Vending machines may dispense a variety of items, including beverages, food, and other consumer products. Some vending machines may utilize rotating coils to dispense products stocked within the coils. These coils may be rotated by a motor, and during rotation of the coil, the products carried therein may be dispensed. The vending machines may be configured to accommodate specific product parameters, and vendors may spend a considerable amount of time stocking products within these coils.
For beverage container dispensing, vending machines may utilize rotating cradles that receive a beverage container. These cradles may also be sized for specific product parameters; vendors may employ a variety of shims, rods, sleeves, and other equipment to adjust vending geometry as desired. Requiring these additional components to accommodate different products may be undesirable, costly to manufacture, and increases overall assembly time. Additionally, some of these vending machines may employ overly complex cam mechanisms and switches that may fail overtime and require constant servicing or maintenance.
Disclosed herein are exemplary dispensing techniques. A dispensing device for a system may comprise: a first movable structure, a second movable structure, a member extending from the first movable structure to the second movable structure, and an extendable component. The extendable component may be configured to extend upon movement of at least the first movable structure, the second movable structure, or the member. An end of the member may be adjacent to the extendable component. The dispensing device may be configured to move along at least a first axis and a second axis of the system. The dispensing device may be configured to extend the extendable component along a third axis of the system.
Further disclosed herein is an exemplary system for dispensing items. The system may comprise: an arrangement of passages and a lateral rail extending laterally across an interior of the system. The lateral rail may be configured to move in a vertical direction adjacent to the passages. The system may further comprise a dispensing device disposed on the lateral rail. The dispensing device may be configured to move in a lateral direction within the interior of the system and configured to extend into a selected passage.
Further disclosed herein is an exemplary method for dispensing an item from a system. The method may comprise moving a dispensing device along a rail in a direction along a first axis of the system; moving a rail in a direction along a second axis of the system, wherein the rail extends laterally within the system; and extending a member, of the dispensing device, toward a front of the system in a direction along a third axis of the system, into a dispensing passage.
These drawings illustrate certain aspects of some examples of the present disclosure and should not be used to limit or define the disclosure.
It is to be understood that the present disclosure is not limited to particular devices or methods, which may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. All numbers and ranges disclosed herein may vary by some amount. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range are specifically disclosed. Although individual embodiments are discussed herein, the invention covers all combinations of all those embodiments. As used herein, the singular forms “a”, “an”, and “the” include singular and plural referents unless the content clearly dictates otherwise. Furthermore, the word “may” is used throughout this application in a permissive sense (i.e., having the potential to, being able to), not in a mandatory sense (i.e., must). The term “include,” and derivations thereof, mean “including, but not limited to.” The term “coupled” means directly or indirectly connected. If there is any conflict in the usages of a word or term in this specification and one or more patent or other documents that may be incorporated herein by reference, the definitions that are consistent with this specification should be adopted for the purposes of understanding this invention.
The present disclosure generally relates to techniques for dispensing items from a vending machine. Specifically, example embodiments of the systems and methods of the present disclosure may utilize at least three axes to allow movement for a dispensing device. The multiple axes may include at least an x-axis, a y-axis, and a z-axis that may allow for precise and quick dispensing of items that are stocked in the vending machine.
Further, employment of at least three axes may allow for unobstructed stocking of products in the vending machine without interference from surrounding components, such as the coils or the cradles, for example. Additionally, the utilization of the axes may require fewer components (e.g., the coils or cradles) than typical vending machines, resulting in fewer malfunctions such as an item not being dispensed after being purchased.
In particular examples, a wide variety of items such as consumer products may be arranged or stocked in an array of dispensing passages arranged in a grid of rows and/or columns within an interior section of the vending machine. The dispensing passages may be horizontal and may extend from a rear of the vending machine to a front of the vending machine. In some examples, the dispensing device may be configured to move along a rear interior section of the vending machine with access to products disposed or stacked within each dispensing passage of the grid. The dispensing passages may be disposed in front of the dispensing device and may be configured to receive an extendable member of the dispensing device. For example, after purchasing of a product, the dispensing device may move to align with a particular dispensing passage to dispense the product.
