Systems and methods for improving detection of a return signal in a light ranging and detection system

Information

  • Patent Grant
  • 11294041
  • Patent Number
    11,294,041
  • Date Filed
    Friday, December 8, 2017
    7 years ago
  • Date Issued
    Tuesday, April 5, 2022
    2 years ago
Abstract
Described herein are systems and methods for improving detection of a return signal in a light ranging and detection system. The system comprises a transmitter and a receiver. A first sequence of pulses may be encoded with an anti-spoof signature and transmitted in a laser beam. A return signal, comprising a second sequence of pulses, may be received by the receiver and the anti-spoof signature extracted from the second sequence of pulses. If based on the extraction, the first and second sequences of pulses match, the receiver outputs return signal data. If based on the extraction, the first and second sequence of pulses do not match, the return signal is disregarded. The system may dynamically change the anti-spoofing signature for subsequent sequences of pulses. Additionally, the first sequence of pulses may be randomized relative to a prior sequence of pulses.
Description
BACKGROUND

A. Technical Field


The present disclosure relates generally to systems and methods for light transmission and reception, and more particularly to improving the security of light transmission and reception systems by applying unique and identifiable light pulse sequences to hinder spoofing of reflected light detected by the system(s).


B. Background


Light detection and ranging systems, such as a LIDAR system, operate by transmitting a series of light pulses that reflect off objects. The reflected signal, or return signal, is received by the light detection and ranging system, and based on the detected time-of-flight (TOF), the system determines the range (distance) the system is located from the object. Light detection and ranging systems may have a wide range of applications including autonomous driving and aerial mapping of a surface. These applications may place a high priority on the security, accuracy and reliability of the operation. If another party intentionally or unintentionally distorts the laser beam or the return signal, the accuracy and reliability may be negatively impacted. One form of disruption may be a spoofing attack where a malicious party distorts or impersonate the characteristics of the return signal.


Accordingly, what is needed are systems and methods for improving detection of a return signal in a light detection and ranging system including mitigating the impact of a spoofing attack.





BRIEF DESCRIPTION OF THE DRAWINGS

References will be made to embodiments of the invention, examples of which may be illustrated in the accompanying figures. These figures are intended to be illustrative, not limiting. Although the invention is generally described in the context of these embodiments, it should be understood that it is not intended to limit the scope of the invention to these particular embodiments. Items in the figures are not to scale.


Figure (“FIG.”) 1 depicts the operation of a light detection and ranging system according to embodiments of the present document.



FIG. 2 illustrates the operation of a light detection and ranging system and multiple return light signals according to embodiments of the present document.



FIG. 3A depicts a LIDAR system with a rotating mirror according to embodiments of the present document.



FIG. 3B depicts a LIDAR system with rotating electronics in a rotor-shaft structure comprising a rotor and a shaft according to embodiments of the present document.



FIGS. 4A, 4B and 4C each depict an anti-spoofing signature according to embodiments of the present disclosure.



FIG. 5 depicts a system for mitigating spoofing of a return signal in a light detection and ranging system according to embodiments of the present disclosure.



FIGS. 6A and 6B depict flowcharts for mitigating spoofing of a return signal in a light detection and ranging system according to embodiments of the present disclosure.



FIG. 7 depicts a simplified block diagram of a computing device/information handling system, in accordance with embodiments of the present document.





DETAILED DESCRIPTION OF EMBODIMENTS

In the following description, for purposes of explanation, specific details are set forth in order to provide an understanding of the invention. It will be apparent, however, to one skilled in the art that the invention can be practiced without these details. Furthermore, one skilled in the art will recognize that embodiments of the present invention, described below, may be implemented in a variety of ways, such as a process, an apparatus, a system, a device, or a method on a tangible computer-readable medium.


Components, or modules, shown in diagrams are illustrative of exemplary embodiments of the invention and are meant to avoid obscuring the invention. It shall also be understood that throughout this discussion that components may be described as separate functional units, which may comprise sub-units, but those skilled in the art will recognize that various components, or portions thereof, may be divided into separate components or may be integrated together, including integrated within a single system or component. It should be noted that functions or operations discussed herein may be implemented as components. Components may be implemented in software, hardware, or a combination thereof.


Furthermore, connections between components or systems within the figures are not intended to be limited to direct connections. Rather, data between these components may be modified, re-formatted, or otherwise changed by intermediary components. Also, additional or fewer connections may be used. It shall also be noted that the terms “coupled,” “connected,” or “communicatively coupled” shall be understood to include direct connections, indirect connections through one or more intermediary devices, and wireless connections.


Reference in the specification to “one embodiment,” “preferred embodiment,” “an embodiment,” or “embodiments” means that a particular feature, structure, characteristic, or function described in connection with the embodiment is included in at least one embodiment of the invention and may be in more than one embodiment. Also, the appearances of the above-noted phrases in various places in the specification are not necessarily all referring to the same embodiment or embodiments.


The use of certain terms in various places in the specification is for illustration and should not be construed as limiting. A service, function, or resource is not limited to a single service, function, or resource; usage of these terms may refer to a grouping of related services, functions, or resources, which may be distributed or aggregated.


The terms “include,” “including,” “comprise,” and “comprising” shall be understood to be open terms and any lists the follow are examples and not meant to be limited to the listed items. Any headings used herein are for organizational purposes only and shall not be used to limit the scope of the description or the claims. Each reference mentioned in this patent document is incorporate by reference herein in its entirety.


Furthermore, one skilled in the art shall recognize that: (1) certain steps may optionally be performed; (2) steps may not be limited to the specific order set forth herein; (3) certain steps may be performed in different orders; and (4) certain steps may be done concurrently.


A. Light Detection and Ranging System

A light detection and ranging system, such as a LIDAR system, may be a tool to measure the shape and contour of the environment surrounding the system. LIDAR systems may be applied to numerous applications including both autonomous navigation and aerial mapping of a surface. LIDAR systems emit a light pulse that is subsequently reflected off an object within the environment in which a system operates. The time each pulse travels from being emitted to being received may be measured (i.e., time-of-flight “TOF”) to determine the distance between the object and the LIDAR system. The science is based on the physics of light and optics.


In a LIDAR system, light may be emitted from a rapidly firing laser. Laser light travels through a medium and reflects off points of things in the environment like buildings, tree branches and vehicles. The reflected light energy returns to a LIDAR receiver (detector) where it is recorded and used to map the environment.



FIG. 1 depicts operation 100 of a light detection and ranging components 102 and data analysis & interpretation 109 according to embodiments of the present document. Light detection and ranging components 102 may comprise a transmitter 104 that transmits emitted light signal 110, receiver 106 comprising a detector, and system control and data acquisition 108. Emitted light signal 110 propagates through a medium and reflects off object 112. Return light signal 114 propagates through the medium and is received by receiver 106. System control and data acquisition 108 may control the light emission by transmitter 104 and the data acquisition may record the return light signal 114 detected by receiver 106. Data analysis & interpretation 109 may receive an output via connection 116 from system control and data acquisition 108 and perform data analysis functions. Connection 116 may be implemented with a wireless or non-contact communication method. Transmitter 104 and receiver 106 may include optical lens and mirrors (not shown). Transmitter 104 may emit a laser beam having a plurality of pulses in a particular sequence. In some embodiments, light detection and ranging components 102 and data analysis & interpretation 109 comprise a LIDAR system.



FIG. 2 illustrates the operation 200 of light detection and ranging system 202 including multiple return light signals: (1) return signal 203 and (2) return signal 205 according to embodiments of the present document. Light detection and ranging system 202 may be a LIDAR system. Due to the laser's beam divergence, a single laser firing often hits multiple objects producing multiple returns. The light detection and ranging system 202 may analyze multiple returns and may report either the strongest return, the last return, or both returns. Per FIG. 2, light detection and ranging system 202 emits a laser in the direction of near wall 204 and far wall 208. As illustrated, the majority of the beam hits the near wall 204 at area 206 resulting in return signal 203, and another portion of the beam hits the far wall 208 at area 210 resulting in return signal 205. Return signal 203 may have a shorter TOF and a stronger received signal strength compared with return signal 205. Light detection and ranging system 202 may record both returns only if the distance between the two objects is greater than minimum distance. In both single and multiple return LIDAR systems, it is important that the return signal is accurately associated with the transmitted light signal so that an accurate TOF is calculated.


