This disclosure generally relates to model evaluation for pairing contacts and agents in contact centers and, more particularly, to techniques for behavioral pairing model evaluation in a contact center system.
A typical contact center algorithmically assigns contacts arriving at the contact center to agents available to handle those contacts. At times, the contact center may have agents available and waiting for assignment to inbound or outbound contacts (e.g., telephone calls, Internet chat sessions, email). At other times, the contact center may have contacts waiting in one or more queues for an agent to become available for assignment.
In some typical contact centers, contacts are assigned to agents ordered based on time of arrival, and agents receive contacts ordered based on the time when those agents became available. This strategy may be referred to as a “first-in, first-out”, “FIFO”, or “round-robin” strategy. In other typical contact centers, other strategies may be used, such as “performance-based routing”, or a “PBR” strategy.
In other, more advanced contact centers, contacts are paired with agents using a “behavioral pairing”, or a “BP” strategy, under which contacts and agents may be deliberately (preferentially) paired in a fashion that enables the assignment of subsequent contact-agent pairs such that when the benefits of all the assignments under a BP strategy are totaled they may exceed those of FIFO and other strategies such as performance-based routing (“PBR”) strategies. BP is designed to encourage balanced utilization of agents within a skill queue while nevertheless simultaneously improving overall contact center performance beyond what FIFO or PBR methods will allow. This is a remarkable achievement because BP acts on the same calls and same agents as FIFO or PBR methods, utilizes agents approximately evenly as FIFO provides, and yet improves overall contact center performance. BP is described in, e.g., U.S. Pat. No. 9,300,802, which is incorporated by reference herein. Additional information about these and other features regarding the pairing or matching modules (sometimes also referred to as “SATMAP”, “routing system”, “routing engine”, etc.) is described in, for example, U.S. Pat. No. 8,879,715, which is incorporated herein by reference.
A BP strategy may develop a model of contact types, for which expected performance gains over other pairing strategies may be determined. However, model generation and validation may be time-consuming and resource-intensive, or they may benefit from manual intervention or fine-tuning.
In view of the foregoing, it may be understood that there is a need for a system that enables improving behavioral pairing model selection to improve the efficiency and performance of pairing strategies that are designed to choose among multiple possible pairings.
Techniques for behavioral pairing model evaluation in a contact center system are disclosed. In one particular embodiment, the techniques may be realized as a method for behavioral pairing model evaluation in a contact center system comprising determining, by at least one computer processor communicatively coupled to and configured to operate in the contact center system, contact data; partitioning, by the at least one computer processor, the contact data into a first plurality of types; determining, by the at least one computer processor, a first measure of the quality of the partitioning of the contact data into the first plurality of types; and outputting, by the at least one computer processor, a computer-processor generated behavioral pairing model based on the quality of the partitioning.
In accordance with other aspects of this particular embodiment, partitioning the contact data comprises applying, by the at least one computer processor, locality sensitive hashing (LSH) to the contact data.
In accordance with other aspects of this particular embodiment, the contact data may be divided into training contact data and test contact data.
In accordance with other aspects of this particular embodiment, partitioning the contact data comprises applying, by the at least one computer processor, a randomized set of partitions.
In accordance with other aspects of this particular embodiment, the method may further comprise partitioning, by the at least one computer processor, the contact data into a second plurality of types different from the first plurality of types; determining, by the at least one computer processor, a second measure of the quality of the partitioning of the contact data into the second plurality of types; and selecting, by the at least one computer processor, one of the first plurality of types and the second plurality of types having a higher measure of the quality of the partitioning by comparing the first and second measures of the quality of the partitioning, wherein the computer-processor generated behavioral pairing model may be based on the selected one of the first plurality of types and the second plurality of types.
In accordance with other aspects of this particular embodiment, the selected one of the first and second plurality of types is expected to provide a greater increase in expected contact center performance than the other of the first and second plurality of types.
In accordance with other aspects of this particular embodiment, the method may further comprise applying, by the at least one computer processor, the behavioral pairing model to at least one contact and at least one available agent within the contact center system using a behavioral pairing strategy.
