 2012 A1
20120109031 Vollbrecht May 2012 A1
20120120544 Pelrine et al. May 2012 A1
20120128960 Busgen et al. May 2012 A1
20120165709 Goffer et al. Jun 2012 A1
20120169184 Pelrine et al. Jul 2012 A1
20120177934 Vogel et al. Jul 2012 A1
20120179075 Perry et al. Jul 2012 A1
20120181896 Kornbluh et al. Jul 2012 A1
20120185052 Lefeber Jul 2012 A1
20120209152 Cordo Aug 2012 A1
20120216672 Menon Aug 2012 A1
20120238914 Goldfield et al. Sep 2012 A1
20120248942 Biggs et al. Oct 2012 A1
20120253234 Yang et al. Oct 2012 A1
20120271207 Schoen et al. Oct 2012 A1
20120279175 Biggs et al. Nov 2012 A1
20120289870 Hsiao-Wecksler et al. Nov 2012 A1
20120330198 Patoglu Dec 2012 A1
20130013085 Smith et al. Jan 2013 A1
20130019749 Hufton et al. Jan 2013 A1
20130040783 Duda et al. Feb 2013 A1
20130041617 Pease et al. Feb 2013 A1
20130045530 Gracias et al. Feb 2013 A1
20130058001 Prahlad et al. Mar 2013 A1
20130079686 Sessions Mar 2013 A1
20130093439 Ulmen et al. Apr 2013 A1
20130102935 Kazerooni et al. Apr 2013 A1
20130123672 Goffer et al. May 2013 A1
20130130866 Wehrell May 2013 A1
20130131555 Hook May 2013 A1
20130158444 Herr et al. Jun 2013 A1
20130165817 Horst et al. Jun 2013 A1
20130179154 Okuno Jul 2013 A1
20130186699 Prahlad et al. Jul 2013 A1
20130211295 Johnson et al. Aug 2013 A1
20130225371 Harrer et al. Aug 2013 A1
20130226048 Unluhisarcikli et al. Aug 2013 A1
20130230667 Sharma et al. Sep 2013 A1
20130237884 Kazerooni et al. Sep 2013 A1
20130245512 Goffer et al. Sep 2013 A1
20130253385 Goffer et al. Sep 2013 A1
20130261513 Goffer et al. Oct 2013 A1
20130261766 Langlois et al. Oct 2013 A1
20130268256 Dariush Oct 2013 A1
20130274640 Butters et al. Oct 2013 A1
20130288863 Yamamoto et al. Oct 2013 A1
20130289452 Smith et al. Oct 2013 A1
20130296746 Herr et al. Nov 2013 A1
20130307370 Jenninger et al. Nov 2013 A1
20130310979 Herr et al. Nov 2013 A1
20130312541 Majidi et al. Nov 2013 A1
20130328440 Kornbluh et al. Dec 2013 A1
20140046455 Herr et al. Feb 2014 A1
20140194781 Einarsson et al. Jul 2014 A1
20140202628 Sreetharan Jul 2014 A1
20140213951 Pietrusisnki et al. Jul 2014 A1
20140277739 Kornbluh et al. Sep 2014 A1
20140358040 Kim et al. Dec 2014 A1
20150099945 Hawkins, III et al. Apr 2015 A1
20150142130 Goldfarb et al. May 2015 A1
20150173993 Walsh et al. Jun 2015 A1
20150266180 Kornbluh et al. Sep 2015 A1
20150266181 Kornbluh et al. Sep 2015 A1
20150297934 Agrawal et al. Oct 2015 A1
20150298765 Golden, Jr. Oct 2015 A1
20150321339 Asbeck et al. Nov 2015 A1
20150321399 Hong et al. Nov 2015 A1
20160346156 Walsh et al. Jan 2016 A1
20160101516 Kornbluh et al. Apr 2016 A1
20160101517 Kornbluh et al. Apr 2016 A1
