Systems and methods for processing objects including an auto-shuttle system

Information

  • Patent Grant
  • 11932489
  • Patent Number
    11,932,489
  • Date Filed
    Monday, May 9, 2022
    2 years ago
  • Date Issued
    Tuesday, March 19, 2024
    8 months ago
Abstract
A storage, retrieval and processing system for processing objects is disclosed. The storage, retrieval and processing system includes a plurality of storage bins providing storage of a plurality of objects, where the plurality of storage bins is in communication with a retrieval conveyance system, a programmable motion device in communication with the retrieval conveyance system for receiving the storage bins from the plurality of bins, where the programmable motion device includes an end effector for grasping and moving a selected object out of a selected storage bin, and a movable carriage for receiving the selected object from the end effector of the programmable motion device, and for carrying the selected object to one of a plurality of destination bins.
Description
BACKGROUND

The invention generally relates to storage and retrieval systems, and relates in particular to automated storage and retrieval systems that are used with systems for processing objects.


Automated storage and retrieval systems (AS/RS) generally include computer controlled systems of automatically storing (placing) and retrieving items from defined storage locations. Traditional AS/RS typically employ totes (or bins), which are the smallest unit of load for the system. In these systems, the totes are brought to people who pick individual items out of the totes. When a person has picked the required number of items out of the tote, the tote is then re-inducted back into the AS/RS.


In these traditional systems, the totes are brought to a person, and the person may either remove an item from the tote or add an item to the tote. The tote is then returned to the storage location. Such systems, for example, may be used in libraries and warehouse storage facilities. The AS/RS involves no processing of the items in the tote, as a person processes the objects when the tote is brought to the person. This separation of jobs allows any automated transport system to do what it is good at—moving totes—and the person to do what the person is better at—picking items out of cluttered totes. It also means the person may stand in one place while the transport system brings the person totes, which increases the rate at which the person can pick goods.


There are limits however, on such conventional systems in terms of the time and resources required to move totes toward and then away from each person, as well as how quickly a person can process totes in this fashion in applications where each person may be required to process a large number of totes. There remains a need therefore, for an AS/RS that stores and retrieves objects more efficiently and cost effectively, yet also assists in the processing of a wide variety of objects.


SUMMARY

In accordance with an embodiment, the invention provides a storage, retrieval and processing system for processing objects. The storage, retrieval and processing system includes a plurality of storage bins providing storage of a plurality of objects, where the plurality of storage bins is in communication with a retrieval conveyance system, a programmable motion device in communication with the retrieval conveyance system for receiving the storage bins from the plurality of bins, where the programmable motion device includes an end effector for grasping and moving a selected object out of a selected storage bin, and a movable carriage for receiving the selected object from the end effector of the programmable motion device, and for carrying the selected object to one of a plurality of destination bins.


In accordance with another embodiment, the invention provides a storage, retrieval and processing system for processing objects, where the storage, retrieval and processing system includes a plurality of storage bins, at least one programmable motion device, and a movable carriage. The plurality of storage bins provides storage of a plurality of objects, and is provided in at least two linear arrangements, each of which is in communication with a retrieval conveyance system. The at least one programmable motion device is in communication with the retrieval conveyance system for receiving the storage bins from the plurality of bins, and the programmable motion device is for grasping and moving a selected object out of a selected storage bin. The reciprocating movable carriage is for receiving the selected object from the end effector of the programmable motion device, and for carrying the selected object to one of a plurality of destination bins that are provided in at least two linear arrangements of destination bins.


In accordance with a further embodiment, the invention provides a method of providing storage, retrieval and processing of objects. This includes the steps of providing a plurality of storage bins for storing a plurality of objects, the plurality of storage bins being in communication with a retrieval conveyance system, receiving the storage bins from the plurality of storage bins at a programmable motion device in communication with the retrieval conveyance system, grasping and moving a selected object out of a selected storage bin; receiving the selected object from the programmable motion device and carrying the selected object to one of a plurality of destination bins.





