TECHNICAL FIELD
The systems and methods disclosed herein are directed to improving external workspace in robotic surgical systems, and more particularly to optimizing triangulation and avoiding collisions between robotic system components.
BACKGROUND
During robotic surgical procedures, one or more robotic arms can be used to manipulate a scope, while one or more additional robotic arms can be used to manipulate an instrument. The robotic arms, scope, and instruments can all occupy part of an external environment or workspace of a patient.
In robotic systems that utilize multiple arms, it can be a challenge for one or more robotic arms to reach a desired surgical location. Based on the configuration of the arms relative to a robotic system, arms may be in a collision path with one another. If one or more arms cannot reach a desired surgical location, it can be challenge to achieve triangulation between robotic arms and their associated tools.
Accordingly, there is a need to provide robotic systems and methods that optimize the external workspace to enable proper reach of robotic arms and optimized triangulation.
SUMMARY
Robotic systems, devices, and methods are provided for enhancing external surgical workspace, optimizes surgical triangulation, and enhancing robotic arm to challenging surgical locations. In some embodiments, a robotic surgical system comprises a table for supporting a patient, an adjustable arm support coupled to the table, and one or more robotic arms coupled to the adjustable arm support.
In some embodiments, the adjustable arm support can be capable of at least five degrees of freedom, including vertical translation, biceps curl, lateral translation, tilt, and horizontal swing. Each of the adjustable arm supports can support one or more robotic arms, wherein at least one robotic arm is coupled to an extender bar in accordance with some embodiments. The at least one robotic arm is capable of translating the extender bar so as to move a cannula attached thereto in a pitch or yaw axis. In some embodiments, the adjustable arm support is curved or undulating. In some embodiments, the adjustable arm support comprises a split rail including independently moveable first and second rail segments.
In some embodiments, a robotic surgical system comprises a table for supporting a patient, an adjustable arm support coupled to the table, and one or more robotic arms coupled to the adjustable arm support. The adjustable arm support comprises an extension plate that protrudes outwardly (e.g., medially or laterally) from the adjustable arm support. A robotic arm can be capable of translating along the adjustable arm support and the extension plate.
In some embodiments, a robotic surgical system comprises a table for supporting a patient, an adjustable arm support coupled to the table, and first robotic arm and a second robotic arm coupled to the adjacent arm support, wherein the first robotic arm has a height differential relative to the second robotic arm. In some embodiments, the first robotic arm comprises a riser that can be either static or dynamic. In some embodiments, the first robotic arm comprises a dynamic riser in the form of an actuatable joint, such as a spherical shoulder joint, a prismatic joint, or a rotary joint. In some embodiments, the first robotic arm can have a height differential relative to the second robotic arm.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosed aspects will hereinafter be described in conjunction with the appended drawings, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements.
FIG. 1 illustrates an embodiment of a cart-based robotic system arranged for diagnostic and/or therapeutic bronchoscopy procedure(s).
FIG. 2 depicts further aspects of the robotic system of FIG. 1.
FIG. 3 illustrates an embodiment of the robotic system of FIG. 1 arranged for ureteroscopy.
FIG. 4 illustrates an embodiment of the robotic system of FIG. 1 arranged for a vascular procedure.
FIG. 5 illustrates an embodiment of a table-based robotic system arranged for a bronchoscopy procedure.
FIG. 6 provides an alternative view of the robotic system of FIG. 5.
FIG. 7 illustrates an example system configured to stow robotic arm(s).
FIG. 8 illustrates an embodiment of a table-based robotic system configured for a ureteroscopy procedure.
FIG. 9 illustrates an embodiment of a table-based robotic system configured for a laparoscopic procedure.
FIG. 10 illustrates an embodiment of the table-based robotic system of FIGS. 5-9 with pitch or tilt adjustment.
FIG. 11 provides a detailed illustration of the interface between the table and the column of the table-based robotic system of FIGS. 5-10.
FIG. 12 illustrates an alternative embodiment of a table-based robotic system.
FIG. 13 illustrates an end view of the table-based robotic system of FIG. 12.
FIG. 14 illustrates an end view of a table-based robotic system with robotic arms attached thereto.
FIG. 15 illustrates an exemplary instrument driver.
FIG. 16 illustrates an exemplary medical instrument with a paired instrument driver.
FIG. 17 illustrates an alternative design for an instrument driver and instrument where the axes of the drive units are parallel to the axis of the elongated shaft of the instrument.
FIG. 18 illustrates an instrument having an instrument-based insertion architecture.
FIG. 19 illustrates an exemplary controller.
FIG. 20 depicts a block diagram illustrating a localization system that estimates a location of one or more elements of the robotic systems of FIGS. 1-10, such as the location of the instrument of FIGS. 16-18, in accordance to an example embodiment.
FIG. 21 depicts a top view of an abdomen including cannulas positioned in a representative patient.
FIG. 22 depicts a top schematic view of the robotic arms of a table-based robotic system in accordance with some embodiments.
FIG. 23 depicts a perspective view of the robotic arms of a table-based robotic system, including a plane formed between a proximal link and a distal link of a robotic arm.
FIG. 24 depicts a perspective view of the robotic arms of a tale-based robotic system, wherein one arm is sweeping into another arm.
FIG. 25 depicts a table-based robotic system with an adjustable arm support swung inwardly in accordance with some embodiments.
FIG. 26 depicts a table-based robotic system with an adjustable arm support swung inwardly and coupled to robotic arms in accordance with some embodiments.
FIG. 27 is an end view of the table-based robotic system with rotary joint for swinging the adjustable arm support.
FIG. 28A depicts a top view of a table-based robotic system with a curved adjustable arm support in accordance with some embodiments.
FIG. 28B depicts a top view of a table-based robotic system with an undulating adjustable arm support in accordance with some embodiments.
FIG. 29 depicts a top view of a table-based robotic system including an extension for medial or lateral adjustment relative to the adjustable arm support.
FIG. 30 depicts a table-based robotic system including a split rail in accordance with some embodiments.
FIG. 31 depicts a table-based robotic system including an extender bar in accordance with some embodiments.
FIG. 32 depicts a table-based robotic system wherein one or more robotic arms include a riser in accordance with some embodiments.
FIG. 33 depicts a robotic arm including a spherical shoulder joint riser in accordance with some embodiments.
FIG. 34 depicts a robotic arm including a rotary joint riser in accordance with some embodiments.
FIG. 35 depicts a robotic arm including an alternative rotary joint riser in accordance with some embodiments.
FIG. 36 depicts a robotic arm including a prismatic joint riser in accordance with some embodiments.
FIG. 37 depicts a table-based robotic system wherein one or more arms have different link lengths relative to one or more other arms in accordance with some embodiments.
FIGS. 38A and 38B depict robotic arms including elongated link members of variable length in accordance with some embodiments.
DETAILED DESCRIPTION
1. Overview
Aspects of the present disclosure may be integrated into a robotically-enabled medical system capable of performing a variety of medical procedures, including both minimally invasive, such as laparoscopy, and non-invasive, such as endoscopy, procedures. Among endoscopy procedures, the system may be capable of performing bronchoscopy, ureteroscopy, gastroscopy, etc.
In addition to performing the breadth of procedures, the system may provide additional benefits, such as enhanced imaging and guidance to assist the physician. Additionally, the system may provide the physician with the ability to perform the procedure from an ergonomic position without the need for awkward arm motions and positions. Still further, the system may provide the physician with the ability to perform the procedure with improved ease of use such that one or more of the instruments of the system can be controlled by a single user.
Various embodiments will be described below in conjunction with the drawings for purposes of illustration. It should be appreciated that many other implementations of the disclosed concepts are possible, and various advantages can be achieved with the disclosed implementations. Headings are included herein for reference and to aid in locating various sections. These headings are not intended to limit the scope of the concepts described with respect thereto. Such concepts may have applicability throughout the entire specification.
A. Robotic System—Cart
The robotically-enabled medical system may be configured in a variety of ways depending on the particular procedure. FIG. 1 illustrates an embodiment of a cart-based robotically-enabled system 10 arranged for a diagnostic and/or therapeutic bronchoscopy procedure. During a bronchoscopy, the system 10 may comprise a cart 11 having one or more robotic arms 12 to deliver a medical instrument, such as a steerable endoscope 13, which may be a procedure-specific bronchoscope for bronchoscopy, to a natural orifice access point (i.e., the mouth of the patient positioned on a table in the present example) to deliver diagnostic and/or therapeutic tools. As shown, the cart 11 may be positioned proximate to the patient's upper torso in order to provide access to the access point. Similarly, the robotic arms 12 may be actuated to position the bronchoscope relative to the access point. The arrangement in FIG. 1 may also be utilized when performing a gastro-intestinal (GI) procedure with a gastroscope, a specialized endoscope for GI procedures. FIG. 2 depicts an example embodiment of the cart in greater detail.
With continued reference to FIG. 1, once the cart 11 is properly positioned, the robotic arms 12 may insert the steerable endoscope 13 into the patient robotically, manually, or a combination thereof. As shown, the steerable endoscope 13 may comprise at least two telescoping parts, such as an inner leader portion and an outer sheath portion, each portion coupled to a separate instrument driver from the set of instrument drivers 28, each instrument driver coupled to the distal end of an individual robotic arm. This linear arrangement of the instrument drivers 28, which facilitates coaxially aligning the leader portion with the sheath portion, creates a “virtual rail” 29 that may be repositioned in space by manipulating the one or more robotic arms 12 into different angles and/or positions. The virtual rails described herein are depicted in the Figures using dashed lines, and accordingly the dashed lines do not depict any physical structure of the system. Translation of the instrument drivers 28 along the virtual rail 29 telescopes the inner leader portion relative to the outer sheath portion or advances or retracts the endoscope 13 from the patient. The angle of the virtual rail 29 may be adjusted, translated, and pivoted based on clinical application or physician preference. For example, in bronchoscopy, the angle and position of the virtual rail 29 as shown represents a compromise between providing physician access to the endoscope 13 while minimizing friction that results from bending the endoscope 13 into the patient's mouth.
The endoscope 13 may be directed down the patient's trachea and lungs after insertion using precise commands from the robotic system until reaching the target destination or operative site. In order to enhance navigation through the patient's lung network and/or reach the desired target, the endoscope 13 may be manipulated to telescopically extend the inner leader portion from the outer sheath portion to obtain enhanced articulation and greater bend radius. The use of separate instrument drivers 28 also allows the leader portion and sheath portion to be driven independent of each other.