In another particular embodiment, the techniques may be realized as a system for behavioral pairing model evaluation in a contact center system comprising at least one computer processor communicatively coupled to and configured to operate in the contact center system, wherein the at least one computer processor is configured to perform the steps in the above-discussed method.
In another particular embodiment, the techniques may be realized as an article of manufacture for behavioral pairing model evaluation in a contact center system comprising a non-transitory processor readable medium and instructions stored on the medium, wherein the instructions are configured to be readable from the medium by at least one computer processor communicatively coupled to and configured to operate in the contact center system and thereby cause the at least one computer processor to operate to perform the steps in the above-discussed method.
The present disclosure will now be described in more detail with reference to particular embodiments thereof as shown in the accompanying drawings. While the present disclosure is described below with reference to particular embodiments, it should be understood that the present disclosure is not limited thereto. Those of ordinary skill in the art having access to the teachings herein will recognize additional implementations, modifications, and embodiments, as well as other fields of use, which are within the scope of the present disclosure as described herein, and with respect to which the present disclosure may be of significant utility.
To facilitate a fuller understanding of the present disclosure, reference is now made to the accompanying drawings, in which like elements are referenced with like numerals. These drawings should not be construed as limiting the present disclosure, but are intended to be illustrative only.
A typical contact center algorithmically assigns contacts arriving at the contact center to agents available to handle those contacts. At times, the contact center may have agents available and waiting for assignment to inbound or outbound contacts (e.g., telephone calls, Internet chat sessions, email). At other times, the contact center may have contacts waiting in one or more queues for an agent to become available for assignment.
In some typical contact centers, contacts are assigned to agents ordered based on time of arrival, and agents receive contacts ordered based on the time when those agents became available. This strategy may be referred to as a “first-in, first-out”, “FIFO”, or “round-robin” strategy. In other typical contact centers, other strategies may be used, such as “performance-based routing”, or a “PBR” strategy.
In other, more advanced contact centers, contacts are paired with agents using a “behavioral pairing”, or a “BP” strategy, under which contacts and agents may be deliberately (preferentially) paired in a fashion that enables the assignment of subsequent contact-agent pairs such that when the benefits of all the assignments under a BP strategy are totaled they may exceed those of FIFO and other strategies such as performance-based routing (“PBR”) strategies. BP is designed to encourage balanced utilization of agents within a skill queue while nevertheless simultaneously improving overall contact center performance beyond what FIFO or PBR methods will allow. This is a remarkable achievement because BP acts on the same calls and same agents as FIFO or PBR methods, utilizes agents approximately evenly as FIFO provides, and yet improves overall contact center performance. BP is described in, e.g., U.S. Pat. No. 9,300,802, which is incorporated by reference herein. Additional information about these and other features regarding the pairing or matching modules (sometimes also referred to as “SATMAP”, “routing system”, “routing engine”, etc.) is described in, for example, U.S. Pat. No. 8,879,715, which is incorporated herein by reference.
A BP strategy may develop a model of contact types, for which expected performance gains over other pairing strategies may be determined. However, model generation and validation may be time-consuming and resource-intensive, or they may benefit from manual intervention or fine-tuning.
In view of the foregoing, it may be understood that there is a need for a system that enables improving behavioral pairing model selection to improve the efficiency and performance of pairing strategies that are designed to choose among multiple possible pairings.
As shown in
The central switch 110 may not be necessary such as if there is only one contact center, or if there is only one PBX/ACD routing component, in the contact center system 100. If more than one contact center is part of the contact center system 100, each contact center may include at least one contact center switch (e.g., contact center switches 120A and 120B). The contact center switches 120A and 120B may be communicatively coupled to the central switch 110. In embodiments, various topologies of routing and network components may be configured to implement the contact center system.
Each contact center switch for each contact center may be communicatively coupled to a plurality (or “pool”) of agents. Each contact center switch may support a certain number of agents (or “seats”) to be logged in at one time. At any given time, a logged-in agent may be available and waiting to be connected to a contact, or the logged-in agent may be unavailable for any of a number of reasons, such as being connected to another contact, performing certain post-call functions such as logging information about the call, or taking a break.