Some embodiments of a LIDAR system may capture distance data in a 2-D (i.e. single plane) point cloud manner. These LIDAR systems may be often used in industrial applications and may be often repurposed for surveying, mapping, autonomous navigation, and other uses. Some embodiments of these devices rely on the use of a single laser emitter/detector pair combined with some type of moving mirror to effect scanning across at least one plane. This mirror not only reflects the emitted light from the diode, but may also reflect the return light to the detector. Use of a rotating mirror in this application may be a means to achieving 90-180-360 degrees of azimuth view while simplifying both the system design and manufacturability.



FIG. 3 depicts a LIDAR system 300 with a rotating mirror according to embodiments of the present document. LIDAR system 300 employs a single laser emitter/detector combined with a rotating mirror to effectively scan across a plane. Distance measurements performed by such a system are effectively two-dimensional (i.e., planar), and the captured distance points are rendered as a 2-D (i.e., single plane) point cloud. In some embodiments, but without limitations, rotating mirrors are rotated at very fast speeds e.g., thousands of revolutions per minute. A rotating mirror may also be referred to as a spinning mirror.


LIDAR system 300 comprises laser electronics 302, which comprises a single light emitter and light detector. The emitted laser signal 301 may be directed to a fixed mirror 304, which reflects the emitted laser signal 301 to rotating mirror 306. As rotating mirror 306 “rotates”, the emitted laser signal 301 may reflect off object 308 in its propagation path. The reflected signal 303 may be coupled to the detector in laser electronics 302 via the rotating mirror 306 and fixed mirror 304.



FIG. 3B depicts a LIDAR system 350 with rotating electronics in a rotor-shaft structure comprising a rotor 351 and a shaft 361 according to embodiments of the present document. Rotor 351 may have a cylindrical shape and comprise a cylindrical hole in the center of rotor 351. Shaft 361 may be positioned inside the cylindrical hole. As illustrated, rotor 351 rotates around shaft 361. These components may be included in a LIDAR system. Rotor 351 may comprise rotor components 352 and shaft 361 may comprise shaft components 366. Included in rotor components 352 is a top PCB and included in shaft components 366 is a bottom PCB. In some embodiments, rotor components 352 may comprise light detection and ranging components 102 and shaft components 366 may comprise data analysis & interpretation 109 of FIG. 1.


Coupled to rotor components 352 via connections 354 are ring 356 and ring 358. Ring 356 and ring 358 are circular bands located on the inner surface of rotor 351 and provide electrode plate functionality for one side of the air gap capacitor. Coupled to shaft components 366 via connections 364 are ring 360 and ring 362. Ring 360 and ring 362 are circular bands located on the outer surface of shaft 361 and provide electrode plate functionality for the other side of the air gap capacitor. A capacitor C1 may be created based on a space between ring 356 and ring 360. Another capacitor C2 may be created based on a space between ring 358 and ring 362. The capacitance for the aforementioned capacitors may be defined, in part, by air gap 368.


Ring 356 and ring 360 are the electrode plate components of capacitor C1 and ring 358 and ring 362 are the electrode plate components of capacitor C2. The vertical gap 370 between ring 356 and ring 358 may impact the performance of a capacitive link between capacitor C1 and capacitor C2 inasmuch as the value of the vertical gap 370 may determine a level of interference between the two capacitors. One skilled in the art will recognize that rotor 351 and shaft 361 may each comprise N rings that may support N capacitive links.


As previously noted, time of flight or TOF is the method a LIDAR system uses to map the environment and provides a viable and proven technique used for detecting target objects. Simultaneously, as the lasers fire, firmware within a LIDAR system may be analyzing and measuring the received data. The optical receiving lens within the LIDAR system acts like a telescope gathering fragments of light photons returning from the environment. The more lasers employed in a system, the more the information about the environment may be gathered. Single laser LIDAR systems may be at a disadvantage compared with systems with multiple lasers because fewer photons may be retrieved, thus less information may be acquired. Some embodiments, but without limitation, of LIDAR systems have been implemented with 8, 16, 32 and 64 lasers. Also, some LIDAR embodiments, but without limitation, may have a vertical field of view (FOV) of 30-40° with laser beam spacing as tight as 0.3° and may have rotational speeds of 5-20 rotations per second.


The rotating mirror functionality may also be implemented with a solid state technology such as MEMS.


B. Anti-Spoofing of a Return Signal

One objective of embodiments of the present documents is the creation of a spoof-proof light detection and ranging system. As used herein, the light detection and ranging system may be, but not limited to, a LIDAR system.


A spoof-proof LIDAR system may have the ability to analyze a return signal comprising a sequence of pulses and match the received sequence of pulses with a transmitted sequence of pulses in order to distinguish from other spurious pulses. As used herein, a return signal comprising a sequence of pulses may be equivalent to a multiple return signal or a single-return signal.


A spoof-proof system may be based on anti-spoofing signatures. An anti-spoofing signature may uniquely identify a valid reflected light signal. An anti-spoofing signature may be encoded or embedded in the pulses that are subsequently fired by the LIDAR system. When the LIDAR system receives a return signal, the LIDAR system may extract the anti-spoofing signature from the single-return or multiple return signal and determine if the decoded pulses of the received return signal match the pulses transmitted in the laser beam. If the pulses do match, the return signal may be considered authenticated and data may be decoded from the return signal pulses. If the pulses do not match, the return signal may be considered a spurious signal, and the return signal may be discarded. Effectively, the system authenticates or validates the return signal using the characteristics of the transmitted pulses that comprises the embedded anti-spoofing signature. The system may identify intentional or unintentional spurious return signals than may erroneously trigger a bogus return signal calculation. That is, the LIDAR system may distinguish and confirm the transmitted pulses from spurious pulses. Moreover, the system may include two features to mitigate spoofing of return signals:


First, the LIDAR system may dynamically change the characteristics of the pulses for the next or subsequent laser firing. As previously discussed, the characteristics of the pulses may be defined by the anti-spoofing signature. This feature allows the LIDAR system to respond to a spoofing attack of spurious pulses. A malicious party may be monitoring the transmitted laser beam or return signals in order to spoof the LIDAR system. With a static operation, rather than a dynamic operation, for the anti-spoofing signature, the malicious party may be able to readily spoof the LIDAR system.


The LIDAR system may also dynamically change the signature for the next firing when the transmitted sequences of pulse match the return signal sequences of pulses. As noted, by dynamically changing the anti-spoofing signature for the next laser firing, the potential for intentional or unintentional spoofing may be mitigated. Typically, the time for the time of flight (TOF) for a laser beam to travel to an object and be reflected back to the LIDAR system is in the order of 0.5 to 2 microseconds. In this time period, the LIDAR system may analyze the return signal and decide to change or not the signature for the next laser firing.


In various embodiments, the LIDAR system may also dynamically change the transmitted sequence of pulses to include the anti-spoofing signature as well as adapt the pulse sequence to the environment in which it operates. For example, if a LIDAR system is employed within an autonomous navigation system, weather patterns and/or traffic congestion may affect the manner in which the light signals propagate. In this embodiment, the LIDAR system may adjust the pattern of light pulses to not only uniquely identify it to a receiver but also to improve performance of the system based on the environment in which it operates.


Second, to add another element of security, the LIDAR system may randomly alter transmitted pulses. Encoding based on a random algorithm may be initiated by an instruction from a controller. This feature may be beneficial to mitigate the impact of non-intentional return signals. Unintentional return signals may increase with the growth of autonomous driving based on LIDAR systems.


Anti-spoofing signatures may be based, but without limitations, the number of pulses, the distance between pulses, the amplitude and ratio of amplitudes of the pulses and the shape of pulses. As an example of one anti-spoofing signature, the number of pulses in a two firing sequences may comprise X pulses in a first sequence and Y pulses in a second sequence, where X is not equal to Y.



