Tear-resistant thin film methods of fabrication

Abstract
A thin film device and fabrication method providing optimum tear resistance. A thin film layer is formed with a first and second of rows of holes. The holes in each row are spaced-apart along an axis which extends along an edge of the layer. The holes in one row are in overlapping relationship with adjacent holes in the other row. The holes have a diameter which is sufficiently large so that an imaginary line extending perpendicular from any location along the edge will intersect at least one hole, thus preventing further propagation of any tears or cracks which start from the edge.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates to thin film materials and devices made therefrom, and more particularly to methods of fabricating thin film with improved tear resistance.


2. Description of the Related Art


Thin film shape memory alloys (“SMA”) such as TiNi, also know as Nitinol, are used in many medical applications such as stents and stent covers. For some of these applications bulk material is not suitable due to its stiffness. It is difficult to roll TiNi film to a thickness less than about 30 microns, and the rolling process induces work hardening that makes the material hard and inflexible. Small diameter intravascular devices are made of thin films a few microns in thickness. These devices have the advantage of being extremely flexible, enabling their insertion by catheter into tortuous blood vessels. Foils of 30 microns or less in thickness are most practically made by sputter deposition.


It is generally known that TiNi SMAs lack the property of toughness. In particular, Nitinol is notch sensitive, meaning that a small crack (even microscopic in size) on the surface (and especially at the edge of a sheet) will propagate under stress, and this process is not “self healing” as it is in some other materials. Thin film is particularly vulnerable to crack propagation because it can be easily bent out of plane so that a shear stress becomes a tearing stress.


Improved tear resistance of TiNi thin films will increase their usefulness in many applications, and especially in applications that require long cycle life and in which a failure can be catastrophic. In some medical applications such as heart valve leaflets a tear could be fatal to a patient.


Most tears in thin film materials originate at an edge. A tear in a thin sheet begins with a small crack. Cracks propagate because the crack produces a concentration of stress at the tip of the crack. A well known method of stopping cracks in ductile materials (such as plastics) is to create a hole at the end of the crack. Drilling a hole through a sheet of plastic distributes the tear force over a longer path and thereby eliminates the local stress concentration


The need has therefore been recognized for fabrication methods that produce thin film materials having improved tear resistance over available prior art thin film materials. Heretofore there has not been provided a suitable and attractive solution to the problems of tearing in prior art thin film materials.


OBJECTS OF THE INVENTION

A general object of this invention is to provide methods of fabricating thin film materials having improved tear resistance


Another object is to provide fabrication methods of the type described which produce thin film materials, such as shape memory alloys, having significantly improved tear resistance in comparison to the prior art thin film materials.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of a rectangular leaf comprising a thin film fabricated with holes formed along edges of the leaf in accordance with one embodiment of the invention.



FIG. 2 is a fragmentary, enlarged plan view of the portion of FIG. 1 identified as “A.”



FIG. 3 is a plan view of one component of a thin film fabricated with ribs and struts in accordance with another embodiment the invention.



FIG. 4 is a plan view of another component that is used with the embodiment of FIG. 3.



FIG. 5 is a plan view of a further component that is used with the embodiment of FIG. 3.



FIG. 6 is a plan view of a thin film device comprising the components of FIGS. 3-5.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

In its broadest aspect, the present invention fabricates thin film material by forming small holes at every location where a crack can start in the thin film. The word “hole” is defined herein as including openings, perforations or fenestrations. The term “thin film” is defined herein as a film with a thickness of less than 50 microns.


Tear resistance is substantially increased in the invention by fabricating the thin film device with a plurality, such as two, of rows of very small holes along one or more edges of the device and in which the rows are substantially parallel with the edge. The term “small holes” is defined herein as holes having a diameter in the range of approximately 2 to 4 times the thickness of the film. The holes are formed in an overlapping relationship and spaced apart a distance that is sufficiently close so that they will cause any crack, that may propagate substantially perpendicular to an edge of the film, will encounter a hole.



FIG. 1 shows a rectangular thin film leaf 10 fabricated in accordance with one embodiment of the invention. The thin film is deposited in a thin layer of an SMA material on a suitable substrate (not shown) by through well-known sputter deposition methods. In this example, the film is formed with a thickness of 30 microns. The thickness could be varied in accordance with the requirements of a particular application, within the limit of being less than 50 microns. Using know photo masking and etching methods, a plurality of small holes 12, 14 are fabricated along two or more rows 16, 18 on one side edge 20, and/or holes 15, 17′ on other side edges where tear resistance is desired, such as opposite edge 22.


