Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells

Information

  • Patent Grant
  • 9737434
  • Patent Number
    9,737,434
  • Date Filed
    Monday, May 6, 2013
    11 years ago
  • Date Issued
    Tuesday, August 22, 2017
    6 years ago
  • Inventors
  • Original Assignees
    • Zeltiq Aestehtics, Inc. (Pleasanton, CA, US)
  • Examiners
    • Smith; Kaitlyn
    Agents
    • Perkins Coie LLP
Abstract
Systems for removing heat from a subject's subcutaneous lipid-rich regions, such as tissue, organs, cells, and so forth, are described herein. In various embodiments, the system includes a treatment device and a controller for controlling a treatment process. The controller is configured to detect and compensate for an interruption in the treatment process.
Description
TECHNICAL FIELD

The present application relates generally to treatment systems and methods with interrupt/resume capabilities for cooling subcutaneous lipid-rich cells.


BACKGROUND

Excess body fat, or adipose tissue, may be present in various locations of the body, including, for example, the thigh, buttocks, abdomen, knees, back, face, arms, chin, and other areas. Moreover, excess adipose tissue is thought to magnify the unattractive appearance of cellulite, which forms when subcutaneous fat protrudes into the dermis and creates dimples where the skin is attached to underlying structural fibrous strands. Cellulite and excessive amounts of adipose tissue are often considered to be unappealing. Moreover, significant health risks may be associated with higher amounts of excess body fat.


A variety of methods have been used to treat individuals having excess body fat and, in many instances, non-invasive removal of excess subcutaneous adipose tissue can eliminate unnecessary recovery time and discomfort associated with invasive procedures such as liposuction. Conventional non-invasive treatments for removing excess body fat typically include topical agents, weight-loss drugs, regular exercise, dieting, or a combination of these treatments. One drawback of these treatments is that they may not be effective or even possible under certain circumstances. For example, when a person is physically injured or ill, regular exercise may not be an option. Similarly, weight-loss drugs or topical agents are not an option when they cause an allergic or negative reaction. Furthermore, fat loss in selective areas of a person's body often cannot be achieved using general or systemic weight-loss methods.


Other methods designed to reduce subcutaneous adipose tissue include laser-assisted liposuction and mesotherapy. Newer non-invasive methods include applying radiant energy to subcutaneous lipid-rich cells via, e.g., radio frequency and/or light energy, such as described in U.S. Patent Publication No. 2006/0036300 and U.S. Pat. No. 5,143,063, or via, e.g., high intensity focused ultrasound (HIFU) radiation such as described in U.S. Pat. Nos. 7,258,674 and 7,347,855. Additional methods and devices for non-invasively reducing subcutaneous adipose tissue by cooling are disclosed in, e.g., Manstein et al. “A Novel Cryotherapy Method of Non-invasive, Selective Lipolysis” LasersSurg. Med. 40:S20 p 104 (2008), Manstein et al., “Selective Cryolysis: A Novel Method of Non-Invasive Fat Removal”, LasersSurg. Med. 40:595-604 (2008), U.S. Pat. No. 7,367,341 entitled “METHODS AND DEVICES FOR SELECTIVE DISRUPTION OF FATTY TISSUE BY CONTROLLED COOLING” to Anderson et al.; U.S. Patent Publication No. 2005/0251120 entitled “METHODS AND DEVICES FOR DETECTION AND CONTROL OF SELECTIVE DISRUPTION OF FATTY TISSUE BY CONTROLLED COOLING” to Anderson et al.; U.S. Patent Publication No. 2007/0198071 entitled “COOLING DEVICE FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS” to Ting et al.; U.S. Patent Publication No. 2007/0255362 entitled “CRYOPROTECTANT FOR USE WITH A TREATMENT DEVICE FOR IMPROVED COOLING FOR SUBCUTANEOUS LIPID-RICH CELLS” to Levinson et al.; U.S. Patent Publication No. 2008/0077201 entitled “COOLING DEVICE WITH FLEXIBLE SENSORS” to Levinson et al.; U.S. Patent Publication No. 2008/0077211 entitled “COOLING DEVICE HAVING A PLURALITY OF CONTROLLABLE COOLING ELEMENTS TO PROVIDE A PREDETERMINED COOLING PROFILE” to Levinson et al.; U.S. Patent Publication No. 2008/0287839 entitled “METHOD OF ENHANCED REMOVAL OF HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS AND TREATMENT APPARATUS HAVING AN ACTUATOR” to Rosen et al., filed May 18, 2007; U.S. patent application Ser. No. 11/777,992 entitled “SYSTEM FOR TREATING LIPID-RICH REGIONS” to Levinson et al., filed Jul. 13, 2007, the entire disclosures of which are incorporated herein by reference. Although the methods and devices disclosed in these publications and applications are promising, several improvements for enhancing the implementation of these methods and devices would be desirable.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.



FIG. 1 is an isometric view of a system for treating subcutaneous lipid-rich regions of a subject in accordance with embodiments of the invention.



FIG. 2 is a partial cross-sectional view illustrating a treatment device suitable to be used in the system of FIG. 1 in accordance with embodiments of the invention.



FIG. 3 is a block diagram showing computing system software modules for removing heat from subcutaneous lipid-rich cells in accordance with embodiments of the invention.



FIG. 4 is a block diagram showing a process module suitable to be used in the computing system of FIG. 3.



FIG. 5 is a flow diagram showing a method for treating subcutaneous lipid-rich regions of a subject in accordance with embodiments of the invention.



FIG. 6 is a flow diagram showing a method for performing a recovery process in accordance with embodiments of the invention.



FIG. 7 is an example of a tissue temperature versus time plot during cooling adipose tissue.



FIG. 8 is an example of a tissue temperature versus time plot during rewarming adipose tissue.





DETAILED DESCRIPTION

A. Overview


This document describes apparatus, systems, and methods for cooling subcutaneous adipose tissue. The term “subcutaneous tissue” generally refers to tissue lying beneath the dermis and includes subcutaneous fat, or adipose tissue, which primarily is composed of lipid-rich cells, or adipocytes. Several of the details set forth below are provided to describe the following embodiments and methods in a manner sufficient to enable a person skilled in the relevant art to practice, make, and use them. Several of the details and advantages described below, however, may not be necessary to practice certain embodiments and methods of the invention. Additionally, the invention may include other embodiments and methods that are within the scope of the claims but are not described in detail.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the occurrences of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. The headings provided herein are for convenience only and do not limit or interpret the scope or meaning of the claimed invention.


B. Suitable Treatment System



FIG. 1 and the following discussion provide a brief, general description of a suitable treatment system 100 in which aspects of the disclosure can be implemented. Those skilled in the relevant art will appreciate that the disclosure can be practiced with other treatment systems and treatment protocols, including invasive, minimally invasive, other non-invasive medical treatment systems, and/or combinations of one or more of the above for treating a patient. In general, the term “treatment system”, as used generally herein, refers to any of the above system categories of medical treatment as well as any treatment regimes or medical device usage.


The treatment system 100 is suitable for treating a subject's subcutaneous adipose tissue, such as by cooling. The term “subcutaneous tissue” means tissue lying beneath the dermis and includes subcutaneous fat, or adipose tissue, which primarily is composed of lipid-rich cells, or adipocytes. When cooling subcutaneous tissue to a temperature lower than 37° C., subcutaneous lipid-rich cells can selectively be affected, or reduced. In general, the epidermis and dermis of the patient 101 lack lipid-rich cells compared to the underlying lipid-rich cells forming the adipose tissue. Because non-lipid-rich cells usually can withstand colder temperatures better than lipid-rich cells, the subcutaneous lipid-rich cells can selectively be reduced or affected without affecting the non-lipid-rich cells in the dermis, epidermis and other surrounding tissue. In some embodiments, the treatment system 100 can apply cooling temperatures to the skin of the patient in a range of from about −20° C. to about 20° C. In other embodiments, the cooling temperatures can be from about −20° C. to about 10° C., from about 0° C. to about 20° C., from about −15° C. to about 5° C., from about −5° C. to about 15° C., or from about −10° C. to about 0° C.


Without being bound by theory, the selective effect of cooling on lipid-rich cells is believed to result in, for example, membrane disruption, shrinkage, disabling, destroying, removing, killing, or another method of lipid-rich cell alteration. Such alteration is believed to be an intermediate and/or final result of one or more mechanisms acting alone or in combination. It is thought that such mechanism or mechanisms trigger an apoptotic cascade, which is believed to be the dominant form of lipid-rich cell death by non-invasive cooling.


Apoptosis, also referred to as “programmed cell death”, is a genetically-induced death mechanism by which cells self-destruct without incurring damage to surrounding tissue. An ordered series of biochemical events induce cells to morphologically change. These changes include cellular blebbing, loss of cell membrane asymmetry and attachment, cell shrinkage, chromatin condensation, and chromosomal DNA fragmentation. Injury via an external stimulus, such as cold exposure, is one mechanism that can induce apoptosis in cells. Nagle, W. A., Soloff, B. L., Moss, A. J. Jr., Henle, K. J. “Cultured Chinese Hamster Cells Undergo Apoptosis After Exposure to Cold but Nonfreezing Temperatures” Cryobiology 27, 439-451 (1990).


One aspect of apoptosis, in contrast to cellular necrosis (a traumatic form of cell death causing local inflammation), is that apoptotic cells express and display phagocytic markers on the surface of the cell membrane, thus marking the cells for phagocytosis by, for example, macrophages. As a result, phagocytes can engulf and remove the dying cells (e.g., the lipid-rich cells) without eliciting an immune response. Temperature exposures that elicit these apoptotic events in lipid-rich cells may contribute to long-lasting and/or permanent reduction and reshaping of subcutaneous adipose tissue.


Without being bound by theory, one mechanism of apoptotic lipid-rich cell death by cooling is believed to involve localized crystallization of lipids within the adipocytes at temperatures that do not induce crystallization in non-lipid-rich cells. The crystallized lipids may selectively injure these cells, inducing apoptosis (and may also induce necrotic death if the crystallized lipids damage or rupture the bilayer lipid membrane of the adipocyte). Another mechanism of injury involves the lipid phase transition of those lipids within the cell's bilayer lipid membrane, which results in membrane disruption, thereby inducing apoptosis. This mechanism is well-documented for many cell types and may be active when adipocytes, or lipid-rich cells, are cooled. Mazur, P., “Cryobiology: the Freezing of Biological Systems” Science, 68: 939-949 (1970); Quinn, P. J., “A Lipid Phase Separation Model of Low Temperature Damage to Biological Membranes” Cryobiology, 22: 128-147 (1985); Rubinsky, B., “Principles of Low Temperature Preservation” Heart Failure Reviews, 8, 277-284 (2003). Other yet-to-be understood apoptotic mechanisms may exist, based on the relative sensitivity of lipid-rich cells to cooling compared to non-lipid rich cells.


In addition to the apoptotic mechanisms involved in lipid-rich cell death, local cold exposure may induce lipolysis (i.e., fat metabolism) of lipid-rich cells. For example, cold stress has been shown to enhance rates of lipolysis from that observed under normal conditions which serves to further increase the volumetric reduction of subcutaneous lipid-rich cells. Vallerand, A. L., Zamecnik. J., Jones, P. J. H., Jacobs, I. “Cold Stress Increases Lipolysis, FFA Ra and TG/FFA Cycling in Humans” Aviation, Space and Environmental Medicine 70, 42-50 (1999).


In various embodiments, the system 100 includes a controller, a computing device, a data acquisition device, a treatment unit, and one or more applicators. The system can employ these components in various embodiments to receive a selection of a treatment profile and apply the selected treatment using an applicator.



FIG. 1 is an isometric view schematically illustrating the treatment system 100 for non-invasively removing heat from subcutaneous lipid-rich regions of a subject patient 101 in accordance with an embodiment of the disclosure. The system 100 can include a treatment device 104 including an applicator 105 that engages a target region of the subject 101. The treatment device 104 can be placed, for example, at an abdominal area 102 of the Subject 101 or another suitable area for cooling or removing heat from the subcutaneous lipid-rich cells of the subject 101. It will be understood that treatment devices 104 and applicators 105 can be provided having various, configurations, shapes and sizes suitable for different body regions and body parts such that any suitable area for removing heat from a subcutaneous lipid-rich region of the subject 101 can be achieved.


An applicator, such as applicator 105, is a component of the system 100 that cools a region of a subject 101, such as a human or animal (i.e., “patient”). Various types of applicators may be applied during treatment, such as a vacuum applicator, a belt applicator (either of which may be used in combination with a massage or vibrating capability), and so forth. Each applicator may be designed to treat identified portions of the patient's body, such as chin, cheeks, arms, pectoral areas, thighs, calves, buttocks, abdomen, “love handles”, back, and so forth. For example, the vacuum applicator may be applied at the back region, and the belt applicator can be applied around the thigh region, either with or without massage or vibration. Exemplary applicators are described in, e.g., commonly assigned U.S. Patent Publication Nos. 2007/0198071, 2008/0077201, 2008/0077211, and 2008/0287839.