FIGS. 4A, 4B and 4C each depict an anti-spoofing signature 400 according to embodiments of the present disclosure. In these figures, A represents the amplitude of the pulses and di represents distance in the time line, T. FIG. 4A illustrates a sequence of four pulses where a variation of distances between each pulse may define the anti-spoofing signature. For example, the distance between pulse, P1, and pulse P2 may be distance d1. The distance between pulse, P2 and pulse P3 may be distance d2. The distance between pulse P3 and pulse P4 may be d3. As illustrated, d1>d3>d2.



FIG. 4B illustrates a sequence of three pulses where a variation of the amplitudes may define the anti-spoofing signature. For example, pulse P5 may have an amplitude of a2. Pulse P6 may have an amplitude of a4. Pulse P7 may have an amplitude of a3. As illustrated, a4>a3>a2. The signature may be based on a fixed ratio for the amplitudes of the pulses and/or the signature may be based on variable ratios between pulses and/or the signature may be based on the absolute amplitudes as defined by pre-determined or dynamic threshold.



FIG. 4C illustrates a sequence of three pulses where a variation of pulse shapes may define the anti-spoofing signature. In the embodiment of FIG. 4C, the variation pulse shapes may be a variation of pulse widths. For example, pulse P8 may have a pulse width of d4. Pulse P9 may have a pulse width of d5. Pulse P10 may have a pulse width of d6, as illustrated d5>d6>d4.


One skilled in the art will recognize that the anti-spoofing signatures may vary based on the application and environment in which embodiments of the invention are implemented, all of which are intended to fall under the scope of the invention. Anti-spoofing signatures may be utilized separately or in combination. Anti-spoofing signature detection may be implemented with fixed or variable thresholds.



FIG. 5 depicts a system 500 for mitigating spoofing of a return signal in a light ranging and detection system according to embodiments of the present disclosure. As used herein, an “anti-spoofing signature” may be referred to as a “signature.” As previously discussed, an anti-spoofing signature may be based on characteristics of pulses including variations in the number of pulses in two or more sequences of pulses, variations in the distances between pulses, variations of pulse amplitude ratios, or variations of pulse widths.


Signature extractor 524 may send a signal, which specifies a signature to be embedded in a sequence of pulses, to anti-spoof encoder 506 and controller 504. Anti-spoof encoder 506 may generate, based on the specified signature, signature encoding signal 507, which comprise the sequence of pulses with the embedded signature to be fired by laser 514. To create a randomized element in the sequences of pulses, random encoder 508 (based on instructions from controller 504) may provide a random adjustment to the current pulse sequence relative to a prior pulse sequence. Random encoder 508 is operable to randomize the characteristics of the sequences of pulses of the transmitted laser beam relative to a prior sequence of transmitted pulses. Controller 504 may initiate a random adjustment to the current pulse sequence even if a spoofing attack has not been identified. Signature extractor 524 may provide controller 504 status for the anti-spoofing operation.


The signature encoding signal 507 may be coupled to multiplexer 510. In turn, multiplexer 510 combines randomized signal 509 from random encoder 508 and signature encoding signal 507 from anti-spoofing encoder 506. An output of the multiplexer 510 may be coupled to transmitter 512, which may be coupled to laser 514. Upon receiving the pulse sequence from the transmitter 512, laser 514 fires laser beam 516 that includes a sequence of pulses with the embedded signature.


Light return signal 518 may be generated by a reflection off an object by laser beam 516, and may be received by photo detector 520. Alternatively, light return signal 518 may be a spoof return signal generated by another light transmitter. The spoof return signal may be an intentional or unintentional return signal.


Photo detector 520 converts the signal from the optical domain to the electrical domain and couples return signal information to receiver 522. Receiver 522 may output a digitized form of the return signal information to signature extractor 524 or an analog signal based on the specific characteristics of the photo detector. Signature extractor 524 processes the return signal information and extracts the signature in order to authenticate or validates the return signal. If characteristics of the pulse sequence of the return signal match characteristics of the transmitted sequence of pulses, then the multiple return signal may be considered authenticated. Signature extractor may proceed to output data 526. Signature extractor may also proceed to output alert 528, which may be coupled to a higher-level controller.


If characteristics of the return signal sequence do not match characteristics of the transmitted sequence of pulses, then the return signal may be considered not authenticated. In response, signature extractor 524 may dynamically direct anti-spoof encoder 506 to select another signature for the next laser firing. In other words, signature extractor 524 may dynamically change the anti-spoofing signature for a next sequence of pulses to be transmitted relative to a prior sequence of transmitted pulses. The threshold for determining the matching of the pulses may be pre-determined or dynamically adjusted based on a variation of performance parameters.


Controller 504 receives environmental condition 502, which may include information on weather, congestion, test/calibration/factory conditions. Based on environmental conditions 502 and instructions from signature extractor 524, controller 504 may provide instructions for the operation of random encoder 508 and multiplexer 510.



FIGS. 6A and 6B depict flowcharts 600 and 650 for mitigating spoofing of a return signal in a light ranging and detection system according to embodiments of the present disclosure. The method comprises the following steps at a light ranging and detection system:


Selecting an anti-spoofing signature. (step 602)


Encoding a sequence of pulses with the anti-spoofing signature. (step 606)


Activating an encoding random algorithm. (step 604) (optional)


Modify the sequence of pulses based on the encoding random algorithm, if activated. (step 608)


Firing a laser beam comprising the modified sequence of pulses. (step 609)


At an object, generating a valid multiple return signal when the laser beam reflects off the object. (step 610)


Or, at another light transmitter, generating a spurious multiple return signal. (step 611)


Receiving and decoding the received signal that comprises the valid multiple return signal or the spurious multiple return signal. (step 612)


Extracting the anti-spoofing signature from the received signal. (step 614)


Determining if pulse characteristics of the pulses in the received signal match the pulse characteristics in the transmitted sequences of pulses? (step 616)


If yes, generating a data output. (step 618)


If no, generate an alert (step 617) and repeat step 602.


Embodiments of the present document may include a system comprising a signature extractor operable for selecting an anti-spoofing signature; an anti-spoofing encoder operable to embed the anti-spoofing signature in a transmitted laser beam comprises a sequence of pulses; a controller; and a decoder operable to decode a return signal. The signature extractor extracts the anti-spoofing signature from the decoded return signal and determines whether characteristics of the decoded return signal match characteristics of the sequences of pulses of the transmitted laser beam. If the decoded return signal matches characteristics of the transmitted laser beam, the signature extractor validates the decoded return signal and outputs data of the decoded return signal. If the decoded return signal does not match characteristics of the transmitted laser beam, the signature extractor invalidates the decoded return signal, disregards the decoded return signal and outputs an alert. For a next sequence of pulses to be transmitted, the signature extractor dynamically changes the anti-spoofing signature.


The system further comprises a random encoder operable to randomize the characteristics of the sequences of pulses of the transmitted laser beam relative to a prior sequence of transmitted pulses. The controller receives environmental conditions that define characteristics for the sequence of pulses of the transmitted laser beam. The anti-spoof signature is dynamically changed based on the environmental conditions. The anti-spoof signature is dynamically changed based on the environmental conditions. The characteristics for the sequences of pulses of the transmitted laser beam are randomized based on the environmental conditions. The environmental conditions comprise weather, congestion, or test/calibration/factory conditions. The anti-spoofing signature is based on characteristics of pulses including variations in a number of pulses in two or more sequences of pulses, variations in distances between pulses, variations of pulse amplitude ratios, or variations of pulse widths.


C. System Embodiments

In embodiments, aspects of the present patent document may be directed to or implemented on information handling systems/computing systems. For purposes of this disclosure, a computing system may include any instrumentality or aggregate of instrumentalities operable to compute, calculate, determine, classify, process, transmit, receive, retrieve, originate, route, switch, store, display, communicate, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes. For example, a computing system may be an optical measuring system such as a LIDAR system that uses time of flight to map objects within its environment. The computing system may include random access memory (RAM), one or more processing resources such as a central processing unit (CPU) or hardware or software control logic, ROM, and/or other types of memory. Additional components of the computing system may include one or more network or wireless ports for communicating with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, touchscreen and/or a video display. The computing system may also include one or more buses operable to transmit communications between the various hardware components.



