The present disclosure relates generally to plasma processing. In particular, but not by way of limitation, the present invention relates to methods and apparatuses for plasma-assisted etching, deposition, and/or other plasma-assisted processes.
Many types of semiconductor devices are fabricated using plasma-based etching techniques. If it is a conductor that is etched, a negative voltage with respect to ground may be applied to the conductive substrate so as to create a substantially uniform negative voltage across the surface of the substrate conductor, which attracts positively charged ions toward the conductor, and as a consequence, the positive ions that impact the conductor have substantially the same energy.
If the substrate is a dielectric, however, a non-varying voltage is ineffective to place a voltage across the surface of the substrate. But an AC voltage (e.g., high frequency) may be applied to the conductive plate (or chuck) so that the AC field induces a voltage on the surface of the substrate. During the positive half of the AC cycle, the substrate attracts electrons, which are light relative to the mass of the positive ions; thus many electrons will be attracted to the surface of the substrate during the positive part of the cycle. As a consequence, the surface of the substrate will be charged negatively, which causes ions to be attracted toward the negatively-charged surface. And when the ions impact the surface of the substrate, the impact dislodges material from the surface of the substrate—effectuating the etching.
In many instances, it is desirable to have a narrow ion energy distribution, but applying a sinusoidal waveform to the substrate induces a broad distribution of ion energies, which limits the ability of the plasma process to carry out a desired etch profile. Known techniques to achieve a narrow ion energy distribution are expensive, inefficient, difficult to control, and may adversely affect the plasma density. As a consequence, these known techniques have not been commercially adopted. Accordingly, a system and method are needed to address the shortfalls of present technology and to provide other new and innovative features.
Illustrative embodiments of the present disclosure that are shown in the drawings are summarized below. These and other embodiments are more fully described in the Detailed Description section. It is to be understood, however, that there is no intention to limit the invention to the forms described in this Summary of the Invention or in the Detailed Description One skilled in the art can recognize that there are numerous modifications, equivalents, and alternative constructions that fall within the spirit and scope of the invention as expressed in the claims.
According to one embodiment, the invention may be characterized as a method for establishing one or more plasma sheath voltages. The method may comprise providing a modified periodic voltage function to a substrate support of a plasma chamber. The substrate support can be coupled to a substrate that is configured for processing in the plasma. Also, the modified periodic voltage function can comprise a periodic voltage function modified by an ion current compensation, Ic. The modified periodic voltage function can comprise pulses and a portion between the pulses. Also, the pulses can be a function of the periodic voltage function, and a slope of the portion between the pulses can be a function of the ion current compensation, Ic. The method can further comprise accessing an effective capacitance value, C1, that represents at least a capacitance of the substrate support. The method finally can identify a value of the ion current compensation, Ic, that will result in a defined ion energy distribution function of ions reaching a surface of the substrate, where the identifying is a function of the effective capacitance, C1, a slope, dV0/dt, of the portion between the pulses.
According to another embodiment, the invention may be described as a method for biasing a plasma so as to achieve a defined ion energy at a surface of a substrate within a plasma processing chamber. The method may include applying a modified periodic voltage function comprising a periodic voltage function modified by an ion current compensation to a substrate support. The method may further include sampling at least one cycle of the modified periodic voltage function to generate voltage data points. The method may further include estimating a value of a first ion energy at the substrate surface from the voltage data points. Also, the method may include adjusting the modified periodic voltage function until the first ion energy equals the define ion energy.
According to yet another embodiment, the invention may be characterized as a method to achieve an ion energy distribution function width. The method may include providing a modified periodic voltage function to a substrate support of a plasma processing chamber. The method may further include sampling at least two voltages from the non-sinusoidal waveform at a first time and at a second time. The method can additionally include calculating a slope of the at least two voltages as dV/dt. Also, the method may include comparing the slope to a reference slope known to correspond to an ion energy distribution function width. Finally, the method may include adjusting the modified periodic voltage function so that the slope approaches the reference slope.
Another aspect of the disclosure can be characterized as an apparatus comprising a power supply, an ion current compensation component, and a controller. The power supply can provide a periodic voltage function having pulses and a portion between the pulses. The ion current compensation component can modify a slope of the portion between the pulses to form a modified periodic voltage function. The modified period voltage function can be configured for providing to a substrate support for processing in a plasma processing chamber. The controller can be coupled to the switch-mode power supply and the ion current compensation component. The controller can also be configured to identify a value of the ion current compensation that if provided to the substrate support, would result in a defined ion energy distribution function of ions reaching a surface of the substrate.
Yet another aspect of the disclosure can be characterized as a non-transitory, tangible computer readable storage medium, encoded with processor readable instructions to perform a method for monitoring an ion current of a plasma configured to process a substrate. The method can include sampling a modified periodic voltage function given an ion current compensation having a first value, and sampling the modified periodic voltage function given the ion current compensation having a second value. The method further can include determining a slope of the modified periodic voltage function as a function of time based on the first and second sampling. The method also determines a slope of the modified periodic voltage function as a function of time based on the first and second sampling. The method finally can include calculating a third value of the ion current compensation, based on the slope, at which a constant voltage on the substrate will exist for at least one cycle of the modified periodic voltage function.
These and other embodiments are described in further detail herein.
Various objects and advantages and a more complete understanding of the present invention are apparent and more readily appreciated by reference to the following Detailed Description and to the appended claims when taken in conjunction with the accompanying Drawings where like or similar elements are designated with identical reference numerals throughout the several views and wherein:
An exemplary embodiment of a plasma processing system is shown generally in
In this exemplary embodiment, the plasma processing chamber 104 may be realized by chambers of substantially conventional construction (e.g., including a vacuum enclosure which is evacuated by a pump or pumps (not shown)). And, as one of ordinary skill in the art will appreciate, the plasma excitation in the chamber 104 may be by any one of a variety of sources including, for example, a helicon type plasma source, which includes magnetic coil and antenna to ignite and sustain a plasma 114 in the reactor, and a gas inlet may be provided for introduction of a gas into the chamber 104.
As depicted, the exemplary plasma chamber 104 is arranged and configured to carry out plasma-assisted etching of materials utilizing energetic ion bombardment of the substrate 110, and other plasma processing (e.g., plasma deposition and plasma assisted ion implantation). The plasma power supply 102 in this embodiment is configured to apply power (e.g., RF power) via a matching network (not shown)) at one or more frequencies (e.g., 13.56 MHz) to the chamber 104 so as to ignite and sustain the plasma 114. It should be understood that the present invention is not limited to any particular type of plasma power supply 102 or source to couple power to the chamber 104, and that a variety of frequencies and power levels may be may be capacitively or inductively coupled to the plasma 114.
As depicted, a dielectric substrate 110 to be treated (e.g., a semiconductor wafer), is supported at least in part by a support 108 that may include a portion of a conventional wafer chuck (e.g., for semiconductor wafer processing). The support 108 may be formed to have an insulating layer between the support 108 and the substrate 110 with the substrate 110 being capacitively coupled to the platforms but may float at a different voltage than the support 108.
As discussed above, if the substrate 110 and support 108 are conductors, it is possible to apply a non-varying voltage to the support 108, and as a consequence of electric conduction through the substrate 110, the voltage that is applied to the support 108 is also applied to the surface of the substrate 110.
When the substrate 110 is a dielectric, however, the application of a non-varying voltage to the support 108 is ineffective to place a voltage across the treated surface of the substrate 110. As a consequence, the exemplary switch-mode power supply 106 is configured to be controlled so as to effectuate a voltage on the surface of the substrate 110 that is capable of attracting ions in the plasma 114 to collide with the substrate 110 so as to carry out a controlled etching and/or deposition of the substrate 110, and/or other plasma-assisted processes.
Moreover, as discussed further herein, embodiments of the switch-mode power supply 106 are configured to operate so that there is an insubstantial interaction between the power applied (to the plasma 114) by the plasma power supply 102 and the power that is applied to the substrate 110 by the switch-mode power supply 106. The power applied by the switch-mode power supply 106, for example, is controllable so as to enable control of ion energy without substantially affecting the density of the plasma 114.
Furthermore, many embodiments of the exemplary switch-mode supply 106 depicted in
One known technique for applying a voltage to a dielectric substrate utilizes a high-power linear amplifier in connection with complicated control schemes to apply power to a substrate support, which induces a voltage at the surface of the substrate. This technique, however, has not been adopted by commercial entities because it has not proven to be cost effective nor sufficiently manageable. In particular, the linear amplifier that is utilized is typically large, very expensive, inefficient, and difficult to control. Furthermore, linear amplifiers intrinsically require AC coupling (e.g., a blocking capacitor) and auxiliary functions like chucking are achieved with a parallel feed circuit which harms AC spectrum purity of the system for sources with a chuck.
Another technique that has been considered is to apply high frequency power (e.g., with one or more linear amplifiers) to the substrate. This technique, however, has been found to adversely affect the plasma density because the high frequency power that is applied to the substrate affects the plasma density.
In some embodiments, the switch-mode power supply 106 depicted in
In other embodiments, the switch-mode power supply 106 is realized by other more sophisticated switch mode power and control technologies. Referring next to
The illustrated arrangement of these components is logical; thus the components can be combined or further separated in an actual implementation, and the components can be connected in a variety of ways without changing the basic operation of the system. In some embodiments for example, the controller 212, which may be realized by hardware, software, firmware, or a combination thereof, may be utilized to control both the power supply 202 and switch-mode bias supply 206. In alternative embodiments, however, the power supply 202 and the switch-mode bias supply 206 are realized by completely separated functional units. By way of further example, the controller 212, waveform memory 224, ion energy control portion 220 and the switch-mode bias supply 206 may be integrated into a single component (e.g., residing in a common housing) or may be distributed among discrete components.
The switch-mode bias supply 206 in this embodiment is generally configured to apply a voltage to the support 208 in a controllable manner so as to effectuate a desired (or defined) distribution of the energies of ions bombarding the surface of the substrate. More specifically, the switch-mode bias supply 206 is configured to effectuate the desired (or defined) distribution of ion energies by applying one or more particular waveforms at particular power levels to the substrate. And more particularly, responsive to an input from the ion energy control portion 220, the switch-mode bias supply 206 applies particular power levels to effectuate particular ion energies, and applies the particular power levels using one or more voltage waveforms defined by waveform data in the waveform memory 224. As a consequence, one or more particular ion bombardment energies may be selected with the ion control portion to carry out controlled etching of the substrate (or other forms of plasma processing).
As depicted, the switch-mode power supply 206 includes switch components 226′, 226″ (e.g., high power field effect transistors) that are adapted to switch power to the support 208 of the substrate 210 responsive to drive signals from corresponding drive components 228′, 228″. And the drive signals 230′, 230″ that are generated by the drive components 228′, 228″ are controlled by the controller 212 based upon timing that is defined by the content of the waveform memory 224. For example, the controller 212 in many embodiments is adapted to interpret the content of the waveform memory and generate drive-control signals 232′, 232″, which are utilized by the drive components 228′, 228″ to control the drive signals 230′, 230″ to the switching components 226′, 226″. Although two switch components 226′, 226″, which may be arranged in a half-bridge configuration, are depicted for exemplary purposes, it is certainly contemplated that fewer or additional switch components may be implemented in a variety of architectures (e.g., an H-bridge configuration).
In many modes of operation, the controller 212 (e.g., using the waveform data) modulates the timing of the drive-control signals 232′, 232″ to effectuate a desired waveform at the support 208 of the substrate 210. In addition, the switch mode bias supply 206 is adapted to supply power to the substrate 210 based upon an ion-energy control signal 234, which may be a DC signal or a time-varying waveform. Thus, the present embodiment enables control of ion distribution energies by controlling timing signals to the switching components and controlling the power (controlled by the ion-energy control component 220) that is applied by the switching components 226′, 226″.
In addition, the controller 212 in this embodiment is configured, responsive to an arc in the plasma chamber 204 being detected by the arc detection component 222, to carry out arc management functions. In some embodiments, when an arc is detected the controller 212 alters the drive-control signals 232′, 232″ so that the waveform applied at the output 236 of the switch mode bias supply 206 extinguishes arcs in the plasma 214. In other embodiments, the controller 212 extinguishes arcs by simply interrupting the application of drive-control signals 232′, 232″ so that the application of power at the output 236 of the switch-mode bias supply 206 is interrupted.