In further embodiments, the system 100 may also include a patient protection device (not shown) incorporated into or configured for use with the applicator that prevents the applicator from directly contacting a patient's skin and thereby reducing the likelihood of cross-contamination between patients, minimizing cleaning requirements for the applicator. The patient protection device may also include or incorporate various storage, computing, and communications devices, such as a radio frequency identification (RFID) component, allowing for example, monitoring and/or metering usage as described in U.S. patent application Ser. No. 11/777,992; U.S. patent application Ser. No. 11/777,995, entitled “LIMITING USE OF DISPOSABLE SYSTEM PATIENT PROTECTION DEVICES” to Levinson et al., filed Jul. 13, 2007; U.S. patent application Ser. No. 11/777,999, entitled “MANAGING SYSTEM TEMPERATURE TO REMOVE HEAT FROM LIPID-RICH REGIONS” to Levinson et al., filed Jul. 13, 2007; U.S. patent application Ser. No. 11/778,001, entitled “USER INTERFACES FOR A SYSTEM THAT REMOVES HEAT FROM LIPID-RICH REGIONS” to Levinson et al., filed Jul. 13, 2007; and U.S. patent application Ser. No. 11/778,003, entitled “SECURE SYSTEMS FOR REMOVING HEAT FROM LIPID-RICH REGIONS” to Levinson et al., filed Jul. 13, 2007, the entire disclosures of which are incorporated herein by reference. Exemplary patient protection devices are described in commonly assigned U.S. Patent Publication No. 2008/0077201.


In the present example, the system 100 can further include a treatment unit 106 and supply and return fluid lines 108a-b between the treatment device 104 and the treatment unit 106. A treatment unit 106 is a device that, based on variable power input, can increase or decrease the temperature at a connected treatment device 104 that in turn may be attached to or incorporated into the applicator 105. The treatment unit 106 can remove heat from a circulating coolant to a heat sink and provide a chilled coolant to the treatment device 104 via the fluid lines 108a-b. Alternatively, treatment unit 106 can circulate warm coolant to the treatment device 104 during periods of warming. Examples of the circulating coolant include water, glycol, synthetic heat transfer fluid, oil, a refrigerant, and/or any other suitable heat conducting fluid. The fluid lines 108a-b can be hoses or other conduits constructed from polyethylene, polyvinyl chloride, polyurethane, and/or other materials that can accommodate the particular circulating coolant. The treatment unit 106 can be a refrigeration unit, a cooling tower, a thermoelectric chiller, or any other device capable of removing heat from a coolant. Alternatively, a municipal water supply (e.g., tap water) can be used in place of the treatment unit 106. One skilled in the art will recognize that there are a number of other cooling technologies that could be used such that the treatment unit or chiller need not be limited to those described herein.


In this example, the treatment device 104 includes at least one applicator 105 and at least one treatment unit 106. The applicator 105 can provide mechanical energy to create a vibratory, massage, and/or pulsatile effect. The applicator 105 can include one or more actuators, such as, motors with eccentric weight, or other vibratory motors such as hydraulic motors, electric motors, pneumatic motors, solenoids, other mechanical motors, piezoelectric shakers, and so on, to provide vibratory energy to the treatment site. Further examples include a plurality of actuators for use in connection with a single treatment device 104 and/or applicator 105 in any desired combination. For example, an eccentric weight actuator can be associated with one treatment device 104 or applicator 105, while a pneumatic motor can be associated with another section of the same treatment device or applicator. This, for example, would give the operator of the treatment system 100 options for differential treatment of lipid rich cells within a single region or among multiple regions of the subject 101. The use of one or more actuators and actuator types in various combinations and configurations with a treatment device 104 or applicator 105 may be possible.


The treatment device 104 can include one or more heat exchanging units. The heat exchanging unit can be a Peltier-type thermoelectric element, and the treatment device 104 can have multiple individually controlled heat exchanging units (e.g., between 1 and 50, between 10 and 45; between 15 and 21, approximately 100, etc.) to create a custom spatial cooling profile and/or a time-varying cooling profile. Each custom treatment profile can include one or more segments, and each segment can include a specified duration, a target heat flux or temperature, and control parameters for features such as vibration, massage, vacuum, and other treatment modes. Treatment devices having multiple individually controlled heat exchanging units are described in commonly assigned U.S. Patent Publication No. 2008/0077211. Embodiments of a treatment device 104 usable with the treatment system 100 are described in more detail below with reference to FIG. 2.


The system 100 can further include a power supply 110 and a controller 114 operatively coupled to the treatment device 104 and the applicator 105. In one embodiment, the power supply 110 can provide a direct current voltage to the thermoelectric treatment device 104 and/or the applicator 105 to remove heat from the subject 101. The controller 114 can monitor process parameters via sensors (not shown) placed proximate to the treatment device 104 via a control line 116 to, among other things, adjust the heat removal rate based on the process parameters. The controller 114 can further monitor process parameters to adjust the applicator 105 based on treatment parameters, such as treatment parameters defined in a custom treatment profile or patient-specific treatment plan.


The controller 114 can exchange data with the applicator 105 via an electrical line 112 or, alternatively, via a wireless or an optical communication link. Note that control line 116 and electrical line 112 are shown in FIG. 1 without any support structure. Alternatively, control line 116 and electrical line 112 (and other lines including, but not limited to fluid lines 108a-b) may be bundled into or otherwise accompanied by a conduit or the like to protect such lines, enhance ergonomic comfort, minimize unwanted motion (and thus potential inefficient removal of heat from subject 101), and to provide an aesthetic appearance to system 100. Examples of such a conduit include a flexible polymeric, fabric, or composite sheath, an adjustable arm, etc. Such a conduit (not shown) may be designed (via adjustable joints, etc.) to “set” the conduit in place for the treatment of subject 101.


The controller 114 can include any processor, Programmable Logic Controller, Distributed Control System, secure processor, and the like. A secure processor can be implemented as an integrated circuit with access-controlled physical interfaces; tamper resistant containment; means of detecting and responding to physical tampering; secure storage; and shielded execution of computer-executable instructions. Some secure processors also provide cryptographic accelerator circuitry. Secure storage may also be implemented as a secure flash memory, secure serial EEPROM, secure field programmable gate array, or secure application-specific integrated circuit.


In another aspect, the controller 114 can receive data from an input device 118 (shown as a touch screen), transmit data to an output device 120, and/or exchange data with a control panel (not shown). The input device 118 can include a keyboard, a mouse, a stylus, a touch screen, a push button, a switch, a potentiometer, a scanner, or any other device suitable for accepting user input. The output device 120 can include a display or touch screen, a printer, a medium reader, an audio device, any combination thereof, and any other device or devices suitable for providing user feedback. In the embodiment of FIG. 1, the output device 120 is a touch screen that functions as both an input device 118 and an output device 120. The control panel can include visual indicator devices or controls (e.g., indicator lights, numerical displays, etc.) and/or audio indicator devices or controls. The control panel may be a component separate from the input device 118 and/or output device 120, may be integrated with one or more of the devices, may be partially integrated with one or more of the devices, may be in another location, and so on. In alternative examples, the control panel, input device 118, output device 120, or parts thereof (described herein) may be contained in, attached to, or integrated with the treatment device 104 and/or applicator 105. In this example, the controller 114, power supply 110, control panel, treatment unit 106, input device 118, and output device 120 are carried by a rack 124 with wheels 126 for portability. In alternative embodiments, the controller 114 can be contained in, attached to, or integrated with the treatment device 104 and/or the applicator 105 and/or the patient protection device described above. In yet other embodiments, the various components can be fixedly installed at a treatment site. Further details with respect to components and/or operation of treatment device 104, treatment unit 106, applicator 105 and other components may be found, for example, in commonly-assigned U.S. Patent Application Publication Nos. 2008/0287839 and 2008/0077201.


In operation, and upon receiving input to start a treatment protocol, the controller 114 can cause the applicator 105 to cycle through each segment of a prescribed treatment plan. In so doing, the applicator 105 applies power to one or more treatment devices 104, such as thermoelectric coolers (e.g., TEC “zones”), to begin a cooling or heating cycle and, for example, activate features or modes such as vibration, massage, vacuum, etc. Using sensors (not shown) proximate to the one or more treatment devices 104, the patient's skin, a patient protection device, or other locations or combinations thereof, the controller 114 determines whether a temperature or heat flux that is sufficiently close to the target temperature or heat flux has been reached. It will be appreciated that while a region of the body (e.g., adipose tissue) has been cooled or heated to the target temperature or by a target heat flux, in actuality that region of the body may be close but not equal to the target temperature, e.g., because of the body's natural heating and cooling variations. Thus, although the system may attempt to heat or cool to the target temperature or by a target heat flux, a sensor may measure a sufficiently close temperature. If the target temperature has not been reached, power can be increased or decreased to change heat flux, as needed, to maintain the target temperature. When the prescribed segment duration expires, the controller 114 may apply the treatment parameters (e.g., heat flux or duration) indicated in the next treatment profile segment. In some embodiments, heat flux or temperature can be controlled using a variable other than, or in addition to, power.


During treatment, the treatment process may be interrupted. As used herein, the word “interrupted” generally refers to being in a state in which the treatment process may not safely and/or effectively proceed. For example, the treatment process may be interrupted when the applicator 105 is detached from the patient. In another example, the treatment process may be interrupted when the sensors (not shown) indicate freezing of the adipose tissue or when the treatment quality is unsatisfactory. In a further example, an operator or the patient may pause the treatment process using, e.g., the input device 118. In yet further examples, the treatment process may be interrupted based on other suitable conditions.


The interrupted treatment may cause operational difficulties and/or safety concerns for the patient. For example, if the operator restarts the treatment process from the initial stages of the treatment plan, the additional cooling or heating may be excessive to injure the adipose tissue of the patient. If the operator simply continues the treatment process, the adipose tissue of the patient may be insufficiently cooled or heated because of blood circulation and/or other physiological activities of the patient during the period of treatment interruption. As a result, the treatment process may not achieve the desired effect. Several embodiments of the treatment system 100 can at least reduce the impact of such interruptions by monitoring for an interruption and performing a recovery process to compensate for the interruption, as described in more detail below with reference to FIGS. 4-8.


Although a noninvasive applicator is illustrated and discussed herein, minimally invasive applicators may also be employed in connection with a noninvasive applicator. In such a case, the applicator and patient protection device may be integrated. As an example, a cryoprobe that may be inserted directly into the subcutaneous adipose tissue to cool or freeze the tissue is an example of such a minimally invasive applicator. Cryoprobes manufactured by, e.g., Endocare, Inc., of Irvine, Calif. are suitable for such applications. This patent application incorporates by reference U.S. Pat. No. 6,494,844, entitled “DEVICE FOR BIOPSY AND TREATMENT OF BREAST TUMORS”; U.S. Pat. No. 6,551,255, entitled “DEVICE FOR BIOPSY OF TUMORS”; U.S. Patent Publication No. 2007/0055173, entitled “ROTATIONAL CORE BIOPSY DEVICE WITH LIQUID CRYOGEN ADHESION PROBE”; U.S. Pat. No. 6,789,545, entitled “METHOD AND SYSTEM FOR CRYOABLATING FIBROADENOMAS”; U.S. Patent Publication No. 2004/0215294, entitled “CRYOTHERAPY PROBE”; U.S. Pat. No. 7,083,612, entitled “CRYOTHERAPY SYSTEM”; U.S. Patent Publication No. 2005/0261753, entitled “METHODS AND SYSTEMS FOR CRYOGENIC COOLING”, and U.S. patent application Ser. No. 11/933,066, entitled “METHOD AND APPARATUS FOR COOLING SUBCUTANEOUS LIPID-RICH CELLS OR TISSUE” to Ebbers et al., filed Oct. 31, 2007.



FIG. 2 is a schematic diagram illustrating the treatment device 104 for removing heat from subcutaneous lipid-rich cells in accordance with one embodiment. The treatment device 104 may include a heat exchanging unit, such as a heat exchanging plate 210, and an interface layer 220. The interface layer 220 may be a plate, a film, a covering, or other suitable materials described herein and may serve as the patient protection device described herein. The interface layer 220 is located between the heat exchanging plate 210 and the skin 230 of a subject (not shown), such as the skin of a patient receiving treatment via the treatment device 104. The heat exchanging plate 210 may contain a communication component 215 that communicates with the controller 114 to provide a first sensor reading 242 as described herein, and a sensor 217 that measures, e.g., the temperature of the heat exchanging plate 210 or heat flux across a surface of or plane within the heat exchanging plate 210. The interface layer 220 may also contain a similar communication component 225 that communicates with the controller 114 to provide a second sensor reading 244 and a sensor 227 that measures, e.g., the temperature of the interface layer 220 or heat flux across a surface of or plane within the interface layer 220. For example, one or both of communication components 215, 225 may receive and transmit information from the controller 114, such as temperature and/or heat flux information as determined by one or both of the sensors 217, 227. The treatment device 104 may also contain power components and other components described with respect to FIG. 1 and related applications.


In certain embodiments, the interface layer 220 of the treatment device 104 may include a sleeve for contacting the patient's skin 230. The sleeve may include a first sleeve portion (not shown) and a second sleeve portion (not shown) extending from the first sleeve portion. The first sleeve portion may contact and/or facilitate the contact of the treatment device 104 with the patient's skin 230. The second sleeve portion may be an isolation layer extending from the first sleeve portion. The second sleeve portion may be constructed from latex, rubber, nylon, Kevlar®, or other substantially impermeable or semi-permeable material. The second sleeve portion may prevent contact between the patient's skin 230 and the heat exchanging plates, among other things. Further details regarding a suitable sleeve may be found in U.S. Patent Publication No. 2008/0077201.


In other embodiments, the treatment device 104 may include a belt that assists in forming a contact between the treatment device 104 (such as via an interface layer 220) and the patient's skin 230. For example, the treatment device 104 may include retention devices (not shown) coupled to a frame. The retention devices may be rotatably connected to the frame by a plurality of coupling elements that may be, for example, pins, ball joints, bearings, or other type of rotatable joints. Alternatively, the retention devices may be rigidly affixed to the end portions of heat exchanging element housings. Further details regarding a suitable belt device may be found in U.S. Patent Publication No. 2008/0077211.