In the example of
The contact center system 100 may also be communicatively coupled to an integrated service from, for example, a third-party vendor. In the example of
A contact center may include multiple pairing modules (e.g., a BP module and a FIFO module) (not shown), and one or more pairing modules may be provided by one or more different vendors. In some embodiments, one or more pairing modules may be components of pairing model evaluation module 140 or one or more switches such as central switch 110 or contact center switches 120A and 120B. In some embodiments, a pairing model evaluation module may determine which pairing module may handle pairing for a particular contact. For example, the pairing model evaluation module may alternate between enabling pairing via the BP module and enabling pairing with the FIFO module. In other embodiments, one pairing module (e.g., the BP module) may be configured to emulate other pairing strategies. For example, a pairing model evaluation module, or a pairing model evaluation component integrated with BP components in the BP module, may determine whether the BP module may use BP pairing or emulated FIFO pairing for a particular contact. In this case, “BP on” may refer to times when the BP module is applying the BP pairing strategy, and “BP off” may refer to other times when the BP module is applying a different pairing strategy (e.g., FIFO).
In some embodiments, regardless of whether pairing strategies are handled by separate modules, or if some pairing strategies are emulated within a single pairing module, the single pairing module may be configured to monitor and store information about pairings made under any or all pairing strategies. For example, a BP module may observe and record data about FIFO pairings made by a FIFO module, or the BP module may observe and record data about emulated FIFO pairings made by a BP module operating in FIFO emulation mode.
In the example of
In some embodiments, more than two dimensions may be represented in higher n-dimensional space (or “hyperspace”), such as three-dimensional, four-dimensional, or higher. Each contact (or contact interaction outcome) may be represented by an n-dimensional point (x, y, z, . . . , n). In this simplified example, two-dimensional space is used to make the system easier to visualize for the purpose of the present disclosure; however, the system may function in the same way for more complex, higher-dimensional datasets.
In the example of
In some situations, a contact may have an apparently neutral value in one or more dimensions (i.e., x equals 0, y equals 0, or both x and y equal 0). In some embodiments, a BP model may arbitrarily assign these contacts to a cluster or type on one side or the other of the “dividing line” (or dividing plane in 3D space or hyperplane in hyperspace). For example, BP model 200B may determine that contacts have a 50% likelihood to buy something (just as likely as not, or neutral) may be grouped with contacts having a positive x value (more likely than not to buy something), or the BP model 200B may determine that these contacts may be grouped with contacts having a negative x value (more likely to not buy anything). In other embodiments, a BP pairing module may randomly assign a neutral contact along one or more dimensions to either side of the dividing line, plane, hyperplane, etc.
In the simplified example of
This type of contact segmentation may include techniques relating to locality sensitive hashing (“LSH”), also known as locality sensitive clustering. More information about LSH may be found in, for example, Chen et al., “Enhanced Locality Sensitive Clustering in High Dimensional Space,” T
The process may be similar to a “nearest neighbor” process, by which contacts that are similar to one another (e.g., separated by relatively small distances in n-dimensional space) may be assumed to have similar behavior suitable for a BP strategy. One distinction between LSH and nearest-neighbor grouping is that a given dividing line/hyperplane may separate two contacts into different groups even if they would have otherwise been considered nearest neighbors and therefore would otherwise have been expected to behave in a similar manner to one another. In practice, an inefficiency that may arise due to separating neighboring contacts into separate clusters may be offset by the overall performance gain for the contact center system as a whole due to relatively efficient overall clustering of most of the contacts entering the contact center system.
The performance of a particular LSH-based BP model may depend on the quality of the fit to available contact data (e.g., customer relationship management or CRM data) and historical contact outcome data.
In some embodiments, a technique for selecting dividing lines may be to choose lines manually that appear to segment the contact data in meaningfully or statistically useful ways. For example, the segmentation of the data in BP model 200B (
In other embodiments, a technique for selecting dividing lines may be to search algorithmically for a statistically optimal segmentation. Depending on the techniques used, such as finely-tuned decision trees or hierarchical clustering greedy algorithm may lead to high accuracy but may also be time consuming and/or computationally resource intensive, especially as the number of dimensions and the amount of contact data increase.