Referring next to
V2 and V4 represent drive signals (e.g., the drive signals 230′, 230″ output by the drive components 228′, 228″ described with reference to
For example, the switches T1, T2 may be operated so that the voltage at the surface of the substrate 110, 210 is generally negative with periodic voltage pulses approaching and/or slightly exceeding a positive voltage reference. The value of the voltage at the surface of the substrate 110, 210 is what defines the energy of the ions, which may be characterized in terms of an ion energy distribution function (IEDF). To effectuate desired voltage(s) at the surface of the substrate 110, 210, the pulses at Vout may be generally rectangular and have a width that is long enough to induce a brief positive voltage at the surface of the substrate 110, 210 so as to attract enough electrons to the surface of the substrate 110, 210 in order to achieve the desired voltage(s) and corresponding ion energies.
The periodic voltage pulses that approach and/or slightly exceed the positive voltage reference may have a minimum time limited by the switching abilities of the switches T1, T2. The generally negative portions of the voltage can extend so long as the voltage does not build to a level that damages the switches. At the same time, the length of negative portions of the voltage should exceed an ion transit time.
Vbus in this embodiment defines the amplitude of the pulses measured at Vout, which defines the voltage at the surface of the substrate, and as a consequence, the ion energy. Referring briefly again to
The pulse width, pulse shape, and/or mutual delay of the two signals V2, V4 may be modulated to arrive at a desired waveform at Vout (also referred to herein as a modified periodic voltage function), and the voltage applied to Vbus may affect the characteristics of the pulses. In other words, the voltage Vbus may affect the pulse width, pulse shape and/or the relative phase of the signals V2, V4. Referring briefly to
For example, the two gate drive signals V2, V4 may be applied to the switching components T1, T2 so the time that each of the pulses is applied at Vout may be short compared to the time T between pulses, but long enough to induce a positive voltage at the surface of the substrate 110, 210 to attract electrons to the surface of the substrate 110, 210. Moreover, it has been found that by changing the gate voltage level between the pulses, it is possible to control the slope of the voltage that is applied to Vout between the pulses (e.g., to achieve a substantially constant voltage at the surface of the substrate between pulses). In some modes of operation, the repetition rate of the gate pulses is about 400 kHz, but this rate may certainly vary from application to application.
Although not required, in practice, based upon modeling and refining upon actual implementation, waveforms that may be used to generate the desired (or defined) ion energy distributions may be defined, and the waveforms can be stored (e.g., in the waveform memory portion described with reference to
Referring again to
The graphs in
As depicted in
One of skill in the art will recognize that the power supply need not be limited to a switch-mode power supply, and as such the output of the power supply can also be controlled in order to effect a certain ion energy. As such, the output of the power supply, whether switch-mode or otherwise, when considered without being combined with an ion current compensation or an ion current, can also be referred to as a power supply voltage, VPS.
Referring next to
Although
In prior art techniques, attempts have been made to apply the combination of two waveforms (generated by waveform generators) to a linear amplifier and apply the amplified combination of the two waveforms to the substrate in order to effectuate multiple ion energies. This approach, however, is much more complex then the approach described with reference to
Referring next to
Referring next to
Referring briefly to
Referring to
It should be recognized that the ion energy distribution functions depicted in
It should also be recognized that the modulating function need not be a fixed function nor need it be a fixed frequency. In some instances for example, it may be desirable to modulate the periodic voltage function with one or more cycles of a particular modulating function to effectuate a particular, time-averaged ion energy distribution, and then modulate the periodic voltage function with one or more cycles of another modulating function to effectuate another, time-averaged ion energy distribution. Such changes to the modulating function (which modulates the periodic voltage function) may be beneficial in many instances. For example, if a particular distribution of ion energies is needed to etch a particular geometric construct or to etch through a particular material, a first modulating function may be used, and then another modulating function may subsequently be used to effectuate a different etch geometry or to etch through another material.
Similarly, the periodic voltage function (e.g., the 400 kHz components in
Referring back to
In general, the ion energy control component 820 functions to apply a modulating function to the periodic voltage function (that is generated by the controller 812 in connection with the switch mode power supply 806). As shown in
The modulation controller 840 in this embodiment generally controls the power component 844 (and hence its output 834) based upon data that defines a modulation function, and the power component 844 generates the modulation function 834 (based upon a control signal 842 from the modulation controller 840) that is applied to the periodic voltage function that is generated by the switch-mode supply 806. The user interface 846 in this embodiment is configured to enable a user to select a predefined IEDF function that is stored in the IEDF function memory 848, or in connection with the custom IEDF component 850, define a custom IEDF
In many implementations, the power component 844 includes a DC power supply (e.g., a DC switch mode power supply or a linear amplifier), which applies the modulating function (e.g. a varying DC voltage) to the switch mode power supply (e.g., to Vbus of the switch mode power supply depicted in
In some implementations, the IEDF function memory 848 includes a plurality of data sets that correspond to each of a plurality of IEDF distribution functions, and the user interface 846 enables a user to select a desired (or defined) IEDF function. Referring to
The custom IEDF component 850 generally functions to enable a user, via the user interface 846, to define a desired (or defined) ion energy distribution function. In some implementations for example, the custom IEDF component 850 enables a user to establish values for particular parameters that define a distribution of ion energies.
For example, the custom IEDF component 850 may enable IEDF functions to be defined in terms of a relative level of flux (e.g., in terms of a percentage of flux) at a high-level (IF-high), a mid-level (IF-mid), and a low level (IF-low) in connection with a function(s) that defines the IEDF between these energy levels. In many instances, only IF-high, IF-low, and the IEDF function between these levels is sufficient to define an IEDF function. As a specific example, a user may request 1200 eV at a 20% contribution level (contribution to the overall IEDF), 700 eV at a 30% contribution level with a sinusoid IEDF between these two levels.
It is also contemplated that the custom IEDF portion 850 may enable a user to populate a table with a listing of one or more (e.g., multiple) energy levels and the corresponding percentage contribution of each energy level to the IEDF. And in yet alternative embodiments, it is contemplated that the custom IEDF component 850 in connection with the user interface 846 enables a user to graphically generate a desired (or defined) IEDF by presenting the user with a graphical tool that enables a user to draw a desired (or defined) IEDF.
In addition, it is also contemplated that the IEDF function memory 848 and the custom IEDF component 850 may interoperate to enable a user to select a predefined IEDF function and then alter the predefined IEDF function so as to produce a custom IEDF function that is derived from the predefined IEDF function.
Once an IEDF function is defined, the modulation controller 840 translates data that defines the desired (or defined) IEDF function into a control signal 842, which controls the power component 844 so that the power component 844 effectuates the modulation function that corresponds to the desired (or defined) IEDF. For example, the control signal 842 controls the power component 844 so that the power component 844 outputs a voltage that is defined by the modulating function.
Referring next to
More specifically,
As depicted in
As depicted in
Referring back to
As depicted in
The sheath (also herein referred to as a plasma sheath) is a layer in a plasma near the substrate surface and possibly walls of the plasma processing chamber with a high density of positive ions and thus an overall excess of positive charge. The surface with which the sheath is in contact with typically has a preponderance of negative charge. The sheath arises by virtue of the faster velocity of electrons than positive ions thus causing a greater proportion of electrons to reach the substrate surface or walls, thus leaving the sheath depleted of electrons. The sheath thickness, λsheath, is a function of plasma characteristics such as plasma density and plasma temperature.
It should be noted that because C1 in this embodiment is an inherent (also referred to herein as effective) capacitance of components associated with the chamber 1304, it is not an accessible capacitance that is added to gain control of processing. For example, some prior art approaches that utilize a linear amplifier couple bias power to the substrate with a blocking capacitor, and then utilize a monitored voltage across the blocking capacitor as feedback to control their linear amplifier. Although a capacitor could couple a switch mode power supply to a substrate support in many of the embodiments disclosed herein, it is unnecessary to do so because feedback control using a blocking capacitor is not required in several embodiments of the present invention.
While referring to
Ion current, II, and inherent capacitance (also referred to as effective capacitance), C1, can either or both be time varying. Because C1 is substantially constant for a given tool and is measureable, only Vo needs to be monitored to enable ongoing control of compensation current. As discussed above, to obtain a more mono-energetic distribution of ion energy (e.g., as depicted in
Also depicted in
Referring next to
Once the ion current, II, and sheath capacitance, Csheath, are known, the method 4300 may move to the method 3100 of
In addition to setting the ion energy and/or the IEDF width, the method 4300 may adjust the modified periodic voltage function 4308 in order to maintain the ion energy and the IEDF width. In particular, adjustment of the ion current compensation, IC, provided by an ion current compensation component, and adjustment of the power supply voltage may be performed 4308. In some embodiments, the power supply voltage can be controlled by a bus voltage, Vbus, of the power supply (e.g., the bus voltage Vbus of
After these adjustments 4308, the modified periodic voltage function can again be sampled 4304 and calculations of ion current, II, sheath capacitance, Csheath, and the voltage step, ΔV, can again be performed 4306. If the ion current, II, or the voltage step, ΔV, are other than defined values (or in the alternative, desired values), then the ion current compensation, IC, and/or the power supply voltage can be adjusted 4308. Looping of the sampling 4304, calculating, 4306, and adjusting 4308 may occur in order to maintain the ion energy, eV, and/or the IEDF width.
Such a modified periodic voltage function is achieved when the ion current compensation, IC, equals the ion current, II, assuming no stray capacitances (see the last five cycles of the periodic voltage function (V0) in
where, C1, is an effective capacitance (e.g., the inherent capacitance described with reference to
The method 3000 can begin with an application of a modified periodic voltage function (e.g., the modified periodic voltage function depicted in
If the function ƒ is true, then the ion current compensation, IC, equals the ion current, II, or in the alternative, makes Equation 2 true, and a narrow IEDF width has been achieved 3010 (e.g., see
When Equation 3 is met, ion current, II, is known (either because IC=II, or because Equation 2 is true). Thus, the method 3000 enables remote and non-invasive measurements of ion current, II, in real time without affecting the plasma. This leads to a number of novel metrics such as those that will be described with reference to
While adjusting 3012 the compensation current, IC, the ion energy will likely be broader than a delta function and the ion energy will resemble that of either
The following provides further details about each of the method steps illustrated in
The modified periodic voltage function can be measured as V0 in
In cases where the power supply is a switch-mode power supply, the switching diagram 4410 of a first switch T1 and a second switch T2 can apply. For instance, the first switch T1 can be implemented as the switch T1 in
The modified periodic voltage function can be applied to the substrate support 3002, and sampled 3004 as V0 at a last accessible point before the modified periodic voltage function reaches the substrate support (e.g., between the switch mode power supply and the effective capacitance). The unmodified periodic voltage function (or power supply voltage 4406 in
A portion of or the whole modified periodic voltage function can be sampled 3004. For instance, the fourth portion (e.g., fourth portion 1408) can be sampled. The sampling 3004 can be performed between the power supply and the substrate support. For instance, in
While only two samples of the modified periodic voltage function are needed in some embodiments, in others, hundreds, thousands, or tens of thousands of samples can be taken for each cycle of the modified periodic voltage function. For instance, the sampling rate can be greater than 400 kHz. These sampling rates enable more accurate and detailed monitoring of the modified periodic voltage function and its shape. In this same vein, more detailed monitoring of the periodic voltage function allows more accurate comparisons of the waveform: between cycles, between different process conditions, between different processes, between different chambers, between different sources, etc. For instance, at these sampling rates, the first, second, third, and fourth portions 1402, 1404, 1406, 1408 of the periodic voltage function illustrated in
The calculation 3006 of the slope, dV0/dt, can be based on a plurality of V0 measurements taken during the time t (e.g., the fourth portion 1408). For instance, a linear fit can be performed to fit a line to the V0 values where the slope of the line gives the slope, dVo/dt. In another instance, the V0 values at the beginning and end of time t (e.g., the fourth portion 1408) in
The decision 3010 can be part of an iterative loop used to tune the IEDF to a narrow width (e.g., a minimum width, or in the alternative, 6% full-width half maximum). Equation 3 only holds true where the ion current compensation, Ic, is equal to the ion current, II (or in the alternative, is related to II according to Equation 2), which only occurs where there is a constant substrate voltage and thus a constant and substantially singular ion energy (a narrow IEDF width). A constant substrate voltage 4608 (Vsub) can be seen in
Alternatively, two values along the fourth portion 1408 (also referred to as the portion between the pulses) can be sampled for a first cycle and a second cycle and a first and second slope can be determined for each cycle, respectively. From these two slopes, an ion current compensation, Ic, can be determined which is expected to make Equation 3 true for a third, but not-yet-measured, slope. Thus, an ion current, II, can be estimated that is predicted to correspond to a narrow IEDF width. These are just two of the many ways that a narrow IEDF width can be determined, and a corresponding ion current compensation, Ic, and/or a corresponding ion current, II, can be found.
