The present invention is related to systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers.
Thin film deposition techniques are widely used in the manufacturing of microfeatures to form a coating on a workpiece that closely conforms to the surface topography. The size of the individual components in the workpiece is constantly decreasing, and the number of layers in the workpiece is increasing. As a result, both the density of components and the aspect ratios of depressions (i.e., the ratio of the depth to the size of the opening) are increasing. Thin film deposition techniques accordingly strive to produce highly uniform conformal layers that cover the sidewalls, bottoms, and corners in deep depressions that have very small openings.
One widely used thin film deposition technique is Chemical Vapor Deposition (CVD). In a CVD system, one or more precursors that are capable of reacting to form a solid thin film are mixed while in a gaseous or vaporous state, and then the precursor mixture is presented to the surface of the workpiece. The surface of the workpiece catalyzes the reaction between the precursors to form a solid thin film at the workpiece surface. A common way to catalyze the reaction at the surface of the workpiece is to heat the workpiece to a temperature that causes the reaction.
Although CVD techniques are useful in many applications, they also have several drawbacks. For example, if the precursors are not highly reactive, then a high workpiece temperature is needed to achieve a reasonable deposition rate. Such high temperatures are not typically desirable because heating the workpiece can be detrimental to the structures and other materials already formed on the workpiece. Implanted or doped materials, for example, can migrate within the silicon substrate at higher temperatures. On the other hand, if more reactive precursors are used so that the workpiece temperature can be lower, then reactions may occur prematurely in the gas phase before reaching the substrate. This is undesirable because the film quality and uniformity may suffer, and also because it limits the types of precursors that can be used.
Atomic Layer Deposition (ALD) is another thin film deposition technique.
One drawback of ALD processing is that it has a relatively low throughput compared to CVD techniques. For example, each A-purge-B-purge cycle can take several seconds. This results in a total process time of several minutes to form a single thin layer of only 60 Å. In contrast to ALD processing, CVD techniques require only about one minute to form a 60 Å thick layer. The low throughput limits the utility of the ALD technology in its current state because ALD may create a bottleneck in the overall manufacturing process.
Another drawback of both ALD and CVD processing is the downtime required to service or replace the trap. As the trap collects byproducts from the reaction chamber, the byproducts restrict the flow from the reaction chamber 20 to the vacuum 40, and consequently, the pressure in the chamber increases. The increased pressure in the reaction chamber impairs effective removal of the byproducts from the reaction chamber. Accordingly, the trap is cleaned or replaced periodically to avoid significant increases in the pressure in the reaction chamber. Servicing the trap requires that the reactor be shut down, which results in a reduction in throughput. One approach to reduce the downtime of the reactor includes increasing the size of the trap. Although this approach reduces the downtime, a significant need still exists to eliminate the downtime required to service the trap and to maintain a consistent pressure in the reaction chamber.
A. Overview
The following disclosure describes several embodiments of systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers. Many specific details of the invention are described below with reference to single-wafer reactors for depositing material onto microfeature workpieces, but several embodiments can be used in batch systems for processing a plurality of workpieces simultaneously. Moreover, several embodiments can be used for depositing material onto workpieces other than microfeature workpieces. The term “microfeature workpiece” is used throughout to include substrates upon which and/or in which microelectronic devices, micromechanical devices, data storage elements, read/write components, and other features are fabricated. For example, microfeature workpieces can be semiconductor wafers such as silicon or gallium arsenide wafers, glass substrates, insulative substrates, and many other types of materials. Furthermore, the term “gas” is used throughout to include any form of matter that has no fixed shape and will conform in volume to the space available, which specifically includes vapors (i.e., a gas having a temperature less than the critical temperature so that it may be liquefied or solidified by compression at a constant temperature). Several embodiments in accordance with the invention are set forth in
One aspect of the invention is directed to systems for depositing material onto workpieces in reaction chambers. In one embodiment, a system includes a gas phase reaction chamber, a first exhaust line coupled to the reaction chamber, first and second traps each in fluid communication with the first exhaust line, and a vacuum pump coupled to the first exhaust line to remove gases from the reaction chamber. The first and second traps are operable independently to individually and/or jointly collect byproducts from the reaction chamber. In one aspect of this embodiment, the first exhaust line includes a first branchline and a second branchline each downstream from the reaction chamber. The first trap can be disposed in the first branchline and the second trap can be disposed in the second branchline. The first and second branchlines can be configured in a parallel arrangement. In another aspect of this embodiment, the system further includes a throttling valve in the second branchline, a pressure monitor, and a controller operably coupled to the throttling valve and the pressure monitor. The pressure monitor can determine the difference between the pressure in the first exhaust line upstream from the first trap and the pressure in the first exhaust line downstream from the first trap. The controller can operate the throttling valve to control the flow of byproducts into the second branchline to maintain the pressure differential in the first exhaust line within a desired range.