In further embodiments, the treatment device 104 may include a vacuum (not shown) that assists in forming a contact between the treatment device 104 (such as via the interface layer 220) and the patient's skin 230. For example, the treatment device 104 may provide mechanical energy to a treatment region. Imparting mechanical vibratory energy to the patient's tissue by repeatedly applying and releasing a vacuum to the subject's tissue, for instance, creates a massage action during treatment. Further details regarding a vacuum type device may be found in U.S. Patent Application Publication No. 2008/0287839.


C. Computing System Software Modules



FIG. 3 is a functional diagram showing software modules 300 suitable for use in the controller 114 of FIG. 1. Each component may be a computer program, procedure, or process written as source code in a conventional programming language, such as C, C+, C++, C# etc., and may be presented for execution by a CPU of the controller 114. The various implementations of the source code and object byte codes may be stored on a computer-readable storage medium. The modules of controller 114 may include an input module 302, a database module 304, a process module 306, an output module 308, and, optionally, a display module 310 interconnected with one another.


In operation, the input module 302 accepts an operator input 319, such as process setpoint (e.g., a target heat flux or temperature) and control selections (e.g., a resume/terminate selection), and communicates the accepted information or selections to other components for further processing. The database module 304 organizes records, including treatment profiles 312, lookup tables 314, and alarms 316, and facilitates storing and retrieving of these records to and from a database 301. The treatment profiles 312 may include various therapies for treating different areas of the subject 101 (FIG. 1). For example, the treatment profiles 312 may include a pre-cooling duration, a steady state duration, a termination duration, and/or other suitable parameters for a treatment process. The lookup tables 314 may include values of temperatures of adipose tissue and corresponding time of cooling or warming. Any type of database organization may be utilized, including a flat file system, hierarchical database, relational database, or distributed database, such as provided by a database vendor such as Oracle Corporation, Redwood Shores, Calif.


The process module 306 generates control variables based on sensor readings 318 from sensors (e.g., the temperature measurement components 217 and 227 of FIG. 2) and/or other data sources, and the output module 308 generates output signals 320 based on the control variables. The controller 114 optionally may include the display module 310 for displaying, printing, or downloading the sensor readings 318, output signals 320, and/or other information via devices such as the output device 120 (FIG. 1). A suitable display module 310 may include a video driver that enables the controller 114 to display the sensor readings 318 or other status of treatment resumption on the output device 120.



FIG. 4 is a block diagram showing an embodiment of the process module 306 of FIG. 3. The process module 306 may further include a sensing module 330, an analysis module 332, a control module 334, and a calculation module 336 interconnected with one other. Each module may be a computer program, procedure, or routine written as source code in a conventional programming language, or one or more modules may be hardware modules.


The sensing module 330 is configured to receive and convert the sensor readings 318 into parameters in desired units. For example, the sensing module 330 may receive the sensor readings 318 as electrical signals (e.g., a voltage or a current) and convert the electrical signals into instant temperatures in Celsius. In another example, the sensing module 330 may convert the electrical signals into an oxygen depletion level in the treated area as an indicator of hypoxia or ischemia. The sensing module 330 may have routines including, for example, linear interpolation, logarithmic interpolation, data mapping, or other routines to associate the sensor readings 318 to parameters in desired units.


The calculation module 336 may include routines configured to perform various types of calculation to facilitate operation of other modules. For example, the calculation module 336 may include counters, timers, and/or other suitable accumulation routines for deriving an elapsed time of treatment (t), an elapsed time since an interruption (τ), and/or other parameters associated with the interruption. Further, the calculation module 336 may include routines configured to calculate tissue temperatures at different times during treatment based on temperature parameters, heat flux parameters, and/or other suitable parameters.


In certain embodiments, the calculation module 336 may also include a computation routine for deriving an interruption temperature (Tinterrupt) of the adipose tissue based on the measured temperatures from at least one of the sensors 217 and 227 according to the following formula:

Tinterrupt=Toe−kt  (Equation I)

where To is an initial temperature of the adipose tissue (e.g., 37° C.) and k is a time constant associated with cooling the adipose tissue. The cooling time constant k may be empirically derived for a particular interface temperature (e.g., 0° C.) between the cooling plate 210 (FIG. 2) and the skin 230 of the subject 101 (FIG. 2) by performing an exponential curve fitting on a tissue temperature versus time plot (e.g., the plot shown in FIG. 7) and/or other suitable techniques. Equation I may also be used to derive an instant temperature of the adipose tissue during cooling.


In other embodiments, the calculation module 336 may also include another computation routine for deriving a rewarming temperature (Trewarm) of the adipose tissue after the interruption according to the following formula:

Trewarm=Tinterrupte−mτ  (Equation II)

where m is a time constant associated with rewarming the adipose tissue. The rewarming time constant m may also be empirically derived for a particular ambient temperature (e.g., 25° C.) by performing an exponential curve fitting on a tissue temperature versus time plot (e.g., the plot shown in FIG. 8) and/or other suitable techniques.


In further embodiments, the calculation module 336 may include a lookup routine to derive the interruption temperature (Tinterrupt) and/or the rewarming temperature (Trewarm) of the adipose tissue based on the lookup tables 314 stored in the database 301 or plots of temperature versus time for cooling and/or rewarming of the adipose tissue. Examples of such temperature versus time plots for cooling and rewarming are shown in FIGS. 7 and 8, respectively.


In yet further embodiments, thermal modeling of different tissue and/or applicator geometries may result in different equations for deriving the interruption temperature of Equation I (Tinterrupt) and/or the rewarming temperature of Equation II (Trewarm). Moreover, even though the foregoing description is directed toward a process for cooling the adipose tissue, in other embodiments, the calculation module 336 may also include other suitable computation routines for calculating the interruption temperature and/or other parameters of the adipose tissue during a process for heating, or a combination of heating and cooling the adipose tissue.


In yet further embodiments, the calculation module 336 may also be configured to derive a rate of change for the interface temperature according to the following formula:











d





T


d





t






T

i
+
1


-

T
i



Δ





t






(

Equation





III

)








where Ti+1 is the temperature record number i+1, Ti is the previous temperature record, and Δt is the time difference between the two temperature records. The calculation module 336 may be configured to derive a rate of change of the temperature of the adipose tissue in a similar fashion.


The calculation module 336 may also be configured to derive a profile for a recovery process in response to the interruption. For example, the calculation module 336 may include a computation routine for calculating an amount of heat (Q) that must be removed from the adipose tissue to return the adipose tissue to the temperature at the time of the interruption as follows:

Q=ρVCP(Trewarm−Tinterrupt)  (Equation IV)

where ρ is the density of the adipose tissue (e.g., about 918 kg/m3); V is a volume of the adipose tissue that approximately corresponds to a cross-sectional area of the cooling plate 210 and a thickness of the adipose tissue (e.g., about 0.1 m to about 0.2 m); and CP is the specific heat capacity of the adipose tissue (e.g., about 3.5 kJ/kg ° C.).


The density and specific heat capacity of the adipose tissue may empirically be determined. In certain embodiments, the operator may adjust the thickness of the adipose tissue, select a value from a list of available options, or enter a value determined by direct measurement involving, for example, ultrasound, calipers, electrical conductance, etc. In other embodiments, the thickness of the adipose tissue may automatically be set based on a particular treatment area (e.g., thighs, buttocks, etc.)


The calculation module 336 may also include another computation routine for deriving a desired cooling rate ({dot over (Q)}) for the recovery process as follows:










Q
.

=


Q
π

=


ρ







VC
p



(


T
rewarm

-

T
interrupt


)



π






(

Equation





V

)








where π is a recovery duration. In certain embodiments, the operator may set the recovery duration (π) to any desired value with or without bounds. In other embodiments, the recovery duration (π) may be preselected and inaccessible to the operator.


In certain embodiments, the calculation module 336 may further include a computation routine for calculating an expected average rate of change in the temperature of the adipose tissue during the recovery period as follows:










Δ





T

=


(


T
rewarm

-

T
interrupt


)

π





(

Equation





VI

)








In other embodiments, the expected rate of change may also be based on the interface temperature between the cooling plate 210 and the skin 230 of the subject 101.


The analysis module 332 may be configured to analyze parameters from the sensing module 330 and the calculation module 336 and to determine (1) whether an interruption has occurred; and (2) whether the treatment process may be resumed. The display module 310 may then receive the determined results for output to the operator. In certain embodiments, the analysis module 332 may indicate an interruption when the following conditions occur:

    • The input module 302 (FIG. 3) receives an interruption indication from the operator and/or the subject 101.
    • The calculated rate of change for the measured skin temperature is above (or below) a threshold (e.g., 0.1° C./sec), or alternatively, the measured heat flux across the skin is above (or below) a threshold (e.g., 50 mW/cm2).
    • The measured bio-resistance of the skin 230 of the subject 101 is above a threshold.


      In other embodiments, the analysis module 332 may indicate an interruption based on other suitable conditions. In further embodiments, the analysis module 332 can also generate an alarm after an interruption is indicated and store the alarm in the database 301 as alarms 316.


The analysis module 332 may also be configured to determine whether the treatment process may be resumed based on the following conditions:

    • If the elapsed time since the interruption (τ) is not less than a difference between the elapsed time of treatment (t) and a preselected ramp time (A) as follows:

      τ≧(t−A),
    • the analysis module 332 indicates that the process cannot be resumed. In one embodiment, the preselected ramp time (A) may be the time required to cool the interface layer 220 to a desired treatment temperature. In other embodiments, the preselected ramp time (A) may have other desired values; or
    • If the elapsed time since the interruption (τ) is greater than a preselected maximum interruption time (B) as follows:

      τ≧B;
    • the analysis module 332 indicates that the process cannot be resumed. In one embodiment, the maximum interruption time (B) may have a value at which the adipose tissue would have been sufficiently rewarmed (e.g., 10 minutes). In other embodiments, the maximum interruption time (B) may have other desired values; or
    • If the treatment process has been interrupted for more than a preselected number of occurrences (e.g., 2 times), the analysis module 332 indicates that the process cannot be resumed.


      In other embodiments, the analysis module 332 may indicate that the process cannot be resumed based on other suitable conditions.


The control module 334 may be configured to determine whether the recovery process should be initiated. In one embodiment, if the analysis module 332 indicates that an interruption has occurred and the treatment process may be resumed, the control module 334 may automatically initiate the recovery process. In another embodiment, the display module 310 may output the result from the analysis module 332 and prompt the operator for input. The input module 302 (FIG. 3) may accept and then transmit the operator input 319 to the control module 334 for determining whether to initiate the recovery process or terminate the treatment process. In further embodiments, the control module 334 can determine whether to initiate the recovery process based on other suitable conditions.


The control module 334 may also be configured to monitor parameters of the recovery process and adjust the recovery process based on the monitored parameters. In one embodiment, the control module 334 may monitor a rate of change of the temperature of the adipose tissue and/or the interface temperature during the recovery process. If the monitored rate of change is below the expected rate of change from Equation VI by a preselected amount (e.g., 25%), then the control module 334 may (1) increase a power output to the cooling plate 210 by a preselected amount or by a proportional-derivative-integral (PID) routine using the rate of change as a process variable; and/or (2) increase the recovery duration by a preselected amount (e.g., 3 minutes); otherwise, the control module 334 continues to monitor the recovery process. In other embodiments, the control module 334 may also monitor a heat flux, a thermal image, and/or other parameters of the recovery process.


D. Treatment Resumption Methods



FIG. 5 is a flow diagram illustrating a method 500 for treating subcutaneous lipid-rich regions of a subject in accordance with embodiments of the invention. Even though the method 500 is described below with reference to the treatment system 100 of FIG. 1, the treatment device 104 of FIG. 2, and the software modules of FIGS. 3 and 4, the method 500 may also be applied in other treatment systems with additional or different hardware and/or software components.


As shown in FIG. 5, an early stage 502 of the method 500 may include initiating a treatment process for the subject. In one embodiment, initiating the treatment process may include receiving an initiation input with the input module 302 via, for example, the input device 118 and retrieving a suitable treatment profile from the database 301. Then the control module 334 may activate the treatment device 104 and/or other components of the treatment system 100 to remove heat from the skin 230 of the subject 101 (FIG. 2) according to the retrieved treatment profile. The calculation module 336 may accumulate the elapsed time of treatment by, for example, activating an internal timer or counter.


Another stage 504 of the method 500 may include detecting an interruption in the treatment process. In one embodiment, detecting the interruption may include accepting an input for pause from the operator and/or the subject 101 by the input module 302. In other embodiments, detecting an interruption may include continuously sensing an interface temperature between the cooling plate 210 and the skin 230 of the subject 101 with the sensing module 330, calculating a rate of change for the sensed temperature with the calculation module 336, and analyzing the calculated rate of change of the sensed temperature with the analysis module 332. In further embodiments, detecting an interruption may include detecting skin freezing, monitoring treatment quality, identifying movement of the treatment device 104 (FIG. 1), as described in commonly assigned U.S. patent application Ser. No. 12/196,246 entitled “MONITORING THE COOLING OF SUBCUTANEOUS LIPID-RICH CELLS, SUCH AS THE COOLING OF ADIPOSE TISSUE,” filed Aug. 21, 2008, the disclosure of which is incorporated by reference in its entirety.


A determination is made at stage 505. If an interruption is not detected, the process reverts to continuing the treatment process at stage 502. If an interruption is detected, the process continues to another stage 506 for determining with the analysis module 332 whether the treatment process may be resumed. The calculation module 336 may then determine the accumulated elapsed time of treatment and accumulate the elapsed time of interruption by, for example, activating another internal timer or counter. If the treatment process may not be resumed, the process reverts to initiating another treatment process at stage 502, and the calculation module 336 may reset both the elapsed time of treatment and the elapsed time of interruption.