The adjustment to the ion current compensation, Ic, 3012 can involve either an increase or a decrease in the ion current compensation, Ic, and there is no limitation on the step size for each adjustment. In some embodiments, a sign of the function ƒ in Equation 3 can be used to determine whether to increase or decrease the ion current compensation. If the sign is negative, then the ion current compensation, Ic, can be decreased, while a positive sign can indicate the need to increase the ion current compensation, Ic.
Once an ion current compensation, Ic, has been identified that equals the ion current, II (or in the alternative, is related thereto according to Equation 2), the method 3000 can advance to further set point operations (see
Furthermore, the method 3000 can optionally loop back to the sampling 3004 in order to continuously (or in the alternative, periodically) update the ion current compensation, Ic. For instance, the sampling 3004, calculation 3006, the decision 3010, and the adjusting 3012 can periodically be performed given a current ion current compensation, Ic, in order to ensure that Equation 3 continues to be met. At the same time, if the ion current compensation, Ic, that meets Equation 3 is updated, then the ion current, II, can also be updated and the updated value can be stored 3014.
While the method 3000 can find and set the ion current compensation, Ic, so as to equal the ion current, II, or in the alternative, to meet Equation 2, a value for the ion current compensation, Ic, needed to achieve a narrow IEDF width can be determined without (or in the alternative, before) setting the ion current, IC, to that value. For instance, by applying a first ion current compensation, Ic1, for a first cycle and measuring a first slope, dV01/dt, of the voltage between the pulses, and by applying a second ion current compensation, Ice, for a second cycle and measuring a second slope, dV02/dt, of the voltage between the pulses, a third slope, dV03/dt, associated with a third ion current compensation, Ic3, can be determined at which Equation 3 is expected to be true. The third ion current compensation, Ic3, can be one that if applied would result in a narrow IEDF width. Hence, the ion current compensation, Ic, that meets Equation 3 and thus corresponds to ion current, II, can be determined with only a single adjustment of the ion current compensation. The method 3000 can then move on to the methods described in
where C1 is the effective capacitance (e.g., chuck capacitance; inherent capacitance, C10, in
At the same time, the IEDF width can be approximated according to Equation 5:
where I is II where C is Cseries, or I is IC where C is Ceffective. Time, t, is the time between pulses, VPP, is the peak-to-peak voltage, and ΔV is the voltage step.
Additionally, sheath capacitance, C2, can be used in a variety of calculations and monitoring operations. For instance, the Debye sheath distance, λsheath, can be estimated as follows:
where ϵ is vacuum permittivity and A is an area of the substrate (or in an alternative, a surface area of the substrate support). In some high voltage applications, Equation 6 is written as equation 7:
Additionally, an e-field in the sheath can be estimated as a function of the sheath capacitance, C2, the sheath distance, λsheath, and the ion energy, eV. Sheath capacitance, C2, along with the ion current, II, can also be used to determine plasma density, ne, from Equation 8 where saturation current, Isat, is linearly related to the compensation current, IC, for singly ionized plasma.
An effective mass of ions at the substrate surface can be calculated using the sheath capacitance, C2 and the saturation current, Isat. Plasma density, ne, electric field in the sheath, ion energy, eV, effective mass of ions, and a DC potential of the substrate, VDC, are fundamental plasma parameters that are typically only monitored via indirect means in the art. This disclosure enables direct measurements of these parameters thus enabling more accurate monitoring of plasma characteristics in real time.
As seen in Equation 4, the sheath capacitance, C2, can also be used to monitor and control the ion energy, eV, as illustrated in the ion energy branch 3101 of
The method for monitoring and controlling the IEDF width is illustrated in the IEDF branch 3100 of
In some embodiments, the IEDF branch 3100 can also be implemented to secure a desired IEDF shape. Various IEDF shapes can be generated and each can be associated with a different ion energy and IEDF width. For instance, a first IEDF shape may be a delta function while a second IEDF shape may be a square function. Other IEDF shapes may be cupped. Examples of various IEDF shapes can be seen in
With knowledge of the ion current, II, and the voltage step, ΔV, Equation 4 can be solved for ion energy, eV. The voltage step, ΔV, can be controlled by changing the power supply voltage which in turn causes the voltage step, ΔV, to change. A larger power supply voltage causes an increase in the voltage step, ΔV, and a decrease in the power supply voltage causes a decrease in the voltage step, ΔV. In other words, increasing the power supply voltage results in a larger ion energy, eV.
Furthermore, since the above systems and methods operate on a continuously varying feedback loop, the desired (or defined) ion energy and IEDF width can be maintained despite changes in the plasma due to variations or intentional adjustments to the plasma source or chamber conditions.
Although
The above discussion has shown how combining a periodic voltage function provided by a power supply with an ion current compensation provided by an ion current compensation component, can be used to control an ion energy and IEDF width and/or IEDF shape of ions reaching a surface of a substrate during plasma processing.
Some of the heretofore mentioned controls are enabled by using some combination of the following: (1) a fixed waveform (consecutive cycles of the waveform are the same); (2) a waveform having at least two portions that are proportional to an ion energy and an IEDF (e.g., the third and fourth portions 1406 and 1408 illustrated in
Where linear amplifiers have been used to bias a substrate support, the need to sample at a high rate has not been seen since the waveform is not consistent from cycle to cycle and thus resolving features of the waveform (e.g., a slope of a portion between pulses) typically would not provide useful information. Such useful information does arise when a fixed waveform is used, as seen in this and related disclosures.
The herein disclosed fixed waveform and the high sampling rate further lead to more accurate statistical observations being possible. Because of this increased accuracy, operating and processing characteristics of the plasma source and the plasma in the chamber can be monitored via monitoring various characteristics of the modified periodic voltage function. For instance, measurements of the modified periodic voltage function enable remote monitoring of sheath capacitance and ion current, and can be monitored without knowledge of the chamber process or other chamber details. A number of examples follow to illustrate just some of the multitude of ways that the heretofore mentioned systems and methods can be used for non-invasive monitoring and fault detection of the source and chamber.
As an example of monitoring, and with reference to
Any of the metrics illustrated in
One of skill in the art will recognize that the methods illustrated in
Given this non-narrow IEDF width 4414, the methods herein disclosed call for the ion current compensation, Ic, to be adjusted until IC=II (or in the alternative are related according to Equation 2).
Once the narrow IEDF has been achieved, one can adjust the ion energy to a desired or defined value as illustrated in
Whether the ion energy is adjusted or not, the IEDF width can be widened after the narrow IEDF width is achieved as shown in
Referring next to
Shown in
Referring to
Referring next to
With reference to the embodiments previously discussed herein, the controller depicted in
As shown, the parameters that may be utilized as inputs to the control portion include dVo/dt and ΔV, which are described in more detail with reference to
Ion energy and ion energy distribution are a function of the first potential V1. The switch mode power supply 2130 provides an AC waveform tailored to effect a desired first potential V1 known to generate a desired (or defined) ion energy and ion energy distribution. The AC waveform can be RF and have a non-sinusoidal waveform such as that illustrated in
The first potential V1 at the top surface 2118 of the substrate 2106 is formed via a combination of capacitive charging from the electrostatic chuck 2111 and charge buildup from electrons and ions passing through the sheath 2115. The AC waveform from the switch mode power supply 2130 is tailored to offset the effects of ion and electron transfer through the sheath 2115 and the resulting charge buildup at the top surface 2118 of the substrate 2106 such that the first potential V1 remains substantially constant.
The chucking force that holds the substrate 2106 to the electrostatic chuck 2111 is a function of the chucking potential Vchuck. The switch mode power supply 2130 provides a DC bias, or DC offset, to the AC waveform, so that the second potential V2 is at a different potential than the first potential V1. This potential difference causes the chucking voltage Vchuck. The chucking voltage Vchuck can be measured from the top surface 2221 of the electrostatic chuck 2111 to a reference layer inside the substrate 2106, where the reference layer includes any elevation inside the substrate except a bottom surface 2120 of the substrate 2106 (the exact location within the substrate 2106 of the reference layer can vary). Thus, chucking is controlled by and is proportional to the second potential V2.
In an embodiment, the second potential V2 is equal to the DC offset of the switch mode power supply 2130 modified by the AC waveform (in other words an AC waveform with a DC offset where the DC offset is greater than a peak-to-peak voltage of the AC waveform). The DC offset may be substantially larger than the AC waveform, such that the DC component of the switch mode power supply 2130 output dominates the second potential V2 and the AC component can be neglected or ignored.
The potential within the substrate 2106 varies between the first and second potentials V1, V2. The chucking potential Vchuck can be positive or negative (e.g., V1>V2 or V1<V2) since the coulombic attractive force between the substrate 2106 and the electrostatic chuck 2111 exists regardless of the chucking potential Vchuck polarity.
The switch mode power supply 2130 in conjunction with the controller 2132 can monitor various voltages deterministically and without sensors. In particular, the ion energy (e.g., mean energy and ion energy distribution) is deterministically monitored based on parameters of the AC waveform (e.g., slope and step). For instance, the plasma voltage V3, ion energy, and ion energy distribution are proportional to parameters of the AC waveform produced by the switch mode power supply 2130. In particular the ΔV of the falling edge of the AC waveform (see for example
Although the first potential V1 cannot be directly measured and the correlation between the switch mode power supply output and the first voltage V1 may vary based on the capacitance of the substrate 2106 and processing parameters, a constant of proportionality between ΔV and the first potential V1 can be empirically determined after a short processing time has elapsed. For instance, where the falling edge ΔV of the AC waveform is 50 V, and the constant of proportionality is empirically found to be 2 for the given substrate and process, the first potential V1 can be expected to be 100 V. A proportionality between the step voltage, ΔV, and the first potential V1 (and thus also ion energy, eV) is described by Equation 4. Thus, the first potential V1, along with ion energy, and ion energy distribution can be determined based on knowledge of the AC waveform of the switch mode power supply without any sensors inside the plasma processing chamber 2102. Additionally, the switch mode power supply 2130 in conjunction with the controller 2132 can monitor when and if chucking is taking place (e.g., whether the substrate 2106 is being held to the electrostatic chuck 2111 via the chucking potential Vchuck).
Dechucking is performed by eliminating or decreasing the chucking potential Vchuck. This can be done by setting the second potential V2 equal to the first potential V1. In other words, the DC offset and the AC waveform can be adjusted in order to cause the chucking voltage Vchuck to approach 0 V. Compared to conventional dechucking methods, the system 2100 achieves faster dechucking and thus greater throughput since both the DC offset and the AC waveform can be adjusted to achieve dechucking. Also, when the DC and AC power supplies are in the switch mode power supply 2130, their circuitry is more unified, closer together, can be controlled via a single controller 2132 (as compared to typical parallel arrangements of DC and AC power supplies), and change output faster. The speed of dechucking enabled by the embodiments herein disclosed also enables dechucking after the plasma 2104 is extinguished, or at least after power from the plasma source 2112 has been turned off.