For example, the endoscope 13 may be directed to deliver a biopsy needle to a target, such as, for example, a lesion or nodule within the lungs of a patient. The needle may be deployed down a working channel that runs the length of the endoscope to obtain a tissue sample to be analyzed by a pathologist. Depending on the pathology results, additional tools may be deployed down the working channel of the endoscope for additional biopsies. After identifying a nodule to be malignant, the endoscope 13 may endoscopically deliver tools to resect the potentially cancerous tissue. In some instances, diagnostic and therapeutic treatments can be delivered in separate procedures. In those circumstances, the endoscope 13 may also be used to deliver a fiducial to “mark” the location of the target nodule as well. In other instances, diagnostic and therapeutic treatments may be delivered during the same procedure.
The system 10 may also include a movable tower 30, which may be connected via support cables to the cart 11 to provide support for controls, electronics, fluidics, optics, sensors, and/or power to the cart 11. Placing such functionality in the tower 30 allows for a smaller form factor cart 11 that may be more easily adjusted and/or re-positioned by an operating physician and his/her staff. Additionally, the division of functionality between the cart/table and the support tower 30 reduces operating room clutter and facilitates improving clinical workflow. While the cart 11 may be positioned close to the patient, the tower 30 may be stowed in a remote location to stay out of the way during a procedure.
In support of the robotic systems described above, the tower 30 may include component(s) of a computer-based control system that stores computer program instructions, for example, within a non-transitory computer-readable storage medium such as a persistent magnetic storage drive, solid state drive, etc. The execution of those instructions, whether the execution occurs in the tower 30 or the cart 11, may control the entire system or sub-system(s) thereof. For example, when executed by a processor of the computer system, the instructions may cause the components of the robotics system to actuate the relevant carriages and arm mounts, actuate the robotics arms, and control the medical instruments. For example, in response to receiving the control signal, the motors in the joints of the robotics arms may position the arms into a certain posture.
The tower 30 may also include a pump, flow meter, valve control, and/or fluid access in order to provide controlled irrigation and aspiration capabilities to the system that may be deployed through the endoscope 13. These components may also be controlled using the computer system of tower 30. In some embodiments, irrigation and aspiration capabilities may be delivered directly to the endoscope 13 through separate cable(s).
The tower 30 may include a voltage and surge protector designed to provide filtered and protected electrical power to the cart 11, thereby avoiding placement of a power transformer and other auxiliary power components in the cart 11, resulting in a smaller, more moveable cart 11.
The tower 30 may also include support equipment for the sensors deployed throughout the robotic system 10. For example, the tower 30 may include opto-electronics equipment for detecting, receiving, and processing data received from the optical sensors or cameras throughout the robotic system 10. In combination with the control system, such opto-electronics equipment may be used to generate real-time images for display in any number of consoles deployed throughout the system, including in the tower 30. Similarly, the tower 30 may also include an electronic subsystem for receiving and processing signals received from deployed electromagnetic (EM) sensors. The tower 30 may also be used to house and position an EM field generator for detection by EM sensors in or on the medical instrument.
The tower 30 may also include a console 31 in addition to other consoles available in the rest of the system, e.g., console mounted on top of the cart. The console 31 may include a user interface and a display screen, such as a touchscreen, for the physician operator. Consoles in system 10 are generally designed to provide both robotic controls as well as pre-operative and real-time information of the procedure, such as navigational and localization information of the endoscope 13. When the console 31 is not the only console available to the physician, it may be used by a second operator, such as a nurse, to monitor the health or vitals of the patient and the operation of system, as well as provide procedure-specific data, such as navigational and localization information. In other embodiments, the console 30 is housed in a body that is separate from the tower 30.
The tower 30 may be coupled to the cart 11 and endoscope 13 through one or more cables or connections (not shown). In some embodiments, the support functionality from the tower 30 may be provided through a single cable to the cart 11, simplifying and de-cluttering the operating room. In other embodiments, specific functionality may be coupled in separate cabling and connections. For example, while power may be provided through a single power cable to the cart, the support for controls, optics, fluidics, and/or navigation may be provided through a separate cable.
FIG. 2 provides a detailed illustration of an embodiment of the cart from the cart-based robotically-enabled system shown in FIG. 1. The cart 11 generally includes an elongated support structure 14 (often referred to as a “column”), a cart base 15, and a console 16 at the top of the column 14. The column 14 may include one or more carriages, such as a carriage 17 (alternatively “arm support”) for supporting the deployment of one or more robotic arms 12 (three shown in FIG. 2). The carriage 17 may include individually configurable arm mounts that rotate along a perpendicular axis to adjust the base of the robotic arms 12 for better positioning relative to the patient. The carriage 17 also includes a carriage interface 19 that allows the carriage 17 to vertically translate along the column 14.
The carriage interface 19 is connected to the column 14 through slots, such as slot 20, that are positioned on opposite sides of the column 14 to guide the vertical translation of the carriage 17. The slot 20 contains a vertical translation interface to position and hold the carriage at various vertical heights relative to the cart base 15. Vertical translation of the carriage 17 allows the cart 11 to adjust the reach of the robotic arms 12 to meet a variety of table heights, patient sizes, and physician preferences. Similarly, the individually configurable arm mounts on the carriage 17 allow the robotic arm base 21 of robotic arms 12 to be angled in a variety of configurations.
In some embodiments, the slot 20 may be supplemented with slot covers that are flush and parallel to the slot surface to prevent dirt and fluid ingress into the internal chambers of the column 14 and the vertical translation interface as the carriage 17 vertically translates. The slot covers may be deployed through pairs of spring spools positioned near the vertical top and bottom of the slot 20. The covers are coiled within the spools until deployed to extend and retract from their coiled state as the carriage 17 vertically translates up and down. The spring-loading of the spools provides force to retract the cover into a spool when carriage 17 translates towards the spool, while also maintaining a tight seal when the carriage 17 translates away from the spool. The covers may be connected to the carriage 17 using, for example, brackets in the carriage interface 19 to ensure proper extension and retraction of the cover as the carriage 17 translates.
The column 14 may internally comprise mechanisms, such as gears and motors, that are designed to use a vertically aligned lead screw to translate the carriage 17 in a mechanized fashion in response to control signals generated in response to user inputs, e.g., inputs from the console 16.
The robotic arms 12 may generally comprise robotic arm bases 21 and end effectors 22, separated by a series of linkages 23 that are connected by a series of joints 24, each joint comprising an independent actuator, each actuator comprising an independently controllable motor. Each independently controllable joint represents an independent degree of freedom available to the robotic arm. Each of the arms 12 have seven joints, and thus provide seven degrees of freedom. A multitude of joints result in a multitude of degrees of freedom, allowing for “redundant” degrees of freedom. Redundant degrees of freedom allow the robotic arms 12 to position their respective end effectors 22 at a specific position, orientation, and trajectory in space using different linkage positions and joint angles. This allows for the system to position and direct a medical instrument from a desired point in space while allowing the physician to move the arm joints into a clinically advantageous position away from the patient to create greater access, while avoiding arm collisions.
The cart base 15 balances the weight of the column 14, carriage 17, and arms 12 over the floor. Accordingly, the cart base 15 houses heavier components, such as electronics, motors, power supply, as well as components that either enable movement and/or immobilize the cart. For example, the cart base 15 includes rollable wheel-shaped casters 25 that allow for the cart to easily move around the room prior to a procedure. After reaching the appropriate position, the casters 25 may be immobilized using wheel locks to hold the cart 11 in place during the procedure.
Positioned at the vertical end of column 14, the console 16 allows for both a user interface for receiving user input and a display screen (or a dual-purpose device such as, for example, a touchscreen 26) to provide the physician user with both pre-operative and intra-operative data. Potential pre-operative data on the touchscreen 26 may include pre-operative plans, navigation and mapping data derived from pre-operative computerized tomography (CT) scans, and/or notes from pre-operative patient interviews. Intra-operative data on display may include optical information provided from the tool, sensor and coordinate information from sensors, as well as vital patient statistics, such as respiration, heart rate, and/or pulse. The console 16 may be positioned and tilted to allow a physician to access the console from the side of the column 14 opposite carriage 17. From this position, the physician may view the console 16, robotic arms 12, and patient while operating the console 16 from behind the cart 11. As shown, the console 16 also includes a handle 27 to assist with maneuvering and stabilizing cart 11.
FIG. 3 illustrates an embodiment of a robotically-enabled system 10 arranged for ureteroscopy. In a ureteroscopic procedure, the cart 11 may be positioned to deliver a ureteroscope 32, a procedure-specific endoscope designed to traverse a patient's urethra and ureter, to the lower abdominal area of the patient. In a ureteroscopy, it may be desirable for the ureteroscope 32 to be directly aligned with the patient's urethra to reduce friction and forces on the sensitive anatomy in the area. As shown, the cart 11 may be aligned at the foot of the table to allow the robotic arms 12 to position the ureteroscope 32 for direct linear access to the patient's urethra. From the foot of the table, the robotic arms 12 may insert the ureteroscope 32 along the virtual rail 33 directly into the patient's lower abdomen through the urethra.
After insertion into the urethra, using similar control techniques as in bronchoscopy, the ureteroscope 32 may be navigated into the bladder, ureters, and/or kidneys for diagnostic and/or therapeutic applications. For example, the ureteroscope 32 may be directed into the ureter and kidneys to break up kidney stone build up using a laser or ultrasonic lithotripsy device deployed down the working channel of the ureteroscope 32. After lithotripsy is complete, the resulting stone fragments may be removed using baskets deployed down the ureteroscope 32.
FIG. 4 illustrates an embodiment of a robotically-enabled system similarly arranged for a vascular procedure. In a vascular procedure, the system 10 may be configured such that the cart 11 may deliver a medical instrument 34, such as a steerable catheter, to an access point in the femoral artery in the patient's leg. The femoral artery presents both a larger diameter for navigation as well as a relatively less circuitous and tortuous path to the patient's heart, which simplifies navigation. As in a ureteroscopic procedure, the cart 11 may be positioned towards the patient's legs and lower abdomen to allow the robotic arms 12 to provide a virtual rail 35 with direct linear access to the femoral artery access point in the patient's thigh/hip region. After insertion into the artery, the medical instrument 34 may be directed and inserted by translating the instrument drivers 28. Alternatively, the cart may be positioned around the patient's upper abdomen in order to reach alternative vascular access points, such as, for example, the carotid and brachial arteries near the shoulder and wrist.