In another embodiment, a system includes a gas phase reaction chamber, a first exhaust line coupled to the reaction chamber, a trap in the first exhaust line to collect byproducts from the reaction chamber, and first and second vacuum pumps. The first and second vacuum pumps are each in fluid communication with the first exhaust line and positioned downstream from the trap. The first and second vacuum pumps are operable independently to individually and/or jointly exhaust byproducts from the reaction chamber. In one aspect of this embodiment, the first exhaust line includes a first branchline and a second branchline each downstream from the reaction chamber. The first vacuum pump can be coupled to the first branchline and the second vacuum pump can be coupled to the second branchline. The system can also include a throttling valve in the second branchline to control the pressure in the first exhaust line.
Another aspect of the invention is directed to methods for removing byproducts from a reaction chamber through a first mainline. The first mainline has first and second branchlines downstream from the reaction chamber. In one embodiment, the method includes exhausting byproducts from the reaction chamber through the first mainline and dynamically controlling the flow of byproducts into the second branchline of the first mainline to maintain a pressure differential in the first mainline within a desired range. In one aspect of this embodiment, the method further includes collecting byproducts in a first trap in the first branchline of the first mainline and collecting byproducts in a second trap in the second branchline of the first mainline. In another aspect of this embodiment, the method further includes monitoring the difference between the pressure in the first mainline upstream from the first trap and the pressure in the first mainline downstream from the first trap. In response to the monitored pressure differential, a throttling valve in the second branchline can be regulated to maintain the pressure differential within the desired range.
B. Deposition Systems
The gas supply 130 includes a plurality of gas sources 132 (identified individually as 132a-c) and a plurality of gas lines 136 coupled to the gas sources 132. The gas sources 132 can include a first gas source 132a for providing a first gas, a second gas source 132b for providing a second gas, and a third gas source 132c for providing a third gas. The first and second gases can be first and second precursors, respectively. The third gas can be a purge gas. The first and second precursors are the gas and/or vapor phase constituents that react to form the thin, solid layer on the workpiece W. The purge gas can be a suitable type of gas that is compatible with the reaction chamber 120 and the workpiece W. In other embodiments, the gas supply 130 can include a different number of gas sources 132 for applications that require additional precursors or purge gases. In additional embodiments, the gas sources 132 can include one or more etchants for deposition onto a microfeature workpiece during etching.
The system 100 of the illustrated embodiment further includes a valve assembly 133 coupled to the gas lines 136 and a controller 134 operably coupled to the valve assembly 133. The controller 134 generates signals to operate the valve assembly 133 to control the flow of gases into the reaction chamber 120 for ALD and CVD applications. For example, the controller 134 can be programmed to operate the valve assembly 133 to pulse the gases individually through the gas distributor 160 in ALD applications or to mix selected precursors in the gas distributor 160 in CVD applications. More specifically, in one embodiment of an ALD process, the controller 134 directs the valve assembly 133 to dispense a pulse of the first gas (e.g., the first precursor) into the reaction chamber 120. Next, the controller 134 directs the valve assembly 133 to dispense a pulse of the third gas (e.g., the purge gas) to purge excess molecules of the first gas from the reaction chamber 120. The controller 134 then directs the valve assembly 133 to dispense a pulse of the second gas (e.g., the second precursor), followed by a pulse of the third gas. In one embodiment of a pulsed CVD process, the controller 134 directs the valve assembly 133 to dispense a pulse of the first and second gases (e.g., the first and second precursors) into the reaction chamber 120. Next, the controller 134 directs the valve assembly 133 to dispense a pulse of the third gas (e.g., the purge gas) into the reaction chamber 120. In other embodiments, the controller 134 can dispense the gases in other sequences.