BRIEF DESCRIPTION OF THE DRAWINGS

The following description may be further understood with reference to the accompanying drawing in which:



FIG. 1 shows an illustrative diagrammatic view of a storage, retrieval and processing system in accordance with an embodiment of the present invention;



FIG. 2 shows an illustrative diagrammatic view of a storage section portion of the storage, retrieval and processing system of FIG. 1;



FIGS. 3A and 3B show illustrative diagrammatic views of embodiments of a bin displacement system for use in a retrieval conveyance system of the invention;



FIG. 4 shows an illustrative diagrammatic exploded view of a box assembly for use as a storage bin or destination bin in accordance with various embodiments of the present invention;



FIG. 5 shows the assembled box tray assembly of FIG. 4;



FIG. 6A-6D show illustrative diagrammatic views of a further embodiment of a bin displacement system for use in further embodiments of the invention;



FIG. 7 shows an illustrative diagrammatic view of a programmable motion device processing station for use in a storage, retrieval and processing system in accordance with an embodiment of the present invention;



FIG. 8 shows an illustrative diagrammatic view from the perception system of FIG. 7, showing a view of objects within a bin of objects to be processed;



FIGS. 9A and 9B show illustrative diagrammatic views of a grasp selection process in a storage, retrieval and processing system of the embodiment of the present invention;



FIGS. 10A and 10B show illustrative diagrammatic views of a grasp planning process in a storage, retrieval and processing system of the embodiment of the present invention;



FIGS. 11A and 11B show illustrative diagrammatic views of a grasp execution process in a storage, retrieval and processing system of the embodiment of the present invention;



FIG. 12 shows an illustrative diagrammatic view of a portion of the processing system together with a portion of a destination section of an embodiment of a storage, retrieval and processing system in accordance with an embodiment of the invention;



FIG. 13 shows an illustrative diagrammatic view of a processing section in a storage, retrieval and processing system in accordance with an embodiment of the invention wherein an object is placed in a carriage;



FIG. 14 shows an illustrative diagrammatic view of the processing section of FIG. 13 with the carriage having been moved along its track;



FIG. 15 shows an illustrative diagrammatic view of the processing section of FIG. 13 with the carriage having transferred its load to a destination bin;



FIGS. 16A and 16B show illustrative diagrammatic views of a bin removal mechanism for use in a storage, retrieval and processing system in accordance with an embodiment of the invention;



FIG. 17 shows an illustrative diagrammatic view of the processing section of FIG. 13 with the carriage having returned to its base, and a removed destination bin being moved urged from its location;



FIG. 18 shows an illustrative diagrammatic view of the processing section of FIG. 13 with the removed destination bin being moved along an output conveyor;



FIG. 19 shows an illustrative diagrammatic view of a storage, retrieval and processing system in accordance with a further embodiment of the present invention employing a plurality of storage sections, processing sections, and a plurality of destination sections; and



FIG. 20 shows an illustrative diagrammatic view of a storage, retrieval and processing system in accordance with a further embodiment of the present invention employing further pluralities of storage sections, processing sections and destination sections.





Substitute Specification (Clean)


The drawings are shown for illustrative purposes only.


DETAILED DESCRIPTION

In accordance with an embodiment, the invention provides a storage, retrieval and processing system for processing objects. The system includes a plurality of storage bins providing storage of a plurality of objects, a programmable motion device, and a movable carriage. The plurality of storage bins is in communication with a retrieval conveyance system. The programmable motion device is in communication with the retrieval conveyance system for receiving the storage bins from the plurality of bins, and the programmable motion device includes an end effector for grasping and moving a selected object out of a selected storage bin. The movable carriage receives the selected object from the end effector of the programmable motion device, and carries the selected object to one of a plurality of destination bins.


With reference to FIG. 1, a system 10 in accordance with an embodiment of the present invention includes a storage section 12 at which a plurality of storage bins 14 are provided, a processing section 16 that includes a programmable motion device 18, and one or more destination section 20 that include one or more shuttle carriers 22. Generally, storage bins 14 are selectively provided to and from the processing section 16, where objects are moved from a selected storage bin and placed or dropped by the programmable motion device 18 into a carriage 22 of the destination section 20 for delivery to one of a plurality of destination bins 24. When a destination bin 24 is complete, the completed bin is urged onto an output conveyor 26 for further processing or transport.


As shown in FIG. 2, the storage bins 14 of the storage section 12 are provided adjacent to retrieval conveyors 28 that carry a selected storage bin toward the processing station 16. As further shown with reference to FIGS. 3A and 3B, when a particular storage bin 15 is selected for retrieval, a bin removal mechanism 30 travels along between the bins 14, and stops adjacent to the selected storage bin as shown in FIG. 3A.