If the treatment process is determined to be resumable, in one embodiment, the method 500 includes another stage 508 in which a recovery process is performed in response to the interruption. Optionally, in another embodiment, the interruption and the determination that the treatment process may be resumed can be indicated to the operator via, e.g., the display 118 (FIG. 1). The operator may choose to proceed with the recovery process or terminate the treatment process.


In one embodiment, performing the recovery process includes returning the adipose tissue to a condition (e.g., temperature) at least approximately equal to that at the time of the interruption. In other embodiments, if the interruption is detected based on tissue freezing, tissue overheating, and/or other suitable conditions, the adipose tissue may not be returned to a condition at least approximately equal to that at the time of interruption. Instead, performing the recovery process may include cooling, warming, and/or otherwise treating the adipose tissue and/or surrounding tissue based on suitable parameters to reduce the likelihood of injury. In yet other embodiments, performing the recovery process may include replacing the interface layer 220 with a new piece and pre-cooling the new interface layer 220 to a suitable temperature. Several embodiments of performing the recovery process are described in more detail below with reference to FIG. 6.


After performing the recovery process at stage 508, the method 500 may also include continuing the interrupted treatment process at stage 510. In one embodiment, continuing the interrupted treatment process includes performing the remaining treatment operations according to the treatment profile. For example, if the treatment profile includes cooling the skin 230 of the subject 101 for a total of 30 minutes, and the elapsed treatment time is 10 minutes, continuing the interrupted treatment process includes cooling the skin 230 of the subject 101 for another 20 minutes after performing the recovery process. In other embodiments, continuing the interrupted treatment process may also include performing other suitable operations according to the treatment profile.



FIG. 6 is a flow diagram showing a method 508 for performing a recovery process in accordance with embodiments of the invention. The method 508 may include determining recovery conditions (stage 602) with the calculation module 336 based on the elapsed time of treatment and the elapsed time of interruption. The recovery conditions may include a power level to the cooling plate 210 (FIG. 2), a recovery duration, an expected average rate of change of the interface temperature, and/or other suitable parameters.


Another stage 604 of the method 508 may include performing recovery via, e.g., cooling the adipose tissue according to the determined recovery conditions by, for example, activating the power supply 110 (FIG. 1) with the determined power level. In other examples, performing recovery may also include warming or a combination of cooling and warming the adipose tissue. In further examples, performing recovery may also include applying vibration, electrical stimulation, and/or other suitable procedures to the adipose tissue.


A further stage 606 of the method 508 may include monitoring the recovery process. For example, in one embodiment, monitoring the recovery process may include sensing the interface temperature with at least one of the temperature measurement components 217 and 227, converting the sensed interface temperature with the sensing module 330, and calculating a rate of change for the interface temperature with the calculation module 336. In other embodiments, monitoring the recovery process may include monitoring other suitable parameters.


The analysis module 332 may then determine whether the recovery process is satisfactory based on the calculated rate of change of the interface temperature and/or other suitable parameters at stage 608. If the recovery process is not satisfactory, another stage 610 of the method 508 includes adjusting the recovery process with the control module 334, and the process reverts to cooling the adipose tissue at stage 604. If the recovery process is satisfactory, another determination is performed at stage 612 to decide whether the process should return. In one embodiment, the determined recovery conditions include a recovery time, and if the recovery time has not expired, the process reverts to cooling the adipose tissue; otherwise, the process returns. In other embodiments, the operator and/or the subject 101 may terminate the recovery process.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense, that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. When the claims use the word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


The various embodiments described above may be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entireties. Aspects of the invention may be modified, if necessary, to employ treatment devices and actuators with a plurality of treatment units, thermally conductive devices with various configurations, and concepts of the various patents, applications, and publications to provide yet further embodiments of the invention.


These and other changes may be made to the invention in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims, but should be construed to include all cooling that operates in accordance with the claims. Accordingly, the invention is not limited by the disclosure, but instead its scope is to be determined entirely by the following claims.

Claims
  • 1. A method for treating a subcutaneous lipid-rich region of a subject having skin, comprising: heating or cooling the subcutaneous lipid-rich region of the subject according to a profile of a treatment process, the profile having a total duration;identifying an interruption in the treatment process after a first duration,determining a second duration of the identified interruption;determining a third duration equal to a difference between the total duration and the first duration;compensating for (1) rewarming of the subcutaneous lipid-rich region of the subject during the second duration when the subcutaneous lipid-rich region is cooled during the first duration and (2) a temperature decrease in the subcutaneous lipid-rich region when the subcutaneous lipid-rich region is heated during the first duration; andafter compensating for rewarming of the subcutaneous lipid-rich region or the temperature decrease in the subcutaneous lipid-rich region, continuing the treatment process according to the profile for the third duration.
  • 2. The method of claim 1, further comprising determining an interruption temperature (Tinterrupt) of the subcutaneous lipid-rich region after the first duration and a rewarming temperature (Trewarm) of the subcutaneous lipid-rich region after the second duration based on the first and second durations, respectively.
  • 3. The method of claim 1, further comprising determining an interruption temperature (Tinterrupt) of the subcutaneous lipid-rich region after the first duration and a rewarming temperature (Trewarm) of the subcutaneous lipid-rich region after the second duration based on the first and second durations, respectively, wherein the profile is a first profile, and wherein the method further includes determining a second profile having a cooling rate ({dot over (Q)}) calculated as follows:
  • 4. The method of claim 1, further comprising determining an interruption temperature (Tinterrupt) of the subcutaneous lipid-rich region after the first duration and a rewarming temperature (Trewarm) of the subcutaneous lipid-rich region after the second duration based on the first and second durations, respectively, wherein the profile is a first profile, and wherein the method further includes determining a second profile having an expected rate of change for a temperature at the skin of the subject as follows:
  • 5. The method of claim 4 wherein compensating for rewarming includes monitoring a rate of change for the temperature at the skin of the subject; andadjusting the second profile for the recovery process if the monitored rate of change deviates from the expected rate of change by a preselected amount.
  • 6. The method of claim 4 wherein compensating for rewarming includes monitoring a rate of change for the temperature at the skin of the subject; andadjusting the second profile for the recovery process if the monitored rate of change deviates from the expected rate of change by a preselected percentage.
  • 7. The method of claim 1, further comprising: determining a compensation cooling/heating rate based on the second duration; andcooling or heating the subcutaneous lipid-rich region based on the compensation cooling/heating rate to compensate for the rewarming or the temperature decrease of the subcutaneous lipid-rich cells.
  • 8. The method of claim 1, further comprising: determining whether to resume the treatment process after the identified interruption based on the second duration and/or a number of interruption occurrences;if the determination is to resume the treatment process, the treatment process is continued according to the profile for the third duration; andif the determination is to not resume the treatment process, the treatment process according to the profile is stopped.
  • 9. A computer-readable medium containing instructions for performing the method of claim 1.
  • 10. A method for treating a subcutaneous lipid-rich region of a subject having skin, comprising: heating or cooling the subcutaneous lipid-rich region of the subject according to a profile of a treatment process, the profile having a total duration;identifying an interruption in the treatment process after a first duration,determining an interrupt duration of the interruption;determining a compensation treatment profile based on the interrupt duration, the compensation treatment profile being different from the profile of the treatment process;heating or cooling the subcutaneous lipid-rich region according to the compensation treatment profile to compensate for changes in temperature of the subcutaneous lipid-rich region associated with the identified interruption;determining a third duration based on the total duration and the first duration; andafter compensating for the identified interruption, continuing the treatment process according to the profile based on the third duration.
  • 11. The method of claim 10, further comprising: determine whether to resume the treatment process based on the interrupt duration and/or a number of interruption occurrences;if the determination is to resume the treatment process, the treatment process is continued according to the profile for the third duration; andif the determination is to not resume the treatment process, the treatment process is terminated.
  • 12. The method of claim 10, wherein the third duration is equal to a difference between the total duration and the first duration.
  • 13. The method of claim 10, further comprising: determining a recovery cooling/heating rate based on the interrupt duration; andcooling or heating the subcutaneous lipid-rich region based on the recovery cooling/heating rate to compensate for the temperature changes of the subcutaneous lipid-rich region associated with the identified interruption.
CROSS REFERENCE TO RELATED APPLICATION

The present application is a continuation of U.S. patent application Ser. No. 12/337,544, filed Dec. 17, 2008, now U.S. Pat. No. 8,603,073, the disclosure of which is incorporated herein by reference in its entirety.