B. Robotic System—Table
Embodiments of the robotically-enabled medical system may also incorporate the patient's table. Incorporation of the table reduces the amount of capital equipment within the operating room by removing the cart, which allows greater access to the patient. FIG. 5 illustrates an embodiment of such a robotically-enabled system arranged for a bronchoscopy procedure. System 36 includes a support structure or column 37 for supporting platform 38 (shown as a “table” or “bed”) over the floor. Much like in the cart-based systems, the end effectors of the robotic arms 39 of the system 36 comprise instrument drivers 42 that are designed to manipulate an elongated medical instrument, such as a bronchoscope 40 in FIG. 5, through or along a virtual rail 41 formed from the linear alignment of the instrument drivers 42. In practice, a C-arm for providing fluoroscopic imaging may be positioned over the patient's upper abdominal area by placing the emitter and detector around table 38.
FIG. 6 provides an alternative view of the system 36 without the patient and medical instrument for discussion purposes. As shown, the column 37 may include one or more carriages 43 shown as ring-shaped in the system 36, from which the one or more robotic arms 39 may be based. The carriages 43 may translate along a vertical column interface 44 that runs the length of the column 37 to provide different vantage points from which the robotic arms 39 may be positioned to reach the patient. The carriage(s) 43 may rotate around the column 37 using a mechanical motor positioned within the column 37 to allow the robotic arms 39 to have access to multiples sides of the table 38, such as, for example, both sides of the patient. In embodiments with multiple carriages, the carriages may be individually positioned on the column and may translate and/or rotate independent of the other carriages. While carriages 43 need not surround the column 37 or even be circular, the ring-shape as shown facilitates rotation of the carriages 43 around the column 37 while maintaining structural balance. Rotation and translation of the carriages 43 allows the system to align the medical instruments, such as endoscopes and laparoscopes, into different access points on the patient. In other embodiments (not shown), the system 36 can include a patient table or bed with adjustable arm supports in the form of bars or rails extending alongside it. One or more robotic arms 39 (e.g., via a shoulder with an elbow joint) can be attached to the adjustable arm supports, which can be vertically adjusted. By providing vertical adjustment, the robotic arms 39 are advantageously capable of being stowed compactly beneath the patient table or bed, and subsequently raised during a procedure.
The arms 39 may be mounted on the carriages through a set of arm mounts 45 comprising a series of joints that may individually rotate and/or telescopically extend to provide additional configurability to the robotic arms 39. Additionally, the arm mounts 45 may be positioned on the carriages 43 such that, when the carriages 43 are appropriately rotated, the arm mounts 45 may be positioned on either the same side of table 38 (as shown in FIG. 6), on opposite sides of table 38 (as shown in FIG. 9), or on adjacent sides of the table 38 (not shown).
The column 37 structurally provides support for the table 38, and a path for vertical translation of the carriages. Internally, the column 37 may be equipped with lead screws for guiding vertical translation of the carriages, and motors to mechanize the translation of said carriages based the lead screws. The column 37 may also convey power and control signals to the carriage 43 and robotic arms 39 mounted thereon.
The table base 46 serves a similar function as the cart base 15 in cart 11 shown in FIG. 2, housing heavier components to balance the table/bed 38, the column 37, the carriages 43, and the robotic arms 39. The table base 46 may also incorporate rigid casters to provide stability during procedures. Deployed from the bottom of the table base 46, the casters may extend in opposite directions on both sides of the base 46 and retract when the system 36 needs to be moved.
Continuing with FIG. 6, the system 36 may also include a tower (not shown) that divides the functionality of system 36 between table and tower to reduce the form factor and bulk of the table. As in earlier disclosed embodiments, the tower may provide a variety of support functionalities to table, such as processing, computing, and control capabilities, power, fluidics, and/or optical and sensor processing. The tower may also be movable to be positioned away from the patient to improve physician access and de-clutter the operating room. Additionally, placing components in the tower allows for more storage space in the table base for potential stowage of the robotic arms. The tower may also include a master controller or console that provides both a user interface for user input, such as keyboard and/or pendant, as well as a display screen (or touchscreen) for pre-operative and intra-operative information, such as real-time imaging, navigation, and tracking information. In some embodiments, the tower may also contain holders for gas tanks to be used for insufflation.
In some embodiments, a table base may stow and store the robotic arms when not in use. FIG. 7 illustrates a system 47 that stows robotic arms in an embodiment of the table-based system. In system 47, carriages 48 may be vertically translated into base 49 to stow robotic arms 50, arm mounts 51, and the carriages 48 within the base 49. Base covers 52 may be translated and retracted open to deploy the carriages 48, arm mounts 51, and arms 50 around column 53, and closed to stow to protect them when not in use. The base covers 52 may be sealed with a membrane 54 along the edges of its opening to prevent dirt and fluid ingress when closed.
FIG. 8 illustrates an embodiment of a robotically-enabled table-based system configured for a ureteroscopy procedure. In a ureteroscopy, the table 38 may include a swivel portion 55 for positioning a patient off-angle from the column 37 and table base 46. The swivel portion 55 may rotate or pivot around a pivot point (e.g., located below the patient's head) in order to position the bottom portion of the swivel portion 55 away from the column 37. For example, the pivoting of the swivel portion 55 allows a C-arm (not shown) to be positioned over the patient's lower abdomen without competing for space with the column (not shown) below table 38. By rotating the carriage 35 (not shown) around the column 37, the robotic arms 39 may directly insert a ureteroscope 56 along a virtual rail 57 into the patient's groin area to reach the urethra. In a ureteroscopy, stirrups 58 may also be fixed to the swivel portion 55 of the table 38 to support the position of the patient's legs during the procedure and allow clear access to the patient's groin area.
In a laparoscopic procedure, through small incision(s) in the patient's abdominal wall, minimally invasive instruments may be inserted into the patient's anatomy. In some embodiments, the minimally invasive instruments comprise an elongated rigid member, such as a shaft, which is used to access anatomy within the patient. After inflation of the patient's abdominal cavity, the instruments may be directed to perform surgical or medical tasks, such as grasping, cutting, ablating, suturing, etc. In some embodiments, the instruments can comprise a scope, such as a laparoscope. FIG. 9 illustrates an embodiment of a robotically-enabled table-based system configured for a laparoscopic procedure. As shown in FIG. 9, the carriages 43 of the system 36 may be rotated and vertically adjusted to position pairs of the robotic arms 39 on opposite sides of the table 38, such that instrument 59 may be positioned using the arm mounts 45 to be passed through minimal incisions on both sides of the patient to reach his/her abdominal cavity.
To accommodate laparoscopic procedures, the robotically-enabled table system may also tilt the platform to a desired angle. FIG. 10 illustrates an embodiment of the robotically-enabled medical system with pitch or tilt adjustment. As shown in FIG. 10, the system 36 may accommodate tilt of the table 38 to position one portion of the table at a greater distance from the floor than the other. Additionally, the arm mounts 45 may rotate to match the tilt such that the arms 39 maintain the same planar relationship with table 38. To accommodate steeper angles, the column 37 may also include telescoping portions 60 that allow vertical extension of column 37 to keep the table 38 from touching the floor or colliding with base 46.
FIG. 11 provides a detailed illustration of the interface between the table 38 and the column 37. Pitch rotation mechanism 61 may be configured to alter the pitch angle of the table 38 relative to the column 37 in multiple degrees of freedom. The pitch rotation mechanism 61 may be enabled by the positioning of orthogonal axes 1, 2 at the column-table interface, each axis actuated by a separate motor 3, 4 responsive to an electrical pitch angle command. Rotation along one screw 5 would enable tilt adjustments in one axis 1, while rotation along the other screw 6 would enable tilt adjustments along the other axis 2. In some embodiments, a ball joint can be used to alter the pitch angle of the table 38 relative to the column 37 in multiple degrees of freedom.
For example, pitch adjustments are particularly useful when trying to position the table in a Trendelenburg position, i.e., position the patient's lower abdomen at a higher position from the floor than the patient's lower abdomen, for lower abdominal surgery. The Trendelenburg position causes the patient's internal organs to slide towards his/her upper abdomen through the force of gravity, clearing out the abdominal cavity for minimally invasive tools to enter and perform lower abdominal surgical or medical procedures, such as laparoscopic prostatectomy.
FIGS. 12 and 13 illustrate isometric and end views of an alternative embodiment of a table-based surgical robotics system 100. The surgical robotics system 100 includes one or more adjustable arm supports 105 that can be configured to support one or more robotic arms (see, for example, FIG. 14) relative to a table 101. In the illustrated embodiment, a single adjustable arm support 105 is shown, though an additional arm support can be provided on an opposite side of the table 101. The adjustable arm support 105 can be configured so that it can move relative to the table 101 to adjust and/or vary the position of the adjustable arm support 105 and/or any robotic arms mounted thereto relative to the table 101. For example, the adjustable arm support 105 may be adjusted one or more degrees of freedom relative to the table 101. The adjustable arm support 105 provides high versatility to the system 100, including the ability to easily stow the one or more adjustable arm supports 105 and any robotics arms attached thereto beneath the table 101. The adjustable arm support 105 can be elevated from the stowed position to a position below an upper surface of the table 101. In other embodiments, the adjustable arm support 105 can be elevated from the stowed position to a position above an upper surface of the table 101.
The adjustable arm support 105 can provide several degrees of freedom, including lift, lateral translation, tilt, etc. In the illustrated embodiment of FIGS. 12 and 13, the arm support 105 is configured with four degrees of freedom, which are illustrated with arrows in FIG. 12. A first degree of freedom allows for adjustment of the adjustable arm support 105 in the z-direction (“Z-lift”). For example, the adjustable arm support 105 can include a carriage 109 configured to move up or down along or relative to a column 102 supporting the table 101. A second degree of freedom can allow the adjustable arm support 105 to tilt. For example, the adjustable arm support 105 can include a rotary joint, which can allow the adjustable arm support 105 to be aligned with the bed in a Trendelenburg position. A third degree of freedom can allow the adjustable arm support 105 to “pivot up,” which can be used to adjust a distance between a side of the table 101 and the adjustable arm support 105. A fourth degree of freedom can permit translation of the adjustable arm support 105 along a longitudinal length of the table.