With reference to FIG. 3B, the system will then move an urging member 32 of the mechanism 30 to push the selected bin 15 onto a conveyor 28 leading to the processing section 16. The removal mechanism 30 may actuate the urging member 32 by any of a variety of processes, including having the support beam 31 be threaded with the urging member 28 being threaded onto the beam 29 such that it moves when the support beam is rotated, or by other mechanical, pneumatic or electronic actuation.


The conveyor 28 (as well as the other conveyors in the system) may be motion controlled so that both the speed and the direction of the conveyor (e.g., rollers or belt) may be controlled. In certain embodiments, certain of the conveyors (e.g., leading from the storage station 12 to the processing station 16) may be gravity biased to cause any storage bin on any conveyor system to be delivered to the processing section 16 near the programmable motion device 18.


The bins 14 may be provided as boxes, totes, containers or any other type of device that may receive and hold an item. In further embodiments, the bins may be provided in uniform trays (to provide consistency of spacing and processing) and may further include open covers that may maintain the bin in an open position, and may further provide consistency in processing through any of spacing, alignment, or labeling.


For example, FIG. 4 shows an exploded view of a box tray assembly 130. As shown, the box 132 (e.g., a standard shipping sized cardboard box) may include bottom 131 and side edges 133 that are received by a top surface 135 and inner sides 137 of a box tray 134. The box tray 134 may include a recessed (protected) area in which a label or other identifying indicia 146 may be provided, as well as a wide and smooth contact surface 151 that may be engaged by an urging or removal mechanism as discussed below.


As also shown in FIG. 4, the box 132 may include top flaps 138 that, when opened as shown, are held open by inner surfaces 140 of the box cover 136. The box cover 136 may also include a recessed (protected) area in which a label or other identifying indicia 145 may be provided The box cover 136 also provides a defined rim opening 142, as well as corner elements 144 that may assist in providing structural integrity of the assembly, and may assist in stacking un-used covers on one another. Un-used box trays may also be stacked on each other.


The box 132 is thus maintained securely within the box tray 134, and the box cover 136 provides that the flaps 138 remain down along the outside of the box permitting the interior of the box to be accessible through the opening 142 in the box cover 136. FIG. 5 shows a width side view of the box tray assembly 130 with the box 132 securely seated within the box tray 134, and the box cover holding open the flaps 138 of the box 132. The box tray assemblies may be used as any or both of the storage bins and destination bins in various embodiments of the present invention.


With reference to FIGS. 6A-6D, a box kicker 184 in accordance with an embodiment of the present invention may be suspended by and travel along a track 86, and may include a rotatable arm 88 and a roller wheel 190 at the end of the arm 88. With reference to FIGS. 6B-6D, when the roller wheel 190 contacts the kicker plate 151 (shown in FIG. 4) of a box tray assembly 120, the arm 188 continues to rotate, urging the box tray assembly 180 from a first conveyor 182 to a second conveyor 180. Again, the roller wheel 190 is designed to contact the kicker plate 151 of a box tray assembly 181 to push the box tray assembly 181 onto the conveyor 180. Such a system may be used to provide that boxes that are empty or finished being unloaded may be removed (e.g., from conveyor 182), or that boxes that are full or finished being loaded may be removed (e.g., from conveyor 182). The conveyors 180, 182 may also be coplanar, and the system may further include transition roller 183 to facilitate movement of the box tray assembly 181, e.g., by being activated to pull the box tray over to the conveyor 180.


With reference to FIG. 7, the processing station 16 also includes a perception unit 36 that is mounted adjacent to the base of the programmable motion device 18, and looks down into the selected storage bin. An end effector 38 of the programmable motion device grasps an object in bin, and moves to deliver the object to a desired destination bin 24 by placing or dropping the object into a carriage, that then shuttles the object to the selected destination bin 24 (as shown further in FIG. 12).


The storage bin may then be returned to the plurality of storage bins at the storage station, and may be returned anywhere among the bins as long as the system knows where the bin has been returned, and knows how each of the bins may have been moved when the selected storage bin was transferred to the conveyor 28. The storage bins, for example, may be biased (e.g., by gravity) to stack against one of the ends of each row of bins, and the returned bins may be put at the uphill end of a row of storage bins. The storage bins may be returned to the storage section 12 by the conveyors as discussed above, and may be returned to the central area between the conveyors 28 either by human personnel or by employing additional removal mechanisms as discussed above to urge bins back into the central area.