US Referenced Citations (644)
Number Name Date Kind
681806 Mignault Sep 1901 A
889810 Robinson Jun 1908 A
2516491 Swastek Jul 1950 A
2726658 Chessey Dec 1955 A
2766619 Tribus et al. Oct 1956 A
2851602 Cramwinckel et al. Sep 1958 A
3093135 Hirschhorn Jun 1963 A
3132688 Nowak May 1964 A
3133539 William et al. May 1964 A
3282267 Wiliam Nov 1966 A
3502080 Hirschhorn Mar 1970 A
3587577 Smirnov et al. Jun 1971 A
3591645 Selwitz Jul 1971 A
3703897 Mack et al. Nov 1972 A
3710784 Taylor Jan 1973 A
3786814 Armao Jan 1974 A
3827436 Stumpf et al. Aug 1974 A
3942519 Shock Mar 1976 A
3948269 Zimmer Apr 1976 A
3986385 Johnston et al. Oct 1976 A
3993053 Grossan Nov 1976 A
4002221 Buchalter Jan 1977 A
4026299 Sauder May 1977 A
4140130 Storm, III Feb 1979 A
4149529 Copeland et al. Apr 1979 A
4178429 Scheffer Dec 1979 A
4202336 van Gerven et al. May 1980 A
4266043 Fujii et al. May 1981 A
4269068 Molina May 1981 A
4381009 Del Bon et al. Apr 1983 A
4396011 Mack et al. Aug 1983 A
4459854 Richardson et al. Jul 1984 A
4483341 Witteles Nov 1984 A
4528979 Marchenko et al. Jul 1985 A
4531524 Mioduski Jul 1985 A
4548212 Leung Oct 1985 A
4555313 Duchane et al. Nov 1985 A
4585002 Kissin Apr 1986 A
4603076 Bowditch et al. Jul 1986 A
4614191 Perler Sep 1986 A
4644955 Mioduski Feb 1987 A
4664110 Schanzlin May 1987 A
4700701 Montaldi Oct 1987 A
4718429 Smidt et al. Jan 1988 A
4741338 Miyamae et al. May 1988 A
4764463 Mason et al. Aug 1988 A
4802475 Weshahy et al. Feb 1989 A
4832022 Tjulkov et al. May 1989 A
4846176 Golden Jul 1989 A
4850340 Onishi Jul 1989 A
4869250 Bitterly Sep 1989 A
4880564 Abel et al. Nov 1989 A
4905697 Heggs et al. Mar 1990 A
4906463 Cleary et al. Mar 1990 A
4930317 Klein Jun 1990 A
4935345 Guilbeau et al. Jun 1990 A
4961422 Marchosky et al. Oct 1990 A
4962761 Golden Oct 1990 A
4990144 Blott Feb 1991 A
5007433 Hermsdorffer et al. Apr 1991 A
5018521 Campbell May 1991 A
5024650 Hagiwara et al. Jun 1991 A
5065752 Sessions et al. Nov 1991 A
5069208 Noppel et al. Dec 1991 A
5084671 Miyata et al. Jan 1992 A
5108390 Potocky et al. Apr 1992 A
5119674 Nielsen et al. Jun 1992 A
5139496 Hed Aug 1992 A
5143063 Fellner Sep 1992 A
5148804 Hill et al. Sep 1992 A
5158070 Dory Oct 1992 A
5169384 Bosniak et al. Dec 1992 A
5197466 Marchosky et al. Mar 1993 A
5207674 Hamilton May 1993 A
5221726 Dabi et al. Jun 1993 A
5264234 Windhab et al. Nov 1993 A
5277030 Miller Jan 1994 A
5314423 Seney May 1994 A
5327886 Chiu Jul 1994 A
5330745 McDow Jul 1994 A
5333460 Lewis et al. Aug 1994 A
5334131 Omandam et al. Aug 1994 A
5336616 Livesey et al. Aug 1994 A
5339541 Owens Aug 1994 A
5342617 Gold Aug 1994 A
5351677 Kami et al. Oct 1994 A
5358467 Milstein et al. Oct 1994 A
5362966 Rosenthal et al. Nov 1994 A
5363347 Nguyen Nov 1994 A
5372608 Johnson Dec 1994 A
5386837 Sterzer Feb 1995 A
5411541 Bell et al. May 1995 A
5427772 Hagan Jun 1995 A
5433717 Rubinsky et al. Jul 1995 A
5456703 Beeuwkes, III Oct 1995 A
5472416 Blugerman et al. Dec 1995 A
5486207 Mahawili Jan 1996 A
5497596 Zatkulak Mar 1996 A
5501655 Rolt et al. Mar 1996 A
5505726 Meserol Apr 1996 A
5505730 Edwards Apr 1996 A
5507790 Weiss et al. Apr 1996 A
5514105 Goodman, Jr. et al. May 1996 A
5514170 Mauch May 1996 A
5516505 McDow May 1996 A
5531742 Barken Jul 1996 A
5562604 Yablon et al. Oct 1996 A
5571801 Segall et al. Nov 1996 A
5575812 Owens et al. Nov 1996 A
5603221 Maytal et al. Feb 1997 A
5628769 Saringer et al. May 1997 A
5634890 Morris Jun 1997 A
5634940 Panyard Jun 1997 A
5647051 Neer Jul 1997 A
5647868 Chinn Jul 1997 A
5650450 Lovette et al. Jul 1997 A
5651773 Perry et al. Jul 1997 A
5654279 Rubinsky et al. Aug 1997 A
5654546 Lindsay Aug 1997 A
5660836 Knowlton Aug 1997 A
5665053 Jacobs Sep 1997 A
5672172 Zupkas Sep 1997 A
5700284 Owens et al. Dec 1997 A
5725483 Podolsky Mar 1998 A
5733280 Avitall Mar 1998 A
5741248 Stern et al. Apr 1998 A
5746736 Tankovich May 1998 A
5755663 Larsen et al. May 1998 A
5755753 Knowlton May 1998 A
5755755 Panyard May 1998 A
5759182 Varney et al. Jun 1998 A
5759764 Polovina Jun 1998 A
5769879 Richards et al. Jun 1998 A
5785955 Fischer Jul 1998 A
5792080 Ookawa et al. Aug 1998 A
5800490 Patz et al. Sep 1998 A
5814040 Nelson et al. Sep 1998 A
5817050 Klein Oct 1998 A
5817149 Owens et al. Oct 1998 A
5817150 Owens et al. Oct 1998 A
5830208 Muller Nov 1998 A
5833685 Tortal et al. Nov 1998 A
5844013 Kenndoff et al. Dec 1998 A
5865841 Kolen et al. Feb 1999 A
5871524 Knowlton Feb 1999 A
5871526 Gibbs et al. Feb 1999 A
5885211 Eppstein et al. Mar 1999 A
5891617 Watson et al. Apr 1999 A
5895418 Saringer et al. Apr 1999 A
5901707 Gon.cedilla.alves et al. May 1999 A
5902256 Benaron May 1999 A
5919219 Knowlton Jul 1999 A
5944748 Mager et al. Aug 1999 A
5948011 Knowlton Sep 1999 A
5954680 Augustine et al. Sep 1999 A
5964092 Tozuka et al. Oct 1999 A
5964749 Eckhouse et al. Oct 1999 A
5967976 Larsen et al. Oct 1999 A
5980561 Kolen et al. Nov 1999 A
5986167 Arteman et al. Nov 1999 A
5989286 Owens et al. Nov 1999 A
5997530 Nelson et al. Dec 1999 A
6017337 Pira et al. Jan 2000 A
6023932 Johnston et al. Feb 2000 A
6032675 Rubinsky Mar 2000 A
6039694 Larson et al. Mar 2000 A
6041787 Rubinsky Mar 2000 A
6047215 McClure et al. Apr 2000 A
6049927 Thomas et al. Apr 2000 A
6051159 Hao et al. Apr 2000 A
6071239 Cribbs et al. Jun 2000 A
6074415 Der Ovanesian Jun 2000 A
6093230 Johnson, III et al. Jul 2000 A
6102885 Bass Aug 2000 A
6104952 Tu et al. Aug 2000 A
6104959 Spertell et al. Aug 2000 A
6106517 Zupkas Aug 2000 A
6113558 Rosenschein et al. Sep 2000 A
6113559 Klopotek Sep 2000 A
6113626 Clifton et al. Sep 2000 A
6120519 Weber et al. Sep 2000 A
6139544 Mikus et al. Oct 2000 A
6150148 Nanda et al. Nov 2000 A
6152952 Owens et al. Nov 2000 A
6171301 Nelson et al. Jan 2001 B1
6180867 Hedengren et al. Jan 2001 B1
6226996 Weber et al. May 2001 B1
6241753 Knowlton Jun 2001 B1
6264649 Whitcroft et al. Jul 2001 B1
6273884 Altshuler et al. Aug 2001 B1
6290988 Van Vilsteren et al. Sep 2001 B1
6311090 Knowlton Oct 2001 B1
6311497 Chung et al. Nov 2001 B1
6312453 Stefanile et al. Nov 2001 B1
6350276 Knowlton Feb 2002 B1
6354297 Eiseman Mar 2002 B1
6357907 Cleveland et al. Mar 2002 B1
6375673 Clifton et al. Apr 2002 B1
6377854 Knowlton Apr 2002 B1
6377855 Knowlton Apr 2002 B1
6381497 Knowlton Apr 2002 B1
6381498 Knowlton Apr 2002 B1
6387380 Knowlton May 2002 B1
6401722 Krag Jun 2002 B1
6405090 Knowlton Jun 2002 B1
6413255 Stern Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6426445 Young et al. Jul 2002 B1
6430446 Knowlton Aug 2002 B1
6430956 Haas et al. Aug 2002 B1
6438424 Knowlton Aug 2002 B1
6438954 Goetz et al. Aug 2002 B1
6438964 Giblin Aug 2002 B1
6453202 Knowlton Sep 2002 B1
6458888 Hood et al. Oct 2002 B1
6461378 Knowlton Oct 2002 B1
6470216 Knowlton Oct 2002 B1
6471693 Carroll et al. Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6478811 Dobak, III et al. Nov 2002 B1
6494844 Van Bladel et al. Dec 2002 B1
6497721 Ginsburg et al. Dec 2002 B2
6508831 Kushnir Jan 2003 B1
6514244 Pope et al. Feb 2003 B2
6519964 Bieberich Feb 2003 B2
6523354 Tolbert Feb 2003 B1
6527765 Kelman et al. Mar 2003 B2
6527798 Ginsburg et al. Mar 2003 B2
6544248 Bass Apr 2003 B1
6547811 Becker et al. Apr 2003 B1
6548297 Kuri-Harcuch et al. Apr 2003 B1
6551255 Van Bladel et al. Apr 2003 B2
6551341 Boylan et al. Apr 2003 B2
6551348 Blalock et al. Apr 2003 B1
6551349 Lasheras et al. Apr 2003 B2
6569189 Augustine et al. May 2003 B1
6585652 Lang et al. Jul 2003 B2
6592577 Abboud et al. Jul 2003 B2
6605080 Altshuler et al. Aug 2003 B1
6607498 Eshel Aug 2003 B2
6620187 Carson et al. Sep 2003 B2
6620188 Ginsburg et al. Sep 2003 B1
6620189 Machold et al. Sep 2003 B1
6623430 Slayton et al. Sep 2003 B1
6626854 Friedman et al. Sep 2003 B2
6632219 Baranov et al. Oct 2003 B1
6635053 Lalonde et al. Oct 2003 B1
6643535 Damasco et al. Nov 2003 B2
6645162 Friedman et al. Nov 2003 B2
6645229 Matsumura et al. Nov 2003 B2
6645232 Carson Nov 2003 B2
6648904 Altshuler et al. Nov 2003 B2
6656208 Grahn et al. Dec 2003 B2
6660027 Gruszecki et al. Dec 2003 B2
6662054 Kreindel et al. Dec 2003 B2
6682550 Clifton et al. Jan 2004 B2
6685731 Kushnir et al. Feb 2004 B2
6694170 Mikus et al. Feb 2004 B1
6695874 Machold et al. Feb 2004 B2
6697670 Chomenky et al. Feb 2004 B2
6699237 Weber et al. Mar 2004 B2
6699266 Lachenbruch et al. Mar 2004 B2
6699267 Voorhees et al. Mar 2004 B2
6718785 Bieberich Apr 2004 B2
6741895 Gafni et al. May 2004 B1
6743222 Durkin et al. Jun 2004 B2
6746474 Saadat Jun 2004 B2
6749624 Knowlton Jun 2004 B2
6764493 Weber et al. Jul 2004 B1
6764502 Bieberich Jul 2004 B2
6789545 Littrup et al. Sep 2004 B2
6795728 Chornenky et al. Sep 2004 B2
6820961 Johnson Nov 2004 B2
6821274 McHale et al. Nov 2004 B2
6840955 Ein Jan 2005 B2
6849075 Bertolero et al. Feb 2005 B2
6878144 Altshuler et al. Apr 2005 B2
6889090 Kreindel May 2005 B2
6892099 Jaafar et al. May 2005 B2
6904956 Noel Jun 2005 B2
6918903 Bass Jul 2005 B2
6927316 Faries, Jr. et al. Aug 2005 B1
6942022 Blangetti et al. Sep 2005 B2
6945942 Van Bladel et al. Sep 2005 B2
6948903 Ablabutyan et al. Sep 2005 B2
6969399 Schock et al. Nov 2005 B2
7005558 Johansson et al. Feb 2006 B1
7006874 Knowlton et al. Feb 2006 B2
7022121 Stern et al. Apr 2006 B2
7037326 Lee et al. May 2006 B2
7054685 Dimmer et al. May 2006 B2
7060061 Altshuler et al. Jun 2006 B2
7077858 Fletcher et al. Jul 2006 B2
7081111 Svaasand et al. Jul 2006 B2
7083612 Littrup et al. Aug 2006 B2
7096204 Chen et al. Aug 2006 B1
7112712 Ancell Sep 2006 B1
7115123 Knowlton et al. Oct 2006 B2
7141049 Stern et al. Nov 2006 B2
7183360 Daniel et al. Feb 2007 B2
7189252 Krueger Mar 2007 B2
7192426 Baust et al. Mar 2007 B2
7204832 Altshuler et al. Apr 2007 B2
7220778 Anderson et al. May 2007 B2
7229436 Stern et al. Jun 2007 B2
7258674 Cribbs et al. Aug 2007 B2
7267675 Stern et al. Sep 2007 B2
7276058 Altshuler et al. Oct 2007 B2
7318821 Lalonde et al. Jan 2008 B2
7331951 Eshel et al. Feb 2008 B2
7347855 Eshel et al. Mar 2008 B2
7367341 Anderson et al. May 2008 B2
7532201 Quistgaard et al. May 2009 B2
7572268 Babaev Aug 2009 B2
7604632 Howlett et al. Oct 2009 B2
7613523 Eggers et al. Nov 2009 B2
7615016 Barthe et al. Nov 2009 B2
7713266 Elkins et al. May 2010 B2
7780656 Tankovich Aug 2010 B2
7799018 Goulko Sep 2010 B2
7824437 Saunders Nov 2010 B1
7828831 Tanhehco et al. Nov 2010 B1
7850683 Elkins et al. Dec 2010 B2
7854754 Ting et al. Dec 2010 B2
7862558 Elkins et al. Jan 2011 B2
RE42277 Jaafar et al. Apr 2011 E
7938824 Chornenky et al. May 2011 B2
7959657 Harsy et al. Jun 2011 B1
7963959 Da Silva et al. Jun 2011 B2
7967763 Deem et al. Jun 2011 B2
7993330 Goulko Aug 2011 B2
7998137 Elkins et al. Aug 2011 B2
RE42835 Chornenky et al. Oct 2011 E
RE43009 Chornenky et al. Dec 2011 E
8133180 Slayton et al. Mar 2012 B2
8133191 Rosenberg et al. Mar 2012 B2
8192474 Levinson Jun 2012 B2
8246611 Paithankar et al. Aug 2012 B2
8275442 Allison Sep 2012 B2
8285390 Levinson et al. Oct 2012 B2
8333700 Barthe et al. Dec 2012 B1
8337539 Ting et al. Dec 2012 B2
8366622 Slayton et al. Feb 2013 B2