The dispensing device may be configured to move laterally and vertically within the interior section of the vending machine. In particular examples, the dispensing device may be configured to move via rails. A lateral rail may be movably coupled to a vertical rail which may remain fixed or stationary within the vending machine. The lateral rail may move vertically along the vertical rail, and the dispensing device may be movably disposed on the lateral rail, such that the dispensing device may move laterally along the lateral rail. Non-limiting configurations of the rails may include linear tracks with rollers, or a conveyor system. The rails may allow lateral alignment (e.g., x-axis) and vertical alignment (e.g., y-axis) of the dispensing device with each of the dispensing passages and products therein, while the dispensing device is configured to push the products along a z-axis which may extend longitudinally through each of the dispensing passages, such that the products fall from the dispensing passages into a retrieval bin that may be positioned at a bottom portion of the vending machine for access by a consumer.
In some examples, the vending machine may include a housing and an arrangement of the dispensing passages disposed within the housing. The lateral rail may extend laterally across the housing. The lateral rail may be configured to move in the vertical direction adjacent to the passages such as behind the passages, for example. The dispensing device may be disposed on the lateral rail and may be configured to move in a lateral direction and extend at least one member into a passage.
The dispensing device may include at least one extendable member that may extend and retract in a direction along a z-axis. In particular examples, the dispensing device may include telescoping members. The telescopic members may be concentrically disposed within one another and may be driven by an electric motor operatively coupled to a drive mechanism. A non-limiting example of the drive mechanism may include a chain and a sprocket, however, other suitable mechanisms may be utilized for extension and retraction of a dispensing member, as should be understood by one having skill in the art, with the benefit of this disclosure.
In some examples, the dispensing device may include a housing. A first movable structure and a second movable structure may be disposed within the housing. A member may extend from the first movable structure to the second movable structure. An extendable component may be disposed within the housing, and the extendable component may be configured to extend from the housing upon movement of at least the first movable structure, the second movable structure, or the member. An end of the member may be adjacent to the extendable component, and the dispensing device may be configured to move along an x-axis and a y-axis of a vending machine. The dispensing device may be configured to extend the extendable component along a z-axis of the vending machine.
An exemplary operative sequence for dispensing an item from the vending machine may include moving the lateral rail in a direction along the y-axis of the vending machine. The dispensing device may also move along the lateral rail in a direction along the x-axis of the vending machine. After movement in the x and y directions, the dispensing device may extend at least one member in a direction along a z-axis of the vending machine, into a dispensing passage to dispense an item.
The system controller 116 may include a display, a storage unit, and/or any instrumentality or aggregate of instrumentalities operable to compute, estimate, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, validate, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes. For example, the system controller 116 may be a computer, a network storage device, RFID scanner, NFC reader, validation device or any other suitable device and may vary in size, shape, performance, functionality, and price. The system controller 116 may include a processing unit (e.g., microprocessor, central processing unit, programmable logic controller (PLC), etc.) that may process data by executing software or instructions obtained from a local non-transitory computer readable media (e.g., optical disks, magnetic disks). The non-transitory computer readable media may store software or instructions of the methods described herein. Non-transitory computer readable media may include any instrumentality or aggregation of instrumentalities that may retain data and/or instructions for a period of time. The non-transitory computer readable media may include, for example, storage media such as a direct access storage device (e.g., a hard disk drive or floppy disk drive), a sequential access storage device (e.g., a tape disk drive), compact disk, CD-ROM, DVD, RAM, ROM, electrically erasable programmable read-only memory (EEPROM), and/or flash memory; as well as communications media such wires, optical fibers, microwaves, radio waves, and other electromagnetic and/or optical carriers; and/or any combination of the foregoing.
The system controller 116 may also include input device(s) (e.g., keyboard, mouse, touchpad, scanners, RFID readers, card readers, NFC readers, data reader devices, etc.) and output device(s) (e.g., monitor, printer, secondary display unit 117, etc.). The input device(s) and output device(s) provide a user interface. For example, the system controller 116 may enable an operator to select and perform analysis, view collected data, view analysis results, and/or perform other tasks.
In some examples, a movable structure 204 may include at least two rollers 206 and/or a nut block 207, each movably disposed on the vertical rail 202. In some examples, the nut block 207 may include a structure configured to move along the vertical rail 202 via a lead member 209 (e.g., a screw) that may extend into the rail 202 such as within a slot 211. The nut block 207 may move along the vertical rail 202 by any suitable means such as conveyor system and/or gears disposed within (or adjacent to) the vertical rail 202. In some examples, the vertical rail 202 may be configured as a linear track allowing the movable structure 204 to move vertically along the vertical rail 202. Other suitable techniques for facilitating movement of the moveable structure 204 on vertical rail 202 may be used.