In the illustrated embodiment, the reactor 110 also includes a workpiece support 150 to hold the workpiece W in the reaction chamber 120. In one aspect of this embodiment, the workpiece support 150 can be heated to bring the workpiece W to a desired temperature for catalyzing the reaction between the first gas and the second gas at the surface of the workpiece W. For example, the workpiece support 150 can be a plate with a heating element. The workpiece support 150, however, may not be heated in other applications.
The system 100 further includes an exhaust mainline 170 coupled to the vacuum pump 140 and the reaction chamber 120 to remove byproducts, including excess and/or unreacted gas molecules, from the reaction chamber 120. The mainline 170 includes an upstream portion 170a, a downstream portion 170b, a first branchline 172a, and a second branchline 172b. The branchlines 172a-b can be configured in a parallel arrangement and coupled to the upstream and downstream portions 170a-b. Accordingly, discrete byproducts flow through either the first branchline 172a or the second branchline 172b. In this embodiment, the system 100 further includes a first trap 180a disposed in the first branchline 172a and a second trap 180b disposed in the second branchline 172b. The traps 180a-b capture and collect byproducts in the branchlines 172a-b to prevent damage to the vacuum pump 140. In other embodiments, the system can include a different number of branchlines and/or traps.
In one aspect of this embodiment, the system 100 further includes a throttling valve 190 in the second branchline 172b, a valve controller 194 operably coupled to the throttling valve 190, and a pressure monitor 198 operably coupled to the valve controller 194. The throttling valve 190 and the valve controller 194 regulate the flow of byproducts into the second branchline 172b, and the pressure monitor 198 determines the pressure difference between the upstream and downstream portions 170a-b of the mainline 170. The throttling valve 190, the valve controller 194, and the pressure monitor 198 can operate together to maintain the pressure in the upstream portion 170a of the mainline 170 within a desired range. For example, the pressure differential across the first trap 180a increases as the first trap 180a collects byproducts because the byproducts in the first trap 180a obstruct the flow from the reaction chamber 120 to the vacuum pump 140. The pressure monitor 198 detects this increase in the pressure differential across the first trap 180a and sends a signal to the valve controller 194. In response to the signal, the valve controller 194 at least partially opens the throttling valve 190 to allow some of the flow of byproducts to pass through the second branchline 172b. The throttling valve 190 is opened sufficiently to reduce the pressure differential in the upstream and downstream portions 170a-b of the mainline 170 to within the desired range. In additional embodiments, the system 100 can include a throttling valve in the first branchline 172a that is coupled to the valve controller 194.
One feature of this embodiment of the system 100 is that it maintains the pressure differential between the upstream and downstream portions 170a-b of the mainline 170 as the traps 180a-b collect byproducts. Accordingly, the pressure in the upstream portion 170a and the reaction chamber 120 can remain generally consistent. An advantage of this feature is that a consistent pressure in the reaction chamber 120 helps create a consistent flow through the reaction chamber 120. More specifically, a consistent pressure facilitates the consistent, effective removal of byproducts, including excess and/or unreacted gas molecules, from the reaction chamber 120. In contrast, the pressure in many prior art reaction chambers increases as the trap collects byproducts that obstruct the exhaust line. This increase in pressure (i.e., decrease in negative pressure) in the prior art reaction chambers impairs consistent, effective removal of the byproducts from the reaction chambers, and consequently, the byproducts may react with incoming gases.
In another aspect of the illustrated embodiment, the system 100 can include a plurality of valves 192 (identified individually as 192a-c) to selectively isolate the first and/or second traps 180a-b for service or replacement. The first branchline 172a, for example, can include a first valve 192a (shown in hidden lines) upstream from the first trap 180a and a second valve 192b (shown in hidden lines) downstream from the first trap 180a. The first and second valves 192a-b can be closed to allow the first trap 180a to be serviced or replaced without interrupting the deposition process of the system 100. For example, when the first and second valves 192a-b are closed, the throttle valve 190 can be opened enough to exhaust the byproducts solely through the second branchline 172b of the mainline 170. The first trap 180a can then be replaced with a new trap without shutting down the system 100. Similarly, the second branchline 172b can include a third valve 192c (shown in hidden lines) downstream from the second trap 180b. The throttling valve 190 and the third valve 192c can be closed to allow the second trap 180b to be serviced or replaced without interrupting the deposition process of the system 100. In other embodiments, the system 100 may not include the valves 192.