20160107309 Walsh et al. Apr 2016 A1
20160220438 Walsh et al. Aug 2016 A1
20160278948 Piercy et al. Sep 2016 A1
20160284231 Walsh et al. Sep 2016 A1
20170027735 Walsh et al. Feb 2017 A1
20170163435 Ehsani et al. Jun 2017 A1
20170176167 Keller et al. Jun 2017 A1
20170202724 De Rossi et al. Jul 2017 A1
20180008502 Asbeck et al. Jan 2018 A1
20180056104 Cromie et al. Mar 2018 A1
20180354120 Diller Dec 2018 A1
20180370020 Murakami et al. Dec 2018 A1
20190008714 Murakami et al. Jan 2019 A1
20190021933 Murakami et al. Jan 2019 A1
20190029912 Murakami et al. Jan 2019 A1
20190060156 Swift et al. Feb 2019 A1
20190060157 Lamb et al. Feb 2019 A1
20190070062 O'Donnell et al. Mar 2019 A1
20190077071 Ware Mar 2019 A1
20190159662 Papas May 2019 A1
20200079643 Bartlett Mar 2020 A1
20200224784 Hasan Jul 2020 A1
Foreign Referenced Citations (68)
Number Date Country
1431084 Jul 2003 CN
1868434 Nov 2006 CN
101175456 May 2008 CN
102327173 Jan 2012 CN
202342034 Jul 2012 CN
19944139 Apr 2001 DE
0 016 268 Oct 1980 EP
0 141 640 May 1985 EP
0 302 148 Feb 1989 EP
0 509 723 Oct 1992 EP
1 260 201 Nov 2002 EP
1 306 792 May 2003 EP
1 324 403 Jul 2003 EP
1 550 689 Jul 2005 EP
1 589 059 Oct 2005 EP
1 842 518 Oct 2007 EP
2 226 053 Sep 2010 EP
2 497 610 Sep 2012 EP
2 548 543 Jan 2013 EP
2 649 976 Oct 2013 EP
H07-163607 Jun 1995 JP
2002-301124 Oct 2002 JP
2005-000500 Jan 2005 JP
2007-000391 Jan 2007 JP
2008-067762 Mar 2008 JP
4345025 Oct 2009 JP
2010-042069 Feb 2010 JP
2010-051416 Mar 2010 JP
4424269 Mar 2010 JP
2010-075656 Apr 2010 JP
4582523 Nov 2010 JP
2011-036375 Feb 2011 JP
4848260 Dec 2011 JP
2012-192013 Oct 2012 JP
2013-146328 Aug 2013 JP
2013-208397 Oct 2013 JP
2014-018536 Feb 2014 JP
WO 0012041 Mar 2000 WO
WO 2004017890 Mar 2004 WO
WO 2004039292 May 2004 WO
WO 2004047928 Jun 2004 WO
WO 2005102208 Nov 2005 WO
WO 2011008934 Jan 2011 WO
WO 2011026086 Mar 2011 WO
WO 2011030641 Mar 2011 WO
WO 2011126985 Oct 2011 WO
WO 2012014164 Feb 2012 WO
WO 2012050938 Apr 2012 WO
WO 2012103073 Aug 2012 WO
WO 2012124328 Sep 2012 WO
WO 2012178171 Dec 2012 WO
WO 2013019749 Feb 2013 WO
WO 2013033669 Mar 2013 WO
WO 2013044226 Mar 2013 WO
WO 2013049658 Apr 2013 WO
WO 2013146231 Oct 2013 WO
WO 2014034145 Mar 2014 WO
WO 2014109799 Jul 2014 WO
WO 2014194257 Dec 2014 WO
WO 2015074070 May 2015 WO
WO 2015088863 Jun 2015 WO
WO 2015120186 Aug 2015 WO
WO 2015157731 Oct 2015 WO
WO 2016044251 Mar 2016 WO
WO 2016089466 Jun 2016 WO
WO 2017040669 Mar 2017 WO
WO 2017160751 Sep 2017 WO
WO 2018017436 Jan 2018 WO
Non-Patent Literature Citations (96)
Entry
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems Sep. 25-30, 2011. San Francisco, CA, USA (Year: 2011).