8397518 Vistakula et al. Mar 2013 B1
8414631 Quisenberry et al. Apr 2013 B2
8433400 Prushinskaya et al. Apr 2013 B2
8506486 Slayton et al. Aug 2013 B2
8523775 Barthe et al. Sep 2013 B2
8523791 Castel Sep 2013 B2
8523927 Levinson et al. Sep 2013 B2
8535228 Slayton et al. Sep 2013 B2
8603073 Allison Dec 2013 B2
8636665 Slayton et al. Jan 2014 B2
8641622 Barthe et al. Feb 2014 B2
8663112 Slayton et al. Mar 2014 B2
8672848 Slayton et al. Mar 2014 B2
8676332 Fahey Mar 2014 B2
8690778 Slayton et al. Apr 2014 B2
8690779 Slayton et al. Apr 2014 B2
8690780 Slayton et al. Apr 2014 B2
8702774 Baker et al. Apr 2014 B2
8758215 Legendre et al. Jun 2014 B2
8764693 Graham et al. Jul 2014 B1
8834547 Anderson et al. Sep 2014 B2
20010005791 Ginsburg et al. Jun 2001 A1
20010007952 Shimizu Jul 2001 A1
20010023364 Ahn Sep 2001 A1
20010031459 Fahy et al. Oct 2001 A1
20010039439 Elkins et al. Nov 2001 A1
20010045104 Bailey et al. Nov 2001 A1
20010047196 Ginsburg et al. Nov 2001 A1
20020026226 Ein Feb 2002 A1
20020032473 Kushnir et al. Mar 2002 A1
20020049483 Knowlton Apr 2002 A1
20020058975 Bieberich May 2002 A1
20020062142 Knowlton May 2002 A1
20020068338 Nanda et al. Jun 2002 A1
20020082668 Ingman Jun 2002 A1
20020103520 Latham Aug 2002 A1
20020107558 Clifton et al. Aug 2002 A1
20020117293 Campbell Aug 2002 A1
20020120315 Furuno et al. Aug 2002 A1
20020128648 Weber et al. Sep 2002 A1
20020151830 Kahn Oct 2002 A1
20020151887 Stern et al. Oct 2002 A1
20020156509 Cheung Oct 2002 A1
20020188286 Quijano et al. Dec 2002 A1
20020198518 Mikus et al. Dec 2002 A1
20030032900 Ella Feb 2003 A1
20030044764 Soane et al. Mar 2003 A1
20030055414 Altshuler et al. Mar 2003 A1
20030069618 Smith et al. Apr 2003 A1
20030077326 Newton et al. Apr 2003 A1
20030077329 Kipp et al. Apr 2003 A1
20030079488 Bieberich May 2003 A1
20030100936 Altshuler et al. May 2003 A1
20030109908 Lachenbruch et al. Jun 2003 A1
20030109910 Lachenbruch et al. Jun 2003 A1
20030109911 Lachenbruch et al. Jun 2003 A1
20030114885 Nova et al. Jun 2003 A1
20030120268 Bertolero et al. Jun 2003 A1
20030125649 McIntosh et al. Jul 2003 A1
20030187488 Kreindel et al. Oct 2003 A1
20030199226 Sommer et al. Oct 2003 A1
20030199859 Altshuler et al. Oct 2003 A1
20030220594 Halvorson et al. Nov 2003 A1
20030220635 Knowlton et al. Nov 2003 A1
20030220674 Anderson et al. Nov 2003 A1
20030236487 Knowlton Dec 2003 A1
20040002705 Knowlton et al. Jan 2004 A1
20040006328 Anderson Jan 2004 A1
20040009936 Tang et al. Jan 2004 A1
20040024437 Machold et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040034341 Altshuler et al. Feb 2004 A1
20040039312 Hillstead et al. Feb 2004 A1
20040044384 Leber et al. Mar 2004 A1
20040049178 Abboud et al. Mar 2004 A1
20040073079 Altshuler et al. Apr 2004 A1
20040074629 Noel Apr 2004 A1
20040077977 Ella et al. Apr 2004 A1
20040082886 Timpson Apr 2004 A1
20040093042 Altshuler et al. May 2004 A1
20040104012 Zhou et al. Jun 2004 A1
20040106867 Eshel et al. Jun 2004 A1
20040133251 Altshuler et al. Jul 2004 A1
20040162596 Altshuler et al. Aug 2004 A1
20040176667 Mihai et al. Sep 2004 A1
20040186535 Knowlton Sep 2004 A1
20040199226 Shadduck Oct 2004 A1
20040206365 Knowlton Oct 2004 A1
20040210214 Knowlton Oct 2004 A1
20040210287 Greene Oct 2004 A1
20040215294 Littrup et al. Oct 2004 A1
20040249427 Nabilsi et al. Dec 2004 A1
20040259855 Anderson et al. Dec 2004 A1
20040260209 Ella et al. Dec 2004 A1
20040260210 Ella et al. Dec 2004 A1
20040260211 Maalouf Dec 2004 A1
20050033957 Enokida Feb 2005 A1
20050049526 Baer Mar 2005 A1
20050049543 Anderson et al. Mar 2005 A1
20050049661 Koffroth Mar 2005 A1
20050113725 Masuda May 2005 A1
20050143781 Carbunaru et al. Jun 2005 A1
20050145372 Noel Jul 2005 A1
20050154314 Quistgaard Jul 2005 A1
20050154431 Quistgaard et al. Jul 2005 A1
20050159986 Breeland et al. Jul 2005 A1
20050182462 Chornenky et al. Aug 2005 A1
20050187495 Quistgaard et al. Aug 2005 A1
20050187597 Vanderschuit Aug 2005 A1
20050203446 Takashima Sep 2005 A1
20050215987 Slatkine Sep 2005 A1
20050222565 Manstein Oct 2005 A1
20050251117 Anderson et al. Nov 2005 A1
20050251120 Anderson et al. Nov 2005 A1
20050261753 Littrup et al. Nov 2005 A1
20050283144 Shiono et al. Dec 2005 A1
20060030778 Mendlein et al. Feb 2006 A1
20060035380 Saint-Leger Feb 2006 A1
20060036300 Kreindel Feb 2006 A1
20060041704 Choi Feb 2006 A1
20060074313 Slayton et al. Apr 2006 A1
20060079852 Bubb et al. Apr 2006 A1
20060094988 Tosaya et al. May 2006 A1
20060106836 Masugi et al. May 2006 A1
20060122509 Desilets Jun 2006 A1
20060189964 Anderson et al. Aug 2006 A1
20060195168 Dunbar et al. Aug 2006 A1
20060200063 Munro et al. Sep 2006 A1
20060206040 Greenberg et al. Sep 2006 A1
20060206110 Knowlton et al. Sep 2006 A1
20060234899 Nekmard et al. Oct 2006 A1
20060259102 Slatkine Nov 2006 A1
20060265032 Hennings et al. Nov 2006 A1
20060270745 Hunt et al. Nov 2006 A1
20060293734 Scott et al. Dec 2006 A1
20070010811 Stern et al. Jan 2007 A1
20070010861 Anderson et al. Jan 2007 A1
20070032561 Lin et al. Feb 2007 A1
20070038156 Rosenberg Feb 2007 A1
20070055156 Desilets et al. Mar 2007 A1
20070055173 DeLonzor et al. Mar 2007 A1
20070055179 Deem et al. Mar 2007 A1
20070055180 Deem et al. Mar 2007 A1
20070055181 Deem et al. Mar 2007 A1
20070073367 Jones et al. Mar 2007 A1
20070078502 Weber et al. Apr 2007 A1
20070100398 Sloan May 2007 A1
20070106342 Schumann May 2007 A1
20070129714 Elkins et al. Jun 2007 A1
20070135876 Weber Jun 2007 A1
20070141265 Thomson Jun 2007 A1
20070179482 Anderson Aug 2007 A1
20070198071 Ting et al. Aug 2007 A1
20070219540 Masotti et al. Sep 2007 A1
20070239075 Rosenberg et al. Oct 2007 A1
20070239150 Zvuloni et al. Oct 2007 A1
20070249519 Guha et al. Oct 2007 A1
20070255187 Branch Nov 2007 A1
20070255274 Stern et al. Nov 2007 A1
20070255362 Levinson et al. Nov 2007 A1
20070265585 Joshi et al. Nov 2007 A1
20070265614 Stern et al. Nov 2007 A1
20070270925 Levinson Nov 2007 A1
20070282249 Quisenberry et al. Dec 2007 A1
20070282318 Spooner et al. Dec 2007 A1
20080014627 Merchant et al. Jan 2008 A1
20080046047 Jacobs Feb 2008 A1
20080058784 Manstein et al. Mar 2008 A1
20080077201 Levinson et al. Mar 2008 A1
20080077202 Levinson Mar 2008 A1
20080077211 Levinson et al. Mar 2008 A1
20080139901 Altshuler et al. Jun 2008 A1
20080140061 Toubia et al. Jun 2008 A1
20080140371 Warner Jun 2008 A1
20080183164 Elkins et al. Jul 2008 A1
20080188915 Mills et al. Aug 2008 A1
20080248554 Merchant et al. Oct 2008 A1
20080269851 Deem et al. Oct 2008 A1
20080287839 Rosen et al. Nov 2008 A1
20080312651 Pope et al. Dec 2008 A1
20090012434 Anderson Jan 2009 A1
20090018623 Levinson et al. Jan 2009 A1
20090018624 Levinson et al. Jan 2009 A1
20090018625 Levinson et al. Jan 2009 A1
20090018626 Levinson et al. Jan 2009 A1
20090018627 Levinson et al. Jan 2009 A1
20090024023 Welches et al. Jan 2009 A1
20090076488 Welches et al. Mar 2009 A1
20090112134 Avni Apr 2009 A1
20090118722 Ebbers et al. May 2009 A1
20090149929 Levinson et al. Jun 2009 A1
20090149930 Schenck Jun 2009 A1
20090171253 Davenport Jul 2009 A1
20090171334 Elkins et al. Jul 2009 A1
20090221938 Rosenberg et al. Sep 2009 A1
20090276018 Brader Nov 2009 A1
20090281464 Cioanta et al. Nov 2009 A1
20090306749 Mulindwa Dec 2009 A1
20090312676 Rousso et al. Dec 2009 A1
20090312693 Thapliyal et al. Dec 2009 A1
20090326621 El-Galley Dec 2009 A1
20100015190 Hassler Jan 2010 A1
20100028969 Mueller et al. Feb 2010 A1
20100030306 Edelman et al. Feb 2010 A1
20100036295 Altshuler et al. Feb 2010 A1
20100049178 Deem et al. Feb 2010 A1
20100081971 Allison Apr 2010 A1
20100087806 Da Silva et al. Apr 2010 A1
20100152824 Allison Jun 2010 A1
20100168726 Brookman Jul 2010 A1
20100179531 Nebrigic et al. Jul 2010 A1
20100198064 Perl et al. Aug 2010 A1
20100217349 Fahey et al. Aug 2010 A1
20100268220 Johnson et al. Oct 2010 A1
20100280582 Baker et al. Nov 2010 A1
20110009860 Chornenky et al. Jan 2011 A1
20110040235 Castel Feb 2011 A1
20110040299 Kim et al. Feb 2011 A1
20110046523 Altshuler et al. Feb 2011 A1
20110066083 Tosaya et al. Mar 2011 A1
20110066216 Ting et al. Mar 2011 A1
20110077557 Wing et al. Mar 2011 A1
20110077723 Parish et al. Mar 2011 A1
20110112405 Barthe et al. May 2011 A1
20110112520 Kreindel May 2011 A1
20110144631 Elkins et al. Jun 2011 A1
20110152849 Baust et al. Jun 2011 A1
20110172651 Altshuler et al. Jul 2011 A1
20110189129 Qiu et al. Aug 2011 A1
20110196395 Maschke Aug 2011 A1
20110196438 Mnozil et al. Aug 2011 A1
20110202048 Nebrigic et al. Aug 2011 A1
20110238050 Allison et al. Sep 2011 A1
20110238051 Levinson et al. Sep 2011 A1
20110257642 Griggs, III Oct 2011 A1
20110300079 Martens et al. Dec 2011 A1
20110301585 Goulko Dec 2011 A1
20110313411 Anderson et al. Dec 2011 A1
20110313412 Kim et al. Dec 2011 A1
20120010609 Deem et al. Jan 2012 A1
20120016239 Barthe et al. Jan 2012 A1
20120022518 Levinson Jan 2012 A1
20120022622 Johnson et al. Jan 2012 A1
20120035475 Barthe et al. Feb 2012 A1
20120035476 Barthe et al. Feb 2012 A1
20120046547 Barthe et al. Feb 2012 A1
20120053458 Barthe et al. Mar 2012 A1
20120065629 Elkins et al. Mar 2012 A1
20120083862 Altshuler et al. Apr 2012 A1
20120101549 Schumann Apr 2012 A1
20120109041 Munz May 2012 A1
20120158100 Schomacker Jun 2012 A1
20120209363 Williams, III et al. Aug 2012 A1
20120239123 Weber et al. Sep 2012 A1
20120253416 Erez et al. Oct 2012 A1
20120259322 Fourkas et al. Oct 2012 A1
20120277674 Clark, III et al. Nov 2012 A1
20120310232 Erez Dec 2012 A1
20130018236 Altshuler et al. Jan 2013 A1
20130019374 Schwartz Jan 2013 A1
20130066309 Levinson Mar 2013 A1
20130073017 Liu et al. Mar 2013 A1
20130079684 Rosen et al. Mar 2013 A1
20130116758 Levinson et al. May 2013 A1
20130116759 Levinson et al. May 2013 A1
20130150844 Deem et al. Jun 2013 A1
20130158636 Ting et al. Jun 2013 A1
20130166003 Johnson et al. Jun 2013 A1
20130185440 Blau et al. Jul 2013 A1
20130190744 Avram et al. Jul 2013 A1
20130238062 Ron Edoute et al. Sep 2013 A1
20130245507 Khorassani Zadeh Sep 2013 A1
20130253384 Anderson et al. Sep 2013 A1
20130253493 Anderson et al. Sep 2013 A1
20130253494 Anderson et al. Sep 2013 A1
20130253495 Anderson et al. Sep 2013 A1
20130253496 Anderson et al. Sep 2013 A1
20130303904 Barthe et al. Nov 2013 A1
20130303905 Barthe et al. Nov 2013 A1
20130331914 Lee et al. Dec 2013 A1
20140005759 Fahey et al. Jan 2014 A1
20140005760 Levinson et al. Jan 2014 A1
20140142469 Britva et al. May 2014 A1
20140200487 Ramdas et al. Jul 2014 A1
20140200488 Seo et al. Jul 2014 A1
20140222121 Spence et al. Aug 2014 A1
20140277219 Nanda Sep 2014 A1
20140277302 Weber et al. Sep 2014 A1
20140303697 Anderson et al. Oct 2014 A1
20150209174 Abreu Jul 2015 A1
20150216719 DeBenedictis et al. Aug 2015 A1
20150216720 DeBenedictis et al. Aug 2015 A1
20150216816 O'Neil et al. Aug 2015 A1
20150223975 Anderson et al. Aug 2015 A1
20150328077 Levinson Nov 2015 A1
20150335468 Rose et al. Nov 2015 A1
20150342780 Levinson et al. Dec 2015 A1
20160051308 Pennybacker et al. Feb 2016 A1
20160051401 Yee et al. Feb 2016 A1
20160135985 Anderson May 2016 A1