The surgical robotics system 100 in FIGS. 12 and 13 can comprise a table supported by a column 102 that is mounted to a base 103. The base 103 and the column 102 support the table 101 relative to a support surface. A floor axis 131 and a support axis 133 are shown in FIG. 13.
The adjustable arm support 105 can be mounted to the column 102. In other embodiments, the arm support 105 can be mounted to the table 101 or base 103. The adjustable arm support 105 can include a carriage 109, a bar or rail connector 111 and a bar or rail 107. In some embodiments, one or more robotic arms mounted to the rail 107 can translate and move relative to one another.
The carriage 109 can be attached to the column 102 by a first joint 113, which allows the carriage 109 to move relative to the column 102 (e.g., such as up and down a first or vertical axis 123). The first joint 113 can provide the first degree of freedom (“Z-lift”) to the adjustable arm support 105. The adjustable arm support 105 can include a second joint 115, which provides the second degree of freedom (tilt) for the adjustable arm support 105. The adjustable arm support 105 can include a third joint 117, which can provide the third degree of freedom (“pivot up”) for the adjustable arm support 105. An additional joint 119 (shown in FIG. 13) can be provided that mechanically constrains the third joint 117 to maintain an orientation of the rail 107 as the rail connector 111 is rotated about a third axis 127. The adjustable arm support 105 can include a fourth joint 121, which can provide a fourth degree of freedom (translation) for the adjustable arm support 105 along a fourth axis 129.
FIG. 14 illustrates an end view of the surgical robotics system 140A with two adjustable arm supports 105A, 105B mounted on opposite sides of a table 101. A first robotic arm 142A is attached to the bar or rail 107A of the first adjustable arm support 105B. The first robotic arm 142A includes a base 144A attached to the rail 107A. The distal end of the first robotic arm 142A includes an instrument drive mechanism 146A that can attach to one or more robotic medical instruments or tools. Similarly, the second robotic arm 142B includes a base 144B attached to the rail 107B. The distal end of the second robotic arm 142B includes an instrument drive mechanism 146B. The instrument drive mechanism 146B can be configured to attach to one or more robotic medical instruments or tools.
In some embodiments, one or more of the robotic arms 142A, 142B comprises an arm with seven or more degrees of freedom. In some embodiments, one or more of the robotic arms 142A, 142B can include eight degrees of freedom, including an insertion axis (1-degree of freedom including insertion), a wrist (3-degrees of freedom including wrist pitch, yaw and roll), an elbow (1-degree of freedom including elbow pitch), a shoulder (2-degrees of freedom including shoulder pitch and yaw), and base 144A, 144B (1-degree of freedom including translation). In some embodiments, the insertion degree of freedom can be provided by the robotic arm 142A, 142B, while in other embodiments, the instrument itself provides insertion via an instrument-based insertion architecture.
C. Instrument Driver & Interface
The end effectors of the system's robotic arms comprise (i) an instrument driver (alternatively referred to as “instrument drive mechanism” or “instrument device manipulator”) that incorporate electro-mechanical means for actuating the medical instrument and (ii) a removable or detachable medical instrument, which may be devoid of any electro-mechanical components, such as motors. This dichotomy may be driven by the need to sterilize medical instruments used in medical procedures, and the inability to adequately sterilize expensive capital equipment due to their intricate mechanical assemblies and sensitive electronics. Accordingly, the medical instruments may be designed to be detached, removed, and interchanged from the instrument driver (and thus the system) for individual sterilization or disposal by the physician or the physician's staff In contrast, the instrument drivers need not be changed or sterilized, and may be draped for protection.
FIG. 15 illustrates an example instrument driver. Positioned at the distal end of a robotic arm, instrument driver 62 comprises of one or more drive units 63 arranged with parallel axes to provide controlled torque to a medical instrument via drive shafts 64. Each drive unit 63 comprises an individual drive shaft 64 for interacting with the instrument, a gear head 65 for converting the motor shaft rotation to a desired torque, a motor 66 for generating the drive torque, an encoder 67 to measure the speed of the motor shaft and provide feedback to the control circuitry, and control circuity 68 for receiving control signals and actuating the drive unit. Each drive unit 63 being independent controlled and motorized, the instrument driver 62 may provide multiple (four as shown in FIG. 15) independent drive outputs to the medical instrument. In operation, the control circuitry 68 would receive a control signal, transmit a motor signal to the motor 66, compare the resulting motor speed as measured by the encoder 67 with the desired speed, and modulate the motor signal to generate the desired torque.
For procedures that require a sterile environment, the robotic system may incorporate a drive interface, such as a sterile adapter connected to a sterile drape, that sits between the instrument driver and the medical instrument. The chief purpose of the sterile adapter is to transfer angular motion from the drive shafts of the instrument driver to the drive inputs of the instrument while maintaining physical separation, and thus sterility, between the drive shafts and drive inputs. Accordingly, an example sterile adapter may comprise of a series of rotational inputs and outputs intended to be mated with the drive shafts of the instrument driver and drive inputs on the instrument. Connected to the sterile adapter, the sterile drape, comprised of a thin, flexible material such as transparent or translucent plastic, is designed to cover the capital equipment, such as the instrument driver, robotic arm, and cart (in a cart-based system) or table (in a table-based system). Use of the drape would allow the capital equipment to be positioned proximate to the patient while still being located in an area not requiring sterilization (i.e., non-sterile field). On the other side of the sterile drape, the medical instrument may interface with the patient in an area requiring sterilization (i.e., sterile field).
D. Medical Instrument
FIG. 16 illustrates an example medical instrument with a paired instrument driver. Like other instruments designed for use with a robotic system, medical instrument 70 comprises an elongated shaft 71 (or elongate body) and an instrument base 72. The instrument base 72, also referred to as an “instrument handle” due to its intended design for manual interaction by the physician, may generally comprise rotatable drive inputs 73, e.g., receptacles, pulleys or spools, that are designed to be mated with drive outputs 74 that extend through a drive interface on instrument driver 75 at the distal end of robotic arm 76. When physically connected, latched, and/or coupled, the mated drive inputs 73 of instrument base 72 may share axes of rotation with the drive outputs 74 in the instrument driver 75 to allow the transfer of torque from drive outputs 74 to drive inputs 73. In some embodiments, the drive outputs 74 may comprise splines that are designed to mate with receptacles on the drive inputs 73.
The elongated shaft 71 is designed to be delivered through either an anatomical opening or lumen, e.g., as in endoscopy, or a minimally invasive incision, e.g., as in laparoscopy. The elongated shaft 71 may be either flexible (e.g., having properties similar to an endoscope) or rigid (e.g., having properties similar to a laparoscope) or contain a customized combination of both flexible and rigid portions. When designed for laparoscopy, the distal end of a rigid elongated shaft may be connected to an end effector extending from a jointed wrist formed from a clevis with at least one degree of freedom and a surgical tool or medical instrument, such as, for example, a grasper or scissors, that may be actuated based on force from the tendons as the drive inputs rotate in response to torque received from the drive outputs 74 of the instrument driver 75. When designed for endoscopy, the distal end of a flexible elongated shaft may include a steerable or controllable bending section that may be articulated and bent based on torque received from the drive outputs 74 of the instrument driver 75.
Torque from the instrument driver 75 is transmitted down the elongated shaft 71 using tendons along the shaft 71. These individual tendons, such as pull wires, may be individually anchored to individual drive inputs 73 within the instrument handle 72. From the handle 72, the tendons are directed down one or more pull lumens along the elongated shaft 71 and anchored at the distal portion of the elongated shaft 71, or in the wrist at the distal portion of the elongated shaft. During a surgical procedure, such as a laparoscopic, endoscopic or hybrid procedure, these tendons may be coupled to a distally mounted end effector, such as a wrist, grasper, or scissor. Under such an arrangement, torque exerted on drive inputs 73 would transfer tension to the tendon, thereby causing the end effector to actuate in some way. In some embodiments, during a surgical procedure, the tendon may cause a joint to rotate about an axis, thereby causing the end effector to move in one direction or another. Alternatively, the tendon may be connected to one or more jaws of a grasper at distal end of the elongated shaft 71, where tension from the tendon cause the grasper to close.
In endoscopy, the tendons may be coupled to a bending or articulating section positioned along the elongated shaft 71 (e.g., at the distal end) via adhesive, control ring, or other mechanical fixation. When fixedly attached to the distal end of a bending section, torque exerted on drive inputs 73 would be transmitted down the tendons, causing the softer, bending section (sometimes referred to as the articulable section or region) to bend or articulate. Along the non-bending sections, it may be advantageous to spiral or helix the individual pull lumens that direct the individual tendons along (or inside) the walls of the endoscope shaft to balance the radial forces that result from tension in the pull wires. The angle of the spiraling and/or spacing there between may be altered or engineered for specific purposes, wherein tighter spiraling exhibits lesser shaft compression under load forces, while lower amounts of spiraling results in greater shaft compression under load forces, but also exhibits limits bending. On the other end of the spectrum, the pull lumens may be directed parallel to the longitudinal axis of the elongated shaft 71 to allow for controlled articulation in the desired bending or articulable sections.
In endoscopy, the elongated shaft 71 houses a number of components to assist with the robotic procedure. The shaft may comprise of a working channel for deploying surgical tools (or medical instruments), irrigation, and/or aspiration to the operative region at the distal end of the shaft 71. The shaft 71 may also accommodate wires and/or optical fibers to transfer signals to/from an optical assembly at the distal tip, which may include of an optical camera. The shaft 71 may also accommodate optical fibers to carry light from proximally-located light sources, such as light emitting diodes, to the distal end of the shaft.
At the distal end of the instrument 70, the distal tip may also comprise the opening of a working channel for delivering tools for diagnostic and/or therapy, irrigation, and aspiration to an operative site. The distal tip may also include a port for a camera, such as a fiberscope or a digital camera, to capture images of an internal anatomical space. Relatedly, the distal tip may also include ports for light sources for illuminating the anatomical space when using the camera.