U.S. Appl. No. 15/097,744, filed Apr. 13, 2016, Asbeck et al.
U.S. Appl. No. 15/102,694, filed Mar. 31, 2017, De Rossi et al.
U.S. Appl. No. 14/893,934, filed Nov. 24, 2015, Walsh et al.
U.S. Appl. No. 16/538,746, filed Aug. 12, 2019, Asbeck et al.
U.S. Appl. No. 16/317,845, filed Jan. 15, 2019, Ding et al.
U.S. Appl. No. 15/302,347, filed Oct. 6, 2016, Walsh et al.
U.S. Appl. No. 16/084,377, filed Sep. 12, 2018, O'Donnell et al.
PCT/US2013/060225, May 27, 2014, International Search Report and Written Opinion.
PCT/US2019/033143, Oct. 9, 2019, International Search Report and Written Opinion.
PCT/US2014/068462, May 22, 2015, International Search Report and Written Opinion.
PCT/US2014/040340, Oct. 31, 2014, International Search Report and Written Opinion.
PCT/US2015/051107, Aug. 5, 2016, International Search Report and Written Opinion.
PCT/US2017/042286, Sep. 28, 2017, International Search Report and Written Opinion.
PCT/US2018/022494, Jun. 8, 2018, International Search Report and Written Opinion.
PCT/US2015/014672, Jul. 6, 2015, International Search Report and Written Opinion.
PCT/US2015/025472, Sep. 4, 2015, International Search Report and Written Opinion.
PCT/US2017/022150, Jun. 9, 2017, International Search Report and Written Opinion.
International Search Report for International Application No. PCT/EP2003/012123, dated Jun. 22, 2004.
International Search Report and Written Opinion in International Application No. PCT/US2016/049706, dated Nov. 29, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2013/060225, dated May 27, 2014.
International Search Report and Written Opinion for International Application No. PCT/US2019/033143, dated Oct. 9, 2019.
International Search Report and Written Opinion for International Application No. PCT/US2014/068462, dated May 22, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2014/040340, dated Oct. 31, 2014.
International Search Report and Written Opinion in International Application No. PCT/US2015/051107, dated Aug. 5, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2017/042286, dated Sep. 28, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2018/022494, dated Jun. 8, 2018.
International Search Report and Written Opinion for International Application No. PCT/US2015/014672, dated Jul. 6, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2015/025472, dated Sep. 4, 2015.
International Search Report and Written Opinion in International Application No. PCT/US2017/022150, dated Jun. 9, 2017.
[No Author Listed], Development of a strategic Master Plan for the transformation of the traditional textile and clothing into a knowledge driven industrial sector by 2015; Report on Intelligent Textiles; State of the art. Clevertex. dated prior to Jul. 2014; 160 pages.
Bae et al, A Soft Exosuit for Patients with Stroke: Feasibility study with a mobile off-board actuation unit. 2015 IEEE International Conference on Rehabilitation Robotics (ICORR). Aug. 11, 2015 ; 131-8.
Banala et al., Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. Proc. In 2007 IEEE 10th Int. Conf. Rehabil. Robotics. Jun. 13, 2007; 401-7.
Browning et al., The effects of adding mass to the legs on the energetics and biomechanics of waling. Medicine and science in sports and exercise. Mar. 1, 2007; 39(3): 515-25.
Cho et al, Eds., Smart Clothing Technology and Applications. Human Factors and Ergonomics. CRC Press. 2010; 290 pages.
Chu et al., On the biomimetic design of the Berkeley lower extremity exoskeleton (BLEEX). In IEEE Int. Conf. Robotics and Automation (ICRA). Barcelona, Spain. Apr. 2005 ; 4345-52.