The plasma source 2112 can take a variety of forms. For instance, in an embodiment, the plasma source 2112 includes an electrode inside the plasma processing chamber 2102 that establishes an RF field within the chamber 2102 that both ignites and sustains the plasma 2104. In another embodiment, the plasma source 2112 includes a remote projected plasma source that remotely generates an ionizing electromagnetic field, projects or extends the ionizing electromagnetic field into the processing chamber 2102, and both ignites and sustains the plasma 2104 within the plasma processing chamber using the ionizing electromagnetic field. Yet, the remote projected plasma source also includes a field transfer portion (e.g., a conductive tube) that the ionizing electromagnetic field passes through enroute to the plasma processing chamber 2102, during which time the ionizing electromagnetic field is attenuated such that the field strength within the plasma processing chamber 2102 is only a tenth or a hundred or a thousandth or an even smaller portion of the field strength when the field is first generated in the remote projected plasma source. The plasma source 2112 is not drawn to scale.
The switch mode power supply 2130 can float and thus can be biased at any DC offset by a DC power source (not illustrated) connected in series between ground and the switch mode power supply 2130. The switch mode power supply 2130 can provide an AC waveform with a DC offset either via AC and DC power sources internal to the switch mode power supply 2130 (see for example
The controller 2132 can control an AC and DC output of the switch mode power supply when the switch mode power supply 2130 includes both an AC and DC power source. When the switch mode power supply 2130 is connected in series with a DC power source, the controller 2132 may only control the AC output of the switch mode power supply 2130. In an alternative embodiment, the controller 2130 can control both a DC power supply coupled to the switch mode power supply 2130, and the switch mode power supply 2130. One skilled in the art will recognize that while a single controller 2132 is illustrated, other controllers can also be implemented to control the AC waveform and DC offset provided to the electrostatic chuck 2111.
The electrostatic chuck 2111 can be a dielectric (e.g., ceramic) and thus substantially block passage of DC voltages, or it can be a semiconductive material such as a doped ceramic. In either case, the electrostatic chuck 2111 can have a second voltage V2 on a top surface 2121 of the electrostatic chuck 2111 that capacitively couples voltage to a top surface 2118 of the substrate 2106 (usually a dielectric) to form the first voltage V1.
The plasma 2104 shape and size are not necessarily drawn to scale. For instance, an edge of the plasma 2104 can be defined by a certain plasma density in which case the illustrated plasma 2104 is not drawn with any particular plasma density in mind. Similarly, at least some plasma density fills the entire plasma processing chamber 2102 despite the illustrated plasma 2104 shape. The illustrated plasma 2104 shape is intended primarily to show the sheath 2115, which does have a substantially smaller plasma density than the plasma 2104.
In an embodiment, the electrostatic chuck 2211 can be doped so as to be conductive enough that any potential difference through the body of the chuck 2211 is negligible, and thus the grid or mesh electrode 2210 can be at substantially the same voltage as the second potential V2.
The grid electrode 2210 can be any conductive planar device embedded in the electrostatic chuck 2211, parallel to the substrate 2206, and configured to be biased by the switch mode power supply 2230 and to establish a chucking potential Vchuck. Although the grid electrode 2210 is illustrated as being embedded in a lower portion of the electrostatic chuck 2211, the grid electrode 2210 can be located closer or further from the substrate 2206. The grid electrode 2210 also does not have to have a grid pattern. In an embodiment, the grid electrode 2210 can be a solid electrode or have a non-solid structure with a non-grid shape (e.g., a checkerboard pattern). In an embodiment, the electrostatic chuck 2211 is a ceramic or other dielectric and thus the third potential V4 on the grid electrode 2210 is not equal to the first potential V1 on a top surface 2221 of the electrostatic chuck 2211. In another embodiment, the electrostatic chuck 2211 is a doped ceramic that is slightly conductive and thus the third potential V4 on the grid electrode 2210 can be equal to the second potential V2 on the top surface 2221 of the electrostatic chuck 2211.
The switch mode power supply 2230 generates an AC output that can be non-sinusoidal. The switch mode power supply 2230 is able to operate the DC and AC sources 2234, 2236 in series because the DC power source 2234 is AC-conductive and the AC power source 2236 is DC-conductive. Exemplary AC power sources that are not DC-conductive are certain linear amplifiers which can be damaged when provided with DC voltage or current. The use of AC-conductive and DC-conductive power sources reduces the number of components used in the switch mode power supply 2230. For instance, if the DC power source 2234 is AC-blocking, then an AC-bypass or DC-blocking component (e.g., a capacitor) may have to be arranged in parallel with the DC power source 2234. If the AC power source 2236 is DC-blocking, then a DC-bypass or AC-blocking component (e.g., an inductor) may have to be arranged in parallel with the AC power source 2236.
In this embodiment, the AC power source 2238 is generally configured to apply a voltage bias to the electrostatic chuck 2211 in a controllable manner so as to effectuate a desired (or defined) ion energy distribution for the ions bombarding the top surface 2218 of the substrate 2206. More specifically, the AC power source 2236 is configured to effectuate the desired (or defined) ion energy distribution by applying one or more particular waveforms at particular power levels to the grid electrode 2210. And more particularly, the AC power source 2236 applies particular power levels to effectuate particular ion energies, and applies the particular power levels using one or more voltage waveforms defined by waveform data stored in a waveform memory (not illustrated). As a consequence, one or more particular ion bombardment energies may be selected to carry out controlled etching of the substrate 2206 (or other plasma-assisted processes). In one embodiment, the AC power source 2236 can make use of a switched mode configuration (see for example
One skilled in the art will recognize that the grid electrode 2210 may not be necessary and that other embodiments can be implemented without the grid electrode 2210. One skilled in the art will also recognize that the grid electrode 2210 is just one example of numerous devices that can be used to establish chucking potential Vchuck.
One skilled in the art will recognize that while the illustrated embodiment shows two independent controllers 2433, 2435, these could be combined into a single functional unit, device, or system such as optional controller 2432. Additionally, controllers 2433 and 2435 can be coupled so as to communicate with each other and share processing resources.
The voltage and current controllers 2537, 2539 can be coupled and in communication with each other. The voltage controller 2537 can also control a switched output 2539 of the controllable voltage source 2538. The switched output 2539 can include two switches in parallel as illustrated, or can include any circuitry that converts an output of the controllable voltage source 2538 into a desired AC waveform (e.g., non-sinusoidal). Via the two switches, a controlled voltage or AC waveform from the controllable voltage source 2538 can be combined with a controlled current output of the controllable current source 2540 to generate an AC waveform output of the switch mode power supply 2530.
The controllable voltage source 2538 is illustrated as having a given polarity, but one skilled in the art will recognize that the opposite polarity is an equivalent to that illustrated. Optionally, the controllable voltage and current sources 2538, 2540 along with the switched output 2539 can be part of an AC power source 2536 and the AC power source 2536 can be arranged in series with a DC power source (not illustrated) that is inside or outside of the switch mode power supply 2530.
The system 2600 can include one or more controllers for controlling an output of the switch mode power supply 2630. A first controller 2632 can control the output of the switch mode power supply 2630, for instance via a second controller 2633 and a third controller 2635. The second controller 2633 can control a DC offset of the switch mode power supply 2630 as generated by the DC power source 2634. The third controller 2635 can control the AC waveform of the switch mode power supply 2630 by controlling the controllable voltage source 2638 and the controllable current source 2640. In an embodiment, a voltage controller 2637 controls the voltage output of the controllable voltage source 2638 and a current controller 2639 controls a current of the controllable current source 2640. The voltage and current controllers 2637, 2639 can be in communication with each other and can be a part of the third controller 2635.
One skilled in the art will recognize that the embodiments above, describing various configurations of controllers relative to the power sources 2634, 2638, 2640, are not limiting, and that various other configurations can also be implemented without departing from this disclosure. For instance, the third controller 2635 or the voltage controller 2637 can control a switched output 2639 between the controllable voltage source 2638 and the controllable current source 2640. As another example, the second and third controllers 2633, 2635 can be in communication with each other (even though not illustrated as such). It should also be understood that the polarities of the controllable voltage and current sources 2638, 2640 are illustrative only and not meant to be limiting.
The switched output 2639 can operate by alternately switching two parallel switches in order to shape an AC waveform. The switched output 2639 can include any variety of switches including, but not limited to, MOSFET and BJT. In one variation, the DC power source 2634 can be arranged between the controllable current source 2640 and the electrostatic chuck 2611 (in other words, the DC power source 2634 can float), and the switch mode power supply 2630 can be grounded.
In conclusion, the present invention provides, among other things, a method and apparatus for selectively generating desired (or defined) ion energies using a switch-mode power supply. Those skilled in the art can readily recognize that numerous variations and substitutions may be made in the invention, its use, and its configuration to achieve substantially the same results as achieved by the embodiments described herein. Accordingly, there is no intention to limit the invention to the disclosed exemplary forms. Many variations, modifications, and alternative constructions fall within the scope and spirit of the disclosed invention.