FIG. 8 shows an image view 50 of a bin 14 from the perception unit 38. The image view shows the bin 14 (e.g., on the conveyor), and the bin 14 contains objects 78, 80, 82, 84 and 86. In the present embodiment, the objects are homogenous, and are intended for distribution to different distribution packages. Superimposed on the objects 78, 80, 82, 84, 86 (for illustrative purposes) are anticipated grasp locations 79, 81, 83 and 85 of the objects. Note that while candidate grasp locations 79, 83 and 85 appear to be good grasp locations, grasp location 81 does not because its associated object is at least partially underneath another object. The system may also not even try to yet identify a grasp location for the object 84 because the object 84 is too obscured by other objects. Candidate grasp locations may be indicated using a 3D model of the robot end effector placed in the location where the actual end effector would go to use as a grasp location as shown in FIG. 5. Grasp locations may be considered good, for example, if they are close to the center of mass of the object to provide greater stability during grasp and transport, and/or if they avoid places on an object such as caps, seams etc. where a good vacuum seal might not be available.


If an object cannot be fully perceived by the detection system, the perception system considers the object to be two different objects, and may propose more than one candidate grasps of such two different objects. If the system executes a grasp at either of these bad grasp locations, it will either fail to acquire the object due to a bad grasp point where a vacuum seal will not occur, or will acquire the object at a grasp location that is very far from the center of mass of the object and thereby induce a great deal of instability during any attempted transport. Each of these results is undesirable.


If a bad grasp location is experienced, the system may remember that location for the associated object. By identifying good and bad grasp locations, a correlation is established between features in the 2D/3D images and the idea of good or bad grasp locations. Using this data and these correlations as input to machine learning algorithms, the system may eventually learn, for each image presented to it, where to best grasp an object, and where to avoid grasping an object.


As shown in FIGS. 9A and 9B, the perception system may also identify portions of an object that are the most flat in the generation of good grasp location information. In particular, if an object includes a tubular end and a flat end such as object 87, the system would identify the more flat end as shown at 88 in FIG. 9B. Additionally, the system may select the area of an object where a UPC code appears, as such codes are often printed on a relatively flat portion of the object to facilitate scanning of the barcode.



FIGS. 10A and 10B show that for each object 90, 92, the grasp selection system may determine a direction that is normal to the selected flat portion of the object 90, 92. As shown in FIGS. 11A and 11B, the robotic system will then direct the end effector 94 to approach each object 90, 92 from the direction that is normal to the surface in order to better facilitate the generation of a good grasp on each object. By approaching each object from a direction that is substantially normal to a surface of the object, the robotic system significantly improves the likelihood of obtaining a good grasp of the object, particularly when a vacuum end effector is employed.


The invention therefore provides in certain embodiments that grasp optimization may be based on determination of surface normal, i.e., moving the end effector to be normal to the perceived surface of the object (as opposed to vertical picks), and that such grasp points may be chosen using fiducial features as grasp points, such as picking on a barcode, given that barcodes are almost always applied to a flat spot on the object.



FIG. 12 shows the processing section 16 and portions of the destination sections 20 of the system, which include movable carriages 22 that may receive an object from the end effector 38 of the programmable motion device 18. The movable carriage is reciprocally movable between the destination bins 24, and as further shown in FIGS. 13 and 14, each carriage 22 moves along a track 42, and may be actuated to drop an object 44 into a desired destination bin 24 (as shown in FIG. 15).


The destination bins may be provided in a conveyor (e.g., rollers or belt), and may be biased (for example by gravity) to urge all destination bins toward one end (for example, the distal end 38 as shown). With reference to FIGS. 16A and 16B, when a destination bin 24 is selected for removal (e.g., because the bin is full or otherwise ready for further processing), the system will urge the completed bin onto an output conveyor 26 to be brought to a further processing or shipment station. The conveyor 26 may be biased (e.g., by gravity) to cause any bin on the conveyor to be brought to an output location.



FIGS. 16A and 16B show a bin being urged from the plurality of destination bins, onto the output conveyor 26 by the use of a displacement mechanism 48. In accordance with further embodiments, other displacement mechanisms may be used, including for example, those discussed above with reference to FIGS. 3A-3B, and 6A-6D. The destination bins may be provided as boxes or containers or any other type of device that may receive and hold an item, including the box tray assemblies discussed above with reference to FIGS. 4 and 5.


Following displacement of the bin onto the conveyor (as shown in FIG. 17), each of the destination bins may be urged together, and the system will record the change in position of any of the bins that moved (as shown in FIG. 18). This way, a new empty bin may be added to the end, and the system will record the correct location and identified processing particulars of each of the destination bins. This is shown in FIGS. 13 and 14, whereby a bin 24 is removed and pushed onto the conveyor 26 (see FIG. 13), and then the remaining bins are urged together while the removed bin rolls toward an output location (see FIG. 14).