Collins et al., Efficient Bipedal Robots Based on Passive-Dynamic Walkers. Science, Feb. 2005; 307(5712): 1082-1085.
Cool, Biomechanics of orthoses for the subluxed shoulder. Prosthetics & Orthotics International. Jan. 1, 1989;13(2):90-6.
Da Silva et al., FBG Sensing Glove for Monitoring Hand Posture. Sensors Journal. Apr. 5, 2011; 11(10): 2442-8. [Online]. Available: http://ieeexplore.ieee.org/xpls/absall.jsp?arnumber=5742669.
De Rossi et al., Wearable technology for biomechanics: e-textile or micromechanical sensors? IEEE engineering in medicine and biology magazine. May-Jun. 2010; 29(3): 37-43. [Online]. Available:http://www.ncbi.nlm.nih.gov/pubmed/20659856.
Delp et al., OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE transactions on bio-medical engineering. Oct. 22, 2007; 54(11): 1940-50. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/18018689.
Dollar et al., Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. Robotics, IEEE Transactions on Robotics. Feb. 25, 2008; 24(1): 144-58.
Erk et al., Strain stiffening in synthetic and biopolymer networks. Biomacromolecules. Apr. 14, 2010; 11(5): 1358-63.
Farris et al., Human medial gastrocnemius force-velocity behavior shifts with locomotion speed and gait. Proc Natl Acad. Sci U S A. Jan. 17, 2012;109(3):977-982.
Ferris et al., A Physiologist's Perspective on Robotic Exoskeletons for Human Locomotion. Int J HR. Sep. 4, 2007 4(3): 507-28.
Ferris et al., Robotic lower limb exoskeletons using proportional myoelectric control. In EMBC 2009, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Sep. 3, 2009; 2119-24.
Fonseca, Validation of two types of textile electrodes for electrocardiography and electromyography measurement applications. Dissertation submitted to Faculdade de Engenharia da Universidade do Porto. Jul. 2012; 126 pages.
Ghodsi et al., De novo Likelihood-based measures for comparing genome assemblies. In: BMC Research Noles. Dec. 2013; 6(1):334.—online retrieved on Oct. 25, 2016.
Gibbs et al., Wearable Conductive Fiber Sensors for Multi-Axis Human Joint Angle Measurements. Journal of NeuroEngineering and Rehabilitation. Dec. 2005;2(1):7.
Goodvin, Development of a Real-time Spinal Motion Inertial Measurement System for Vestibular Disorder Application. Thesis submitted to University of Victoria. 2003; 155 pages.
Gregorczyk et al., The effects of a lower body exoskeleton load carriage assistive device on oxygen consumption and kinematics during walking with loads. In 25th Army Sci. Conf., Florida, USA. Nov. 1, 2006.
Hallemans et al., 3D joint dynamics of walking in toddlers. A cross-sectional study spanning the first rapid development phase of walking. Gait & Posture. Oct. 1, 2005; 22(2):107-118.
Kadaba et al., Measurement of lower extremity kinematics during level walking. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. May 1990; 8(3): 383-92. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/2324857.
Kawamoto et al., Power assist method for HAL-3 using EMG-based feedback controller. in Systems, Man and Cybernetics, 2003. IEEE International Conference on Oct. 8, 2003; 2:1648-53.
Kim et al., Epidermal electronics. Science. Aug. 12, 2011; 333( 6044): 838-43. [Online]. Available: http://www.sciencemag.org/cgi/doi/10.1126/science.1206157.
Kramer et al., Soft curvature sensors for joint angle proprioception. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Sep. 25, 2011; 1919-26. [Online]. Available:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6094701.
Kramer et al., Wearable tactile keypad with stretchable artificial skin. 2011 IEEE International Conference on Robotics and Automation. May 9, 2011; 1103-7. [Online]. Available:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980082.