In the example of FIG. 16, the drive shaft axes, and thus the drive input axes, are orthogonal to the axis of the elongated shaft. This arrangement, however, complicates roll capabilities for the elongated shaft 71. Rolling the elongated shaft 71 along its axis while keeping the drive inputs 73 static results in undesirable tangling of the tendons as they extend off the drive inputs 73 and enter pull lumens within the elongated shaft 71. The resulting entanglement of such tendons may disrupt any control algorithms intended to predict movement of the flexible elongated shaft during an endoscopic procedure.
FIG. 17 illustrates an alternative design for an instrument driver and instrument where the axes of the drive units are parallel to the axis of the elongated shaft of the instrument. As shown, a circular instrument driver 80 comprises four drive units with their drive outputs 81 aligned in parallel at the end of a robotic arm 82. The drive units, and their respective drive outputs 81, are housed in a rotational assembly 83 of the instrument driver 80 that is driven by one of the drive units within the assembly 83. In response to torque provided by the rotational drive unit, the rotational assembly 83 rotates along a circular bearing that connects the rotational assembly 83 to the non-rotational portion 84 of the instrument driver. Power and controls signals may be communicated from the non-rotational portion 84 of the instrument driver 80 to the rotational assembly 83 through electrical contacts may be maintained through rotation by a brushed slip ring connection (not shown). In other embodiments, the rotational assembly 83 may be responsive to a separate drive unit that is integrated into the non-rotatable portion 84, and thus not in parallel to the other drive units. The rotational mechanism 83 allows the instrument driver 80 to rotate the drive units, and their respective drive outputs 81, as a single unit around an instrument driver axis 85.
Like earlier disclosed embodiments, an instrument 86 may comprise an elongated shaft portion 88 and an instrument base 87 (shown with a transparent external skin for discussion purposes) comprising a plurality of drive inputs 89 (such as receptacles, pulleys, and spools) that are configured to receive the drive outputs 81 in the instrument driver 80. Unlike prior disclosed embodiments, instrument shaft 88 extends from the center of instrument base 87 with an axis substantially parallel to the axes of the drive inputs 89, rather than orthogonal as in the design of FIG. 16.
When coupled to the rotational assembly 83 of the instrument driver 80, the medical instrument 86, comprising instrument base 87 and instrument shaft 88, rotates in combination with the rotational assembly 83 about the instrument driver axis 85. Since the instrument shaft 88 is positioned at the center of instrument base 87, the instrument shaft 88 is coaxial with instrument driver axis 85 when attached. Thus, rotation of the rotational assembly 83 causes the instrument shaft 88 to rotate about its own longitudinal axis. Moreover, as the instrument base 87 rotates with the instrument shaft 88, any tendons connected to the drive inputs 89 in the instrument base 87 are not tangled during rotation. Accordingly, the parallelism of the axes of the drive outputs 81, drive inputs 89, and instrument shaft 88 allows for the shaft rotation without tangling any control tendons.
FIG. 18 illustrates an instrument having an instrument based insertion architecture in accordance with some embodiments. The instrument 150 can be coupled to any of the instrument drivers discussed above. The instrument 150 comprises an elongated shaft 152, an end effector 162 connected to the shaft 152, and a handle 170 coupled to the shaft 152. The elongated shaft 152 comprises a tubular member having a proximal portion 154 and a distal portion 156. The elongated shaft 152 comprises one or more channels or grooves 158 along its outer surface. The grooves 158 are configured to receive one or more wires or cables 180 therethrough. One or more cables 180 thus run along an outer surface of the elongated shaft 152. In other embodiments, cables 180 can also run through the elongated shaft 152. Manipulation of the one or more cables 180 (e.g., via an instrument driver) results in actuation of the end effector 162.
The instrument handle 170, which may also be referred to as an instrument base, may generally comprise an attachment interface 172 having one or more mechanical inputs 174, e.g., receptacles, pulleys or spools, that are designed to be reciprocally mated with one or more torque couplers on an attachment surface of an instrument driver.
In some embodiments, the instrument 150 comprises a series of pulleys or cables that enable the elongated shaft 152 to translate relative to the handle 170. In other words, the instrument 150 itself comprises an instrument-based insertion architecture that accommodates insertion of the instrument, thereby minimizing the reliance on a robot arm to provide insertion of the instrument 150. In other embodiments, a robotic arm can be largely responsible for instrument insertion.
E. Controller
Any of the robotic systems described herein can include an input device or controller for manipulating an instrument attached to a robotic arm. In some embodiments, the controller can be coupled (e.g., communicatively, electronically, electrically, wirelessly and/or mechanically) with an instrument such that manipulation of the controller causes a corresponding manipulation of the instrument e.g., via master slave control.
FIG. 19 is a perspective view of an embodiment of a controller 182. In the present embodiment, the controller 182 comprises a hybrid controller that can have both impedance and admittance control. In other embodiments, the controller 182 can utilize just impedance or passive control. In other embodiments, the controller 182 can utilize just admittance control. By being a hybrid controller, the controller 182 advantageously can have a lower perceived inertia while in use.
In the illustrated embodiment, the controller 182 is configured to allow manipulation of two medical instruments, and includes two handles 184. Each of the handles 184 is connected to a gimbal 186. Each gimbal 186 is connected to a positioning platform 188.
As shown in FIG. 19, each positioning platform 188 includes a SCARA arm (selective compliance assembly robot arm) 198 coupled to a column 194 by a prismatic joint 196. The prismatic joints 196 are configured to translate along the column 194 (e.g., along rails 197) to allow each of the handles 184 to be translated in the z-direction, providing a first degree of freedom. The SCARA arm 198 is configured to allow motion of the handle 184 in an x-y plane, providing two additional degrees of freedom.
In some embodiments, one or more load cells are positioned in the controller. For example, in some embodiments, a load cell (not shown) is positioned in the body of each of the gimbals 186. By providing a load cell, portions of the controller 182 are capable of operating under admittance control, thereby advantageously reducing the perceived inertia of the controller while in use. In some embodiments, the positioning platform 188 is configured for admittance control, while the gimbal 186 is configured for impedance control. In other embodiments, the gimbal 186 is configured for admittance control, while the positioning platform 188 is configured for impedance control. Accordingly, for some embodiments, the translational or positional degrees of freedom of the positioning platform 188 can rely on admittance control, while the rotational degrees of freedom of the gimbal 186 rely on impedance control.
F. Navigation and Control
Traditional endoscopy may involve the use of fluoroscopy (e.g., as may be delivered through a C-arm) and other forms of radiation-based imaging modalities to provide endoluminal guidance to an operator physician. In contrast, the robotic systems contemplated by this disclosure can provide for non-radiation-based navigational and localization means to reduce physician exposure to radiation and reduce the amount of equipment within the operating room. As used herein, the term “localization” may refer to determining and/or monitoring the position of objects in a reference coordinate system. Technologies such as pre-operative mapping, computer vision, real-time EM tracking, and robot command data may be used individually or in combination to achieve a radiation-free operating environment. In other cases, where radiation-based imaging modalities are still used, the pre-operative mapping, computer vision, real-time EM tracking, and robot command data may be used individually or in combination to improve upon the information obtained solely through radiation-based imaging modalities.
FIG. 20 is a block diagram illustrating a localization system 90 that estimates a location of one or more elements of the robotic system, such as the location of the instrument, in accordance to an example embodiment. The localization system 90 may be a set of one or more computer devices configured to execute one or more instructions. The computer devices may be embodied by a processor (or processors) and computer-readable memory in one or more components discussed above. By way of example and not limitation, the computer devices may be in the tower 30 shown in FIG. 1, the cart shown in FIGS. 1-4, the beds shown in FIGS. 5-14, etc.
As shown in FIG. 20, the localization system 90 may include a localization module 95 that processes input data 91-94 to generate location data 96 for the distal tip of a medical instrument. The location data 96 may be data or logic that represents a location and/or orientation of the distal end of the instrument relative to a frame of reference. The frame of reference can be a frame of reference relative to the anatomy of the patient or to a known object, such as an EM field generator (see discussion below for the EM field generator).
The various input data 91-94 are now described in greater detail. Pre-operative mapping may be accomplished through the use of the collection of low dose CT scans. Pre-operative CT scans are reconstructed into three-dimensional images, which are visualized, e.g. as “slices” of a cutaway view of the patient's internal anatomy. When analyzed in the aggregate, image-based models for anatomical cavities, spaces and structures of the patient's anatomy, such as a patient lung network, may be generated. Techniques such as center-line geometry may be determined and approximated from the CT images to develop a three-dimensional volume of the patient's anatomy, referred to as model data 91 (also referred to as “preoperative model data” when generated using only preoperative CT scans). The use of center-line geometry is discussed in U.S. patent application Ser. No. 14/523,760, the contents of which are herein incorporated in its entirety. Network topological models may also be derived from the CT-images, and are particularly appropriate for bronchoscopy.
some embodiments, the instrument may be equipped with a camera to provide vision data 92. The localization module 95 may process the vision data to enable one or more vision-based location tracking. For example, the preoperative model data may be used in conjunction with the vision data 92 to enable computer vision-based tracking of the medical instrument (e.g., an endoscope or an instrument advance through a working channel of the endoscope). For example, using the preoperative model data 91, the robotic system may generate a library of expected endoscopic images from the model based on the expected path of travel of the endoscope, each image linked to a location within the model. Intra-operatively, this library may be referenced by the robotic system in order to compare real-time images captured at the camera (e.g., a camera at a distal end of the endoscope) to those in the image library to assist localization.
Other computer vision-based tracking techniques use feature tracking to determine motion of the camera, and thus the endoscope. Some features of the localization module 95 may identify circular geometries in the preoperative model data 91 that correspond to anatomical lumens and track the change of those geometries to determine which anatomical lumen was selected, as well as the relative rotational and/or translational motion of the camera. Use of a topological map may further enhance vision-based algorithms or techniques.
Optical flow, another computer vision-based technique, may analyze the displacement and translation of image pixels in a video sequence in the vision data 92 to infer camera movement. Examples of optical flow techniques may include motion detection, object segmentation calculations, luminance, motion compensated encoding, stereo disparity measurement, etc. Through the comparison of multiple frames over multiple iterations, movement and location of the camera (and thus the endoscope) may be determined.