One feature of the illustrated embodiment is that the system 100 does not need to be shut down to replace and/or service the traps 180. Each trap 180 can be isolated for service or replacement, and while one trap 180 is serviced, the other trap 180 can collect byproducts. An advantage of this feature is that the throughput of the system 100 is increased because the downtime resulting from servicing the traps 180 is reduced or eliminated.
C. Other Systems to Remove Byproducts
In one aspect of this embodiment, the system 200 includes a throttling valve 190 in the second branchline 272b, a valve controller 194 operably coupled to the throttling valve 190, and a pressure monitor 298 operably coupled to the valve controller 194 to determine the pressure in the mainline 270 downstream from the trap 180. The throttling valve 190, the valve controller 194, and the pressure monitor 298 can operate together to maintain a consistent pressure in the mainline 270 and/or maintain a consistent mass flow rate and/or fluid velocity of byproducts through the mainline 270. For example, in one embodiment, if the first vacuum pump 140a is fouled because the trap 180 fails to capture all the byproducts in the mainline 270, the pressure in the mainline 270 will increase and the throughput of byproducts through the mainline 270 will decrease. The pressure monitor 298 detects the pressure increase and sends a signal to the valve controller 194. In response to the signal, the valve controller 194 opens the throttling valve 190 sufficiently to allow the second vacuum pump 140b to reduce the pressure in the mainline 270 to a desired range and to increase the throughput of byproducts in the mainline 270 to a consistent level. In other embodiments, the pressure monitor 298 can monitor the pressure differential in the mainline 270 upstream and downstream of the trap 180 (shown in broken line). In this embodiment, if the trap 180 is fouled, the pressure upstream from the trap 180 will increase. The valve controller 194 can accordingly open the valve 190 to reduce the pressure downstream from the trap 180 and thus increase the flow rate across the trap 180. The system 200 can include a different number of branchlines and vacuum pumps than shown in
In one aspect of this embodiment, the first branchline 272a can include a valve 192 (shown in hidden lines) to control the flow through the first branchline 272a. The valve 192 allows the first vacuum pump 140a to be serviced or replaced without interrupting the deposition process of the system 200. For example, when the valve 192 is closed to service or replace the first vacuum pump 140a, the second vacuum pump 140b can continue to remove byproducts from the reaction chamber 120.
One feature of the embodiment illustrated in
The system 300 of the illustrated embodiment can further include a first throttling valve 190a in the second branchline 372b, a second throttling valve 190b in the fourth branchline 372d, a valve controller 194 operably coupled to the throttling valves 190a-b, and a pressure monitor 198 coupled to the valve controller 194. The pressure monitor 198 monitors the pressure difference between an upstream portion 370a of the mainline 370 and a downstream portion 370b of the mainline 370. As described above with reference to