20160324684 Levinson et al. Nov 2016 A1
Foreign Referenced Citations (164)
Number Date Country
2011253768 Jun 2012 AU
2441489 Mar 2005 CA
2585214 Oct 2007 CA
333982 Nov 1958 CH
86200604 Oct 1987 CN
2514795 Oct 2002 CN
2514811 Oct 2002 CN
1511503 Jul 2004 CN
1741777 Mar 2006 CN
1817990 Aug 2006 CN
2843367 Dec 2006 CN
2850584 Dec 2006 CN
2850585 Dec 2006 CN
200970265 Nov 2007 CN
101259329 Sep 2008 CN
101309657 Nov 2008 CN
532976 Sep 1931 DE
2851602 Jun 1980 DE
4213584 Nov 1992 DE
4224595 Jan 1994 DE
4238291 May 1994 DE
4445627 Jun 1996 DE
19800416 Jul 1999 DE
0263069 Apr 1988 EP
0397043 Nov 1990 EP
0406244 Jan 1991 EP
0598824 Jun 1994 EP
1030611 Aug 2000 EP
1201266 May 2002 EP
1568395 Aug 2005 EP
2260801 Dec 2010 EP
2289598 Mar 2011 EP
2527005 Nov 2012 EP
854937 Apr 1940 FR
2744358 Aug 1997 FR
2745935 Sep 1997 FR
2767476 Feb 1999 FR
2776920 Oct 1999 FR
2789893 Aug 2000 FR
2805989 Sep 2001 FR
387960 Feb 1933 GB
2120944 Dec 1983 GB
2248183 Apr 1992 GB
2263872 Aug 1993 GB
2286660 Aug 1995 GB
2323659 Sep 1998 GB
58187454 Nov 1983 JP
63076895 Apr 1988 JP
S6382936 Apr 1988 JP
01223961 Sep 1989 JP
03051964 Mar 1991 JP
3259975 Nov 1991 JP
4093597 Mar 1992 JP
H06261933 Sep 1994 JP
6282977 Oct 1994 JP
7194666 Aug 1995 JP
7268274 Oct 1995 JP
09164163 Jun 1997 JP
10216169 Aug 1998 JP
10223961 Aug 1998 JP
2000503154 Mar 2000 JP
3065657 Jul 2000 JP
2001046416 Feb 2001 JP
2002125993 May 2002 JP
2002224051 Aug 2002 JP
2002282295 Oct 2002 JP
2002290397 Oct 2002 JP
2002543668 Dec 2002 JP
2003190201 Jul 2003 JP
2004013600 Jan 2004 JP
2004073812 Mar 2004 JP
2004159666 Jun 2004 JP
2005039790 Feb 2005 JP
3655820 Mar 2005 JP
200565984 Mar 2005 JP
2005110755 Apr 2005 JP
2005509977 Apr 2005 JP
2005520608 Jul 2005 JP
2005237908 Sep 2005 JP
2005323716 Nov 2005 JP
2006026001 Feb 2006 JP
2006130055 May 2006 JP
2006520949 Sep 2006 JP
2007270459 Oct 2007 JP
2008532591 Aug 2008 JP
2009515232 Apr 2009 JP
2009189757 Aug 2009 JP
200173222 Dec 1999 KR
102004009450 Nov 2004 KR
20090000258 Jan 2009 KR
1020130043299 Apr 2013 KR
1020140038165 Mar 2014 KR
2036667 01 Jun 1995 RU
532976 Nov 1978 SU
0476644 Feb 2002 TW
WO-8503216 Aug 1985 WO
9114417 Oct 1991 WO
WO-9404116 Mar 1994 WO
9623447 Aug 1996 WO
9626693 Sep 1996 WO
WO-9636293 Nov 1996 WO
WO-9637158 Nov 1996 WO
9704832 Feb 1997 WO
WO-9705828 Feb 1997 WO
WO-9722262 Jun 1997 WO
9724088 Jul 1997 WO
WO-9725798 Jul 1997 WO
9748440 Dec 1997 WO
9829134 Jul 1998 WO
9831321 Jul 1998 WO
WO-9841157 Sep 1998 WO
WO-9841156 Sep 1998 WO
9909928 Mar 1999 WO
9916502 Apr 1999 WO
WO-9938469 Aug 1999 WO
9949937 Oct 1999 WO
WO-0044346 Aug 2000 WO
WO-0044349 Aug 2000 WO
WO-0065770 Nov 2000 WO
WO-0067685 Nov 2000 WO
0100269 Jan 2001 WO
0113989 Mar 2001 WO
WO-0114012 Mar 2001 WO
0134048 May 2001 WO
WO-0205736 Jan 2002 WO
WO-02102921 Dec 2002 WO
WO-03007859 Jan 2003 WO
WO-03078596 Sep 2003 WO
03079916 Oct 2003 WO
WO-2004000098 Dec 2003 WO
WO-2004080279 Sep 2004 WO
WO-2004090939 Oct 2004 WO
WO-2005033957 Apr 2005 WO
WO-2005046540 May 2005 WO
2005060354 Jul 2005 WO
WO-2005096979 Oct 2005 WO
2005112815 Dec 2005 WO
WO-2006066226 Jun 2006 WO
WO-2006094348 Sep 2006 WO
WO-2006106836 Oct 2006 WO
2006116603 Nov 2006 WO
WO-2006127467 Nov 2006 WO
WO-2007012083 Jan 2007 WO
2007028975 Mar 2007 WO
WO-2007041642 Apr 2007 WO
WO-2007101039 Sep 2007 WO
WO-2007127924 Nov 2007 WO
2007145421 Dec 2007 WO
2007145422 Dec 2007 WO
2008006018 Jan 2008 WO
2008039556 Apr 2008 WO
WO-2008039557 Apr 2008 WO
2008055243 May 2008 WO
WO-2008143678 Nov 2008 WO
WO-2009011708 Jan 2009 WO
WO-2009026471 Feb 2009 WO
WO-2010077841 Jul 2010 WO
WO-2010127315 Nov 2010 WO
WO-2012012296 Jan 2012 WO
WO-2012103242 Aug 2012 WO
2013013059 Jan 2013 WO
2013075006 May 2013 WO
2013075016 May 2013 WO
2013190337 Dec 2013 WO
Non-Patent Literature Citations (139)
Entry
Bohm et al., “Saline-enhanced radiofrequency ablation of breast tissue: an in vitro feasibility study,” Invest Radiol, 2000, pp. 149-57, vol. 35—issue (3).
European Search Report, European Application No. EP07758558.6; Applicant: Zeltiq Aesthetics, Inc.; dated Jul. 20, 2007, 4 pages.
European Search Report, European Patent Application No. 10167756.5, Applicant: The General Hospital Corporation, dated Aug. 31, 2010, 6 pages.
European Search Report, Eurpean Patent Application No. EP07761461; Applicant: Zeltiq Aesthetics, Inc., dated Apr. 25, 2012, 9 pages.
European Search Report, Supplement, European Patent Application No. EP08798416.7, Applicant: Zeltiq Aesthetics, Inc., dated Jan. 12, 2012, 7 pages.
European Search Report, Supplement, European Patent Application No. EP09836823, Applicant: Zeltiq Aesthetics, Inc., dated May 15, 2012, 5 pages.
Final Office Action; U.S. Appl. No. 11/435,502; dated Mar. 29, 2010, 11 pages.
Final Office Action; U.S. Appl. No. 11/528,225; dated Dec. 29, 2010, 9 pages.
Final Office Action; U.S. Appl. No. 11/558,046; dated Mar. 30, 2011, 17 pages.
Final Office Action; U.S. Appl. No. 11/741,271; dated Jul. 19, 2012, 8 pages.
Final Office Action; U.S. Appl. No. 11/750,953; dated Jul. 5, 2012, 11 pages.
Hale et al., “Influence of chronic heat exposure and prolonged food deprivation on execretion of magnesium, phosphorus, calcium, hydrogen ion & ketones,” Aerosp Med, 1968, pp. 919-26, vol. 39—issue (9).
International Search Report and Written Opinion for PCT/US2005/045988; Applicant: The General Hospital Corporation; dated Apr. 25, 2006, 14 pages.
International Search Report and Written Opinion for PCT/US2007/062508; Applicant: Juniper Medical, Inc.; dated Jul. 20, 2007, 13 pages.
International Search Report and Written Opinion for PCT/US2009/067973; Applicant: Zeltiq Aesthetics, Inc.; dated Feb. 18, 2010, 10 pages.
International Search Report and Written Opinion for PCT/US2010/033290; Applicant: Zeltiq Aesthetics, Inc.; dated Feb. 25, 2011, 12 pages.
International Search Report and Written Opinion for PCT/US2011/022112; Applicant: Zeltiq Aesthetics, Inc.; dated Mar. 18, 2011, 11 pages.
International Search Report and Written Opinion for PCT/US2011/022444; Applicant: Zeltiq Aesthetics, Inc., dated Mar. 29, 2011, 14 pages.
International Search Report and Written Opinion for PCT/US2012/022585; dated May 18, 2012, 14 pages.
Koska, J. et al., “Endocrine Regulation of Subcutaneous Fat Metabolism During Cold Exposure in Humans,” Ann N.Y. Acad, Sci., 967:500-05, 2002.
Kundu et al., “Breath acetone analyzer: diagnostic tool to monitor dietary fat loss,” Clin Chem, 1993, pp. 87-92, vol. 39, issue (1).
Laugier, et al., “In Vivo Results with a New Device for Ultrasonic Monitoring of Pig Skin Cryosurgery: The Echographic Cryoprobe,” The society for Investigative Dermatology, Inc., vol. 111(2), Aug. 1998.
Lidagoster, MD et al., “Comparison of Autologous Fat Transfer in Fresh, Refrigerated, and Frozen Specimens: An Animal Model Presented,” at the 16th Annual Meeting of the Northeastern Society of Plastic Surgeons: Burlington, VT, 1999, pp. 512-515.
Merrill, Tom, “A Chill to the Heart: A System to Deliver Local Hypothermia Could One Day Improve the Lives of Heart-Attack Patients,” Mechanical Engineering Magazine, Oct. 2010 (10 pages).
Murphy, J.V. et al., “Frostbite: Pathogenesis and Treatment,” The Journal of Trauma: Injury, Infection, and Critical Care, 48(1):171-178, 2000.
Non-Final Office Action; U.S. Appl. No. 10/391,221; dated Jan. 25, 2006, 6 pages.
Non-Final Office Action; U.S. Appl. No. 10/391,221; dated May 30, 2007, 8 pages.
Non-Final Office Action; U.S. Appl. No. 10/391,221; dated Jul. 22, 2005, 6 pages.
Non-Final Office Action; U.S. Appl. No. 11/528,189; dated Apr. 6, 2012, 9 pages.
Non-Final Office Action; U.S. Appl. No. 11/528,225; dated Apr. 12, 2010, 11 pages.
Non-Final Office Action; U.S. Appl. No. 11/528,225; dated Aug. 3, 2011, 11 pages.
Non-Final Office Action; U.S. Appl. No. 11/558,046; dated Jul. 12, 2010, 14 pages.
Non-Final Office Action; U.S. Appl. No. 11/741,271; dated Jul. 12, 2010, 9 pages.
Non-Final Office Action; U.S. Appl. No. 11/777,992; dated Jun. 22, 2012, 5 pages.
Non-Final Office Action; U.S. Appl. No. 12/565,613; dated Sep. 23, 2011, 32 pages.
Non-Final Office Action; U.S. Appl. No. 12/942,852; dated Mar. 7, 2011, 6 pages.
Non-Final Office Action; U.S. Appl. No. 12/942,852; dated Jun. 30, 2011, 10 pages.
Pre-Interview Office Action; U.S. Appl. No. 11/434,478; dated May 6, 2010, 4 pages.
Rabi, “Metabolic adaptations in brown adipose tissue of the hamster in extreme ambient temperatures,” American Journal of Physiology 231, 153-160 (1976).
Renold, A.E., “Adipose Tissue,” Handbook of Physiology, Chapter 15:170-76, 1965.
Rubinsky, “Cryosurgery: advances in the application of low temperatures to medicine,” Int. J. Refrig. 190-199 (1991).
Wang et al., “Cryopreservation of cell/hydrogel constructs based on a new cell-assembling technique”, Sep. 5, 2009, 40 pages.
Ardevol, “Cooling rates of tissue samples during freezing with liquid nitrogen,” J. of Biochem and Biophysical Methods, 27, 77-86 (1993).
Bondei, E. et al., “Disorders of Subcutaneous Tissue (Cold Panniculitis),” Dermatology in General Medicine, Chapter 108, Section 16: 1333-1334, 1993.
Burge, S.M. et al., “Hair Follicle Destruction and Regeneration in Guinea Pig Skin after Cutaneous Freeze Injury,” Cryobiology, 27(2): 153-163, 1990.
Coban, “Ischemia-Reperfusion Injury of Adipofascial Tissue: An Experimental Study Evaluating early Histologic and Biochemical Alterations in Rats,” Mediators of Inflammation, 2005, 5, 304-308.
Donski et al., “The Effects of Cooling no Experimental Free Flap Survival,” Brit J Plas Surg, 1980, pp. 353-360, vol. 33.
Duncan, W.C. et al., “Cold Panniculitis,” Arch. Derm., 94:722-24, 1966.
Epstein, E.H. et al., “Popsicle Panniculitis,” The New England Journal of Medicine, 282(17):996-67, 1970.
Final Office Action; U.S. Appl. No. 10/391,221; dated Aug. 24, 2006, 4 pages.
Final Office Action; U.S. Appl. No. 11/016,196; dated Mar. 23, 2010, 12 pages.
Gage, “Current Progress in Cryosurgery,” Cryobiology 25, 483-486 (1988).
Heller-Page et al., “Temperature-dependent skin disorders,” Journal of the American Academy of Dermatology, May 1988, vol. 18, No. 5, Pt 1, pp. 1003-1019.
Hemmingsson, “Attenuation in Human muscle and Fat Tissue in Vivo and in Vitro,” Acta Radiologica Diagnosis 23, 149-151 (1982).
Henry et al.,“Les Dermatoses Hivernales,” Rev Med Liege, 1999, 54:11, 864-866. [Abstract Attached].
Holman, “Variation in cryolesion penetration due to probe size and tissue thermal conductivity,” Ann. Thorac. Surg. 53, 123-126 (1992).
Hong, “Patterns of Ice Formulation in Normal and Malignant Breast Tissue,” Cryobiology 31, 109-120 (1994).
International Search Report and Written Opinion for PCT/US2007/023492; Applicant: Zeltiq Aesthetics, Inc.; dated May 15, 2008, 7 pages.
International Search Report and Written Opinion for PCT/US2007/064016; Applicant: Juniper Medical, Inc.; dated Jul. 20, 2007, 13 pages.
International Search Report and Written Opinion for PCT/US2007/064017; Applicant: Juniper Medical, Inc.; dated Oct. 26, 2007, 16 pages.