The localization module 95 may use real-time EM tracking to generate a real-time location of the endoscope in a global coordinate system that may be registered to the patient's anatomy, represented by the preoperative model. In EM tracking, an EM sensor (or tracker) comprising of one or more sensor coils embedded in one or more locations and orientations in a medical instrument (e.g., an endoscopic tool) measures the variation in the EM field created by one or more static EM field generators positioned at a known location. The location information detected by the EM sensors is stored as EM data 93. The EM field generator (or transmitter), may be placed close to the patient to create a low intensity magnetic field that the embedded sensor may detect. The magnetic field induces small currents in the sensor coils of the EM sensor, which may be analyzed to determine the distance and angle between the EM sensor and the EM field generator. These distances and orientations may be intra-operatively “registered” to the patient anatomy (e.g., the preoperative model) in order to determine the geometric transformation that aligns a single location in the coordinate system with a position in the pre-operative model of the patient's anatomy. Once registered, an embedded EM tracker in one or more positions of the medical instrument (e.g., the distal tip of an endoscope) may provide real-time indications of the progression of the medical instrument through the patient's anatomy.
Robotic command and kinematics data 94 may also be used by the localization module 95 to provide localization data 96 for the robotic system. Device pitch and yaw resulting from articulation commands may be determined during pre-operative calibration. Intra-operatively, these calibration measurements may be used in combination with known insertion depth information to estimate the position of the instrument. Alternatively, these calculations may be analyzed in combination with EM, vision, and/or topological modeling to estimate the position of the medical instrument within the network.
As FIG. 20 shows, a number of other input data can be used by the localization module 95. For example, although not shown in FIG. 20, an instrument utilizing shape-sensing fiber can provide shape data that the localization module 95 can use to determine the location and shape of the instrument.
The localization module 95 may use the input data 91-94 in combination(s). In some cases, such a combination may use a probabilistic approach where the localization module 95 assigns a confidence weight to the location determined from each of the input data 91-94. Thus, where the EM data may not be reliable (as may be the case where there is EM interference) the confidence of the location determined by the EM data 93 can be decrease and the localization module 95 may rely more heavily on the vision data 92 and/or the robotic command and kinematics data 94.
As discussed above, the robotic systems discussed herein may be designed to incorporate a combination of one or more of the technologies above. The robotic system's computer-based control system, based in the tower, bed and/or cart, may store computer program instructions, for example, within a non-transitory computer-readable storage medium such as a persistent magnetic storage drive, solid state drive, or the like, that, upon execution, cause the system to receive and analyze sensor data and user commands, generate control signals throughout the system, and display the navigational and localization data, such as the position of the instrument within the global coordinate system, anatomical map, etc.
2. Introduction to Systems and Methods for Improving External Workspaces
Embodiments of the disclosure relate to systems and methods for improving external workspaces. Advantageously, the systems and methods described herein help to mitigate the risk of collisions between components of the robotic surgical system. In addition, the systems and methods can optimize the ability to provide surgical triangulation for different types of procedures.
FIG. 21 depicts a top view of a representative abdomen 200 in a surgical procedure including cannulas inserted in a representative patient. In this embodiment, the cannulas 202a, 202b, 202c, 202d, 202e have been positioned such that a central cannula 202a permits triangulation in four different quadrants of the patient. For example, triangulation is provided between cannulas 202a, 202b, and 202c. In this configuration, a scope 205 can be inserted through the central cannula 202a, while a first instrument (not shown) can be inserted through cannula 202b and a second instrument (not shown) can be inserted through cannula 202c.
Depending on the type of surgery performed, the cannulas can be placed in different locations of a patient. In some surgeries, cannulas can be placed very close to one another in the same quadrant. For example, in the image in FIG. 21, consider that the cannula 202b can be positioned near cannula 202d in a different surgical procedure. In such a case, it can be a challenge for the robotic arms to reach the cannulas and avoid workspace collisions, while optimizing triangulation, particularly when using a rail-based system wherein two or more arms may be side-to-side on the same rail/arm support, as shown in FIG. 12. Accordingly, the present application describes different systems and methods to modify the architecture of a table-based robotic system platform to enhance the external workspace and optimize triangulation for different types of surgical procedures.
FIGS. 22-24 provide further details regarding the challenges overcome using the embodiments of the present application. FIG. 22 depicts a top schematic view of a table-based robotic system. In some embodiments, the system comprises a table 100 for supporting a patient platform and a pair of adjustable arm supports 105 that multiple robotic arms 142. In the illustrated embodiment, one adjustable arm support 105 supports a first robotic arm 142a, a second robotic arm 142b, and a third robotic arm 142c, while a second adjustable arm support 105 supports a fourth robotic arm 142d, a fifth robotic arm 142e, and a sixth robotic arm 142f. In some embodiments, each of the robotic arms 142 can be identified via a specific color or label, as shown in the figure.
FIG. 23 depicts a perspective view of the robotic arms of a table-based robotic system, including a plane formed between a proximal link and a distal link of a robotic arm. In the figure, a pair of adjacent adjustable robotic arms 142a, 142b are supported on an adjustable arm support 105. Each of them includes a proximal link 232 and a distal link 234 and a 1-degree of freedom (DOF) elbow in between. As such, the proximal link 232 and distal link 234 reside in the same plane 143. In some embodiments, while a joint at the base of each robotic arm 142a, 142b is capable of yawing the plane 143 left or right, the plane 143 may remain orthogonal to the top of the rail of the adjustable arm support 105. Despite some unique advantages of having a robotic system as depicted in FIG. 23, including providing robotic arms in a bilateral fashion relative to a patient, in some surgical set-ups, the system can encounter collisions between a robotic arm and another robotic arm, patient, bedside accessory, or bedside staff. Some of these collisions can come from a wrist, instrument driver, or tool of a robotic arm sweeping into a volume occupied by a proximal distal link plane 143 of an adjacent robotic arm. FIG. 24 depicts a perspective view of the robotic arms of a table-based robotic system, wherein one arm is sweeping into another arm, as noted in the paragraph above.
Below are different embodiments of the robotic system that are capable of alleviating the challenges described above. In particular, the systems and associated methods help to reduce the risk of collisions between adjacent robotic arms, optimize surgical triangulation, and enhance the overall external surgical workspace.
A. Horizontal Translation of the Adjustable Arm Support
As discussed above with respect to FIG. 12, the table-based robotic system 100 can comprise one or more adjustable arm supports 105 that are operably coupled to a column of the table. The one or more adjustable arm supports 105 are configured to support one or more robotic arms 142. Each of the adjustable arm supports can include several degrees of freedom, including vertical translation along the column, a biceps curl lift (e.g., via the connector 111), lateral translation along a length of the patient platform, and tilt.
In addition to these degrees of freedom, the adjustable arm support can also advantageously include another degree of freedom that enables the adjustable arm support 105 to swing in a direction of the patient platform that supports a patient, as shown in FIG. 25. In other words, at least one end of the adjustable arm support is capable of swinging or moving horizontally into the direction of the patient platform. When the adjustable arm support swings or moves horizontally into the direction of the patient platform, one end of the adjustable arm support is positioned closer to the patient platform while the second end of the adjustable arm support is positioned further from the patient platform. The adjustable arm support is thus placed in a non-parallel position relative to the side of the table of the patient platform.
As the adjustable arm support is capable of swinging towards a patient in a horizontal direction (e.g., such that the adjustable arm support is non-parallel to side of the table), robotic arms that are positioned on the adjustable arm support may be at an angle that is less than or greater than 90 degrees relative to the patient platform. For example, as shown in FIG. 25, the three robotic arms 142 in the background each has a base that can be considered perpendicular or 90 degrees relative to the table 101 of the patient platform, as they reside on a straight or linear rail/adjustable arm support. In contrast, robotic arms 142 that would reside on or be supported on top of the rail/adjustable arm support in the foreground of FIG. 22 (not shown to emphasize the horizontal swinging of the arm support) can each have a base that would be at a non-perpendicular angle relative to the table 101 of the patient platform. With the arm support 105 in a horizontally swung position, robotic arms 142 that are side by side along the adjustable arm support 105 can advantageously extend towards difficult to reach cannulas, with lesser risk of collision and enhanced surgical triangulation.
FIG. 26 depicts a table-based robotic system with an adjustable arm support swung inwardly and coupled to robotic arms in accordance with some embodiments. In the illustrated embodiments, a pair of robotic arms 142a, 142b are attached to the adjustable arm support 105. The adjustable arm support 105 has been rolled inward toward the table 101 supporting a patient, such that the robotic arms 142 coupled thereto are capable of reaching difficult to reach cannulas, thereby optimizing triangulation and the external workspace.
FIG. 27 shows an end view of the table-based robotic system with one or more rotary joints for swinging the adjustable arm support. In addition to the joints shown in FIG. 14, the robotic arms 142 of the robotic surgical system can include one or more rotary joints 148 (shown in FIG. 27) that can enable horizontal translation and swinging of the robotic arms. The one or more rotary joints 148 can be positioned at or near a distal link of the robotic arm. The rotary joints 148 allow a portion of the connector/set-up joints that couple the adjustable arm support to the column to rotate or twist, thereby allowing for horizontal translation of the adjustable arm support. In some embodiments, one end of the adjustable arm support is capable of swinging horizontally between 2 and 60 degrees, while in other embodiments, the adjustable arm support is capable of swinging horizontally between 2 and 45 degrees. The degree of horizontal swinging can depend on the type of surgical procedure to be performed, as well as the size and location of the patient.
Various features can be provided to enhance patient safety even while allowing an adjustable arm support to swing in the patient's direction. In some embodiments, one or more sensors can be provided on the adjustable arm support to detect whether an object (e.g., a patient) is coming close to contact with the adjustable arm support. For example, the sensor can comprise a position-based sensor or a force-based sensor. In other embodiments, one or more sensors can be provided on the adjustable arm support to assist in the generation of a map for collision detection and avoidance. For example, a representative model of the patient can be generated using one or more types of sensors (e.g., vision-based sensors including cameras or LIDAR). By using the representative model of the patient in conjunction with a representative model or geometrical representation of the adjustable arm support, a processor can then kinematically calculate an approximate distance between the adjustable arm support and the patient. If a patient is detected via a sensor and/or kinematic calculation to be within a zone of contact with the adjustable arm support, the processor can move the adjustable arm support in null space to avoid contact with the patient.