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited, except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
579269 | Hent | Mar 1897 | A |
3618919 | Beck | Nov 1971 | A |
3620934 | Endle | Nov 1971 | A |
3630769 | Hart et al. | Dec 1971 | A |
3630881 | Lester et al. | Dec 1971 | A |
3634212 | Valayll et al. | Jan 1972 | A |
4018949 | Donokowski et al. | Apr 1977 | A |
4242182 | Popescu | Dec 1980 | A |
4269625 | Molenaar | May 1981 | A |
4289061 | Emmett | Sep 1981 | A |
4313783 | Davies et al. | Feb 1982 | A |
4397753 | Czaja | Aug 1983 | A |
4438724 | Doehler et al. | Mar 1984 | A |
4469801 | Hirai et al. | Sep 1984 | A |
4545136 | Izu et al. | Oct 1985 | A |
4590042 | Drage | May 1986 | A |
4681777 | Engelken et al. | Jul 1987 | A |
4826579 | Westfall | May 1989 | A |
4948979 | Munakata et al. | Aug 1990 | A |
4949669 | Ishii et al. | Aug 1990 | A |
4966646 | Zdeblick | Oct 1990 | A |
4977106 | Smith | Dec 1990 | A |
5076205 | Vowles et al. | Dec 1991 | A |
5091207 | Tanaka | Feb 1992 | A |
5131752 | Yu et al. | Jul 1992 | A |
5136975 | Bartholomew et al. | Aug 1992 | A |
5172849 | Barten et al. | Dec 1992 | A |
5200023 | Gifford et al. | Apr 1993 | A |
5223113 | Kaneko et al. | Jun 1993 | A |
5232749 | Gilton | Aug 1993 | A |
5248527 | Uchida et al. | Sep 1993 | A |
5364219 | Takahashi et al. | Nov 1994 | A |
5377429 | Sandhu et al. | Jan 1995 | A |
5380396 | Shikida et al. | Jan 1995 | A |
5409129 | Tsukada et al. | Apr 1995 | A |
5418180 | Brown | May 1995 | A |
5427666 | Mueller et al. | Jun 1995 | A |
5433835 | Demaray et al. | Jul 1995 | A |
5445491 | Nakagawa et al. | Aug 1995 | A |
5480818 | Matsumoto et al. | Jan 1996 | A |
5498292 | Ozaki | Mar 1996 | A |
5500256 | Watabe | Mar 1996 | A |
5522934 | Suzuki et al. | Jun 1996 | A |
5536317 | Crain et al. | Jul 1996 | A |
5562800 | Kawamura | Oct 1996 | A |
5589002 | Su | Dec 1996 | A |
5592581 | Okase | Jan 1997 | A |
5595606 | Fujikawa et al. | Jan 1997 | A |
5599513 | Masaki et al. | Feb 1997 | A |
5624498 | Lee et al. | Apr 1997 | A |
5626936 | Alderman | May 1997 | A |
5640751 | Faria | Jun 1997 | A |
5643394 | Maydan et al. | Jul 1997 | A |
5654589 | Huang et al. | Aug 1997 | A |
5693288 | Nakamura | Dec 1997 | A |
5729896 | Dalal et al. | Mar 1998 | A |
5746434 | Boyd et al. | May 1998 | A |
5766364 | Ishida et al. | Jun 1998 | A |
5769950 | Takasu et al. | Jun 1998 | A |
5769952 | Komino | Jun 1998 | A |
5788778 | Shang et al. | Aug 1998 | A |
5792269 | Deacon et al. | Aug 1998 | A |
5792700 | Turner et al. | Aug 1998 | A |
5819683 | Ikeda et al. | Oct 1998 | A |
5820641 | Gu et al. | Oct 1998 | A |
5827370 | Gu | Oct 1998 | A |
5833888 | Arya et al. | Nov 1998 | A |
5846275 | Lane et al. | Dec 1998 | A |
5846330 | Quirk et al. | Dec 1998 | A |
5851849 | Comizzoli et al. | Dec 1998 | A |
5865417 | Harris et al. | Feb 1999 | A |
5879459 | Gadgil et al. | Mar 1999 | A |
5895530 | Shrotriya et al. | Apr 1999 | A |
5902403 | Aitani et al. | May 1999 | A |
5908947 | Vaartstra | Jun 1999 | A |
5932286 | Beinglass et al. | Aug 1999 | A |
5953634 | Kajita et al. | Sep 1999 | A |