The present Application for Patent is a Continuation of patent application Ser. No. 15/495,513 entitled “SYSTEMS AND METHODS FOR MONITORING FAULTS, ANOMALIES, AND OTHER CHARACTERISTICS OF A SWITCHED MODE ION ENERGY DISTRIBUTION SYSTEM,” filed Apr. 24, 2017, which is a Continuation of patent application Ser. No. 13/597,093, now U.S. Pat. No. 9,685,297, entitled “SYSTEMS AND METHODS FOR MONITORING FAULTS, ANOMALIES, AND OTHER CHARACTERISTICS OF A SWITCHED MODE ION ENERGY DISTRIBUTION SYSTEM” filed Aug. 28, 2012, and assigned to the assignee hereof and hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4622094 | Otsubo | Nov 1986 | A |
4693805 | Quazi | Sep 1987 | A |
4891118 | Ooiwa et al. | Jan 1990 | A |
4963239 | Shimamura et al. | Oct 1990 | A |
5057185 | Thomas, III et al. | Oct 1991 | A |
5156703 | Oechsner | Oct 1992 | A |
5160397 | Doki et al. | Nov 1992 | A |
5179264 | Cuomo et al. | Jan 1993 | A |
5242561 | Sato | Sep 1993 | A |
5247669 | Abraham et al. | Sep 1993 | A |
5332880 | Kubota et al. | Jul 1994 | A |
5410691 | Taylor | Apr 1995 | A |
5415718 | Ohmi et al. | May 1995 | A |
5427669 | Drummond | Jun 1995 | A |
5487785 | Horike et al. | Jan 1996 | A |
5517084 | Leung | May 1996 | A |
5535906 | Drummond | Jul 1996 | A |
5556501 | Collins et al. | Sep 1996 | A |
5767628 | Keller et al. | Jun 1998 | A |
5770972 | Freuler et al. | Jun 1998 | A |
5859428 | Fruchtman | Jan 1999 | A |
5907221 | Sato et al. | May 1999 | A |
5936481 | Fujii | Aug 1999 | A |
5983828 | Savas | Nov 1999 | A |
6030667 | Nakagawa et al. | Feb 2000 | A |
6051114 | Yao et al. | Apr 2000 | A |
6110287 | Arai et al. | Aug 2000 | A |
6129806 | Kaji et al. | Oct 2000 | A |
6156667 | Jewett | Dec 2000 | A |
6162709 | Raoux et al. | Dec 2000 | A |
6180019 | Kazumi et al. | Jan 2001 | B1 |
6201208 | Wendt | Mar 2001 | B1 |
6273022 | Pu et al. | Aug 2001 | B1 |
6288493 | Lee et al. | Sep 2001 | B1 |
6291938 | Jewett et al. | Sep 2001 | B1 |
6313583 | Arita et al. | Nov 2001 | B1 |
6326584 | Jewett et al. | Dec 2001 | B1 |
6392210 | Jewett et al. | May 2002 | B1 |
6463875 | Chen et al. | Oct 2002 | B1 |
6478924 | Shamouilian et al. | Nov 2002 | B1 |
6507155 | Barnes et al. | Jan 2003 | B1 |
6544895 | Donohoe | Apr 2003 | B1 |
6568346 | Pu et al. | May 2003 | B2 |
6583572 | Veltrop et al. | Jun 2003 | B2 |
6617794 | Barnes et al. | Sep 2003 | B2 |
6621674 | Zahringer et al. | Sep 2003 | B1 |
6646385 | Howald et al. | Nov 2003 | B2 |
6685798 | Howald et al. | Feb 2004 | B1 |
6694915 | Howald et al. | Feb 2004 | B1 |
6707051 | Shun'ko | Mar 2004 | B2 |
6714033 | Makhratchev et al. | Mar 2004 | B1 |
6724148 | Makhratchev et al. | Mar 2004 | B1 |
6756737 | Doi et al. | Jun 2004 | B2 |
6777037 | Sumiya et al. | Aug 2004 | B2 |
6794301 | Savas | Sep 2004 | B2 |
6819096 | Gonzalez et al. | Nov 2004 | B2 |
6822396 | Gonzalez et al. | Nov 2004 | B2 |
6863018 | Koizumi et al. | Mar 2005 | B2 |
6872289 | Mizuno et al. | Mar 2005 | B2 |
6885153 | Quon | Apr 2005 | B2 |
6885453 | Kaufmann | Apr 2005 | B2 |
6893533 | Holland et al. | May 2005 | B2 |
6913938 | Shanmugasundram et al. | Jul 2005 | B2 |
6920312 | Benjamin | Jul 2005 | B1 |
6924455 | Chen et al. | Aug 2005 | B1 |
6927358 | Gonzalez et al. | Aug 2005 | B2 |
6946063 | Gonzalez et al. | Sep 2005 | B1 |
6984198 | Krishnamurthy et al. | Jan 2006 | B2 |
7005845 | Gonzalez et al. | Feb 2006 | B1 |
7019253 | Johnson et al. | Mar 2006 | B2 |
7046524 | Hoffman et al. | May 2006 | B2 |
7059267 | Hedberg et al. | Jun 2006 | B2 |
7096819 | Chen et al. | Aug 2006 | B2 |
7122965 | Goodman | Oct 2006 | B2 |
7132618 | Hoffman et al. | Nov 2006 | B2 |
7201936 | Schwarm et al. | Apr 2007 | B2 |
7245084 | Gonzalez et al. | Jul 2007 | B1 |
7253117 | Donohoe | Aug 2007 | B2 |
7292047 | Tanaka et al. | Nov 2007 | B2 |
7297637 | Hedberg et al. | Nov 2007 | B2 |
7373899 | Sumiya et al. | May 2008 | B2 |
7468494 | Gonzalez et al. | Dec 2008 | B2 |
7520956 | Samukawa et al. | Apr 2009 | B2 |
7528386 | Ruzic et al. | May 2009 | B2 |
7645357 | Paterson et al. | Jan 2010 | B2 |
7725208 | Shanmugasundram et al. | May 2010 | B2 |
7737702 | Pipitone | Jun 2010 | B2 |
7764140 | Nagarkatti et al. | Jul 2010 | B2 |
7777179 | Chen et al. | Aug 2010 | B2 |
7783375 | Shanmugasundram et al. | Aug 2010 | B2 |
7811939 | Kushibiki et al. | Oct 2010 | B2 |
7847247 | Denpoh | Dec 2010 | B2 |
7928664 | Beland | Apr 2011 | B2 |
8012306 | Dhindsa | Sep 2011 | B2 |
8040068 | Coumou et al. | Oct 2011 | B2 |
8103492 | Brcka | Jan 2012 | B2 |
8140292 | Wendt | Mar 2012 | B2 |
8169595 | Schriever et al. | May 2012 | B2 |
8264154 | Banner et al. | Sep 2012 | B2 |
8319436 | Carter et al. | Nov 2012 | B2 |
8329054 | Ichino et al. | Dec 2012 | B2 |
8334657 | Xia | Dec 2012 | B2 |
8357264 | Shannon et al. | Jan 2013 | B2 |
8404598 | Liao et al. | Mar 2013 | B2 |
8409398 | Brcka | Apr 2013 | B2 |
8475673 | Edelberg | Jul 2013 | B2 |
8575843 | Moore et al. | Nov 2013 | B2 |
8641916 | Yatsuda et al. | Feb 2014 | B2 |
8674606 | Carter et al. | Mar 2014 | B2 |
8698107 | Godet et al. | Apr 2014 | B2 |
8742669 | Carter et al. | Jun 2014 | B2 |
8801950 | Lee | Aug 2014 | B2 |
8900402 | Holland et al. | Dec 2014 | B2 |
9088267 | Blackburn et al. | Jul 2015 | B2 |
9105447 | Brouk et al. | Aug 2015 | B2 |
9114666 | Valcore, Jr. et al. | Aug 2015 | B2 |
9123509 | Papasouliotis et al. | Sep 2015 | B2 |
9177756 | Holland et al. | Nov 2015 | B2 |
9208992 | Brouk et al. | Dec 2015 | B2 |
9210790 | Hoffman et al. | Dec 2015 | B2 |
9283635 | Peters | Mar 2016 | B2 |
9287086 | Brouk et al. | Mar 2016 | B2 |
9287092 | Brouk et al. | Mar 2016 | B2 |
9305803 | Morimoto et al. | Apr 2016 | B2 |
9309594 | Hoffman et al. | Apr 2016 | B2 |
9362089 | Brouk et al. | Jun 2016 | B2 |
9378931 | Kwon et al. | Jun 2016 | B2 |
9390893 | Valcore, Jr. et al. | Jul 2016 | B2 |
9425029 | Muto et al. | Aug 2016 | B2 |
9435029 | Brouk et al. | Sep 2016 | B2 |
9478397 | Blackburn et al. | Oct 2016 | B2 |
9536749 | Marakhtanov et al. | Jan 2017 | B2 |
9593421 | Baek et al. | Mar 2017 | B2 |
9595424 | Marakhtanov et al. | Mar 2017 | B2 |
9604877 | Veerasamy et al. | Mar 2017 | B2 |
9685297 | Carter et al. | Jun 2017 | B2 |
9754767 | Kawasaki | Sep 2017 | B2 |
9754768 | Yamada et al. | Sep 2017 | B2 |
9761414 | Marakhtanov et al. | Sep 2017 | B2 |
9761419 | Nagami | Sep 2017 | B2 |
9767988 | Brouk et al. | Sep 2017 | B2 |
9788405 | Kawasaki et al. | Oct 2017 | B2 |
9818584 | Miller et al. | Nov 2017 | B2 |
9872373 | Shimizu et al. | Jan 2018 | B1 |
9892888 | Baek et al. | Feb 2018 | B2 |
10607813 | Fairbairn et al. | Mar 2020 | B2 |
10707055 | Shaw et al. | Jul 2020 | B2 |
10791617 | Dorf et al. | Sep 2020 | B2 |
10811227 | Van Zyl et al. | Oct 2020 | B2 |
10811228 | Van Zyl et al. | Oct 2020 | B2 |
10811229 | Van Zyl et al. | Oct 2020 | B2 |
10896807 | Fairbairn et al. | Jan 2021 | B2 |
11011349 | Brouk et al. | May 2021 | B2 |
11189454 | Carter | Nov 2021 | B2 |
11264209 | Van Zyl et al. | Mar 2022 | B2 |
11282677 | Shaw et al. | Mar 2022 | B2 |
11437221 | Carter et al. | Sep 2022 | B2 |
20010014540 | Shan et al. | Aug 2001 | A1 |
20020038631 | Sumiya et al. | Apr 2002 | A1 |
20020115301 | Savas | Aug 2002 | A1 |
20020144786 | Chiang et al. | Oct 2002 | A1 |
20020185228 | Chen et al. | Dec 2002 | A1 |
20030033116 | Brcka et al. | Feb 2003 | A1 |
20040007326 | Roche et al. | Jan 2004 | A1 |
20040094402 | Gopalraja et al. | May 2004 | A1 |
20040149218 | Collins et al. | Aug 2004 | A1 |
20040226657 | Hoffman | Nov 2004 | A1 |
20050090118 | Shannon et al. | Apr 2005 | A1 |
20050160985 | Brcka | Jul 2005 | A1 |
20050260354 | Singh et al. | Nov 2005 | A1 |
20060017388 | Stevenson | Jan 2006 | A1 |
20060066248 | Chistyakov | Mar 2006 | A1 |
20060088655 | Collins et al. | Apr 2006 | A1 |
20060130971 | Chang et al. | Jun 2006 | A1 |
20060171093 | Ishimura et al. | Aug 2006 | A1 |
20060226786 | Lin et al. | Oct 2006 | A1 |
20070121267 | Kotani et al. | May 2007 | A1 |
20070139122 | Nagarkatti et al. | Jun 2007 | A1 |
20070186855 | Dhindsa | Aug 2007 | A1 |
20070186856 | Yasui et al. | Aug 2007 | A1 |
20070193975 | Wilson | Aug 2007 | A1 |
20070246163 | Paterson et al. | Oct 2007 | A1 |
20070251813 | Ilic et al. | Nov 2007 | A1 |
20080135400 | Kadlec et al. | Jun 2008 | A1 |
20090077150 | Wendt | Mar 2009 | A1 |
20090078678 | Kojima et al. | Mar 2009 | A1 |
20090200494 | Hatem et al. | Aug 2009 | A1 |
20090255800 | Koshimizu | Oct 2009 | A1 |
20090298287 | Shannon et al. | Dec 2009 | A1 |
20100063787 | Brcka | Mar 2010 | A1 |
20100072172 | Ui et al. | Mar 2010 | A1 |
20100126893 | Sinykin | May 2010 | A1 |
20100154994 | Fischer et al. | Jun 2010 | A1 |
20100208409 | Bluck et al. | Aug 2010 | A1 |
20100276273 | Heckman et al. | Nov 2010 | A1 |
20100296977 | Hancock | Nov 2010 | A1 |
20100332011 | Venugopal et al. | Dec 2010 | A1 |
20110031217 | Himori | Feb 2011 | A1 |
20110038187 | Horishita et al. | Feb 2011 | A1 |
20110065161 | Kwasinski et al. | Mar 2011 | A1 |
20110089023 | Tanaka et al. | Apr 2011 | A1 |
20110095689 | Gilbert | Apr 2011 | A1 |
20110220491 | Hilliard | Sep 2011 | A1 |
20110223750 | Hayash et al. | Sep 2011 | A1 |
20110226617 | Hofmann et al. | Sep 2011 | A1 |
20110248634 | Heil et al. | Oct 2011 | A1 |
20110253672 | Kamibayashi et al. | Oct 2011 | A1 |
20110259851 | Brouk et al. | Oct 2011 | A1 |
20120000421 | Miller et al. | Jan 2012 | A1 |
20120052599 | Brouk et al. | Mar 2012 | A1 |
20120052689 | Tokashiki | Mar 2012 | A1 |
20120187844 | Hoffman et al. | Jul 2012 | A1 |
20120217221 | Hoffman et al. | Aug 2012 | A1 |
20120318456 | Brouk et al. | Dec 2012 | A1 |
20120319584 | Brouk et al. | Dec 2012 | A1 |
20130001196 | Hoffman et al. | Jan 2013 | A1 |
20130006555 | Roberg et al. | Jan 2013 | A1 |
20130122711 | Marakhtanov et al. | May 2013 | A1 |
20130136872 | Booth et al. | May 2013 | A1 |
20130206338 | Tanaka | Aug 2013 | A1 |
20130320853 | Carter et al. | Dec 2013 | A1 |
20140061156 | Brouk et al. | Mar 2014 | A1 |
20140062303 | Hoffman et al. | Mar 2014 | A1 |
20140062495 | Carter et al. | Mar 2014 | A1 |
20140117861 | Finley et al. | May 2014 | A1 |
20140148016 | Kanazawa et al. | May 2014 | A1 |
20140173158 | Valcore, Jr. | Jun 2014 | A1 |
20140231389 | Nagami et al. | Aug 2014 | A1 |
20140263182 | Chen et al. | Sep 2014 | A1 |
20140265910 | Kobayashi et al. | Sep 2014 | A1 |
20140302682 | Muto et al. | Oct 2014 | A1 |
20140305905 | Yamada et al. | Oct 2014 | A1 |
20150076112 | Sriraman et al. | Mar 2015 | A1 |
20150126037 | Chen et al. | May 2015 | A1 |
20150144596 | Brouk et al. | May 2015 | A1 |
20150315698 | Chistyakov | Nov 2015 | A1 |
20150325413 | Km et al. | Nov 2015 | A1 |
20150371827 | Godet et al. | Dec 2015 | A1 |