Systems of the invention are highly scalable in terms of sorts-per-hour as well as the number of storage bins and destination bins that may be available. FIG. 15 shows a system 100 in accordance with a further embodiment of the present invention that includes plurality of storage sections 112, a plurality of processing sections 116, and a plurality of destination sections 120. Generally, both storage sections 112 function as discussed above with regard to FIGS. 1-6D and feed both processing sections 116 as discussed above with reference to FIGS. 1 and 4. Each processing section 116 includes a programmable motion device 118 that provides objects to carriages of one or more processing sections 120.



FIG. 16 shows a system 200 in accordance with a further embodiment of the present invention that includes a further plurality (e.g., four) of storage sections 212, a further plurality (e.g., four) of processing sections 216, and a further plurality (e.g., four pairs) of destination sections 120. Generally, all storage sections 212 function as discussed above with regard to FIGS. 1-3B and feed all processing sections 216 as discussed above with reference to FIGS. 1 and 4. Each processing section 216 includes a programmable motion device 218 that provides objects to carriages of one or more processing sections 220.


Control of each of the systems 10, 100 and 200 may be provided by the computer system that is in communication with the storage conveyors and displacement mechanism(s), the processing conveyors and displacement mechanism(s), and the programmable motion device(s). The computer system 60 also contains the knowledge (continuously updated) of the location and identity of each of the storage bins, and contains the knowledge (also continuously updated) of the location and identity of each of the destination bins. The system therefore, directs the movement of the storage bins and the destination bins, and retrieves objects from the storage bins, and distributes the objects to the destination bins in accordance with an overall manifest that dictates which objects must be provided in which destination boxes for shipment, for example, to distribution or retail locations.


Those skilled in the art will appreciate that numerous modifications and variations may be made to the above disclosed embodiments without departing from the spirit and scope of the present invention.