FIG. 7 depicts a simplified block diagram of a computing device/information handling system (or computing system) according to embodiments of the present disclosure. It will be understood that the functionalities shown for system 700 may operate to support various embodiments of an information handling system—although it shall be understood that an information handling system may be differently configured and include different components.


As illustrated in FIG. 7, system 700 includes one or more central processing units (CPU) 701 that provides computing resources and controls the computer. CPU 701 may be implemented with a microprocessor or the like, and may also include one or more graphics processing units (GPU) 717 and/or a floating point coprocessor for mathematical computations. System 700 may also include a system memory 702, which may be in the form of random-access memory (RAM), read-only memory (ROM), or both.


A number of controllers and peripheral devices may also be provided, as shown in FIG. 7. An input controller 703 represents an interface to various input device(s) 704, such as a keyboard, mouse, or stylus. There may also be a wireless controller 705, which communicates with a wireless device 706. System 700 may also include a storage controller 707 for interfacing with one or more storage devices 708 each of which includes a storage medium such as flash memory, or an optical medium that might be used to record programs of instructions for operating systems, utilities, and applications, which may include embodiments of programs that implement various aspects of the present invention. Storage device(s) 708 may also be used to store processed data or data to be processed in accordance with the invention. System 700 may also include a display controller 709 for providing an interface to a display device 711. The computing system 700 may also include an automotive signal controller 712 for communicating with an automotive system 713. A communications controller 714 may interface with one or more communication devices 715, which enables system 700 to connect to remote devices through any of a variety of networks including an automotive network, the Internet, a cloud resource (e.g., an Ethernet cloud, an Fiber Channel over Ethernet (FCoE)/Data Center Bridging (DCB) cloud, etc.), a local area network (LAN), a wide area network (WAN), a storage area network (SAN) or through any suitable electromagnetic carrier signals including infrared signals.


In the illustrated system, all major system components may connect to a bus 716, which may represent more than one physical bus. However, various system components may or may not be in physical proximity to one another. For example, input data and/or output data may be remotely transmitted from one physical location to another. In addition, programs that implement various aspects of this invention may be accessed from a remote location (e.g., a server) over a network. Such data and/or programs may be conveyed through any of a variety of machine-readable medium including, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media; and hardware devices that are specially configured to store or to store and execute program code, such as application specific integrated circuits (ASICs), programmable logic devices (PLDs), flash memory devices, and ROM and RAM devices.


Embodiments of the present invention may be encoded upon one or more non-transitory computer-readable media with instructions for one or more processors or processing units to cause steps to be performed. It shall be noted that the one or more non-transitory computer-readable media shall include volatile and non-volatile memory. It shall be noted that alternative implementations are possible, including a hardware implementation or a software/hardware implementation. Hardware-implemented functions may be realized using ASIC(s), programmable arrays, digital signal processing circuitry, or the like. Accordingly, the “means” terms in any claims are intended to cover both software and hardware implementations. Similarly, the term “computer-readable medium or media” as used herein includes software and/or hardware having a program of instructions embodied thereon, or a combination thereof. With these implementation alternatives in mind, it is to be understood that the figures and accompanying description provide the functional information one skilled in the art would require to write program code (i.e., software) and/or to fabricate circuits (i.e., hardware) to perform the processing required.


It shall be noted that embodiments of the present invention may further relate to computer products with a non-transitory, tangible computer-readable medium that have computer code thereon for performing various computer-implemented operations. The media and computer code may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind known or available to those having skill in the relevant arts. Examples of tangible computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media; and hardware devices that are specially configured to store or to store and execute program code, such as application specific integrated circuits (ASICs), programmable logic devices (PLDs), flash memory devices, and ROM and RAM devices. Examples of computer code include machine code, such as produced by a compiler, and files containing higher level code that are executed by a computer using an interpreter. Embodiments of the present invention may be implemented in whole or in part as machine-executable instructions that may be in program modules that are executed by a processing device. Examples of program modules include libraries, programs, routines, objects, components, and data structures. In distributed computing environments, program modules may be physically located in settings that are local, remote, or both.


One skilled in the art will recognize no computing system or programming language is critical to the practice of the present invention. One skilled in the art will also recognize that a number of the elements described above may be physically and/or functionally separated into sub-modules or combined together.


It will be appreciated to those skilled in the art that the preceding examples and embodiments are exemplary and not limiting to the scope of the present disclosure. It is intended that all permutations, enhancements, equivalents, combinations, and improvements thereto that are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the true spirit and scope of the present disclosure. It shall also be noted that elements of any claims may be arranged differently including having multiple dependencies, configurations, and combinations.