20160020072 | Brouk et al. | Jan 2016 | A1 |
20160020108 | Ranjan et al. | Jan 2016 | A1 |
20160027616 | Ramaswamy et al. | Jan 2016 | A1 |
20160053017 | Orentas et al. | Feb 2016 | A1 |
20160056017 | Kim et al. | Feb 2016 | A1 |
20160064247 | Tomura et al. | Mar 2016 | A1 |
20160079037 | Hirano et al. | Mar 2016 | A1 |
20160126068 | Lee et al. | May 2016 | A1 |
20160126069 | Kwon et al. | May 2016 | A1 |
20160240353 | Nagami | Aug 2016 | A1 |
20160351375 | Valcore, Jr. et al. | Dec 2016 | A1 |
20170018411 | Sriraman et al. | Jan 2017 | A1 |
20170029941 | Allen et al. | Feb 2017 | A1 |
20170053820 | Bosch et al. | Feb 2017 | A1 |
20170062190 | Lee et al. | Mar 2017 | A1 |
20170099723 | Nagami et al. | Apr 2017 | A1 |
20170154781 | Ranjan et al. | Jun 2017 | A1 |
20170278665 | Carter et al. | Sep 2017 | A1 |
20180019100 | Brouk et al. | Jan 2018 | A1 |
20180047573 | Tanaka et al. | Feb 2018 | A1 |
20180082824 | Likhanskii et al. | Mar 2018 | A1 |
20180226225 | Koh et al. | Aug 2018 | A1 |
20180342903 | Luu et al. | Nov 2018 | A1 |
20190066979 | Shoeb et al. | Feb 2019 | A1 |
20190157040 | Fairbairn et al. | May 2019 | A1 |
20190157041 | Zyl et al. | May 2019 | A1 |
20190157042 | Van Zyl et al. | May 2019 | A1 |
20190157043 | Shaw et al. | May 2019 | A1 |
20190172685 | Van Zyl et al. | Jun 2019 | A1 |
20190180982 | Brouk et al. | Jun 2019 | A1 |
20200090905 | Brouk et al. | Mar 2020 | A1 |
20200203128 | Fairbairn et al. | Jun 2020 | A1 |
20210005428 | Shaw et al. | Jan 2021 | A1 |
20210013006 | Nguyen et al. | Jan 2021 | A1 |
20210074513 | Van Zyl et al. | Mar 2021 | A1 |
20210003276 | Carter | Apr 2021 | A1 |
20210134562 | Fairbairn et al. | May 2021 | A1 |
20210202209 | Van Zyl et al. | Jul 2021 | A1 |
20210241996 | Carter et al. | Aug 2021 | A1 |
20210327679 | Carter et al. | Oct 2021 | A1 |
20210351007 | Carter | Nov 2021 | A1 |
20220285131 | Shaw et al. | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
1451172 | Oct 2003 | CN |
1839459 | Sep 2006 | CN |
101685772 | Mar 2010 | CN |
201465987 | May 2010 | CN |
101835334 | Sep 2010 | CN |
102217045 | Oct 2011 | CN |
102405512 | Apr 2012 | CN |
105097404 | Nov 2015 | CN |
106920729 | Jul 2017 | CN |
111788655 | Oct 2020 | CN |
114222958 | Mar 2022 | CN |
0383570 | Aug 1990 | EP |
1978542 | Oct 2008 | EP |
1129481 | Feb 2012 | EP |
2382459 | May 2003 | GB |
2400613 | Oct 2004 | GB |
60126832 | Jul 1985 | JP |
S62125626 | Jun 1987 | JP |
02141572 | May 1990 | JP |
H02141572 | May 1990 | JP |
H04193329 | Jul 1992 | JP |
H06243992 | Sep 1994 | JP |
H09293600 | Nov 1997 | JP |
11087097 | Mar 1999 | JP |
H11298303 | Oct 1999 | JP |
2001237234 | Aug 2001 | JP |
2001525601 | Dec 2001 | JP |
2002050611 | Feb 2002 | JP |
2003133404 | May 2003 | JP |
2004085446 | Mar 2004 | JP |
2004193564 | Jul 2004 | JP |
2005527078 | Sep 2005 | JP |
2005534187 | Nov 2005 | JP |
2006147269 | Jun 2006 | JP |
2006286254 | Oct 2006 | JP |
2007311182 | Nov 2007 | JP |
2007336148 | Dec 2007 | JP |
2008501224 | Jan 2008 | JP |
2008157906 | Jul 2008 | JP |
2009071133 | Apr 2009 | JP |
2009514176 | Apr 2009 | JP |
2009540569 | Nov 2009 | JP |
2010103465 | May 2010 | JP |
2010219026 | Sep 2010 | JP |
2010238960 | Oct 2010 | JP |
2011519115 | Jun 2011 | JP |
2011222292 | Nov 2011 | JP |
2012104382 | May 2012 | JP |
2016500132 | Jan 2016 | JP |
6141478 | Jun 2017 | JP |
6203476 | Sep 2017 | JP |
2021503700 | Feb 2021 | JP |
2021503702 | Feb 2021 | JP |
2022541004 | Sep 2022 | JP |
1020120019428 | Mar 2012 | KR |
101800623 | Nov 2017 | KR |
514967 | Dec 2002 | TW |
200811905 | Mar 2008 | TW |
200915375 | Apr 2009 | TW |
200952560 | Dec 2009 | TW |
201142068 | Dec 2011 | TW |
201415522 | Apr 2014 | TW |
201614097 | Apr 2016 | TW |
201621974 | Jun 2016 | TW |
201637069 | Oct 2016 | TW |
9109150 | Jun 1991 | WO |
0215222 | Feb 2002 | WO |
2004012220 | Feb 2004 | WO |
2004114461 | Dec 2004 | WO |
2010013476 | Feb 2010 | WO |
2010080421 | Jul 2010 | WO |
2010126893 | Nov 2010 | WO |
2012007483 | Jan 2012 | WO |
2012030500 | Mar 2012 | WO |
2012103101 | Aug 2012 | WO |
2013016619 | Jan 2013 | WO |
2014035889 | Mar 2014 | WO |
2014035897 | Mar 2014 | WO |
2017126184 | Jul 2017 | WO |
2021231035 | Nov 2021 | WO |
Entry |
---|
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2010/032582 dated Feb. 21, 2011, 10 pages. |
International Preliminary Report on Patentability received for International PCT Application Serial No. PCT/US2010/032582 dated Nov. 10, 2011, 8 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2011/047467 dated Nov. 24, 2011, 9 pages. |
International Preliminary Report on Patentability received for International PCT Application Serial No. PCT/US2011/047467 dated Mar. 14, 2013, 7 pages. |
International Search Report and Writen Opinion received for International PCT Application Serial No. PCT/US2012/048504 dated Sep. 17, 2012, 13 pages. |
International Preliminary Report on Patentability received for International PCT Application Serial No. PCT/US2012/048504 dated Feb. 6, 2014, 11 pages. |
International Preliminary Report on Patentability received for International PCT Application Serial No. PCT/US2012/020219 dated Jul. 18, 2013, 7 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2012/20219 dated Feb. 22, 2012, 10 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2012/029953 dated May 28, 2012, 11 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2012/022380 dated Mar. 14, 2012, 11 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2013/056634 dated Nov. 15, 2013, 10 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2013/056647 dated Oct. 30, 2013, 10 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2013/056657 dated Oct. 28, 2013, 11 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2013/056659 dated Nov. 8, 2013, 11 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2013/056851 dated Nov. 18, 2013, 11 pages. |
International Preliminary Report on Patentability received for International PCT Application Serial No. PCT/US2013/056647 dated Mar. 12, 2015, 7 pages. |
International Preliminary Report on Patentability received for International PCT Application Serial No. PCT/US2013/056657 dated Mar. 12, 2015, 8 pages. |
International Preliminary Report on Patentability received for International PCT Application Serial No. PCT/US2013/056851 dated Mar. 12, 2015, 8 pages. |
International Preliminary Report on Patentability received for International PCT Application Serial No. PCT/US2013/056659 dated Mar. 12, 2015, 8 pages. |
International Preliminary Report on Patentability received for International PCT Application Serial No. PCT/US2013/056634 dated Mar. 12, 2015, 7 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2022/014888 dated Mar. 25, 2022, 18 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2022/016279 dated Jun. 9, 2022, 8 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2018/061653 dated Mar. 8, 2019, 10 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2018/061575 dated Mar. 6, 2019, 12 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2018/061671 dated Mar. 13, 2019, 17 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2022/016278 dated May 17, 2022, 10 pages. |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2022/040046 dated Oct. 27, 2022, 9 pages. |
Bruno, G., et al., “Real Time Ellipsometry for Monitoring Plasma-Assisted Epitaxial Growth of GaN”, Applied Surface Sci., vol. 253, 2006, pp. 219-223. |
Bryns, B., et al . . . , “A VHF Driven Coaxial Atmospheric Air Plasma: Electrical and Optical Characterization”, Dep't of Nuclear Engr., 2011, pp. 1-18. |
Buzzi, F.L., et al., “Energy Distribution of Bombarding Ions in Plasma Etching of Dielectrics”, “AVS 54th International Symposium”, Oct. 15, 2007, 18 pages. |
Emsellem, G., “Electrodeless Plasma Thruster Design Characteristics”, 41st Joint Propulsion Conference, Jul. 11, 2005, 22 pages. |
Gangoli, S.P., et al., “Production and transport chemistry of atomic fluorine in remote plasma source and cylindrical reaction chamber”, J. Phys. D: Appl. Phys., vol. Aug. 16, 2007, pp. 5140-5154. |
George, M.A., et al., “Silicon Nitride Arc Thin Films by New Plasma Enhanced Chemical Vapor Deposition Source Technology”, Article downloaded from www.generalplasma.com, Jul. 7, 2011, pp. 1-5. |
Giangregorio, M.M., et al., “Role of Plasma Activation in Tailoring the Nanostructure of Multifunctional Oxides Thin 3 Films”, Applied Surface Sci., vol. 255, Sep. 10, 2008, pp. 5396-5400. |
Heil, S.B.S., et al., “Deposition ofTiN and HfO2 in a Commercial 200mm Plasma Atomic Layer Deposition Reactor”, J. Vac. Sci. Technol. A, Sep./Oct. 2007, Jul. 31, 2007, vol. 25, No. 5, pp. 1357-1366. |
Honda, S., et al., “Hydrogenation of Polycrystalline Silicon Thin Films”, Thin Solid Films, vol. 501, Oct. 5, 2005, pp. 144-148. |
Jeon, M., et al., “Hydrogenated Amorphous Silicon Film as Intrinsic Passivation Layer Deposited at Various Temperatures using RF remote-PECVD technique”, Current Applied Physics, vol. 10, No. 2010, Nov. 12, 2009, pp. S237-S240. |
Kim, J.Y., et al., “Remote Plasma Enhanced Atomic Layer Deposition ofTiN Thin Films Using Metalorganic Precursor”, J. Vac. Sci. Technol. A, vol. 22, No. 1, Jan./Feb. 2004, Nov. 13, 2003, pp. 8-12. |
Krolak, M, “Matthew Krolak's MyElectricEngine.Com Megnetoplasmadynamic (MPD) Thruster Design”, Webpage downloaded from http://myelectricengine.com/projects/mpdthruster/mpdthruster.html, Apr. 28, 2011, 7 pages. |
Kuo, M.S., et al., “Influence of C4F8/Ar-based etching and H2-based remote plasma ashing processes on ultralow Materials Modifications”, J. Vac. Sci. Technol. B, vol. 28, No. 2, Mar./Apr. 2010, Mar. 19, 2010, pp. 284-294. |
Ohachi, T., et al., “Measurement of Nitrogen Atomic Flux for RF-MBE Growth of GaN and AIN on Si Substrates”, J. of Crystal Growth, vol. 311, 2009, pp. 2987-2991. |
Rauf, S., et al . . . , “Nonlinear Dynamics of Radio Frequency Plasma Processing Reactors Powered by Multifrequency Sources”, IEEE Transactions on Plasma Science, vol. 27, No. 5, Oct. 5, 1999, pp. 1329-1338. |
Raoux, S., et al., “Remote Microwave Plasma Source for Cleaning Chemical Vapor Deposition Chambers; Technology for Reducing Global Warming Gas Emissions”, J. Vac. Sci. Technol. B, vol. 17, No. 2, Mar./Apr. 1999, pp. 477-485. |
Silapunt, R., et al., “Ion Bombardment Energy Control for Selective Fluorocarbon Plasma Etching of Organosilicate Glass”, J. Vac. Sci. Technol, vol. B 22, No. 2, 2004, pp. 826-831. |
Vahedi, V., et al., “Verification of Frequency Scaling Laws for Capacitive Radio-Frequency Discharges Using Two-Dimensional Simulations”, Phys. Fluids B, , vol. 5, No. 7, Jul. 1993, pp. 2719-2729. |