Claims
  • 1. An object processing system for processing objects, said object processing system comprising: a processing station including a receiving area for receiving an input bin containing one or more objects, and a programmable motion device for grasping and removing a selected object of the one or more objects from the input bin and moving and dropping the selected object;a carrier for receiving the dropped selected object from the programmable motion device, said carrier being adapted for translational movement to move the selected object as well as being adapted for discharge movement to discharge the selected object from the carrier; andan array of destination locations below the carriage such that the translational movement of the carrier is at an elevation above the array of destination locations, each destination location including an open top such that the carrier may deposit the selected object into any of the plurality of destination locations by actuating the discharge movement of the carrier to discharge the selected object into a selected destination location.
  • 2. The object processing system as claimed in claim 1, wherein the programmable motion device includes an articulated arm with a vacuum end-effector.
  • 3. The object processing system as claimed in claim 1, wherein the destination locations are provided as a plurality of pair of rows of destination locations.
  • 4. The object processing system as claimed in claim 1, wherein each destination location is adapted for sealing and shipment for transport.
  • 5. The object processing system as claimed in claim 1, wherein each destination location is provided adjacent an output conveyance system for receiving completed destination containers.
  • 6. The object processing system as claimed in claim 5, wherein the object processing system further includes an output bin displacement system for displacing the completed destination containers onto the conveyance system.
  • 7. The object processing system as claimed in claim 1, wherein the object processing system further includes an input bin storage section that includes a plurality of input bins for access by a retrieval conveyance system that brings each input bin to the processing station.
  • 8. The object processing system as claimed in claim 7, wherein the retrieval conveyance system includes an infeed conveyor section that brings any of the input bins to the processing station.
  • 9. The object processing system as claimed in claim 8, wherein the retrieval conveyance system includes a bin displacement system for displacing an input bin onto the infeed conveyor section.
  • 10. The object processing system as claimed in claim 9, wherein the retrieval conveyance system includes a return conveyor section that returns any of the input bins to the input bin storage section.
  • 11. An object processing system for processing objects, said object processing system comprising: a processing station including a receiving area for receiving an input bin containing one or more objects, and a programmable motion device for grasping and removing a selected object of the one or more objects from the input bin and moving the selected object;a carrier for receiving the selected object from the programmable motion device, said carrier being adapted for translational movement to move the selected object as well as being adapted for tipping movement to discharge the selected object from the carrier; andan array of destination locations below the carriage such that the translational movement of the carrier is at an elevation above the array of destination locations, each destination location including an open top such that the carrier may deposit the selected object into any of the plurality of destination locations by actuating the tipping movement of the carrier to discharge the selected object into a selected destination location.
  • 12. The object processing system as claimed in claim 11, wherein the programmable motion device includes an articulated arm with a vacuum end-effector.
  • 13. The object processing system as claimed in claim 11, wherein the destination locations are provided as a plurality of pair of rows of destination locations.
  • 14. The object processing system as claimed in claim 11, wherein each destination location is adapted for sealing and shipment for transport.
  • 15. The object processing system as claimed in claim 11, wherein each destination location is provided adjacent an output conveyance system for receiving completed destination containers.
  • 16. The object processing system as claimed in claim 15, wherein the object processing system further includes an output bin displacement system for displacing the completed destination containers onto the conveyance system.
  • 17. The object processing system as claimed in claim 11, wherein the object processing system further includes an input bin storage section that includes a plurality of input bins for access by a retrieval conveyance system that brings each input bin to the processing station.
  • 18. The object processing system as claimed in claim 17, wherein the retrieval conveyance system includes an infeed conveyor section that brings any of the input bins to the processing station.
  • 19. The object processing system as claimed in claim 18, wherein the retrieval conveyance system includes a bin displacement system for displacing an input bin onto the infeed conveyor section.
  • 20. The object processing system as claimed in claim 19, wherein the retrieval conveyance system includes a return conveyor section that returns any of the input bins to the input bin storage section.
  • 21. A method of processing objects, said method comprising: receiving at a processing station, an input bin containing one or more objects;using a programmable motion device, grasping and removing a selected object of the one or more objects from the input bin;moving and dropping the selected object from the programmable motion device;receiving the dropped selected object from the programmable motion device in a carrier;translationally moving the carrier to move the selected object;providing an array of destination locations below the carriage such that the translational movement of the carrier is at an elevation above the array of destination locations; and dropping the selected object into a selected destination location of the array of destination locations by actuating a discharge movement of the carrier to discharge the selected object into the selected destination location.
  • 22. The method as claimed in claim 21, wherein the programmable motion device includes an articulated arm with a vacuum end-effector.
  • 23. The method as claimed in claim 21, wherein the destination locations are provided as a plurality of pair of rows of destination locations.
  • 24. The method as claimed in claim 21, wherein each destination location is provided adjacent an output conveyance system for receiving completed destination containers.
  • 25. The method as claimed in claim 24, wherein the method further includes displacing the completed destination containers onto the conveyance system using an output bin displacement system.
  • 26. The method as claimed in claim 21, wherein the method further includes retrieving a plurality of input bins from an input bin storage section on a retrieval conveyance system.
  • 27. The method as claimed in claim 26, wherein the retrieval conveyance system includes an infeed conveyor section that brings any of the input bins to the processing station.
  • 28. The method as claimed in claim 27, wherein the retrieval conveyance system includes a bin displacement system for displacing an input bin onto the infeed conveyor section.
  • 29. The method as claimed in claim 28, wherein the retrieval conveyance system includes a return conveyor section that returns any of the input bins to the input bin storage section.
PRIORITY

The present application is a continuation of U.S. patent application Ser. No. 16/744,862, filed Jan. 16, 2020, now U.S. Pat. No. 11,365,051, issued Jun. 21, 2022, which is a continuation of U.S. patent application Ser. No. 15/924,883, filed Mar. 19, 2018, now U.S. Pat. No. 10,583,553; which claims priority to U.S. Provisional Patent Application Ser. No. 62/473,843, filed Mar. 20, 2017, the disclosures of which are hereby incorporated by reference in their entireties.