A lateral rail 208 may extend from the movable structure 204. The lateral rail 208 may extend laterally across a width w of the interior section 200 of the vending machine 100, in some examples. The lateral rail 208 may move vertically along the vertical rail 202 via the movable structure 204. It should be noted that other suitable mechanisms may be utilized for vertical movement within the interior section 200 of the vending machine 100, as should be understood by one having skill in the art with the benefit of this disclosure.
A dispensing device 210 may be movably disposed on the lateral rail 208. The dispensing device 210 may include rollers 212 that may contact the lateral rail 208. The dispensing device 210 may be configured to move laterally along the lateral rail 208.
The rollers 212 may be any suitable rollers for facilitating movement of the dispensing device 210 along the lateral rail 208. For example, the rollers 212 may be moved along the lateral rail 208 by a belt and pulley mechanism, and the lateral rail 208 may be configured as a linear track allowing the dispensing device 210 to move laterally along the lateral rail 208. It should be noted that other suitable mechanisms may be utilized for lateral movement within the interior section 200 of the vending machine 100, as should be understood by one having skill in the art with the benefit of this disclosure.
An interior of the housing 300 may be in fluid communication with an interior of the second housing 302 to allow operation of the motor 304, for example. A front portion 306 of the housing 300 may include an aperture 308 which may allow at least one extendable member 310 to extend away from the housing 300. The member 310 may extend from an interior portion 312 of the housing 300 during dispensing of an item, or the member 310 may retract into the interior portion 312 after the dispensing.
For example, a pin 403 may rotatably couple the spool 402 to the inner wall 405; and a shaft 407 may extend from the sprocket 400 through the inner wall 405 and to the motor 304. A member 404 may extend from the spool 402 to the sprocket 400 and may operatively couple the sprocket 400 to the spool 402. The member 404 may be configured to transfer rotational movement of the sprocket 400 to the extendable member 310. In some examples, the member 404 may include a chain that may be at least partially wound around the spool 402 and the sprocket 400. A distal end 406 of the member 404 may be coupled to at least one extendable member 310 configured to pass through the aperture 308. While member 404 is illustrated on
In some examples, a plurality of extendable members may be disposed concentrically within the interior portion 312 of the dispensing device 210. For example, the extendable member 310 may be disposed within extendable members 408 and 410. The extendable members 310, 408, and 410 may be disposed within a base 412 in a telescopic or concentric configuration. In other examples, the extendable members 310, 408, and 410 may be aligned eccentrically. The base 412 may be coupled to the interior portion 312 of the housing 300, such as to the inner wall 405, for example. The base 412 may be coupled to the interior portion 312 of the housing 300 via any suitable means such as fasteners including threads, welds, or pins, for example. As illustrated, the extendable members 310, 408, and 410 are in a retracted configuration; during dispensing, the extendable members 310, 408, and 410 may extend in a telescopic fashion, for example. It should be noted that the telescopic configuration is a non-limiting example and that other suitable techniques for extension may be utilized, as should be understood by one having skill in the art, with the benefit of this disclosure. Examples of other techniques that could be used instead of telescopic members may include rack & pinion technique.
For example, an OD of the member 310 may be less than an ID of the member 408; an OD of the member 408 may be less than an ID of the member 410; and an OD of the member 410 may be less than an ID of the base 412. Each of the extendable members 310, 408, 410, and the base 412 may be hollow to allow for passage of the member 404 therethrough during extension and retraction. In some examples, the extendable members 310, 408, 410, and the base 412 may be tubular, however, any suitable shape may be utilized as should be understood by one having skill in the art with the benefit of this disclosure.
In certain examples, the extendable member 310 may include a distal end 602 with a flat surface 604 to facilitate contacting and pushing items forward. It should be noted that the shapes and sizes for the extendable members 310, 408, 410, and 600 may be of any suitable shape. For example, the extendable members 310, 408, 410, and 600 may be of a cylindrical, box-type, prism, or rectangular shape.
Although specific embodiments have been described above, these embodiments are not intended to limit the scope of the present disclosure, even where only a single embodiment is described with respect to a particular feature. Examples of features provided in the disclosure are intended to be illustrative rather than restrictive unless stated otherwise. The above description is intended to cover such alternatives, modifications, and equivalents as would be apparent to a person skilled in the art having the benefit of this disclosure.
The scope of the present disclosure includes any feature or combination of features disclosed herein (either explicitly or implicitly), or any generalization thereof, whether or not it mitigates any or all of the problems addressed herein. Various advantages of the present disclosure have been described herein, but embodiments may provide some, all, or none of such advantages, or may provide other advantages.