The thin film device is fabricated with a particular hole placement in which the holes in one row are in overlapping relationship with the holes an adjacent row. As used herein the term “overlapping relationship” means:

    • in each row the holes are spaced apart along an axis which extends near to and along an edge of the thin film leaf. As used herein, the term “extends along” means that the axis would substantially conform with the contour of the edge, that is where the edge is straight the axis would be straight and where the edge is in a curve, sawtooth or other form then the axis would be respectively so shaped; and
    • the holes in any one row are offset along that row's axis from the holes in the adjacent row, as shown in FIGS. 1 and 2; and
    • the widths “D” of the holes are sufficiently large so that an imaginary line 24 (FIG. 2), representing a possible tear or crack, extending perpendicular from any location along the edge will intersect at least one hole. In the example of FIGS. 1 and 2 the hole width D can be 60 to 120 microns.


As the tear or crack enters the hole the stress is distributed along the edge of the hole, so the stress concentration is reduced or eliminated.


The size, placement, spacing, and shape of the holes are selected according to the properties of the thin film (e. g. thickness, spacing, size, width, ductility and ultimate strength) to optimize the tear resistance characteristics.



FIGS. 3-6 show components of an enhanced tear resistant structure that is fabricated by a method in accordance with another embodiment of the invention. In this method thin film tear resistant is achieved by creating a grid of raised ribs or struts that are thicker than the main film. This is done in three layers, using methods employed in the disclosure of U.S. Pat. No. 6,746,890 to Gupta et al. entitled Three Dimensional Thin Film Devices And Methods, which is incorporated by this reference. A first layer 26 shown in FIG. 3 comprising an SMA material is deposited in a plurality of ribs 28, 30 that are laid down in a pattern which is perpendicular to thin film edge 31. Then a second, planar layer 32 of FIG. 4 comprising an SMA material is laid down covering and bonded with the first layer. The third and final layer 34 of SMA material is laid down as shown in FIG. 5 and bonded on top of layer 32 with a grid of ribs 36, 38 oriented at 60 degree angles to the ribs 28, 30 in the first layer. As described herein, in some embodiments, a thin film device having optimum tear resistance includes a thin film first layer 26 of a material (FIG. 3), a thin film second layer 32 (FIG. 4), and a thin film third layer 34 (FIG. 5). The first layer 26 includes a first planar side (as shown in FIG. 3), a second planar side (not shown), and an edge 31. The first side, as shown in FIG. 3, is formed with a plurality of spaced-apart ribs 28, 30 which are inclined at a first angle with respect to the edge 31. The thin film second layer 32 (FIG. 4) includes first and second planar sides, the first side of the second layer being bonded to the second side of the first layer. The thin film third layer 34 (FIG. 5) includes a first planar side (not shown) and a second planar side (as shown in FIG. 5). The first side of the third layer is bonded to the second side of the second layer, and the second side of the third layer, as shown in FIG. 5, is formed with a plurality of spaced-apart struts 36, 38 which are inclined a second angle with respect to the edge.



FIG. 6 shows the final thin film device 40 comprising the three layers 26, 32 and 34 bonded together and forming a single piece of metal having ribbed patterns on opposite sides of the plain layer 32. This patterning resists tearing because the grid struts are at an angle to the tear so that part of each is in linear tension, which is stronger than the material that is in tearing tension. In addition, the middle layer can be made of a higher-transition-temperature SMA material than the ribs. This material is in martensite crystal structure, which means that it may deform several percent without fracturing. It is desirable that this middle layer material is very ductile; or at least more ductile than the ribbed layers. The ductile layer spreads the stress out over a much larger dimension than the end of the crack, so the crack does not readily propagate.


An alternative configuration (not shown) that is simpler to fabricate, comprises a plane layer of ductile material as the first layer and a second layer having vertical struts and struts at 30 degrees and 150 degrees to the positive thins film edge. The hole patterns can be oblong instead of circular to distribute stress. Borders of the holes may be of a ductile material. The holes of the embodiment of FIGS. 1 and 2 and struts of the embodiment of FIGS. 3-6 may also be combined.


In a configuration comprising struts, the field between the struts should be of a ductile material. The film properties (strength, modulus of elasticity, thickness and transition temperature) must be selected so that the force of tear is optimally distributed by being transferred to a strut in tension. The operating principle of the strut design is that the shear stress is transferred to longitudinal stress of the strut and its strength is much greater in tension than in shear.


The crack propagation rate is to the tenth power of the tensile stress. Thus, reduction of tensile stress by even a very little bit magnifies the tearing characteristics.