Wang, S.B., et al., “Control of lon Energy Distribution at Substrates During Plasma Processing”, J. Applied Physics, vol. 88, No. 2, Jul. 15, 2000, pp. 643-646. |
Wakeham, S.J., et al . . . , “Low Temperature Remote Plasma Sputtering of Indium Tin Oxide for Flexible Display Applications”, Thin Solid Films, vol. 519, 2009, pp. 1355-1358. |
Wendt “Thomson Innovation Patent Export”, Mar. 10, 2009, 10 pages. |
Xiubo, et al., “Charging of Dielectric Substrate Materials During Plasma Immersion Ion Implantation”, Nuclear Instruments and Methods in Physics Research B, vol. 187, 2002, pp. 485-491. |
Yun, Y.B., et al., “Effects of Various Additive Gases on Chemical Dry Etching Rate Enhancement of Low-k SiOCH Layer in F2/Ar Remote Plasmas”, Thin Solid Films, vol. 516, 2008, pp. 3549-3553. |
Notice of Allowance received for U.S. Appl. No. 13/597,093 dated Apr. 19, 2017, 2 pages. |
Requirement for Restriction received for U.S. Appl. No. 15/495,513 dated Nov. 29, 2019, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 15/495,513 dated Jul. 26, 2021, 18 pages. |
Notice of Allowance received for U.S. Appl. No. 15/495,513 dated Oct. 27, 2021, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/194,104 dated Mar. 2, 2020, 55 pages. |
Notice of Allowance received for U.S. Appl. No. 16/896,709 dated Nov. 17, 2021, 46 pages. |
Notice of Allowance received for U.S. Appl. No. 17/171,164 dated May 4, 2022, 38 pages. |
Notice of Allowance received for U.S. Appl. No. 17/171,164 dated Jun. 8, 2022, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 16/193,790 dated Nov. 20, 2019, 40 pages. |
Notice of Allowance received for U.S. Appl. No. 16/193,790 dated Jan. 23, 2020, 16 pages. |
Notice of Allowance received for U.S. Appl. No. 16/803,020 dated Sep. 14, 2020, 100 pages. |
Final Office Action received for U.S. Appl. No. 17/150,633 dated Jul. 27, 2022, 48 pages. |
Notice of Allowance received for U.S. Appl. No. 17/150,633 dated Nov. 15, 2022, 42 pages. |
Notice of Allowance received for U.S. Appl. No. 16/194,125 dated Jun. 18, 2020, 42 pages. |
Notice of Allowance received for U.S. Appl. No. 16/246,996 dated Jun. 18, 2020, 27 pages. |
Notice of Allowance received for U.S. Appl. No. 16/270,391 dated Jun. 16, 2020, 36 pages. |
Notice of Allowance received for U.S. Appl. No. 17/031,027 dated Oct. 20, 2021, 81 pages. |
Notice of Allowance received for U.S. Appl. No. 17/031,027 dated Feb. 3, 2022, 8 pages. |
Non Final Office Action received for U.S. Appl. No. 16/926,876 dated Sep. 29, 2022, 80 pages. |
Non Final Office Action received for U.S. Appl. No. 16/926,876 dated Sep. 26, 2022, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 17/584,921 dated Nov. 16, 2022, 9 pages. |
Non Final Office Action received for U.S. Appl. No. 12/767,775 dated Oct. 17, 2012, 33 pages. |
Non Final Office Action received for U.S. Appl. No. 12/767,775 dated Apr. 25, 2013, 28 pages. |
Final Office Action received for U.S. Appl. No. 12/767,775 dated Sep. 10, 2013, 30 pages. |
Requirement for Restriction received for U.S. Appl. No. 12/870,837 dated Dec. 19, 2012, 8 pages. |
Non Final Office Action received for U.S. Appl. No. 12/870,837 dated Mar. 22, 2013, 46 pages. |
Requirement for Restriction received for U.S. Appl. No. 13/193,345 dated Jun. 6, 2013, 8 pages. |
Requirement for Restriction received for U.S. Appl. No. 13/193,299 dated Aug. 8, 2013, 7 pages. |
Non Final Office Action received for U.S. Appl. No. 13/193,345 dated Nov. 7, 2013, 36 pages. |
First Office Action received for Chinese Patent Application Serial No. 201080003206.X dated Sep. 4, 2013, 15 pages. |
Office Action received for Japanese Patent Application Serial No. 2012508593 dated Apr. 19, 2013, 11 pages. |
Japanese Office Action re Application No. 2012-508593, Sep. 11, 2013, p. 7. |
Office Action received for Korean Patent Application Serial No. 1020117009075 dated Mar. 25, 2013, 2 pages. |
Non Final Office Action received for U.S. Appl. No. 13/193,299 dated Dec. 18, 2013, 43 pages. |
Final Office Action received for U.S. Appl. No. 12/870,837 dated Dec. 20, 2013, 33 pages. |
Office Action received for Taiwanese Patent Application Serial No. 099113815 dated Jan. 27, 2014, 6 pages. |
Second Office Action received for Chinese Patent Application Serial No. 201080003206.X dated May 23, 2014, 6 pages. |
Office Action received for Taiwanese Patent Application Serial No. 099113815 dated Jun. 18, 2014, 5 pages. |
Non Final Office Action received for U.S. Appl. No. 13/597,032 dated Jun. 20, 2014, 42 pages. |
Non Final Office Action received for U.S. Appl. No. 12/767,775 dated Jul. 1, 2014, 48 pages. |
Final Office Action received for U.S. Appl. No. 13/193,345 dated Jul. 7, 2014, 26 pages. |
Office Action received for Korean Patent Application Serial No. 1020137007594 dated Jul. 28, 2014, 2 pages. |
Office Action received for Taiwanese Patent Application Serial No. 101127182 dated Aug. 11, 2014, 11 pages. |
Final Office Action received for U.S. Appl. No. 13/193,299 dated Sep. 26, 2014, 37 pages. |
Third Office Action received for Chinese Patent Application Serial No. 201080003206.X dated Nov. 26, 2014, 6 pages. |
Non Final Office Action received for U.S. Appl. No. 14/011,305 dated Dec. 4, 2014, 28 pages. |
Final Office Action received for U.S. Appl. No. 12/767,775 dated Dec. 15, 2014, 37 pages. |
Requirement for Restriction received for U.S. Appl. No. 13/597,050 dated Jan. 27, 2015, 7 pages. |
Requirement for Restriction received for U.S. Appl. No. 13/596,976 dated Feb. 23, 2015, 8 pages. |
Requirement for Restriction received for U.S. Appl. No. 13/597,093 dated Mar. 23, 2015, 9 pages. |
Non Final Office Action received for U.S. Appl. No. 14/606,857 dated Apr. 8, 2015, 51 pages. |
Non Final Office Action received for U.S. Appl. No. 12/870,837 dated Apr. 9, 2015, 40 pages. |
Final Office Action received for U.S. Appl. No. 13/597,032 dated Apr. 9, 2015, 32 pages. |
Non Final Office Action received for U.S. Appl. No. 13/193,345 dated Apr. 16, 2015, 34 pages. |
Office Action received for Japanese Patent Application Serial No. 2013527088 dated Apr. 21, 2015, 10 pages. |
Office Action received for Japanese Patent Application Serial No. 2014523057 dated Apr. 21, 2015, 11 pages. |
First Office Action received for Chinese Patent Application Serial No. 201180046783.1 dated Mar. 24, 2015, 18 pages. |
Non Final Office Action received for U.S. Appl. No. 13/193,299 dated May 21, 2015, 24 pages. |
Fourth Office Action received for Chinese Patent Application Serial No. 201080003206.X dated Jun. 10, 2015, 8 pages. |
Non Final Office Action received for U.S. Appl. No. 12/767,775 dated Jun. 17, 2015, 28 pages. |
Non Final Office Action received for U.S. Appl. No. 13/597,050 dated Jul. 17, 2015, 86 pages. |
First Office Action received for Chinese Patent Application Serial No. 201280047162.X dated Sep. 6, 2015, 18 pages. |
European Search Report received for European Patent Application Serial No. EP11822326 dated Oct. 9, 2015, 3 pages. |
Non Final Office Action received for U.S. Appl. No. 13/597,093 dated Nov. 5, 2015, 76 pages. |
Non Final Office Action received for U.S. Appl. No. 13/596,976 dated Nov. 6, 2015, 77 pages. |
Notice Of Grounds For Rejection received for Korean Patent Application Serial No. 1020157007771 dated May 31, 2018, 4 pages. |
Office Action received for Chinese Patent Application Serial No. 201180046783.1 dated May 17, 2016, 8 pages. |
Office Action received for Chinese Patent Application Serial No. 201180046783.1 dated Dec. 7, 2016, 9 pages. |
Office Action received for Chinese Patent Application Serial No. 201180046783.1 dated Dec. 8, 2015, 9 pages. |
Office Action received for European Patent Application Serial No. 11822326.2 dated Apr. 3, 2017, 4 pages. |
Office Action received for Japanese Patent Application Serial No. 2016-043215 dated Jan. 25, 2017, 7 pages. |
International Preliminary Report on Patentability Chapter I received for International PCT Application Serial No. PCT/US2020/041771 dated Jan. 27, 2022, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/278,822 dated Aug. 2, 2021, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/150,633 dated Nov. 24, 2021, 52 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/171,164 dated Oct. 15, 2021, 60 pages. |
Office Action received for Korean Patent Application Serial No. 1020147004544 dated Feb. 3, 2016, 13 pages. |
Final Office Action received for U.S. Appl. No. 13/193,299 dated Dec. 4, 2015, 30 pages. |
Office Action received for Chinese Patent Application Serial No. 201280047162.X dated Apr. 26, 2016, 7 pages. |
Office Action received for Chinese Patent Application Serial No. 201280047162.X dated Oct. 24, 2016, 31 pages. |
Final Office Action received for U.S. Appl. No. 13/596,976 dated Jul. 1, 2016, 34 pages. |
Non Final Office Action received for U.S. Appl. No. 13/596,976 dated Nov. 25, 2016, 20 pages. |
Office Action received for Chinese Patent Application Serial No. 201380056068.5 dated Jun. 12, 2017, 16 pages. |
Final Office Action received for U.S. Appl. No. 13/596,976 dated Apr. 5, 2017, 23 pages. |
Office Action received for Japanese Patent Application Serial No. 2015529905 dated Aug. 22, 2017, 16 pages. |
Office Action received for Chinese Patent Application Serial No. 201380056070.2 dated Aug. 15, 2016, 25 pages. |
Final Office Action received for U.S. Appl. No. 13/597,050 dated Mar. 10, 2016, 19 pages. |
Office Action received for Chinese Patent Application Serial No. 201380056070.2 dated Jul. 11, 2017, 13 pages. |
Office Action received for Japanese Patent Application Serial No. 2015529906 dated May 16, 2017, 13 pages. |
Final Office Action received for U.S. Appl. No. 13/193,345 dated Jan. 15, 2016, 33 pages. |
Office Action received for Japanese Patent Application Serial No. 2015529905 dated Aug. 24, 2017, 14 pages. |
Office Action received for European Patent Application Serial No. 10770205.2 dated Nov. 2, 2017, 30 pages. |
Office Action received for European Patent Application Serial No. 11822326.2 dated Feb. 27, 2018, 5 pages. |
Office Action received for Korean Patent Application Serial No. 1020157007273 dated Jan. 30, 2018, 8 pages. |
Non Final Office Action received for U.S. Appl. No. 14/803,815 dated Jul. 3, 2018, 67 pages. |
Requirement for Restriction received for U.S. Appl. No. 14/803,815 dated Nov. 17, 2017, 8 pages. |
Office Action received for Korean Patent Application Serial No. 1020157007516 dated Feb. 15, 2017, 18 pages. |
Office Action received for Taiwanese Patent Applicatio Serial No. 102130565 dated Apr. 11, 2016, 2 pages. |
Final Office Action received for U.S. Appl. No. 13/597,093 dated Jul. 8, 2016, 25 pages. |
Non Final Office Action received for U.S. Appl. No. 13/597,093 dated Nov. 10, 2016, 23 pages. |