B. Curved Adjustable Arm Support
FIG. 28A depicts a top view of a table-based robotic system with a curved adjustable arm support. The table based robotic system 100 comprises a table 101 coupled via links or connectors (e.g., connectors 111 as shown in FIG. 12) to one or more adjustable arm supports 105. In the present embodiment, each of the adjustable arm supports 105 is curved. The curvature enables one or more robotic arms 142 to translate along a curvature or radius of the adjustable arm support 105. This advantageously allows one arm 142 to be offset relative to another, such that one arm 142 on the arm support 105 is at a first angle relative to the table 101 and a second arm 142 on the same arm support is at a second angle relative to the table 101, wherein the first angle is different from the second angle. For example, in one embodiment, a robotic arm 142 can be at 90 degrees relative to the table 101, where a second robotic arm 142 can be at an angle less than 90 degrees relative to the table 101.
Each of the adjustable arm supports 105 can be curved at one or both of its ends. In some embodiments, the radius of curvature can be between 2 and 45 degrees, or between 2 and 15 degrees. In some embodiments, each of the adjustable arm supports 105 is capable of moving in any of the five degrees of freedom discussed above, including vertical translation along the column, a biceps curl lift (e.g., via the connector 111), lateral translation along a length of the patient platform, tilt, and horizontal translation/swing.
FIG. 28B depicts a top view of a table-based robotic system with an undulating adjustable arm support. The table based robotic system 100 comprises a table 101 coupled via links or connectors (e.g., connectors 111 as shown in FIG. 22) to one or more adjustable arm supports 105. In the present embodiment, each of the adjustable arm supports 105 is undulating along a tortuous path. The undulation enables one or more robotic arms 142 to translate along a radius of the adjustable arm support 105. This advantageously allows one arm 142 to be offset relative to another, such that one arm 142 on the arm support 105 is at a first angle relative to the table 101 and a second arm 142 on the same arm support is at a second angle relative to the table 101, wherein the first angle is different from the second angle.
Each of the adjustable arm supports 105 can be curved at one or both of its ends. In some embodiments, the radius of curvature along the tortuous path can be between 2 and 45 degrees, or between 2 and 15 degrees. In some embodiments, each of the adjustable arm supports 105 is capable of moving in any of the five degrees of freedom discussed above, including vertical translation along the column, biceps curl lift (e.g., via the connector 111), lateral translation along a length of the patient platform, tilt, and horizontal translation/swing (as disclosed with respect to FIG. 25).
C. Plate/Extension for Medial or Lateral Adjustment
FIG. 29 depicts a top view of a table-based robotic system including an extension for medial or lateral adjustment of a robotic arm relative to the adjustable arm support. The table-based robotic system comprises a novel plate or extension 160 that extends from an adjustable arm support 105. The extension 160 can be in the form of a footplate, rail, track, or cantilever beam that allows a robotic arm 142 to translate thereon. In some embodiments, the base of the robotic arm 142 comprises a prismatic joint that enables translation along the adjustable arm support and/or extension.
As shown in FIG. 29, the extension can be positioned either medially (see extension 160a) or laterally (see extension 160b) relative to the adjustable arm support 105. The extension advantageously serves as a cantilever for a robotic arm 142. This advantageously allows one robotic arm 142 to be laterally offset from one another relative to the table. For example, in the example shown in FIG. 29, one robotic arm 142 is supported by the medial extension 160a and another robotic arm 142 is supported on the lateral extension 160b. The robotic arms 142 are thus staggered and offset relative to one another (and to the table), thus allowing the robotic arms 142 to access different locations of a surgical area with less risk of collision between themselves. In some embodiments, an extension 160 can be fixed to an adjustable arm support 105, while in other embodiments, an extension 160 can be removably attached and detached from the adjustable arm support 105.
D. Adjustable Arm Support with Split Rail
FIG. 30 depicts a table-based robotic system including an adjustable arm support including a split rail. In this embodiment, a rail of the adjustable arm support has been split into two segments 165a, 165b. Each segment 165a, 165b of the adjustable arm support can support one or more robotic arms. And each segment 165a, 165b of the adjustable arm support can be coupled to an independently adjustable link or connector 111. Rather than viewing the table-based robotic system 100 as having an adjustable arm support with two segments 165a, 165b, the table-based robotic system 100 can be viewed as having two or more adjustable arm supports along one side of the patient bed. By providing two independently adjustable arm segments 165a, 165b, this enables one robotic arm positioned on the first segment 165a to be laterally offset from a second robotic arm positioned on the second segment 165b, thereby optimizing the positions of the arms in the external workspace.
In some embodiments, the segments 165a, 165b of the adjustable arm support can align and come together to form a linear rail. In some embodiments, the segments 165a, 165b can be mechanically coupled to one another. In some embodiments, each of the segments 165a, 165b is capable of moving in any of the five degrees of freedom discussed above, including vertical translation along the column, biceps curl lift (e.g., via the connector 111), lateral translation along a length of the patient platform, tilt, and horizontal translation/swing (as disclosed with respect to FIG. 25).
E. Extender Bar
FIG. 31 depicts a table-based robotic system including an extender bar. In the present embodiment, one or more of the robotic arms 142a, 142f are oriented such that a central opening of an instrument driver 80 (discussed above in FIG. 17) of each robotic arm 142a, 142b is oriented parallel to a long access of the table and/or patient positioned thereon. One or both of the robotic arms 142a, 142f is configured to receive an extender bar 190 therein.
As shown in FIG. 27, the extender bar 190 can be coupled to one or both of the robotic arms 142a, 142f at a first end. In addition, the extender bar 190 can be coupled to a cannula 202 (e.g., a centralized cannula) at a second end. In some embodiments, a joint 179 (e.g., a gimbal joint) is formed between the extender bar 190 and the cannula 202. The second end of the extender bar 190 can comprise a hole or opening for receiving an instrument or scope therethrough. In the embodiment shown in FIG. 31, a scope 205 is received through the extender bar 190 and through the cannula 202.
As shown in FIG. 27, one or both of the robotic arms 142a, 142f are capable of axially translating the extender bar 190. As the extender bar 190 translates in and out, this varies the joint between the extender bar 190 and the cannula 202, thus causing the cannula 202 to pivot in a pitch or yaw axis. As the scope 205 is received within the cannula 202, the scope 205 will advantageously pivot along with the cannula 202, thereby facilitating optimized triangulation between the scope and other instruments. In other words, one or both of the robotic arms 142a, 142f—despite being at a far end of the left side of the table—are capable of controlling the pitch and yaw of a cannula 202 and scope 205 therein via the novel extender bar 190. Advantageously, by using the extender bar 190, the robotic system is capable of providing optimized triangulation, while reducing the risk of collision between adjacent robotic arms (e.g., such as robotic arm 142a and 142b, or between robotic arm 142f and robotic arm 142e).
F. Riser for Robotic Arms
In some embodiments, a height extender or riser can be added at or near the base of one or more robotic arms. In some embodiments, the riser is a static member, while in other embodiments, the riser is a dynamic member that includes one or more active degrees of freedom. By providing a riser to one or more of the robotic arms, this helps to modify their reach and reduce the risk of collisions relative to adjacent arms, thereby optimizing the external workspace and surgical triangulation.
FIG. 32 depicts a table-based robotic system wherein one or more robotic arms include a riser in accordance with some embodiments. The table-based robotic system 100 includes a bed column, a base, and one or more robotic arms 142 stowed underneath the table top. In the present embodiment, there are six robotic arms 142a, 142b, 142c, 142d, 142e, 142f. As shown in the illustrated embodiment, two of the robotic arms 142c, 142f are provided with a riser element 220 at or near its base. The riser 220 advantageously provides a heigh differential between the robotic arms 142c, 142f and adjacent robotic arms thereby reducing the risk of collisions between the adjacent robotic arms. Below are example embodiments of dynamic riser elements in accordance with some embodiments.
FIG. 33 depicts a robotic arm including a dynamic riser in the form of a spherical shoulder joint riser in accordance with some embodiments. The spherical shoulder joint 222 is positioned between a base 144 of the robotic arm 142 and the links (proximal link 232 and distal link 234) of the robotic arm. In some embodiments, the base 144 comprises a prismatic joint that enables translation of the robotic arm 142 over a rail of the adjustable arm support 105.
The spherical shoulder joint 222 is a dynamic riser capable of moving in one or more degrees of freedom. In some embodiments, the spherical shoulder joint 222 advantageously adds one, two, or three degrees of freedom of movement. The spherical shoulder joint 222 can advantageously enable for the proximal link's 232 takeoff angle and orientation (plane orientation) to be controlled.
FIG. 34 depicts a robotic arm including a dynamic riser in the form of a rotary joint riser in accordance with some embodiments. The rotary joint riser 224 is positioned between a base 144 of the robotic arm 142 and the links (proximal link 232 and distal link 234) of the robotic arm. As noted with respect to FIG. 33, the base 144 comprises a prismatic joint that enables translation of the robotic arm 142 over a rail of the adjustable arm support 105.
The rotary joint riser 224 is a dynamic riser capable of moving in one or more degrees of freedom. The rotary joint riser 224 comprises a first riser link 226 coupled to a second riser link 228 with an axis of rotation 230 extending therethrough. In the illustrated embodiment, the axis of rotation 230 can be at an angle (e.g., generally orthogonal) to the rail of the adjustable arm support 105. The rotary joint riser 224 advantageously allows for the proximal-distal link plane 143 (shown in FIG. 23) to be reoriented with an additional degree of freedom, thereby helping to avoid collisions.
FIG. 35 depicts a robotic arm including a dynamic riser in the form of an alternative rotary joint riser in accordance with some embodiments. The rotary joint riser 234 is similar to the rotary joint riser 224 shown in FIG. 34 in that it is comprised of a first riser link 234 and a second riser link 238 with an axis of rotation 240 extending therethrough. However, in the present embodiment, the axis of rotation 240 extends generally along/parallel to the rail of the adjustable arm support 105.
FIG. 36 depicts a robotic arm including a dynamic riser in the form of a prismatic joint riser in accordance with some embodiments. The prismatic joint riser 244 is positioned between a base 144 of the robotic arm 142 and the links (proximal link 232 and distal link 234) of the robotic arm 142. As noted with respect to FIG. 33, the base 144 comprises a prismatic joint that enables translation of the robotic arm 142 over a rail of the adjustable arm support 105.
The prismatic joint riser 224 is a dynamic riser capable of moving in at least one degree of freedom. The prismatic joint riser 224 comprises a vertical riser link 246 that is received telescopingly in an opening of the base 144. The vertical riser link 246 is capable of translating in and out of the base 144, thereby forming a prismatic joint that can vertically adjust the height and reach of the robotic arm 142.