Claims
  • 1. A system comprising: a signature extractor operable for selecting a transmission anti-spoofing signature to be embedded in a transmitted laser beam;an anti-spoofing encoder operable to embed the transmission anti-spoofing signature in the transmitted laser beam;a controller;a photo detector operable to receive a reflection of the transmitted laser beam off an object and generate a return signal; anda data acquisition component,wherein, to validate the return signal, the signature extractor extracts a return anti- spoofing signature from the return signal and determines whether one or more characteristics of a received pulse sequence of the return anti-spoofing signature match, within respective thresholds, one or more characteristics of a transmitted sequence of pulses of the transmission anti-spoofing signature, the one or more characteristics including one or more of variations in a number of pulses, variations in distances between pulses, variations of pulse amplitude ratios, variations of pulse widths, or a combination thereof, andwherein the data acquisition component determines, based on at least one pulse of the received pulse sequence of the return anti-spoofing signature of the validated return signal, a distance between the photo detector and the object, such that the at least one pulse of the received pulse sequence of the return anti-spoofing signature is used to validate the return signal and to determine the distance between the photo detector and the object.
  • 2. The system of claim 1, wherein if the one or more characteristics of the return signal match the one or more characteristics of the transmitted laser beam, the signature extractor validates the return signal and outputs data of the return signal.
  • 3. The system of claim 1, wherein if the one or more characteristics of the return signal do not match the one or more characteristics of the transmitted laser beam, the signature extractor outputs an alert.
  • 4. The system of claim 1, wherein for a next sequence of pulses to be transmitted, the signature extractor dynamically changes the transmission anti-spoofing signature.
  • 5. The system of claim 1, further comprising a random encoder operable to randomize the one or more characteristics of the sequence of pulses to be transmitted relative to a prior sequence of transmitted pulses.
  • 6. The system of claim 1, wherein data indicating environmental conditions received by the controller define the one or more characteristics for the sequence of pulses of the transmitted laser beam.
  • 7. The system of claim 6, wherein the transmission anti-spoofing signature is dynamically changed based on the environmental conditions.
  • 8. The system of claim 6, wherein the one or more characteristics of the sequence of pulses of the transmitted laser beam are randomized based on the environmental conditions.
  • 9. The system of claim 6, wherein the environmental conditions comprise weather, congestion, or test/calibration/factory conditions.
  • 10. The system of claim 1, wherein the anti-spoofing encoder is operable to generate the transmission anti-spoofing signature based on pulses having the variations in a number of pulses in two or more sequences of pulses, the variations in distances between pulses, the variations of pulse amplitude ratios, or the variations of pulse widths.
  • 11. A method comprising: selecting a transmission anti-spoofing signature;encoding the transmission anti-spoofing signature in a first sequence of pulses;firing a laser beam comprising the first sequence of pulses;receiving, with a photo detector, a reflection of the laser beam off an object and generating a return signal;determining whether the return signal is validated by extracting a return anti-spoofing signature from the return signal and determining whether one or more characteristics of a second sequence of pulses of the return anti-spoofing signature match, within respective thresholds, one or more characteristics of the first sequence of pulses, wherein the one or more characteristics include one or more variations in a number of pulses, variations in distances between pulses, variations of pulse amplitude ratios, variations of pulse widths, or a combination thereof; anddetermining, based on at least one pulse of the second sequence of pulses of the return anti-spoofing signature of the validated return signal, a distance between the photo detector and the object, such that the at least one pulse of the second sequence of pulses of the return anti- spoofing signature is used to validate the return signal and to determine the distance between the photo detector and the object.
  • 12. The method of claim 11, further comprising dynamically changing the transmission anti-spoofing signature for a next sequence of pulses to be transmitted.
  • 13. The method of claim 11, further comprising randomizing characteristics of a next sequence of pulses to be transmitted.
  • 14. The method of claim 11, further comprising, if the second sequence of pulses matches the first sequence of pulses, generating a data output of the return signal.
  • 15. The method of claim 11, further comprising, if the second sequence of pulses does not match the first sequence of pulses, generating an alert.
  • 16. The method of claim 11, further comprising, adjusting the first sequence of pulses based on environmental conditions, wherein the environmental conditions comprise weather, congestion, test/calibration/factory conditions.
  • 17. The method of claim 11, wherein anti-spoofing signature detection is implemented with variable thresholds.
  • 18. A non-transitory computer readable storage medium having computer program code stored thereon, the computer program code, when executed by one or more processors implemented on a light detection and ranging system, causes the light detection and ranging system to perform a method comprising: selecting a second anti-spoofing signature for a second sequence of pulses that is different than a first anti-spoofing signature utilized in a previously transmitted first sequence of pulses;encoding the second anti-spoofing signature in the second sequence of pulses;randomizing the second sequence of pulses;firing a laser beam comprising the second sequence of pulses;receiving, with a photo detector, a reflection of the laser beam off an object and generating a return signal;determining whether the return signal is validated by extracting a return anti-spoofing signature from the return signal and determining whether one or more characteristics of a third sequence of pulses of the return anti-spoofing signature match, within respective thresholds, one or more characteristics of the second sequence of pulses, wherein the one or more characteristics include one or more variations in a number of pulses, variations in distances between pulses, variations of pulse amplitude ratios, variations of pulse widths, or a combination thereof; anddetermining, based on at least one pulse of the third pulse sequence of the return anti-spoofing signature of the validated return signal, a distance between the photo detector and the object, such that the at least one pulse of the third pulse sequence of the return anti-spoofing signature is used to validate the return signal and to determine the distance between the photo detector and the object.