Claims
  • 1. A thin film device having optimum tear resistance, the device comprising a thin film first layer of a material, the first layer having first and second planar sides, the layer having an edge, the first side being formed with a plurality of spaced-apart ribs which are inclined at a first angle with respect to the edge, a thin film second layer having first and second planar sides, the first side of the second layer being bonded to the second side of the first layer, a thin film third layer having first and second planar sides, the first side of the third layer being bonded to the second side of the second layer, and the second side of the third layer being formed with a plurality of spaced-apart struts which are inclined a second angle with respect to the edge.
  • 2. A thin film device as in claim 1 in which the material is a shape memory alloy.
  • 3. A method of fabricating a thin film device with improved tear resistance comprising the steps of providing a thin film first layer of a material having first and second planar sides and with the layer having an edge, forming the first side being with a plurality of spaced-apart ribs which are inclined at a first angle with respect to the edge, forming a thin film second layer having first and second planar sides, bonding the first side of the second layer to the second side of the first layer, forming a thin film third layer having first and second planar sides, bonding the first side of the third layer to the second side of the second layer, and forming the second side of the third layer with a plurality of spaced-apart struts which are inclined a second angle with respect to the edge.
  • 4. A method as in claim 3 in which a shape memory alloy is provided as the material.
  • 5. A tear-resistant thin film device, the device formed by the combination of three layers, the device comprising: a first thin film layer of a shape memory alloy material, the first layer comprising an inner planar surface opposite an outer surface, the outer surface having a plurality raised ribs extending therealong;a second thin film layer of shape memory alloy material bonded to the inner planar surface; anda third thin film layer of shape memory alloy, the third layer comprising an inner planar surface and an outer planar surface, wherein the inner planar surface of the third layer is bonded to the second thin film layer and the outer surface of the third layer comprises a plurality of raised struts which are inclined at an angle with respect to the ribs.
  • 6. The tear-resistant thin-film device of claim 5, wherein the first and third layers are each thicker than the second layer.
  • 7. The tear-resistant thin-film device of claim 5, wherein the second layer comprises a shape memory alloy having a higher transition temperature than the shape memory alloy forming either the first or third layers.
  • 8. The tear-resistant thin-film device of claim 5, wherein the second layer is formed of a shape memory alloy that is more ductile than the shape memory alloy materials forming the first and third layers.
  • 9. The tear-resistant thin-film device of claim 5, wherein the angle between the raised struts and the ribs is about 60 degrees.
  • 10. A tear-resistant thin film device comprising: a thin film layer comprising a plane of a shape memory alloy material, the thin film layer having a first planar side and a second planar side;a plurality of raised ribs bonded to the first planar side of the thin film layer, wherein the ribs are formed of a shape memory alloy material; anda plurality of raised struts bonded to the second planar side of the thin film layer which are inclined at an angle with respect to the ribs, wherein the struts are formed of a shape memory alloy material;wherein the shape memory material forming the thin film layer is different from the shape memory alloy material forming the ribs and the shape memory alloy material forming the struts.
  • 11. The tear-resistant thin-film device of claim 10, wherein the ribs and the struts are each thicker than the thin film layer.
  • 12. The tear-resistant thin-film device of claim 10, wherein the shape memory alloy material forming the thin film layer has a higher transition temperature than the shape memory alloy material forming the ribs and the shape memory alloy material forming the struts.
  • 13. The tear-resistant thin-film device of claim 10, wherein the ribs and the struts are formed of the shame shape memory alloy material.
  • 14. The tear-resistant thin-film device of claim 10, wherein the shape memory alloy material forming the thin film layer is more ductile than the shape memory alloy material forming the ribs and the shape memory alloy material forming the struts.
  • 15. The tear-resistant thin-film device of claim 10, wherein the angle between the ribs and the struts is about 60 degrees.
CROSS-REFERENCE TO PRIOR APPLICATIONS

This application claims the benefit under 35 USC §119(e) of U.S. provisional patent application Ser. No. 60/666,325 filed Mar. 31, 2005.