Kulyukin, Ed., Advances in Human-Robot Interaction. In-Teh. Dec. 2009; 354 pages.
Laughton et al., Effect of Strike Pattern and Orthotic Intervention on Tibial Shock During Running. Journal of Applied Biomechanics. May 1, 2003; 19(2): 153-68.
Lee et al., Biomimetic Approach Enables Functional Movements of Hand Post Stroke: A Pilot Study. Gait and Clinical Movement Analysis Society. 2012; 2 pages.
Lenhart et al., Increasing Running Step Rate Reduces Patellofemoral Joint Forces. Medicine & Science in Sports & Exercise. Mar. 2014; 46(3): 557-64.
Lieberman et al., Effects of stride frequency and foot position in landing on braking force, hip torque, impact peak force and the metabolic cost of running in humans. Journal of Experimental Biology. Nov. 1, 2015; 218(21):3406-14.
Lipomi et al., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature nanotechnology. Dec. 2011; 6(12): 788-92. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/22020121.
Majidi et al., A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Materials and Structures. Aug. 31, 2011; 20(10): 105017. [Online]. Available: http://stacks.iop.org/0964-1726/20/i=10/a=105017?key=crossref.0cca7e97d6a-d7110bcdcaf45f30f3b60.
Malcolm et al., Fast Exoskeleton Optimization. Science. Jun. 23, 2017; 356(6344): 1230-1.
Mattila, Ed., Intelligent textiles and clothing. Woodhead Publishing Limited. 2006; 525 pages.
Mcgeer, Passive Bipedal Running. Proceedings of the Royal Society of London. Series B, Biological Sciences. May 22, 1990; 240(1297): 107-134.
Newman et al., Astronauth Bio-Suit System to enable planetary exploration. In International Astronautical Conference. Vancouver, Canada. Oct. 2004.
Park et al., Active Modular Elastomer Sleeve for Soft Wearable Assistance Robots, 2012 IEEE/RSJ International Con. on Intelligent Robots and Systems. Vilamoura, Algarve, Portugal. Oct. 7, 2012; 1595-1602.
Park et al., Bio-inspired Active Soft Orthotic Device for Ankle Foot Pathologies. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, CA, USA. Sep. 25, 2011; 4488-95.
Park et al., Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors. IEEE Sensors Journal. May 22, 2012; 12(8): 2711-8. [Online]. Available:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6203551.
Park et al., Hyperelastic pressure sensing with a liquid-embedded elastomer. Journal of Micromechanics and Microengineering. Nov. 29, 2010; 20(12): 125029. [Online].
Available: http://stacks.iop.org/0960-1317/20/i=12/a=125029?key=crossref.84cffc44789-ba7bde0bdfd169e25af91.
Polonen et al., Automatic Intensity Quantification of Fluorescence Targets from microscope Images with Maximum Likelihood Estimation. 17th European Signal Processing Conference. Aug. 24, 2009; 1072-6.—retrieved online Oct. 25, 2016.
Pratt et al., The RoboKnee: An exoskeleton for enhancing strength and endurance during walking. in IEEE Int. Conf. Robotics and Automation (ICRA). New Orleans, USA. Apr. 26, 2004; 3: 2430-5.
Quintero et al., Control and Implementation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals. in IEEE International Conference on Rehabilitation Robotics. Jun. 29, 2011; 6 pages.
Ramuz et al., Transparent, Optical, Pressure-Sensitive Artificial Skin for Large-Area Stretchable Electronics. Advanced Materials. Jun. 26, 2012; 24(24):3223-7. [Online] Available:http://doi.wiley.com/10.1002/adma.201200523.
Reid et al., Biomechanical assessment of rucksack shoulder strap attachment location: effect on load distribution to the torso. RTO HFM Specialists Meeting on Soldier Mobility: Innovations in Load Carriage System Design and Evaluation. NATO-RTO Meeting Proceedings: MP-056 (Neuilly-sur Seine: NATO). Jun. 2000; 9 pages.