5956613 | Zhao et al. | Sep 1999 | A |
5968587 | Frankel | Oct 1999 | A |
5972430 | DiMeo, Jr. et al. | Oct 1999 | A |
5994181 | Hsieh et al. | Nov 1999 | A |
5997588 | Goodwin et al. | Dec 1999 | A |
6008086 | Schuegraf et al. | Dec 1999 | A |
6022483 | Aral | Feb 2000 | A |
6032923 | Biegelsen et al. | Mar 2000 | A |
6042652 | Hyun et al. | Mar 2000 | A |
6045620 | Tepman et al. | Apr 2000 | A |
6059885 | Ohashi et al. | May 2000 | A |
6062256 | Miller et al. | May 2000 | A |
6070551 | Li et al. | Jun 2000 | A |
6079426 | Subrahmanyam et al. | Jun 2000 | A |
6080446 | Tobe et al. | Jun 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6089543 | Freerks | Jul 2000 | A |
6109206 | Maydan et al. | Aug 2000 | A |
6113698 | Raaijmakers et al. | Sep 2000 | A |
6123107 | Selser et al. | Sep 2000 | A |
6129331 | Henning et al. | Oct 2000 | A |
6139700 | Kang et al. | Oct 2000 | A |
6143077 | Ikeda et al. | Nov 2000 | A |
6143078 | Ishikawa et al. | Nov 2000 | A |
6143659 | Leem | Nov 2000 | A |
6144060 | Park et al. | Nov 2000 | A |
6149123 | Harris et al. | Nov 2000 | A |
6159298 | Saito | Dec 2000 | A |
6160243 | Cozad | Dec 2000 | A |
6161500 | Kopacz et al. | Dec 2000 | A |
6173673 | Golovato et al. | Jan 2001 | B1 |
6174366 | Ihantola | Jan 2001 | B1 |
6174377 | Doering et al. | Jan 2001 | B1 |
6174809 | Kang et al. | Jan 2001 | B1 |
6178660 | Emmi et al. | Jan 2001 | B1 |
6182603 | Shang et al. | Feb 2001 | B1 |
6192827 | Welch et al. | Feb 2001 | B1 |
6193802 | Pang et al. | Feb 2001 | B1 |
6194628 | Pang et al. | Feb 2001 | B1 |
6197119 | Dozoretz et al. | Mar 2001 | B1 |
6200415 | Maraschin | Mar 2001 | B1 |
6203613 | Gates et al. | Mar 2001 | B1 |
6206972 | Dunham | Mar 2001 | B1 |
6210754 | Lu et al. | Apr 2001 | B1 |
6211033 | Sandhu et al. | Apr 2001 | B1 |
6211078 | Matthews | Apr 2001 | B1 |
6214714 | Wang et al. | Apr 2001 | B1 |
6237394 | Harris et al. | May 2001 | B1 |
6237529 | Spahn | May 2001 | B1 |
6245192 | Dhindsa et al. | Jun 2001 | B1 |
6255222 | Xia et al. | Jul 2001 | B1 |
6263829 | Schneider et al. | Jul 2001 | B1 |
6270572 | Kim et al. | Aug 2001 | B1 |
6277763 | Kugimiya et al. | Aug 2001 | B1 |
6280584 | Kumar et al. | Aug 2001 | B1 |
6287965 | Kang et al. | Sep 2001 | B1 |
6287980 | Hanazaki et al. | Sep 2001 | B1 |
6290491 | Shahvandi et al. | Sep 2001 | B1 |
6291337 | Sidhwa | Sep 2001 | B1 |
6297539 | Ma et al. | Oct 2001 | B1 |
6302964 | Umotoy et al. | Oct 2001 | B1 |
6302965 | Umotoy et al. | Oct 2001 | B1 |
6303953 | Doan et al. | Oct 2001 | B1 |
6305314 | Sneh et al. | Oct 2001 | B1 |
6309161 | Hofmeister | Oct 2001 | B1 |
6315859 | Donohoe | Nov 2001 | B1 |
6328803 | Rolfson et al. | Dec 2001 | B2 |
6329297 | Balish et al. | Dec 2001 | B1 |
6334928 | Sekine et al. | Jan 2002 | B1 |
6342277 | Sherman | Jan 2002 | B1 |
6346477 | Kaloyeros et al. | Feb 2002 | B1 |
6347602 | Goto et al. | Feb 2002 | B2 |
6347918 | Blahnik | Feb 2002 | B1 |
6355561 | Sandhu et al. | Mar 2002 | B1 |
6358323 | Schmitt et al. | Mar 2002 | B1 |
6374831 | Chandran et al. | Apr 2002 | B1 |
6383300 | Saito et al. | May 2002 | B1 |
6387185 | Doering et al. | May 2002 | B2 |
6387207 | Janakiraman et al. | May 2002 | B1 |
6402806 | Schmitt et al. | Jun 2002 | B1 |