US Referenced Citations (187)
Number Name Date Kind
368425 Ross et al. Aug 1887 A
538593 Naylor, Jr. Apr 1895 A
1560335 Czochralski Nov 1925 A
1904828 Green Apr 1933 A
1926925 Wescott Sep 1933 A
2060593 Schaurte et al. Nov 1936 A
2371614 Graves Mar 1945 A
2586556 Mullikin Feb 1952 A
2608996 Forman Sep 1952 A
2610300 Walton et al. Sep 1952 A
2647017 Coulliette Jul 1953 A
2911504 Cohn Nov 1959 A
3229956 White Jan 1966 A
3351463 Rozner et al. Nov 1967 A
3357432 Sparks Dec 1967 A
3400906 Stocklin Sep 1968 A
3408890 Bochman, Jr. Nov 1968 A
3435823 Edwards Apr 1969 A
3445086 Quinn May 1969 A
3454286 Anderson et al. Jul 1969 A
3546996 Grijalva et al. Dec 1970 A
3561537 Dix et al. Feb 1971 A
3613732 Willson et al. Oct 1971 A
3620212 Fannon, Jr. et al. Nov 1971 A
3659625 Coiner et al. May 1972 A
3725835 Hopkins et al. Apr 1973 A
3789838 Fournier et al. Feb 1974 A
3849756 Hickling Nov 1974 A
3888975 Ramwell Jun 1975 A
3918443 Vennard et al. Nov 1975 A
3974844 Pimentel Aug 1976 A
4055955 Johnson Nov 1977 A
4063831 Meuret Dec 1977 A
4072159 Kurosawa Feb 1978 A
4096993 Behr Jun 1978 A
4151064 Kuehnle Apr 1979 A
4176719 Bray Dec 1979 A
4177327 Mathews Dec 1979 A
4196045 Ogden Apr 1980 A
4243963 Jameel et al. Jan 1981 A
4265684 Boll May 1981 A
4279790 Nakajima Jul 1981 A
4340049 Munsch Jul 1982 A
4485545 Caverly Dec 1984 A
4501058 Schutzler Feb 1985 A
4524343 Morgan et al. Jun 1985 A
4549717 Dewaegheneire Oct 1985 A
4551974 Yaeger et al. Nov 1985 A
4553393 Ruoff Nov 1985 A
4558715 Walton et al. Dec 1985 A
4567549 Lemme Jan 1986 A
4585209 Aine et al. Apr 1986 A
4589179 Hulting, Jr. May 1986 A
4596483 Gabriel et al. Jun 1986 A
4619284 Delarue et al. Oct 1986 A
4654191 Krieg Mar 1987 A
4684913 Yaeger Aug 1987 A
4706758 Johnson Nov 1987 A
4753465 Dalby Jun 1988 A
4821997 Zdeblick Apr 1989 A
4823607 Howe et al. Apr 1989 A
4824073 Zdeblick Apr 1989 A
4848388 Waldbusser Jul 1989 A
4854797 Gourd Aug 1989 A
4864824 Gabriel et al. Sep 1989 A
4893655 Anderson Jan 1990 A
4896728 Wolff et al. Jan 1990 A
4943032 Zdeblick Jul 1990 A
5060888 Vezain et al. Oct 1991 A
5061137 Gourd Oct 1991 A
5061914 Busch et al. Oct 1991 A
5069419 Jerman Dec 1991 A
5072288 MacDonald et al. Dec 1991 A
5114504 AbuJudom, II et al. May 1992 A
5116252 Hartman May 1992 A
5117916 Ohta et al. Jun 1992 A
5119555 Johnson Jun 1992 A
5129753 Wesley et al. Jul 1992 A
5160233 McKinnis Nov 1992 A
5190546 Jervis Mar 1993 A
5192147 McCloskey Mar 1993 A
5211371 Coffee May 1993 A
5218998 Bakken et al. Jun 1993 A
5245738 Johnson Sep 1993 A
5309717 Minch May 1994 A
5312152 Woebkenberg, Jr. et al. May 1994 A
5325880 Johnson et al. Jul 1994 A
5344117 Trah et al. Sep 1994 A
5364046 Dobbs et al. Nov 1994 A
5494113 Polan Feb 1996 A
5502982 Venetucci Apr 1996 A
5543349 Kurtz et al. Aug 1996 A
5605543 Swanson Feb 1997 A
5619177 Johnson et al. Apr 1997 A
5622225 Sundholm Apr 1997 A
5640217 Hautcoeur et al. Jun 1997 A
5641364 Golberg et al. Jun 1997 A
5676356 Ekonen et al. Oct 1997 A
5695504 Gifford, III et al. Dec 1997 A
5714690 Burns et al. Feb 1998 A
5722989 Fitch et al. Mar 1998 A
5771742 Bokaie et al. Jun 1998 A
5772378 Keto-Tokoi Jun 1998 A
5796152 Carr et al. Aug 1998 A
5819749 Lee et al. Oct 1998 A
5825275 Wuttig et al. Oct 1998 A