  • 19. The storage medium of claim 18, wherein the method further comprises: if the third sequence of pulses matches the second sequence of pulses, generating a data output based on the return signal.
  • 20. The storage medium of claim 18, wherein the method further comprises: if the third sequence of pulses does not match the second sequence of pulses, generating an alert.
US Referenced Citations (411)
Number Name Date Kind
3064252 Varela Nov 1962 A
3373441 Zadig Mar 1968 A
3551845 Zelina Dec 1970 A
3636250 Haeff Jan 1972 A
3686514 Dube et al. Aug 1972 A
3781111 Fletcher et al. Dec 1973 A
3862415 Hamden, Jr. et al. Jan 1975 A
3897150 Bridges et al. Jul 1975 A
3921081 Lane Nov 1975 A
4179216 Theurer et al. Dec 1979 A
4199697 Edwards Apr 1980 A
4201442 McMahon et al. May 1980 A
4212534 Bodlaj Jul 1980 A
4220103 Kasahara et al. Sep 1980 A
4477184 Endo Oct 1984 A
4516837 Soret et al. May 1985 A
4634272 Endo Jan 1987 A
4656462 Araki et al. Apr 1987 A
4681433 Aeschlimann Jul 1987 A
4700301 Dyke Oct 1987 A
4730932 Iga et al. Mar 1988 A
4742337 Haag May 1988 A
4834531 Ward May 1989 A
4862257 Ulich Aug 1989 A
4895440 Cain et al. Jan 1990 A
4896343 Saunders Jan 1990 A
4902126 Koechner Feb 1990 A
4944036 Hyatt Jul 1990 A
4952911 D'Ambrosia et al. Aug 1990 A
4967183 D'Ambrosia et al. Oct 1990 A
5004916 Collins, Jr. Apr 1991 A
5006721 Cameron et al. Apr 1991 A
5023888 Bayston Jun 1991 A
5026156 Bayston Jun 1991 A
5033819 Tanaka Jul 1991 A
5059008 Flood et al. Oct 1991 A
5175694 Amato Dec 1992 A
5177768 Crespo et al. Jan 1993 A
5210586 Grage et al. May 1993 A
5212533 Shibuya et al. May 1993 A
5241481 Olsen Aug 1993 A
5249157 Taylor Sep 1993 A
5291261 Dahl et al. Mar 1994 A
5309212 Clark May 1994 A
5314037 Shaw et al. May 1994 A
5319201 Lee Jun 1994 A
5357331 Flockencier Oct 1994 A
5365218 Otto Nov 1994 A
5463384 Juds Oct 1995 A
5465142 Krumes et al. Nov 1995 A
5515156 Yoshida et al. May 1996 A
5546188 Wangler et al. Aug 1996 A
5563706 Shibuya et al. Oct 1996 A
5572219 Silverstein et al. Nov 1996 A
5691687 Kumagai et al. Nov 1997 A
5710417 Joseph et al. Jan 1998 A
5757472 Wangler et al. May 1998 A
5757501 Hipp May 1998 A
5757677 Lennen May 1998 A
5789739 Schwarz Aug 1998 A
5793163 Okuda Aug 1998 A
5793491 Wangler et al. Aug 1998 A
5805468 Blohbaum Sep 1998 A
5847815 Albouy et al. Dec 1998 A
5847817 Zediker et al. Dec 1998 A
5877688 Morinaka et al. Mar 1999 A
5889479 Tabel Mar 1999 A
5895984 Renz Apr 1999 A
5903355 Schwarz May 1999 A
5903386 Mantravadi et al. May 1999 A
5923910 Nakahara et al. Jul 1999 A
5942688 Kimura et al. Aug 1999 A
5949530 Wetteborn Sep 1999 A
5953110 Burns Sep 1999 A
5991011 Damm Nov 1999 A
6034803 Sullivan et al. Mar 2000 A
6043868 Dunne Mar 2000 A
6069565 Stern et al. May 2000 A
6088085 Wetteborn Jul 2000 A
6091071 Franz et al. Jul 2000 A
6100539 Blumcke et al. Aug 2000 A
6137566 Leonard Oct 2000 A
6153878 Jakob et al. Nov 2000 A
6157294 Urai et al. Dec 2000 A
6201236 Juds Mar 2001 B1
6259714 Kinbara Jul 2001 B1
6297844 Schatz et al. Oct 2001 B1
6321172 Jakob et al. Nov 2001 B1
6327806 Paige Dec 2001 B1
6329800 May Dec 2001 B1
6335789 Kikuchi Jan 2002 B1
6365429 Kneissl et al. Apr 2002 B1
6396577 Ramstack May 2002 B1
6420698 Dimsdale Jul 2002 B1
6441363 Cook, Jr. et al. Aug 2002 B1
6441889 Patterson Aug 2002 B1
6442476 Poropat Aug 2002 B1
6473079 Kacyra et al. Oct 2002 B1
6504712 Hashimoto et al. Jan 2003 B2
6509958 Pierenkemper Jan 2003 B2
6593582 Lee et al. Jul 2003 B2
6621764 Smith Sep 2003 B1
6636300 Doemens et al. Oct 2003 B2
6646725 Eichinger et al. Nov 2003 B1
6650402 Sullivan et al. Nov 2003 B2
6664529 Pack et al. Dec 2003 B2
6665063 Jamieson et al. Dec 2003 B2
6670905 Orr Dec 2003 B1
6682478 Nakamura Jan 2004 B2
6687373 Yeh et al. Feb 2004 B1
6710324 Hipp Mar 2004 B2
6742707 Tsikos et al. Jun 2004 B1
6747747 Hipp Jun 2004 B2
6759649 Hipp Jul 2004 B2
6789527 Sauler et al. Sep 2004 B2
6798527 Fukumoto et al. Sep 2004 B2
6812450 Hipp Nov 2004 B2
6876790 Lee Apr 2005 B2
6879419 Richman et al. Apr 2005 B2
6969558 Walston et al. Nov 2005 B2
7030968 D'Aligny et al. Apr 2006 B2
7041962 Dollmann et al. May 2006 B2
7089114 Huang Aug 2006 B1
7106424 Meneely et al. Sep 2006 B2
7129971 McCutchen Oct 2006 B2
7130672 Pewzner et al. Oct 2006 B2
7131586 Tsikos et al. Nov 2006 B2
7190465 Froehlich et al. Mar 2007 B2
7240314 Leung Jul 2007 B1
7248342 Degnan Jul 2007 B1
7281891 Smith et al. Oct 2007 B2
7295298 Willhoeft et al. Nov 2007 B2
7313424 Mayevsky et al. Dec 2007 B2
7315377 Holland et al. Jan 2008 B2
7319777 Morcom Jan 2008 B2
7345271 Boehlau et al. Mar 2008 B2
7358819 Rollins Apr 2008 B2
7373473 Bukowski et al. May 2008 B2
7408462 Pirkl et al. Aug 2008 B2
7477360 England et al. Jan 2009 B2
7480031 Mack Jan 2009 B2
7544945 Tan et al. Jun 2009 B2
7570793 Lages et al. Aug 2009 B2
7583364 Mayor et al. Sep 2009 B1
7589826 Mack et al. Sep 2009 B2
7619477 Segarra Nov 2009 B2
7623222 Benz et al. Nov 2009 B2
7640068 Johnson et al. Dec 2009 B2
7642946 Wong et al. Jan 2010 B2
7684590 Kampchen et al. Mar 2010 B2
7697581 Walsh et al. Apr 2010 B2
7741618 Lee et al. Jun 2010 B2
7746271 Furstenberg Jun 2010 B2
7868665 Turner et al. Jan 2011 B2
7944548 Eaton May 2011 B2
7969558 Hall Jun 2011 B2
8042056 Wheeler et al. Oct 2011 B2
8072582 Meneely Dec 2011 B2
8077047 Humble Dec 2011 B2
8139685 Simic et al. Mar 2012 B2
8203702 Kane et al. Jun 2012 B1
8274037 Ritter et al. Sep 2012 B2
8310653 Ogawa et al. Nov 2012 B2
8451432 Crawford et al. May 2013 B2
8605262 Campbell et al. Dec 2013 B2
8675181 Hall Mar 2014 B2
8736818 Weimer et al. May 2014 B2
8767190 Hall Jul 2014 B2
8875409 Kretschmer et al. Nov 2014 B2
8976340 Gilliland et al. Mar 2015 B2
8995478 Kobtsev et al. Mar 2015 B1
9059562 Priest et al. Jun 2015 B2
9063549 Pennecot et al. Jun 2015 B1
9069061 Harwit Jun 2015 B1
9069080 Stettner et al. Jun 2015 B2
9086273 Gruver et al. Jul 2015 B1
9093969 Gebeyehu et al. Jul 2015 B2
9110154 Bates et al. Aug 2015 B1
9151940 Chuang et al. Oct 2015 B2
9191260 Grund Nov 2015 B1
9194701 Bosch Nov 2015 B2
RE45854 Gittinger et al. Jan 2016 E
9239959 Evans et al. Jan 2016 B1
9246041 Clausen et al. Jan 2016 B1
9250327 Kelley et al. Feb 2016 B2
9285477 Smith et al. Mar 2016 B1
9286538 Chen et al. Mar 2016 B1
9310197 Gogolla et al. Apr 2016 B2
9383753 Templeton et al. Jul 2016 B1
9453914 Stettner et al. Sep 2016 B2
9529079 Droz et al. Dec 2016 B1
9772607 Decoux et al. Sep 2017 B2
RE46672 Hall Jan 2018 E
9964632 Droz et al. May 2018 B1
9983297 Hall et al. May 2018 B2
9989629 LaChapelle Jun 2018 B1
10003168 Villeneuve Jun 2018 B1
10018726 Hall et al. Jul 2018 B2
10048374 Hall et al. Aug 2018 B2
10094925 LaChapelle Oct 2018 B1
10109183 Franz et al. Oct 2018 B1
10120079 Pennecot et al. Nov 2018 B2
10126412 Eldada et al. Nov 2018 B2
10132928 Eldada et al. Nov 2018 B2