6419462 | Horie et al. | Jul 2002 | B1 |
6420230 | Derderian et al. | Jul 2002 | B1 |
6420742 | Ahn et al. | Jul 2002 | B1 |
6428859 | Chiang et al. | Aug 2002 | B1 |
6432256 | Raoux | Aug 2002 | B1 |
6432259 | Noorbakhsh et al. | Aug 2002 | B1 |
6432831 | Dhindsa et al. | Aug 2002 | B2 |
6435865 | Tseng et al. | Aug 2002 | B1 |
6444039 | Nguyen | Sep 2002 | B1 |
6450117 | Murugesh et al. | Sep 2002 | B1 |
6451119 | Sneh et al. | Sep 2002 | B2 |
6458416 | Derderian et al. | Oct 2002 | B1 |
6461436 | Campbell et al. | Oct 2002 | B1 |
6461931 | Eldridge | Oct 2002 | B1 |
6503330 | Sneh et al. | Jan 2003 | B1 |
6506254 | Bosch et al. | Jan 2003 | B1 |
6509280 | Choi | Jan 2003 | B2 |
6534007 | Blonigan et al. | Mar 2003 | B1 |
6534395 | Werkhoven et al. | Mar 2003 | B2 |
6540838 | Sneh et al. | Apr 2003 | B2 |
6541353 | Sandhu et al. | Apr 2003 | B1 |
6551929 | Kori et al. | Apr 2003 | B1 |
6562140 | Bondestam et al. | May 2003 | B1 |
6562141 | Clarke | May 2003 | B2 |
6573184 | Park | Jun 2003 | B2 |
6579372 | Park | Jun 2003 | B2 |
6579374 | Bondestam et al. | Jun 2003 | B2 |
6596085 | Schmitt et al. | Jul 2003 | B1 |
6602346 | Gochberg | Aug 2003 | B1 |
6630201 | Chiang et al. | Oct 2003 | B2 |
6635965 | Lee et al. | Oct 2003 | B1 |
6638672 | Deguchi | Oct 2003 | B2 |
6638879 | Hsieh et al. | Oct 2003 | B2 |
6641673 | Yang | Nov 2003 | B2 |
6663713 | Robles et al. | Dec 2003 | B1 |
6673196 | Oyabu | Jan 2004 | B1 |
6704913 | Rossman | Mar 2004 | B2 |
6705345 | Bifano | Mar 2004 | B1 |
6706334 | Kobayashi et al. | Mar 2004 | B1 |
6770145 | Saito | Aug 2004 | B2 |
6807971 | Saito et al. | Oct 2004 | B2 |
6818249 | Derderian | Nov 2004 | B2 |
6821347 | Carpenter et al. | Nov 2004 | B2 |
6838114 | Carpenter et al. | Jan 2005 | B2 |
6861094 | Derderian et al. | Mar 2005 | B2 |
20010010309 | Van Bilsen | Aug 2001 | A1 |
20010011526 | Doering et al. | Aug 2001 | A1 |
20010012697 | Mikata | Aug 2001 | A1 |
20010024387 | Raaijmakers et al. | Sep 2001 | A1 |
20010029892 | Cook et al. | Oct 2001 | A1 |
20010045187 | Uhlenbrock | Nov 2001 | A1 |
20010054484 | Komino | Dec 2001 | A1 |
20020007790 | Park | Jan 2002 | A1 |
20020020353 | Redemann et al. | Feb 2002 | A1 |
20020043216 | Hwang et al. | Apr 2002 | A1 |
20020052097 | Park | May 2002 | A1 |
20020073924 | Chiang et al. | Jun 2002 | A1 |
20020076490 | Chiang et al. | Jun 2002 | A1 |
20020076507 | Chiang et al. | Jun 2002 | A1 |
20020076508 | Chiang et al. | Jun 2002 | A1 |
20020094689 | Park | Jul 2002 | A1 |
20020100418 | Sandhu et al. | Aug 2002 | A1 |
20020104481 | Chiang et al. | Aug 2002 | A1 |
20020108714 | Doering et al. | Aug 2002 | A1 |
20020110991 | Li | Aug 2002 | A1 |
20020127745 | Lu et al. | Sep 2002 | A1 |
20020129768 | Carpernter et al. | Sep 2002 | A1 |
20020144655 | Chiang et al. | Oct 2002 | A1 |
20020146512 | Rossman | Oct 2002 | A1 |
20020162506 | Sneh et al. | Nov 2002 | A1 |
20020164420 | Derderian et al. | Nov 2002 | A1 |
20020185067 | Upham | Dec 2002 | A1 |
20020195056 | Sandhu et al. | Dec 2002 | A1 |
20020195201 | Beer | Dec 2002 | A1 |
20020197402 | Chiang et al. | Dec 2002 | A1 |
20030000473 | Chae et al. | Jan 2003 | A1 |
20030003697 | Agarwal et al. | Jan 2003 | A1 |