G. Robotic Arms with Linkages of Variable Length
In some embodiments, one or more robotic arms can include a link having a length that differs from a similar link of nearby or adjacent robotic arms. For example, in an embodiment wherein a first robotic arm and a second robotic arm are both supported on an adjustable arm support, the first robotic arm can have a proximal link that differs in length from the proximal link of the second robotic arm. Or, the first robotic arm can have a distal link that differs in length from the distal link of the second robotic arm. By providing a robotic arm with one or more link length differentials, this advantageously modifies the overall reach of one arm relative to another and reduces the risk of collision between adjacent arms. By modifying the reach of a particular arm, this can enable enhanced workspace optimization and surgical triangulation.
FIG. 37 depicts a table-based robotic system wherein one or more arms have different link lengths relative to one or more other arms in accordance with some embodiments. The table-based robotic system comprises a table 101 operably coupled to a column and a pair of adjustable arm supports 105. In the present embodiment, each of the adjustable arm supports 105 supports three robotic arms—one adjustable arm support 105 supports robotic arms 142a, 142b, 142c and the other adjustable arm support 105 supports robotic arms 142d, 142e, 142f. As noted in the captions in FIG. 37, one robotic arm 142c is raised above the other robotic arms 142a, 142b upon which it shares a rail of an adjustable arm support 105, while another robotic arm 142f is raised above the other robotic arms 142d, 142e upon which it shares a rail of an adjustable arm support 105. A robotic arm 142 having extended link lengths is shown in FIG. 38.
FIGS. 38A and 38B depict robotic arms including elongated link members of variable length in accordance with some embodiments. In some embodiments, both of these robotic arms 142e, 142f can share the same adjustable arm support. Each of the robotic arms 142e, 142f comprises a base link 236, a proximal link 232, and a distal link 234. However, as shown in the figures, one or more of the links of the robotic arm 142f can be elongated relative to the adjacent robotic arm 142e. For example, in the present embodiment, the base link 236 and the distal link 234 of robotic arm 142f can both be increased by a certain length relative to similar links of an adjacent robotic arm 142e. Base link 236 can be increased by between 120 and 180 mm (or approximately 150 mm in accordance with some embodiments), while the distal link can be increased by between 40 and 90 mm (or approximately 70 mm in accordance with some embodiments). An intermediary proximal link 232 can be of the same or similar length as a proximal link of an adjacent robotic arm. By designating that only certain links be elongated, this helps to minimize the manufacturing changes between different robotic arms, while achieving the goals described above, including extended reach, collision reduction, and optimized external workspace. In addition to the images in FIGS. 38A and 38B, note that FIG. 37 also shows a base link of one robotic arm 142c that is of a greater height than an adjacent robotic arm 142b.
Any of the systems described above, such as the cart-based robotic system (e.g., depicted in FIG. 2) or the table-based robotic system (e.g., depicted in FIG. 25), can be used either individually or in combination to treat a patient. In some embodiments, treatment can include the removal of potentially cancerous tissue. In some embodiments, an energy-delivering instrument can be coupled to the robotic system to deliver energy (e.g., RF and microwave energy) to ablate the potentially cancerous tissue. In other embodiments, one or more instruments can be provided to deliver pharmacological drugs via the cart-based robotic system and/or the table-based robotic system to destroy cancerous tissue. In some embodiments, the pharmacological drugs can include drugs for chemotherapy or targeted tissue treatment. In some embodiments, monoclonal antibodies and immune checkpoint inhibitors can be delivered. Other types of cell therapies, anti-tumor vaccines, and advanced biotechnological drugs (e.g., for CAR-T cell therapy) can also be delivered via the robotic systems described herein.
3. Implementing Systems and Terminology
Implementations disclosed herein provide systems, methods and apparatuses for optimizing external workspaces to reduce the risk of collisions and enhancing surgical triangulation.
It should be noted that the terms “couple,” “coupling,” “coupled” or other variations of the word couple as used herein may indicate either an indirect connection or a direct connection. For example, if a first component is “coupled” to a second component, the first component may be either indirectly connected to the second component via another component or directly connected to the second component.
The functions described above with respect to the table-based robotic system may be stored as one or more instructions on a processor-readable or computer-readable medium. The term “computer-readable medium” refers to any available medium that can be accessed by a computer or processor. By way of example, and not limitation, such a medium may comprise random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory, compact disc read-only memory (CD-ROM) or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer. It should be noted that a computer-readable medium may be tangible and non-transitory. As used herein, the term “code” may refer to software, instructions, code or data that is/are executable by a computing device or processor.
The methods disclosed herein comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is required for proper operation of the method that is being described, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, the term “plurality” denotes two or more. For example, a plurality of components indicates two or more components. The term “determining” encompasses a wide variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like. Also, “determining” can include resolving, selecting, choosing, establishing and the like.
The phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” describes both “based only on” and “based at least on.”
The previous description of the disclosed implementations is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these implementations will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the scope of the invention. For example, it will be appreciated that one of ordinary skill in the art will be able to employ a number corresponding alternative and equivalent structural details, such as equivalent ways of fastening, mounting, coupling, or engaging tool components, equivalent mechanisms for producing particular actuation motions, and equivalent mechanisms for delivering electrical energy. Thus, the present invention is not intended to be limited to the implementations shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Some embodiments or implementations are described with respect to the following clauses:
Clause 1. A robotic surgical system, comprising:
- a table for supporting a patient;
- an adjustable arm support coupled to the table; and
- one or more robotic arms coupled to the adjustable arm support,
- wherein the adjustable arm support is capable of at least one degree of freedom such that the adjustable arm support can swing in a non-parallel angle in a direction of the table.
Clause 2. The robotic surgical system of clause 1, wherein the adjustable arm support is capable of at least five degrees of freedom.
Clause 3. The robotic surgical system of clause 2, wherein the at least five degrees of freedom include vertical translation, biceps curl, lateral translation, tilt, and horizontal swing.
Clause 4. The robotic surgical system of any of clauses 1-3, wherein when the adjustable arm support swings horizontally in the direction of the table, a first end of the adjustable arm support is closer to the table and a second end of the adjustable arm support is farther from the table.
Clause 5. The robotic surgical system of clause 4, wherein the one or more robotic arms include a first robotic arm and a second robotic arm, wherein the first robotic arm is positioned closer to the first end of the adjustable arm support and the second robotic arm is positioned closer to the second end of the adjustable arm support.
Clause 6. The robotic surgical system of clause 5, wherein the first robotic arm is coupled to a scope and the second robotic arm is coupled to an instrument.
Clause 7. The robotic surgical system of clause 5 or 6, wherein the first robotic arm is coupled to an extender bar.
Clause 8. The robotic surgical system of clause 7, wherein a first end of the extender bar is coupled to the first robotic arm and a second end of the extender bar is coupled to a cannula.
Clause 9. The robotic surgical system of clause 8, wherein the first robotic arm is capable of translating the extender bar so as to move the cannula in a pitch or yaw axis.
Clause 10. The robotic surgical system of any of clauses 1-9, wherein the adjustable arm support is curved.
Clause 11. The robotic surgical system of any of clauses 1-10, wherein the adjustable arm support is undulating.
Clause 12. The robotic surgical system of any of clauses 1-11, further comprising one or more sensors on the adjustable arm support for detecting an external object.
Clause 13. The robotic surgical system of clause 12, wherein the one or more sensors comprise a vision-based sensor.
Clause 14. The robotic surgical system of clause 13, wherein a map of external objects is generated based on information from the vision-based sensor.
Clause 15. The robotic surgical system of any of clauses 1-14, wherein the adjustable arm support comprises a split rail including a first rail segment and a second rail segment, wherein the first rail segment is independently controllable relative to the second rail segment.
Clause 16. A robotic surgical system, comprising:
- a table for supporting a patient;
- an adjustable arm support coupled to the table; and
- one or more robotic arms coupled to the adjustable arm support,
- wherein the adjustable arm support comprises an extension plate that protrudes outwardly from the adjustable arm support.
Clause 17. The robotic surgical system of clause 16, wherein the extension plate extends medially or laterally outwardly from a longitudinal axis of the extension plate.
Clause 18. The robotic surgical system of clause 16 or 17, wherein the one or more robotic arms include a first robotic arm that is capable of translating along the adjustable arm support and the extension plate.
Clause 19. The robotic surgical system of any of clauses 16-18, wherein the extension plate comprises a foot plate.
Clause 20. The robotic surgical system of any of clauses 16-19, wherein the extension plate is removably coupled from the adjustable arm support.
Clause 21. A robotic surgical system, comprising:
- a table for supporting a patient;
- an adjustable arm support coupled to the table; and
- a first robotic arm and a second robotic arm coupled to the adjustable arm support,
- wherein the first robotic arm has a height differential relative to the second robotic arm.
Clause 22. The robotic surgical system of clause 21, wherein the first robotic arm comprises a riser.
Clause 23. The robotic surgical system of clause 22, wherein the riser comprises a static riser.
Clause 24. The robotic surgical system of clause 22 or 23, wherein the riser comprises a dynamic riser in the form of an actuatable joint.
Clause 25. The robotic surgical system of clause 24, wherein the dynamic riser comprises a spherical shoulder joint.
Clause 26. The robotic surgical system of clause 24 or 25, wherein the dynamic riser comprises a prismatic joint.
Clause 27. The robotic surgical system of any of clauses 24-26, wherein the dynamic riser comprises a rotary joint formed between a first riser link and a second riser link.
Clause 28. The robotic surgical system of clause 27, wherein an axis of rotation extends between the first riser link and the second riser link .
Clause 29. The robotic surgical system of clause 28, wherein the axis of rotation extends generally along a length of the adjustable arm support.
Clause 30. The robotic surgical system of clause 28 or 29, wherein the axis of rotation extends generally perpendicular to a length of the adjustable arm support.
Clause 31. The robotic surgical system of any of clauses 21-30, wherein: the first robotic arm comprises a first base, a first proximal link, and a first distal link; and the second robotic arm comprises a second base, a second proximal link, and a second distal link.
Clause 32. The robotic surgical system of clause 31, wherein the first base has a height differential relative to the second base.
Clause 33. The robotic surgical system of clause 31 or 32, wherein the first distal link has a height differential relative to the second distal link.