10309213 Barfoot et al. Jun 2019 B2
10330780 Hall et al. Jun 2019 B2
10386465 Hall et al. Aug 2019 B2
10393874 Schmidtke et al. Aug 2019 B2
10393877 Hall et al. Aug 2019 B2
10436904 Moss et al. Oct 2019 B2
10545222 Hall et al. Jan 2020 B2
RE47942 Hall Apr 2020 E
10613203 Rekow et al. Apr 2020 B1
10627490 Hall et al. Apr 2020 B2
10627491 Hall et al. Apr 2020 B2
10712434 Hall et al. Jul 2020 B2
20010011289 Davis et al. Aug 2001 A1
20010017718 Ikeda et al. Aug 2001 A1
20020003617 Doemens et al. Jan 2002 A1
20020060784 Pack et al. May 2002 A1
20020117545 Tsikos et al. Aug 2002 A1
20030041079 Bellemore et al. Feb 2003 A1
20030043363 Jamieson et al. Mar 2003 A1
20030043364 Jamieson et al. Mar 2003 A1
20030057533 Lemmi et al. Mar 2003 A1
20030066977 Hipp et al. Apr 2003 A1
20030076485 Ruff Apr 2003 A1
20030090646 Riegl et al. May 2003 A1
20030163030 Arriaga Aug 2003 A1
20040021852 DeFlumere Feb 2004 A1
20040066500 Gokturk et al. Apr 2004 A1
20040134879 Kochergin et al. Jul 2004 A1
20040150810 Muenter et al. Aug 2004 A1
20040213463 Morrison Oct 2004 A1
20040240706 Wallace et al. Dec 2004 A1
20040240710 Lages et al. Dec 2004 A1
20040247157 Lages et al. Dec 2004 A1
20050023353 Tsikos et al. Feb 2005 A1
20050168720 Yamashita et al. Aug 2005 A1
20050211893 Paschalidis Sep 2005 A1
20050232466 Kampchen et al. Oct 2005 A1
20050246065 Ricard Nov 2005 A1
20050248749 Kiehn et al. Nov 2005 A1
20050279914 Dimsdale et al. Dec 2005 A1
20060007350 Gao et al. Jan 2006 A1
20060073621 Kneissel et al. Apr 2006 A1
20060089765 Pack et al. Apr 2006 A1
20060100783 Haberer et al. May 2006 A1
20060115113 Lages et al. Jun 2006 A1
20060132635 Land Jun 2006 A1
20060176697 Arruda Aug 2006 A1
20060186326 Ito Aug 2006 A1
20060197867 Johnson et al. Sep 2006 A1
20060231771 Lee et al. Oct 2006 A1
20060290920 Kampchen et al. Dec 2006 A1
20070035624 Lubard et al. Feb 2007 A1
20070071056 Chen Mar 2007 A1
20070121095 Lewis May 2007 A1
20070181810 Tan et al. Aug 2007 A1
20070201027 Doushkina et al. Aug 2007 A1
20070219720 Trepagnier et al. Sep 2007 A1
20070241955 Brosche Oct 2007 A1
20070272841 Wiklof Nov 2007 A1
20080002176 Krasutsky Jan 2008 A1
20080013896 Salzberg et al. Jan 2008 A1
20080074640 Walsh et al. Mar 2008 A1
20080079371 Kang et al. Apr 2008 A1
20080154495 Breed Jun 2008 A1
20080170826 Schaafsma Jul 2008 A1
20080186501 Xie Aug 2008 A1
20080302971 Hyde et al. Dec 2008 A1
20090010644 Varshneya Jan 2009 A1
20090026503 Tsuda Jan 2009 A1
20090085901 Antony Apr 2009 A1
20090122295 Eaton May 2009 A1
20090142053 Varshneya Jun 2009 A1
20090168045 Lin et al. Jul 2009 A1
20090218475 Kawakami et al. Sep 2009 A1
20090245788 Varshneya Oct 2009 A1
20090323737 Ensher et al. Dec 2009 A1
20100006760 Lee et al. Jan 2010 A1
20100020306 Hall Jan 2010 A1
20100045965 Meneely Feb 2010 A1
20100046953 Shaw et al. Feb 2010 A1
20100067070 Mamada et al. Mar 2010 A1
20100073780 Ito Mar 2010 A1
20100074532 Gordon et al. Mar 2010 A1
20100134596 Becker Jun 2010 A1
20100188722 Yamada et al. Jul 2010 A1
20100198487 Vollmer et al. Aug 2010 A1
20100204964 Pack et al. Aug 2010 A1
20100239139 Hunt et al. Sep 2010 A1
20100265077 Humble Oct 2010 A1
20100271615 Sebastian et al. Oct 2010 A1
20100302528 Hall Dec 2010 A1
20110028859 Chian Feb 2011 A1
20110040482 Brimble et al. Feb 2011 A1
20110176183 Ikeda et al. Jul 2011 A1
20110211188 Juenemann et al. Sep 2011 A1
20110216304 Hall Sep 2011 A1
20110305250 Chann et al. Dec 2011 A1
20120038903 Weimer et al. Feb 2012 A1
20120195597 Malaney Aug 2012 A1
20120287417 Mimeault Nov 2012 A1
20130024176 Woodford Jan 2013 A2
20130038915 Kusaka et al. Feb 2013 A1
20130050144 Reynolds Feb 2013 A1
20130050486 Omer et al. Feb 2013 A1
20130070239 Crawford et al. Mar 2013 A1
20130093583 Shapiro Apr 2013 A1
20130094960 Bowyer et al. Apr 2013 A1
20130151198 Brown Jun 2013 A1
20130168673 Yu et al. Jul 2013 A1
20130206967 Shpunt et al. Aug 2013 A1
20130241761 Cooper et al. Sep 2013 A1
20130242283 Bailey et al. Sep 2013 A1
20130258312 Lewis Oct 2013 A1
20130286404 Cenko et al. Oct 2013 A1
20130300479 Thibault Nov 2013 A1
20130314711 Cantin et al. Nov 2013 A1
20130336375 Rank et al. Dec 2013 A1
20130342366 Kiefer et al. Dec 2013 A1
20140063189 Zheleznyak et al. Mar 2014 A1
20140063483 Li Mar 2014 A1
20140071234 Millett Mar 2014 A1
20140078519 Steffey et al. Mar 2014 A1
20140104592 Tien et al. Apr 2014 A1
20140176657 Nemoto Jun 2014 A1
20140240317 Go et al. Aug 2014 A1
20140240721 Herschbach Aug 2014 A1
20140253369 Kelley et al. Sep 2014 A1
20140259715 Engel Sep 2014 A1
20140267848 Wu Sep 2014 A1
20140274093 Abdelmonem Sep 2014 A1
20140347650 Bosch Nov 2014 A1
20150015895 Bridges et al. Jan 2015 A1
20150035437 Panopoulos et al. Feb 2015 A1
20150055117 Pennecot et al. Feb 2015 A1
20150101234 Priest et al. Apr 2015 A1
20150116695 Bartolome et al. Apr 2015 A1
20150131080 Retterath et al. May 2015 A1
20150144806 Jin et al. May 2015 A1
20150185325 Park et al. Jul 2015 A1
20150202939 Stettner et al. Jul 2015 A1
20150219764 Lipson Aug 2015 A1
20150219765 Mead et al. Aug 2015 A1
20150226853 Seo et al. Aug 2015 A1
20150293224 Eldada et al. Oct 2015 A1
20150293228 Retterath et al. Oct 2015 A1
20150303216 Tamaru Oct 2015 A1
20160003946 Gilliland et al. Jan 2016 A1
20160009410 Derenick et al. Jan 2016 A1
20160014309 Ellison et al. Jan 2016 A1
20160021713 Reed Jan 2016 A1
20160049058 Allen et al. Feb 2016 A1
20160098620 Geile Apr 2016 A1
20160117431 Kim et al. Apr 2016 A1
20160154105 Sigmund et al. Jun 2016 A1
20160161600 Eldada et al. Jun 2016 A1
20160191173 Malaney Jun 2016 A1
20160209499 Suzuki Jul 2016 A1
20160245919 Kalscheur et al. Aug 2016 A1
20160259038 Retterath et al. Sep 2016 A1
20160279808 Doughty et al. Sep 2016 A1
20160300484 Torbett Oct 2016 A1
20160306032 Schwarz et al. Oct 2016 A1
20160313445 Bailey et al. Oct 2016 A1
20160363659 Mindell et al. Dec 2016 A1
20160365846 Wyland Dec 2016 A1
20170146639 Carothers May 2017 A1
20170146640 Hall et al. May 2017 A1
20170153319 Villeneuve et al. Jun 2017 A1
20170214861 Rachlin et al. Jul 2017 A1
20170219695 Hall et al. Aug 2017 A1
20170220876 Gao et al. Aug 2017 A1
20170242102 Dussan et al. Aug 2017 A1
20170269198 Hall et al. Sep 2017 A1
20170269209 Hall et al. Sep 2017 A1
20170269215 Hall et al. Sep 2017 A1
20170299721 Eichenholz et al. Oct 2017 A1
20170350983 Hall et al. Dec 2017 A1
20180019155 Tsang et al. Jan 2018 A1
20180058197 Barfoot et al. Mar 2018 A1
20180059219 Irish et al. Mar 2018 A1
20180074382 Lee et al. Mar 2018 A1
20180100924 Brinkmeyer Apr 2018 A1
20180106902 Mase et al. Apr 2018 A1
20180131449 Kare et al. May 2018 A1
20180168539 Singh et al. Jun 2018 A1
20180267151 Hall et al. Sep 2018 A1
20180275249 Campbell et al. Sep 2018 A1
20180284227 Hall et al. Oct 2018 A1
20180284274 LaChapelle Oct 2018 A1
20180321360 Hall et al. Nov 2018 A1
20180364098 McDaniel et al. Dec 2018 A1
20190001442 Unrath et al. Jan 2019 A1
20190011563 Hall et al. Jan 2019 A1
20190178991 Hall et al. Jun 2019 A1
20190293764 Van Nieuwenhove et al. Sep 2019 A1
20190339365 Hall et al. Nov 2019 A1
20190361092 Hall et al. Nov 2019 A1
20190369257 Hall et al. Dec 2019 A1
20190369258 Hall et al. Dec 2019 A1