20030003730 | Li | Jan 2003 | A1 |
20030013320 | Kim et al. | Jan 2003 | A1 |
20030023338 | Chin et al. | Jan 2003 | A1 |
20030024477 | Okuda et al. | Feb 2003 | A1 |
20030027428 | Ng et al. | Feb 2003 | A1 |
20030027431 | Sneh et al. | Feb 2003 | A1 |
20030037729 | DeDontney et al. | Feb 2003 | A1 |
20030037730 | Yamasaki et al. | Feb 2003 | A1 |
20030060030 | Lee et al. | Mar 2003 | A1 |
20030066483 | Lee et al. | Apr 2003 | A1 |
20030070609 | Campbell et al. | Apr 2003 | A1 |
20030070617 | Kim et al. | Apr 2003 | A1 |
20030070618 | Campbell et al. | Apr 2003 | A1 |
20030075273 | Kilpela et al. | Apr 2003 | A1 |
20030079686 | Chen et al. | May 2003 | A1 |
20030098372 | Kim | May 2003 | A1 |
20030098419 | Ji et al. | May 2003 | A1 |
20030106490 | Jallepally et al. | Jun 2003 | A1 |
20030121608 | Chen et al. | Jul 2003 | A1 |
20030159780 | Carpenter et al. | Aug 2003 | A1 |
20030192645 | Liu | Oct 2003 | A1 |
20030194862 | Mardian et al. | Oct 2003 | A1 |
20030200926 | Dando et al. | Oct 2003 | A1 |
20030203109 | Dando et al. | Oct 2003 | A1 |
20040003777 | Carpernter et al. | Jan 2004 | A1 |
20040007188 | Burkhart et al. | Jan 2004 | A1 |
20040035358 | Basceri et al. | Feb 2004 | A1 |
20040040502 | Basceri et al. | Mar 2004 | A1 |
20040040503 | Basceri et al. | Mar 2004 | A1 |
20040083959 | Carpernter et al. | May 2004 | A1 |
20040083960 | Dando | May 2004 | A1 |
20040083961 | Basceri | May 2004 | A1 |
20040099377 | Newton et al. | May 2004 | A1 |
20040124131 | Aitchison et al. | Jul 2004 | A1 |
20040154538 | Carpenter et al. | Aug 2004 | A1 |
20040226507 | Carpenter et al. | Nov 2004 | A1 |
20040238123 | Becknell et al. | Dec 2004 | A1 |
20050016984 | Dando | Jan 2005 | A1 |
20050022739 | Carpenter et al. | Feb 2005 | A1 |
20050028734 | Carpenter et al. | Feb 2005 | A1 |
20050039680 | Beaman et al. | Feb 2005 | A1 |
20050039686 | Zheng et al. | Feb 2005 | A1 |
20050045100 | Derderian | Mar 2005 | A1 |
20050045102 | Zheng et al. | Mar 2005 | A1 |
20050059261 | Basceri et al. | Mar 2005 | A1 |
20050061243 | Sarigiannis et al. | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
198 51 824 | May 2000 | DE |
1 167 569 | Jan 2002 | EP |
63-256460 | Oct 1988 | JP |
1-273991 | Nov 1989 | JP |
4-100533 | Apr 1992 | JP |
4-213818 | Aug 1992 | JP |
6-151558 | May 1994 | JP |
6-342785 | Dec 1994 | JP |
8-34678 | Feb 1996 | JP |
9-82650 | Mar 1997 | JP |
10-223719 | Aug 1998 | JP |
11-172438 | Jun 1999 | JP |
2001-82682 | Mar 2001 | JP |
2001-261375 | Sep 2001 | JP |
2002-164336 | Jun 2002 | JP |
2001-254181 | Sep 2002 | JP |
598630 | Mar 1978 | SU |
WO-9837258 | Aug 1998 | WO |
WO-9906610 | Feb 1999 | WO |
WO-0040772 | Jul 2000 | WO |
WO-0063952 | Oct 2000 | WO |
WO-0065649 | Nov 2000 | WO |
WO-0079019 | Dec 2000 | WO |
WO-0146490 | Jun 2001 | WO |
WO-0245871 | Jun 2002 | WO |
WO-0248427 | Jun 2002 | WO |
WO-02073329 | Sep 2002 | WO |
WO-02073660 | Sep 2002 | WO |
WO-02081771 | Oct 2002 | WO |
WO-02095807 | Nov 2002 | WO |
WO-03008662 | Jan 2003 | WO |
WO-03016587 | Feb 2003 | WO |
WO-03028069 | Apr 2003 | WO |
WO-03033762 | Apr 2003 | WO |
WO-03035927 | May 2003 | WO |
WO-03052807 | Jun 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050081786 A1 | Apr 2005 | US |