International Search Report and Written Opinion for PCT/US2007/064018; Applicant: Juniper Medical, Inc.; dated Jul. 26, 2007, 13 pages.
International Search Report and Written Opinion for PCT/US2007/067638; Applicant: Juniper Medical, Inc.; dated Jan. 10, 2008, 11 pages.
International Search Report and Written Opinion for PCT/US2007/069694; Applicant: Juniper Medical, Inc.; dated Nov. 23, 2007, 12 pages.
International Search Report and Written Opinion for PCT/US2007/075935; Applicant: Zeltiq Aesthetics, Inc.; dated Apr. 10, 2008, 12 pages.
International Search Report and Written Opinion for PCT/US2007/083255; Applicant: Zeltiq Aesthetics, Inc.; dated Aug. 11, 2008, 8 pages.
International Search Report and Written Opinion for PCT/US2008/073930; Applicant: Zeltiq Aesthetics, Inc.; dated Nov. 7, 2008, 10 pages.
International Search Report and Written Opinion for PCT/US2009/058088; Applicant: Zeltiq Aesthetics, Inc.; dated Nov. 20, 2009, 14 pages.
Kellum, R.E. et al., “Sclerema Neonatorum: Report of Case and Analysis of Subcutaneous and Epidermal-Dermal Lipids by Chromatographic Methods,” Arch. Derm., 97:372-80, 1968.
Kundu et al., “Novel solid-phase assay of ketone bodies in urine,” Clin Chem, 1991, pp. 1565-1569, vol. 37—issue (9).
Kuroda et al., “Thermal distribution of radio-frequency inductive hyperthermia using an inductive aperture-type applicator: evaluation of the effect of tumour size and depth,” Med Biol Eng Comput, 1999, pp. 285-290, vol. 37—issue (3).
Levchenko, et al., “Effect of dehydration on lipid metabolism,” WMJ, 1978, pp. 95-97, vol. 50—issue (1).
Liu, A.Y.C. et al., “Transient Cold Shock Induces the Heat Shock Response upon Recovery at 37 C in Human Cells,” J. Biol. Chem., May 20, 1994, 269(20), 14768-14775.
Lvova, “Lipid levels and lipid peroxidation in frog tissues during hypothermia and hibernation,” WMJ, 1990, pp. 65-70, vol. 62—issue (1).
Maize, J.C., “Panniculitis,” Cutaneous Pathology, Chapter 13:327-344, 1998.
Malcolm, G. et al., “Fatty Acid Composition of Adipose Tissue in Humans: Differences between Subcutaneous Sites,” Am J Clin. Nutr., 50(2):288-91, 1989.
Moschella, S.L. et al., “Diseases of the Subcutaneous Tissue,” Derm., Section 2:1169-1181, 1985.
Nagao et al., “Dietary diacylglycerol suppresses accumulation of body fat compared to triacylglycerol in men a double-blind controlled trial,” J Nutr, 2000, pp. 792-797, vol. 130—issue (4).
Nagore et al., “Lipoatrophia semicircularis-a traumatic panniculitis: Report of seven cases and review of the literature,” Journal of the American Academy of Dermatology, Nov. 1998, 39:879-81.
Nielsen, “Thermoregulation in Rest and Exercise,” Acta Phys Scan Supp, 1969, pp. 6-74, vol. 323.
Nishikawa, “Ultrastructural Changes and Lipid Peroxidation in Rat Adipomusculocutaneous Flap Isotransplants after Normothermic Storage and Reperfusion,” Transplantation, 1992, 54, 795-801.
Non-Final Office Action; U.S. Appl. No. 11/016,196; dated Apr. 22, 2008, 11 pages.
Non-Final Office Action; U.S. Appl. No. 11/016,196; dated Sep. 25, 2009, 8 pages.
Non-Final Office Action; U.S. Appl. No. 11/359,092; dated Nov. 19, 2009, 13 pages.
Non-Final Office Action; U.S. Appl. No. 11/435,502; dated Jul. 17, 2009, 10 pages.
Pease, “An Integrated Probe for Magnetic Resonance Imaging Monitored Skin Cryosurgery,” Journal of Biomedical Engineering 117, 59-63, (1995).
Pech, “Attenuation values, volume changes and artifacts in tissue due to freezing,” Acta Radiologica 6, 779-782 (1987).
Peterson et al., “Bilateral Fat Necrosis of the Scrotum, Urology Service, Department of Surgery, Dermatology Service, Department of Medicine and Department of Pediatrics,” Letterman Army Medical Center, Journal of Urology, 1976, pp. 825-826, vol. 116, The Williams & Wilkins Co.
Phinney, S.D. et al., “Human Subcutaneous Adipose Tissue Shows Site-Specific Differences in Fatty Acid Composition,” Am J. Clin. Nutr., 60:725-29, 1994.
Schoning, et al., “Experimental Frostbite: Freezing Times, Rewarming Times, and Lowest Temperatures of Pig Skin Exposed to Chilled Air,” Cryobiology, 1990, pp. 189-193, 27.
Shephard, “Adaptation to Exercise in the Cold,” Sports Medicine, 1985, 2:59-71.
Wharton et al., “Cold acclimation and cryoprotectants in a freeze-tolerant Antarctic nematode, Panagrolaimus davidi,” Mar. 7, 2000, 2 pages.
Winkler et al., “Gene Transfer in Laboratory Fish: Model Organisms for the Analysis of Gene Function,” Transgenic Animals, 1997, pp. 387-395.
Young, H.E. et al., “Isolation of Embryonic Chick Myosatellite and Pluripotent Stem Cells, ” J. Tiss. Cult. Meth., 14:85-92, 1992.
International Preliminary Examining Authority Written Opinion for PCT/US2007/67638; Application Levinson et al. dated Jun. 8, 2010.
International Preliminary Examining Authority Written Opinion for PCT/US2007/67638; Application Levinson et al. dated Sep. 21, 2010, 7 pages.
International Search Report and Written Opinion for PCT/US2011/044270; Applicant: Zeltiq Aesthetics, Inc.; dated Nov. 21, 2011. 9 pages.
Non-Final Office Action; U.S. Appl. No. 12/337,544; dated Mar. 30, 2012, 13 pgs.
Pierard, G.E., Nizet, J.L., Pierard-Franchimont, C., “Cellulite: From Standing Fat Herniation to Hypodermal Stretch Marks,” Am. J. Dermatol. 22:1, 34-37, 2000.
Pope, “Selective Firbous Septae Heating”, Thermage Article, Feb. 2005, 7pgs.
Quinn, P.J., “A Lipid Phase Separation Model of Low Temperature Damage to Biological Membranes” Cryobiology, 22: 128-147, 1985.
Sigma-Aldrich “Polyethylene glycol and Polyethylene oxide,” http://www.sigmaaldrich.com/materials-science/materialscience-; products.htmi?TablePage=2020411 0, accessed Oct. 19, 2012.
European Search Report; Application No. EP10770461; dated Aug. 31, 2012; Applicant: Zeltiq Aesthetics, Inc. 5 pgs.
Non-Final Office Action; U.S. Appl. No. 12/840,235; dated Apr. 11, 2013; 9 pages.
Manstein et al. “A Novel Cryotherapy Method of Non-invasive, Selective Lipolysis” LasersSurg.Med 40:S20 p. 104 (2008).
Manstein et al.“Selective Cryolysis: A Novel Method of Non-Invasive Fat Removal”, LasersSurg.Med. 40:595-604 (2008).
Nagle W.A., Soloff, B.L., Moss, A.J. Jr., Henle K.J. “Cultured Chinese Hamster Cells Undergo Apoptosis After Exposure to Cold but Nonfreezing Temperatures” Cryobiology 27, 439-451 (1990).
Narins, “Non-Surgical Radiofrequency Facelift”, 2003, 495-500, 6 pgs.
Mazur, P. “Cryobiology: the Freezing of Biological Systems” Science, 68: 939-949 (1970).
Rubinsky, B., “Principles of Low Temperature Preservation” Heart Failure Reviews, 8, 277-284 (2003).
Thermage, News Release, “Study Published in Facial Plastic Surgery Journal Finds Selective Heating of Fibrous Septae Key to Success and Safety of Thermage ThermoCool System”, Jun. 20, 2005, 2 pages.
Vallerand, A.L., Zamecnik. J., Jones, P.J.H. Jacobs, I. “Cold Stress Increases Lipolysis, FFA RA and TG/FFA Cycling in Humans” Aviation, Space, and Environmental Medicine 70, 42-50 (1999).
Rossi, “Cellulite: a Review” 2000, 251-262, 12 pgs.
“ThermaCool Monopolar Capacitive Radiofrequency”,The one choice for nonabliative tissue tightening and contouring, Tech Brochure, Nov. 30, 2005, 8 pgs.
“So-Called Cellulite: An Invetnted Disease”, Nurnberger, Journal Title: Journal of dermatologic surgery and oncology, Mar. 1978, 14 pgs.
“Effect of Controlled Volumetric Tissue Heating with Radiorequency on Cellulite and the Subcutaneous Tissue of the Bottocks and Thighs”. Del Pino, 2006, 9 pgs.
Mayoral, “Skin Tightening with a Combinded Unipolar and Bipolar Radiofrequency Device” , 2007 Journal of Drugs in Dermatology, 4 pgs.
Becker, “Local Tempertature Rises Influence In Vivo Electroporation Pore Development: A Numerical Stratum Corneum Lipid Phase Transition Model”, Oct. 2007, 10 pgs.
Miklavcic, “Electroporation-Based Technologies and Treatments”, 2010 236:1-2, 2 pgs.
Nanda, “Studies on electroporation of thermally and chemically treated human erythocytes”, May 28, 1993 in revised form Mar. 7, 1994, 6 pgs.
BioMedical Engineering OnLine, “High-Frequency Irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction”, Nov. 21, 2011, 21 pgs.
Al-Sakere, “Tumor Ablation with Irreversible Electroporation”, Nov. 2007, Issue 11, 8 pgs.
Non-Final Office Action, U.S. Appl. No. 13/616,497, dated Jun. 28, 2013, 38 pages.
PubMed, “Effects of thermal shocks on interleukin-1 levels and heat shock protein 72 (HSP72) expression in normal human keratinocytes”, Arch Dermatol Res. 1992; 284(7): 414-7.
PubMed, “Cold shock induces the synthesis of stress proteins in human kerantinocytes”, Holland DB. Aug. 1993; 101(2): 196-9.
Aguilar et al., “Modeling Cryogenic Spray Temperature and Evaporation Rate Based on Single-Droplet Analysis,” Eighth International Conference on Liquid Atomization and Spray Systems, Pasadena, CA, USA, Jul. 2000, 7 pages.
Alster, T. et al., “Cellulite Treatment Using a Novel Combination Radiofrequency, Infrared Light, and Mechanical Tissue Manipulation Device,” Journal of Cosmetic and Laser Therapy, vol. 7, 2005, pp. 81-85.
Ardevol et al., “Cooling Rates of Tissue Samples During Freezing with Liquid Nitrogen,” Journal of Biochemical and Biophysical Methods, 27, 1993, pp. 77-86.
Duck, F. A., Physical Properties of Tissue, Academic Press Ltd., chapters 4 & 5, 1990, pp. 73-165.
Fournier, L. et al. “Lattice Model for the Kinetics of Rupture of Fluid Bilayer Membranes,” Physical Review, vol. 67, 2003, pp. 051908-1-051908-11.
Gabriel, S. et al., “The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10 Hz to 20 GHz,” Physics in Medicine and Biology, vol. 41, 1996, pp. 2251-2269.
Isambert, H. “Understanding the Electroporation of Cells and Artificial Bilayer Membranes,” Physical Review Letters, vol. 80, No. 15, 1998, pp. 3404-3707.
Peterson, L. J. et al., “Bilateral Fat Necrosis of the Scrotum,” Journal of Urology, vol. 116, 1976, pp. 825-826.
Saleh, K.Y. et al., “Two-Dimensional Ultrasound Phased Array Design for Tissue Ablation for Treatment of Benign Prostatic Hyperplasia,” International Journal of Hyperthermia, vol. 20, No. 1, Feb. 2004, pp. 7-31.
Schoning, P. et al., “Experimental Frostbite: Freezing Times, Rewarming Times, and Lowest Temperatures of Pig Skin Exposed to Chilled Air,” Cryobiology 27, 1990, pp. 189-193.
Zouboulis, C. C. et al., “Current Developments and Uses of Cryosurgery in the Treatment of Keloids and Hypertrophic Scars,” Wound Repair and Regeneration, vol. 10, No. 2, 2002, pp. 98-102.
Hernan, P. et al., “Study for the evaluation of the efficacy of Lipocryolysis (EEEL)”, Nov. 30, 2011.
Hernan, R. P., “A Study to Evaluate the Action of Lipocryolysis”, 33(3) CryoLellers, 2012, pp. 176-180.
Jalian, H. R. et al., “Cryolipolysis: A Historical Perspective and Current Clinical Practice”, 32(1) Semin. Cutan. Med. Surg., 2013, pp. 31-34.
Zelickson, B. et al., “Cryolipolysis for Noninvasive Fat Cell Destruction: Initial Results from a Pig Model”, 35 Dermatol. Sug., 2009, pp. 1-9.
Related Publications (1)
Number Date Country
20130245731 A1 Sep 2013 US
Continuations (1)
Number Date Country
Parent 12337544 Dec 2008 US
Child 13888168 US