US Referenced Citations (115)
Number Name Date Kind
3734286 Simjian May 1973 A
4186836 Wassmer et al. Feb 1980 A
4244459 Garrett Jan 1981 A
4678390 Bonneton et al. Jul 1987 A
4722653 Williams et al. Feb 1988 A
4759439 Hartlepp Jul 1988 A
4819784 Sticht Apr 1989 A
4846335 Hartlepp Jul 1989 A
4895242 Michel Jan 1990 A
5082103 Ross et al. Jan 1992 A
5190162 Hartlepp Mar 1993 A
5419457 Ross et al. May 1995 A
5460271 Kenny et al. Oct 1995 A
5595263 Pignataro Jan 1997 A
5628408 Planke et al. May 1997 A
5794788 Massen Aug 1998 A
5839566 Bonnet Nov 1998 A
6011998 Lichti et al. Jan 2000 A
6059092 Jerue et al. May 2000 A
6079570 Oppliger et al. Jun 2000 A
6124560 Roos et al. Sep 2000 A
6131372 Pruett Oct 2000 A
6208908 Boyd et al. Mar 2001 B1
6246023 Kugle Jul 2001 B1
6323452 Bonnet Nov 2001 B1
6377867 Bradley et al. Apr 2002 B1
6390756 Isaacs et al. May 2002 B1
6401936 Isaacs et al. Jun 2002 B1
6505093 Thatcher et al. Jan 2003 B1
6579053 Grams et al. Jun 2003 B1
6685031 Takizawa Feb 2004 B2
6688459 Bonham et al. Feb 2004 B1
6762382 Danelski Jul 2004 B1
6779647 Nagler Aug 2004 B1
6897395 Shibashi et al. May 2005 B2
6946612 Morikawa Sep 2005 B2
7728244 De Leo et al. Jun 2010 B2
8662314 Jones et al. Mar 2014 B2
8776694 Rosenwinkel et al. Jul 2014 B2
9020632 Naylor Apr 2015 B2
9102336 Rosenwinkel Aug 2015 B2
9272845 Honkanen et al. Mar 2016 B2
9346083 Stone May 2016 B2
9364865 Kim Jun 2016 B2
9481518 Neiser Nov 2016 B2
9751693 Battles Sep 2017 B1
9878349 Crest et al. Jan 2018 B2
9926138 Brazeau et al. Mar 2018 B1
9931673 Nice et al. Apr 2018 B2
9962743 Bombaugh et al. May 2018 B2
9975148 Zhu et al. May 2018 B2
10007827 Wagner et al. Jun 2018 B2
10029865 McCalib, Jr. et al. Jul 2018 B1
10058896 Hicham et al. Aug 2018 B2
10583553 Wagner Mar 2020 B2
11365051 Wagner Jun 2022 B2
20010038784 Peltomaki Nov 2001 A1
20020092801 Dominguez Jul 2002 A1
20020157919 Sherwin Oct 2002 A1
20020179502 Cerutti et al. Dec 2002 A1
20030014376 DeWitt et al. Jan 2003 A1
20030034281 Kumar Feb 2003 A1
20030038065 Pippin et al. Feb 2003 A1
20030075051 Watanabe et al. Apr 2003 A1
20030135300 Lewis Jul 2003 A1
20040194428 Close et al. Oct 2004 A1
20040261366 Gillet et al. Dec 2004 A1
20050002772 Stone Jan 2005 A1
20050220600 Baker et al. Oct 2005 A1
20060070929 Fry et al. Apr 2006 A1
20070209976 Worth et al. Sep 2007 A1
20080181753 Bastian Jul 2008 A1
20090026017 Freudelsperger Jan 2009 A1
20100122942 Harres et al. May 2010 A1
20100318216 Faivre et al. Dec 2010 A1
20110144798 Freudelsperger Jun 2011 A1
20110238207 Bastian, II et al. Sep 2011 A1
20110243707 Dumas et al. Oct 2011 A1
20110320036 Freudelsperger Dec 2011 A1
20120118699 Buchmann et al. May 2012 A1
20120219397 Baker et al. Aug 2012 A1
20120328397 Yamashita Dec 2012 A1
20130110280 Folk May 2013 A1
20140086709 Kasai Mar 2014 A1
20140086714 Malik Mar 2014 A1
20140244026 Neiser Aug 2014 A1
20140277693 Naylor Sep 2014 A1
20140291112 Lyon et al. Oct 2014 A1
20140364998 Neiser et al. Dec 2014 A1
20150073589 Khodl Mar 2015 A1
20150098775 Razumov Apr 2015 A1
20150114799 Hansl et al. Apr 2015 A1
20150375880 Ford et al. Dec 2015 A1
20160075521 Puchwein et al. Mar 2016 A1
20160107848 Baker Apr 2016 A1
20160176638 Toebes Jun 2016 A1
20160199884 Lykkegaard et al. Jul 2016 A1
20160221762 Schroader Aug 2016 A1
20160228921 Doublet et al. Aug 2016 A1
20160244262 O'Brien Aug 2016 A1
20160347545 Lindbo et al. Dec 2016 A1
20170043953 Battles et al. Feb 2017 A1
20170066597 Hiroi Mar 2017 A1