5837394 Schumm, Jr. Nov 1998 A
5840199 Warren Nov 1998 A
5850837 Shiroyama et al. Dec 1998 A
5867302 Fleming Feb 1999 A
5903099 Johnson et al. May 1999 A
5924492 Kikuchi et al. Jul 1999 A
5930651 Terasawa Jul 1999 A
5960812 Johnson Oct 1999 A
6042553 Solar et al. Mar 2000 A
6072617 Henck Jun 2000 A
6073700 Tsuji et al. Jun 2000 A
6075239 Aksyuk et al. Jun 2000 A
6080160 Chen Jun 2000 A
6084849 Durig et al. Jul 2000 A
6101164 Kado et al. Aug 2000 A
6110204 Lazarov et al. Aug 2000 A
6124523 Banas et al. Sep 2000 A
6126371 McCloskey Oct 2000 A
6139143 Brune et al. Oct 2000 A
6195478 Fouquet Feb 2001 B1
6203715 Kim et al. Mar 2001 B1
6229640 Zhang May 2001 B1
6247493 Henderson Jun 2001 B1
6277133 Kanesaka Aug 2001 B1
6284067 Schwartz et al. Sep 2001 B1
6358380 Mann et al. Mar 2002 B1
6386507 Dhuler et al. May 2002 B2
6406605 Moles Jun 2002 B1
6407478 Wood et al. Jun 2002 B1
6410360 Steenberge Jun 2002 B1
6447478 Maynard Sep 2002 B1
6451668 Neumeier et al. Sep 2002 B1
6454913 Rasmussen et al. Sep 2002 B1
6470108 Johnson Oct 2002 B1
6475261 Matsumoto et al. Nov 2002 B1
6524322 Berreklouw Feb 2003 B1
6533905 Johnson et al. Mar 2003 B2
6537310 Palmaz et al. Mar 2003 B1
6582985 Cabuz et al. Jun 2003 B2
6592724 Rasmussen et al. Jul 2003 B1
6605111 Bose et al. Aug 2003 B2
6614570 Johnson et al. Sep 2003 B2
6620634 Johnson et al. Sep 2003 B2
6624730 Johnson et al. Sep 2003 B2
6669794 Bellouard et al. Dec 2003 B1
6669795 Johnson et al. Dec 2003 B2
6672502 Paul et al. Jan 2004 B1
6688828 Post Feb 2004 B1
6729599 Johnson May 2004 B2
6742761 Johnson et al. Jun 2004 B2
6746890 Gupta et al. Jun 2004 B2
6771445 Hamann et al. Aug 2004 B1
6790298 Johnson et al. Sep 2004 B2
6811910 Tsai et al. Nov 2004 B2
6840329 Kikuchi et al. Jan 2005 B2
6843465 Scott Jan 2005 B1
6908275 Nelson et al. Jun 2005 B2
6920966 Buchele et al. Jul 2005 B2
6955187 Johnson Oct 2005 B1
7040323 Menchaca et al. May 2006 B1
7044596 Park May 2006 B2
7084726 Gupta et al. Aug 2006 B2
7201367 Wietharn Apr 2007 B2
20010023010 Yamada et al. Sep 2001 A1
20020018325 Nakatani et al. Feb 2002 A1
20020062154 Ayers May 2002 A1
20020106614 Prince et al. Aug 2002 A1
20030002994 Johnson et al. Jan 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030170130 Johnson Sep 2003 A1
20040083006 Ellingsen Apr 2004 A1
20040200551 Brhel et al. Oct 2004 A1
20040243219 Fischer et al. Dec 2004 A1
20040249399 Cinquin et al. Dec 2004 A1
20050113933 Carter et al. May 2005 A1
20060118210 Johnson Jun 2006 A1
20060213522 Menchaca et al. Sep 2006 A1
20070137740 Johnson et al. Jun 2007 A1
20070207321 Abe et al. Sep 2007 A1
20070246233 Johnson Oct 2007 A1
20090183986 Johnson et al. Jul 2009 A1
Foreign Referenced Citations (17)
Number Date Country
0053596 Jun 1982 EP
0310439 Apr 1989 EP
1122526 Aug 2001 EP
1238600 Sep 2002 EP
2187951 Sep 1987 GB
57161031 Oct 1982 JP
59179771 Oct 1984 JP
07090624 Apr 1995 JP
10173306 Jun 1998 JP
2000185999 Jul 2000 JP
1434314 Oct 1988 SU
WO9853362 Nov 1998 WO
WO9962432 Dec 1999 WO
WO0004204 Jan 2000 WO
WO03052150 Jun 2003 WO
WO2005108635 Nov 2005 WO
WO2006019943 Feb 2006 WO
Related Publications (1)
Number Date Country
20060232374 A1 Oct 2006 US
Provisional Applications (1)
Number Date Country
60666325 Mar 2005 US