Royer et al., Manipulations of Leg Mass and Moment of Inertia: Effects on Energy Cost of Walking. Medicine & Science. in Sports & Exercise. Apr. 1, 2005; 37(4): 649-656.
Schiele, Ergonomics of Exoskeletons: Objective Performance Metrics. in Euro Haptics conference on Haptic Interfaces for Virtual Environmental Teleoperator Systems. Salt Lake City, UT, USA. Mar. 18, 2009: 103-8.
Scilingo et al., Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sensors Journal. Sep. 4, 2003; 3(4): 460-7. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1226639.
Silva et al., Wireless Hydrotherapy Smart-Suit Network for Posture Monitoring. 2007 IEEE International Symposium on Industrial Electronics. Jun. 2007; 2713-7.
Sinclair et al., Determination of Gait Events Using an Externally Mounted Shank Accelerometer. Journal of Applied Biomechanics. Feb. 1, 2013; 29(1): 118-22.
Strauser et al., The development and testing of a human machine interface for a mobile medical exoskeleton. In IEEE Int Conf, Intelligent Robots and Systems. San. CA USA. Sep. 25, 2011 ; 4911-6.
Tesconi et al., Wearable sensorized system for analyzing the lower limb movement during rowing activity. 2007 IEEE International Symposium on Industrial Electronics. Jun. 4, 2007; 2793-6. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4375052.
Tiwana et al., A review of tactile sensing technologies with applications in biomedical engineering. Sensors and Actuators A: Physical. Jun. 1, 2012; 179: 17-31. [Online]. Available:http://linkinghub.elsevier.com/retrieve/pii/S0924424712001641.
Vogt et al., Design and Characterization of a Soft Multi-Axis Force Sensor Using Embedded Microfluidic Channels. IEE Sensors Journal. Jul. 4, 2013; 13(10): 4056-64.
Walsh et al., Quasi-Passive Leg Exoskeleton for Load Carrying Augmentation. International Journal of Humanoid Robotics, Special Issue: Active Exoskeletons. Sep. 2007; 4(3): 487-506.
Wehner et al., Experimental characterization of components for active soft orthotics. in Submitted in Proc. IEEE Int. Conf. Biomed. Rob. Biomechatron. Roma, Italy. Jun. 24, 2012; 1586-92.
Wehner et al., Lower Extremity Exoskeleton Reduces Back Forces in Lifting. ASME Dynamic Systems and Control Conference. Hollywood, California, USA. Oct. 12, 2009; 49-56.
Wehner, Man to Machine, Applications in Electromyography. In: EMG Methods for Evaluation Muscle and Nerve Functions. Jan. 2012 Schwartz, Ed.. Chapter 22: 29 pages.
Woodman, An introduction to inertial navigation. University of Cambridge Computer Laboratory Technical Report UCAM-CL-TR-696. Aug. 2007; 37 pages.
Yamada et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nature nanotechnology. May 2011; 6(5): 296-301. [Online] Available: http://www.ncbi.nlm.nih.gov/pubmed/21441912.
Zhang et al., Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sensors and Actuators A: Physical. Jun. 2012; 179: 83-91. [Online]. Available:http://linkinghub.elsevier.com/retrieve/pii/S0924424712001938.
Zhang et al., Human-in-the-Loop Optimization of Exoskeleton Assistance During Walking. Science. Jun. 23, 2017; 356(6344): 1280-4.
Zoss et al., Biomechanical deign of the Berkeley lower extremity exoskeleton (BLEEX). Mechatronics, IEE/ASME Transactions on. Apr. 10, 2006; 11(2): 128-138.
Related Publications (1)
Number Date Country
20200079643 A1 Mar 2020 US
Provisional Applications (1)
Number Date Country
62471134 Mar 2017 US