Office Action received for Taiwanese Patent Application Serial No. 102130565 dated Jul. 14, 2015, 4 pages. |
Notice Of Grounds For Rejection received for Korean Patent Application Serial No. 1020177033224 dated Aug. 6, 2018, 7 pages. |
Office Action received for Chinese Patent Application Serial No. 201380056068.5 dated Oct. 17, 2016, 15 pages. |
Notice Of Grounds For Rejection received for Korean Patent Application Serial No. 1020187029468 dated Feb. 7, 2019, 6 pages. |
Office Action received for European Patent Application Serial No. 11822326.2 dated Oct. 18, 2018, 6 pages. |
First Office Action received for Chinese Patent Application Serial No. 20171074712.5 dated Feb. 22, 2019, 9 pages. |
First Office Action received for Chinese Patent Application Serial No. 201711336133.6 dated Mar. 4, 2019, 16 pages. |
Office Action received for Japanese Patent Application Serial No. 2018081644 dated Apr. 16, 2019, 21 pages. |
Non Final Office Action received for U.S. Appl. No. 16/194,104 dated Aug. 1, 2019, 83 pages. |
Office Action received for Japanese Patent Application Serial No. 2018138425 dated May 22, 2019, 10 pages. |
Specification for related U.S. Appl. No. 13/173,752, filed Jun. 30, 2011, 48 pages. |
Specification for related U.S. Appl. No. 13/425,159, filed Mar. 20, 2012, 33 pages. |
Office Action received for Japanese Patent Application Serial No. 2015529939 dated Sep. 19, 2017, 19 pages. |
Office Action received for Taiwanese Patent Application Serial No. 102130984 dated Feb. 19, 2016, 4 pages. |
Office Action received for Korean Patent Application Serial No. 1020157006726 dated Feb. 19, 2018, 10 pages. |
Final Office Action received for U.S. Appl. No. 14/803,815 dated Mar. 12, 2019, 15 pages. |
Extended European Search Report received for European Patent Application Serial No. 10770205.2 dated Jan. 30, 2013, 8 pages. |
Non Final Office Action received for U.S. Appl. No. 16/193,790 dated Sep. 4, 2019, 86 pages. |
Second Office Action received for Chinese Patent Application Serial No. 201710704712.5 dated Sep. 27, 2019, 11 pages. |
Office Action received for European Patent Application Serial No. 10770205.2 dated Oct. 22, 2019, 6 pages. |
Second Office Action received for Chinese Patent Application Serial No. 201711336133.6 dated Jan. 6, 2020, 7 pages. |
Third Office Action received for Chinese Patent Application Serial No. 201710704712.5 dated Jan. 3, 2020, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/803,020 dated Apr. 22, 2020, 36 pages. |
International Preliminary Report On Patentability Received for International PCT Application Serial No. PCT/US2018/061653 dated May 28, 2020, 9 pages. |
International Preliminary Report on Patentability received International Application Serial No. PCT/US2018/061575 dated May 28, 2020, 9 pages. |
International Preliminary Report on Patentability received for International PCT Application Serial No. PCT/US2018/061671 dated May 28, 2020, 14 pages. |
EPO, Extended European search report for application No. 23209856.6, Feb. 15, 2024, p. 9. |
Communication pursuant to Article 94(3) EPC received for European Patent Application Serial No. 10770205.2 dated Jun. 8, 2021, 6 pages. |
Final Office Action received for U.S. Appl. No. 15/495,513 dated Apr. 14, 2021, 10 pages. |
Fourth Office Action received for Chinese Patent Application Serial No. 201710704712.5 dated Apr. 1, 2020, 7 pages (Including English Translation). |
International Search Report and Written Opinion received for International PCT Application Serial No. PCT/US2021/027927 dated Sep. 17, 2021, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/495,513 dated Jul. 2, 2020, 19 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/194,125 dated Dec. 12, 2019, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/246,996 dated Dec. 12, 2019, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/270,391 dated Dec. 12, 2019, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/896,709 dated May 25, 2021, 36 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/031,027 dated Apr. 28, 2021, 9 pages. |
Notice of Reasons for Rejection received for Japanese Patent Application Serial No. 2020081092 dated Apr. 1, 2021, 6 pages (Including English Translation). |
Office Action received for Taiwanese Patent Application Serial No. 107140924 dated Apr. 28, 2020, 14 pages (Including English Translation). |
Office Action received for Taiwanese Patent Application Serial No. 107140926 dated May 28,(Including English Translation). |
Non-Final Office Action received for U.S. Appl. No. 15/495,513 dated Jul. 2, 2020, 87 pages. |
Non Final Office Action received for U.S. Appl. No. 15/667,239 dated Jun. 24, 2020, 131 pages. |
Third Office Action received for Chinese Patent Application Serial No. 201711336133.6 dated Oct. 10, 2020, 21 pages. |
Communication Pursuant To Article 94(3) EPC received for European Patent Application Serial No. 10770205.2 dated Oct. 23, 2020, 4 pages. |
Office Action Received for Taiwanese Patent Application Serial No. 107140924 dated Jan. 15, 2021, 12 pages. |
Office Action received for Taiwanese Patent Application Serial No. 10714924 dated Aug. 18, 2021, 5 pages. |
Extended European Search Report received for European Patent Application Serial No. 18877322.0 Sep. 14, 2021, 129 pages. |
International Search Report And Written Opinion received for International Application Serial No. PCT/US2020/027927 dated Sep. 17, 2021, 14 pages. |
Extended European Search Report received for European Patent Application Serial No. 18877737.9 dated Aug. 25. 2021, 165 pages. |
Non Final Office Action received for U.S. Appl. No. 16/278,822 dated Aug. 2, 2021, 107 pages. |
Final Office Action received for U.S. Appl. No. 16/278,822 dated Feb. 15, 2022, 52 pages. |
Office Action received for Taiwan Patent Application Serial No. 110136912 dated Feb. 23, 2022, 10 pages. |
Requirement for Restriction received for U.S. Appl. No. 16/926,876 dated Apr. 29, 2022, 9 pages. |
Non Final Office Action received for U.S. Appl. No. 16/557,209 dated May 12, 2022, 30 pages. |
Office Action received for Taiwanese Patent Application Serial No. Re: Taiwan Patent Application No. 110111617 dated Jun. 30, 2022, 8 pages. |
Notice of Reasons for Rejection received for Japanese Patent Application Serial No. 2020545048 dated Aug. 19, 2022, 12 pages. |
Office Action received for Japanese Patent Application Serial No. 20205545044 dated Aug. 25, 2022, 6 pages. |
Non Final Office Action received for U.S. Appl. No. 16/278,822 dated Sep. 14, 2022, 9 pages. |
Non Final Office Action received for U.S. Appl. No. 14/740,955 dated Feb. 2, 2016, 16 pages. |
Non Final Office Action received for U.S. Appl. No. 13/343,576 dated Nov. 13, 2014, 24 pages. |
Decision of Rejection received for Korean Patent Application Serial No. 1020137019332 dated Jan. 20, 2016, 6 pages. |
Notice of Reasons for Rejection received for Japanese Patent Application Serial No. 2017091857 dated Feb. 2, 2018, 10 pages. |
Notice of Final Rejection received for Japanese Patent Application Serial No. 2013547731 dated Jul. 28, 2015, 13 pages. |
Notice of Reasons for Rejection received for Japanese Patent Application Serial No. 2013547731 dated Sep. 30, 2014, 8 pages. |
Office Action received for Korean Patent Application Serial No. 1020137019332 dated May 29, 2015, 18 pages. |
Office Action received for Chinese Patent Application Serial No. 201380056070.2 dated Apr. 2, 2018, 6 pages. |
Bruno, James, “Use of Simulation for Examining the Effects of Guessing Upon Knowledge Assessment on Standardized Tests”, “Conference Proceedings of the 10th Conference on Winter Simulation, Miami, FL”, 1978, vol. 2, pp. 759-765. |
Office Action received for Taiwanese Patent Application Serial No. 102130565 dated Aug. 20, 2015, 4 pages. |
Notice of Allowance received for U.S. Appl. No. 12/767,775 dated Jan. 22, 2016, 50 pages. |
Notice of Allowance received for U.S. Appl. No. 12/870,837 dated Jan. 20, 2016, 37 pages. |
Notice of Allowance received for U.S. Appl. No. 12/870,837 dated Feb. 12, 2016, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 14/606,857 dated Sep. 24, 2015, 31 pages. |
Notice of Allowance received for U.S. Appl. No. 13/193,299 dated May 20, 2016, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 13/193,299 dated Jul. 6, 2016, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 13/193,345 dated Feb. 4, 2016, 16 pages. |
Notice of Allowance received for U.S. Appl. No. 13/193,345 dated Mar. 7, 2016, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 13/596,976 dated May 8, 2017, 17 pages. |
Notice of Allowance received for U.S. Appl. No. 13/596,976 dated May 17, 2017, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 13/596,976 dated Jul. 31, 2017, 6 pages. |
Requirement for Restriction received for U.S. Appl. No. 15/667,239 dated Dec. 23, 2019, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 15/667,239 dated Jan. 13, 2021, 26 pages. |
Notice of Allowance received for U.S. Appl. No. 16/278,822 dated Dec. 1, 2022, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 13/597,050 dated Apr. 13, 2016, 15 pages. |
Notice of Allowance received for U.S. Appl. No. 13/597,050 dated Apr. 20, 2016, 6 pages. |
Requirement for Restriction received for U.S. Appl. No. 14/011,305 dated Aug. 15, 2014, 14 pages. |
Notice of Allowance received for U.S. Appl. No. 14/011,305 dated Jun. 5, 2015, 24 pages. |
Requirement for Restriction received for U.S. Appl. No. 16/557,209 dated Sep. 21, 2021, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 13/597,032 dated Aug. 28, 2015, 41 pages. |
Notice of Allowance received for U.S. Appl. No. 13/597,093 dated Mar. 17, 2017, 13 pages. |
Brayton, John J., Office Action regarding U.S. Appl. No. 18/330,005, Mar. 1, 2024, 19 pages. |
Brayton, John Joseph, Office Action issued in U.S. Appl. No. 18/198,788, Apr. 15, 2024, 57 pages. |
Hammond, Crystal L., Office Action issued in U.S. Appl. No. 17/181,382, May 9, 2024, 119 pages. |
Le, Tung X, Office Action issued in U.S. Appl. No. 18/450,652, Apr. 1, 2024, 39 pages. |
Luque, Renan, Office Action issued in U.S. Appl. No. 18/450,635, Mar. 28, 2024, 58 pages. |
Alejandro Mulero, Luz L, Office action issued in U.S. Appl. No. 18/494,452, Jun. 28, 2024, 52 pages. |
Brayton, John Joseph, Final Office Action issued in U.S. Appl. No. 18/198,788, Aug. 12, 2024, 11 pages, Published in US. |
Brayton, John Joseph, Office Action issued in U.S. Appl. No. 18/330,005, Jun. 14, 2024, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20220157555 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15495513 | Apr 2017 | US |
Child | 17528268 | US | |
Parent | 13597093 | Aug 2012 | US |
Child | 15495513 | US |