20170080566 Stubbs et al. Mar 2017 A1
20170106532 Wellman et al. Apr 2017 A1
20170121113 Wagner et al. May 2017 A1
20170121114 Einav et al. May 2017 A1
20170136632 Wagner et al. May 2017 A1
20170157648 Wagner et al. Jun 2017 A1
20170157649 Wagner et al. Jun 2017 A1
20170225330 Wagner et al. Aug 2017 A1
20170322561 Stiernagle Nov 2017 A1
20170349385 Moroni et al. Dec 2017 A1
20180085788 Engel et al. Mar 2018 A1
20180244473 Mathi et al. Aug 2018 A1
Foreign Referenced Citations (47)
Number Date Country
2006204622 Mar 2007 AU
2985166 Dec 2016 CA
1033604 Jul 1989 CN
102390701 Mar 2012 CN
205500186 Aug 2016 CN
106395225 Feb 2017 CN
108602630 Sep 2018 CN
957200 Jan 1957 DE
102004001181 Aug 2005 DE
102004013353 Oct 2005 DE
102005061309 Jul 2007 DE
102006057658 Jun 2008 DE
102007023909 Nov 2008 DE
102007038834 Feb 2009 DE
102010002317 Aug 2011 DE
102012102333 Sep 2013 DE
102014111396 Feb 2016 DE
0235488 Sep 1987 EP
0613841 Sep 1994 EP
1695927 Aug 2006 EP
1995192 Nov 2008 EP
2233400 Sep 2010 EP
2650237 Oct 2013 EP
2823899 Jan 2015 EP
2937299 Oct 2015 EP
2832654 May 2003 FR
2084531 Apr 1982 GB
S54131278 Oct 1979 JP
S63310406 Dec 1988 JP
2007182286 Jul 2007 JP
2008037567 Feb 2008 JP
2014141313 Aug 2014 JP
2650237 Oct 2013 NL
03095339 Nov 2003 WO
2005118436 Dec 2005 WO
2007009136 Jan 2007 WO
2008091733 Jul 2008 WO
2010017872 Feb 2010 WO
2010099873 Sep 2010 WO
2011038442 Apr 2011 WO
2012127102 Sep 2012 WO
2015035300 Mar 2015 WO
2015118171 Aug 2015 WO
2016100235 Jun 2016 WO
2016198565 Dec 2016 WO
2017036780 Mar 2017 WO
2017044747 Mar 2017 WO
Non-Patent Literature Citations (9)
Entry
Communication pursuant to Rules 161(1) and 162 EPC issued by the European Patent Office in related European Patent Application No. 18716428.0 dated Nov. 4, 2019, 3 pages.
Examiner's Report issued by the Innovation, Science and Economic Development Canada in related Canadian Patent Application No. 3,057,309 dated Dec. 4, 2020, 4 pages.
Examiner's Report issued by the Innovation, Science and Economic Development Canada (Canadian Intellectual Property Office) in related Canadian Patent Application No. 3,057,309 dated Feb. 4, 2022, 4 pages.
First Office Action issued by the China National Intellectual Property Administration, P.R.C. in related Chinese Patent Application No. 201880019640.3 dated Sep. 3, 2020, 20 pages.
International Preliminary Report on Patentability issued by the International Bureau of WIPO in related International Application No. PCT/US2018/023093 dated Sep. 24, 2019, 8 pages.
International Search Report and Written Opinion issued by the International Searching Authority in related International Application No. PCT/US2018/023093 dated Jun. 21, 2018, 12 pages.
Non-Final Office Action issued by the U.S. Patent and Trademark Office in related U.S. Appl. No. 15/924,883 dated Mar. 20, 2019, 26 pages.
Non-Final Office Action issued by the U.S. Patent and Trademark Office in related U.S. Appl. No. 16/744,862 dated Nov. 24, 2021, 11 pages.
Second Office Action, along with its English translation, issued by the China National Intellectual Property Administration, P.R.C. in related Chinese Patent Application No. 201880019640.3 dated Apr. 23, 2021, 23 pages.
Related Publications (1)
Number Date Country
20220258975 A1 Aug 2022 US
Provisional Applications (1)
Number Date Country
62473843 Mar 2017 US
Continuations (2)
Number Date Country
Parent 16744862 Jan 2020 US
Child 17739735 US
Parent 15924883 Mar 2018 US
Child 16744862 US