20200025896 Gunnam Jan 2020 A1
20200064452 Avlas et al. Feb 2020 A1
20200142070 Hall et al. May 2020 A1
20200144971 Pinto et al. May 2020 A1
20200166613 Hall et al. May 2020 A1
20200191915 Hall et al. Jun 2020 A1
20200249321 Hall et al. Aug 2020 A1
20200319311 Hall et al. Oct 2020 A1
Foreign Referenced Citations (86)
Number Date Country
2089105 Aug 1994 CA
641583 Feb 1984 CH
1106534 Aug 1995 CN
1576123 Feb 2005 CN
2681085 Feb 2005 CN
2773714 Apr 2006 CN
103278808 Dec 2015 CN
107037444 Aug 2017 CN
206773192 Dec 2017 CN
108061884 May 2018 CN
207457499 Jun 2018 CN
207457508 Jun 2018 CN
109116367 Jan 2019 CN
106443699 Feb 2019 CN
106597471 May 2019 CN
208902906 May 2019 CN
930909 Jul 1955 DE
3134815 Mar 1983 DE
3216312 Nov 1983 DE
3216313 Nov 1983 DE
3701340 Jul 1988 DE
3741259 Jun 1989 DE
3808972 Oct 1989 DE
3821892 Feb 1990 DE
4040894 Apr 1992 DE
4115747 Nov 1992 DE
4124192 Jan 1993 DE
4127168 Feb 1993 DE
4137550 Mar 1993 DE
4215272 Nov 1993 DE
4243631 Jun 1994 DE
4340756 Jun 1994 DE
4411448 Oct 1995 DE
4412044 Oct 1995 DE
19512644 Oct 1996 DE
19512681 Oct 1996 DE
4345446 Jul 1998 DE
4345448 Jul 1998 DE
19727792 Feb 1999 DE
19741730 Apr 1999 DE
19741731 Apr 1999 DE
19752145 May 1999 DE
19717399 Jun 1999 DE
19757847 Jul 1999 DE
19757848 Jul 1999 DE
19757849 Jul 1999 DE
19757840 Sep 1999 DE
19815149 Oct 1999 DE
19828000 Jan 2000 DE
19902903 May 2000 DE
19911375 Sep 2000 DE
19919925 Nov 2000 DE
19927501 Nov 2000 DE
19936440 Mar 2001 DE
19953006 May 2001 DE
19953007 May 2001 DE
19953009 May 2001 DE
19953010 May 2001 DE
10025511 Dec 2001 DE
10110420 Sep 2002 DE
10114362 Oct 2002 DE
10127417 Dec 2002 DE
10128954 Dec 2002 DE
10141055 Mar 2003 DE
10143060 Mar 2003 DE
10146692 Apr 2003 DE
10148070 Apr 2003 DE
10151983 Apr 2003 DE
10162668 Jul 2003 DE
10217295 Nov 2003 DE
10222797 Dec 2003 DE
10229408 Jan 2004 DE
10244638 Apr 2004 DE
10244640 Apr 2004 DE
10244643 Apr 2004 DE
10258794 Jun 2004 DE
10303015 Aug 2004 DE
10331529 Jan 2005 DE
10341548 Mar 2005 DE
102004010197 Sep 2005 DE
102004014041 Oct 2005 DE
102005050824 May 2006 DE
102005003827 Jul 2006 DE
102005019233 Nov 2006 DE
102007013023 Sep 2008 DE
202015009250 Jan 2017 DE
Non-Patent Literature Citations (32)
Entry
International Search Report and Written Opinion dated Jan. 16, 2019, in International Patent Application No. PCT/US2018/059452, filed Nov. 6, 2018 (13 pgs).
Carson, N. “Defending GPS against the Spoofing Threat using Network Based Detection and 3, 15,20 Successive Interference Cancellation”. Auburn University. Nov. 2015. [Retrieved Dec. 24, 2018]. Retrieved from the Internet: <URL: http://web.stanford.edu/group/scpnt/pnt//2015/S07-Carson-Spoofing_Attacks.pdf>, (35 pgs).
PCT International Search Report and Written Opinion, App. No. PCT/US2018/025395, dated Jun. 25, 2018, 14 pages.
PCT International Search Report and Written Opinion, App. No. PCT/US2018/031682, dated Sep. 17, 2018, 12 pages.
PCT International Search Report and Written Opinion, App. No. PCT/US2018/050934, dated Nov. 20, 2018, 10 pages.
PCT International Search Report and Written Opinion, App. No. PCT/US2018/051497, dated Nov. 28, 2018, 11 pages.
PCT International Search Report and Written Opinion, App. No. PCT/US2018/059062, dated Jan. 16, 2019, 6 pages.
PCT International Search Report and Written Opinion, App. No. PCT/US2019/016259, dated Apr. 26, 2019, 6 pages.
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046412, dated Jun. 24, 2020, 10 pages.
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046419, dated Oct. 29, 2019, 14 pages.
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046422, dated Dec. 3, 2019, 9 pages.
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046573, dated Nov. 15, 2019, 9 pages.
PCT International Search Report and Written Opinion, App. No. PCT/US2019/051729, dated Nov. 20, 2019, 7 pages.
PCT Search Report and Written Opinion (Corrected), App. No. PCT/US2020/026925, dated May 12, 2020, 5 pages.
PCT Search Report and Written Opinion, App. No. PCT/US2020/012633, dated Jun. 2, 2020, 13 pages.
PCT Search Report and Written Opinion, App. No. PCT/US2020/012635, dated Jun. 4, 2020, 10 pages.
Piatek et al., Lidar: A photonics guide to autonomous vehicle market, Hamamatsu.com, https://hub.hamamatsu.com/US/en/application-note/LiDAR-competingtechnologies-automotive/index.html (Nov. 18, 2017), 6 pages. (IPR Nos. '255 and '256 Exhibit 2136).
Piatek, Measuring distance with light, Hamamatsu.com, https://hub.hamamatsu.com/US/en/application-note/measuringdistance-with-light/index.html (Apr. 2, 2015), 18 pages. (IPR Nos. '255 and '256 Exhibit 2132).
Piatek, Presentation entitled ‘LIDAR and Other Techniques—Measuring Distance with Light for Automotive Industry’, authored by Slawomir Piatek, Technical Consultant, Hamamatsu Corp. (Dec. 6, 2017), 66 pages. (IPR Nos. '255 and '256 Exhibit 2131).
Popper, Guiding Light, The Billion-Dollar Widget Steering the Driverless Car Industry, The Verge (Oct. 18, 2017), 17 pages. (IPR Nos. '255 and '256 Exhibit 2076).
Qing, “Method of 3D visualization using laser radar on board of mobile robot,” Journal of Jilin University (Information Science Ed.), vol. 22 (Jul. 2004), 4 pages.
Quanergy Systems, Inc.v. Velodyne LIDAR, Inc.(N.D. Cal.), Case No. 5:16-cv-05251, “Plaintiff Quanergy Systems, Inc.'s Amended Invalidity Contentions Pursuant to Patent Local Rule 3-3,” May 23, 2017, 238 pages.
Quanergy Systems, Inc.v. Velodyne LiDAR, Inc.(N.D. Cal.), Case No. 5:16-cv-05251, “Plaintiff Quanergy Systems, Inc.'s Invalidity Contentions and Production of Documents Pursuant to Patent Local Rules 3-3 and 3-4,” Mar. 27, 2017, 24 pages.
Quanergy Systems, Inc.v. Velodyne LiDAR, Inc.(N.D. Cal.), Case No. 5:16-cv-05251, Amended Complaint, Nov. 18, 2016, 6 pages.
Quanergy Systems, Inc.v. Velodyne LiDAR, Inc.(N.D. Cal.), Case No. 5:16-cv-05251, Answer to Counterclaim, (Jan. 16, 2017) 9 pages.
Quanergy Systems, Inc.v. Velodyne LiDAR, Inc.(N.D. Cal.), Case No. 5:16-cv-05251, Defendant Velodyne's Answer and Counterclaim, Dec. 5, 2016, 20 pages.
Quanergy Systems, Inc.v. Velodyne LiDAR, Inc.(N.D. Cal.), Complaint, Case No. 5:16-cv-05251 (Sep. 13, 2016), 21 pages.
Ramsey et al., Use Scenarios to Plan for Autonomous Vehicle Adoption, Gartner (Jun. 26, 2017), 17 pages. (IPR Nos. '255 and '256 Exhibit 2064).
Reutebuch, “LiDAR: an Emerging Tool for Multiple Resource Inventory,” Journal of Forestry (Sep. 2005) 7 pages.
Reymann et al., Improving LiDAR Point Cloud Classification using Intensities and Multiple Echoes, IEE/RSJ International Conference on Intelligent Robots and Systems (Sep. 2015), 8 pages. (IPR Nos. '255 and '256 Exhibit 2167).
Richmond et al., Polarimetric Imaging Laser Radar (PILAR) Program. In Advanced Sensory Payloads for UAV, Meeting Proceedings RTO-MP-SET-092, Paper 19. Neuilly-sur-Seine, France: RTO (May 1, 2005), 35 pages. (IPR Nos. '255 and '256 Exhibit 1129).
Riegl LMS-Q120, http://web.archive.org/web/20050113054822/ http:/www.riegl.com/industrial_scanners_/lms_q120_/q120_all_.htm (2005), 4 pages.
Related Publications (1)
Number Date Country
20190178991 A1 Jun 2019 US