In other embodiments, LSH with randomized trials may offer a preferred balance between good-to-high accuracy while remaining relatively computationally fast.
At block 410, training and test sets of contact data may be determined. For example, contact data may include customer relationship management (CRM) data, demographic data, psychographic data, or other data sources about contacts. In some embodiments, historical contact interaction outcome data may also be used. For example, a range of data such as a one week, one month, one year, etc. may include information about which contacts interacted with which agents, when, for how long, what the outcome was, and more. Any contact data available may be divided into training and test data subsets. For example, a training subset of data may be used when considering randomized trials of LSH dividers, and test data subsets may be subsequently used to validate the BP model including the preferred set of LSH dividers. After determining contact data, including training and test sets of contact data, BP model evaluation method may proceed to block 420.
At block 420, random LSH dividers may be determined. In some embodiments, each random trial may be conducted serially, such as on a single thread or core. In other embodiments, multiple random trials may be conducted in parallel across multiple threads or processor cores. In some embodiments, LSH dividers may be assumed to intersect through the origin. In the case of two-dimensional space, LSH dividers may be lines of the form Ax+By=0, wherein the coefficients A and B may be set at random. In some embodiments, a random trial will ensure that each random set of coefficients is unique so that each divider is distinct from the others within a single trial. In some embodiments, the number of LSH dividers may be predetermined to a certain number of dividers such as one, two, three, or more dividers. The number of dividers/clusters may be scaled proportionally according to the size of the dataset and/or the variability of data within the dataset. After determining a set of random LSH dividers for a trial, BP model evaluation method 400 may proceed to block 430.
At block 430, the random LSH dividers may be applied to the training data (and, in some embodiments, test data) to analyze the contact data. For example, individual points of contact data may be segmented into one of the clusters defined by the boundaries of the LSH dividers. For example, in 2D space, all points lying “above” a given divider line may be assigned a “1” for that line, and points lying “below” the given divider line may be assigned a “0” for that line. If a point falls on the line itself, the point may be designated as part of the region above or below the divider line in any of a number of suitable ways (e.g., always considered above, always considered below, randomly assigned above or below). The particular technique of assigning a “1” or “0” for each divider line according to some embodiments enables a binary representation for each cluster, using a bitstring in which the i-th bit represents the position of the cluster or contact point with respect to the i-th divider line. After analyzing the training or test contact data according to the random trial of LSH dividers, BP model evaluation method may proceed to block 440.
At block 440, BP model evaluation method 400 may check for an adequate degree of fit in some embodiments, and/or an adequate number of iterations in some embodiments. For example, in some embodiments, the quality of the random trial may be measured or otherwise estimated by calculating a weighted average of the product of the standard deviations of contact data's x, y, . . . , n positions over the clusters defined by the random trial. In other embodiments, other heuristics or measurements may be used to assess the quality of the random trial.
In some embodiments, if the quality of the random trial exceeds a threshold degree of adequate fit, BP model evaluation method 400 may proceed to block 450 using the current random trial, which is the first random trial identified to have a sufficient/adequate degree of fit.
In other embodiments, BP model evaluation method 400 may return to block 420 to run additional random trials until a predetermined number of random trials (iterations) have been tested. In some embodiments, BP model evaluation method 400 may run for the predetermined number of iterations regardless of the degree of fit measured for any individual trial. After an adequate number of trials have run, BP model evaluation method 400 may proceed to block 450 using the random trial that provided the highest/best degree of fit.
At block 450, the selected trial of random LSH dividers may be used to construct a BP model. In some embodiments, the constructed BP model may be validated further using test data (not shown), such as test data subsets determined at block 410. After the BP model has been constructed or validated, BP model evaluation method 400 may end.
In some embodiments, a graphical or command line user interface may be provided to configure, setup, or control the BP model evaluation method 400. For example, controls may be provided to select the contact data (e.g., database), select the date range of data to use, select the percentage of data to use for training for test sets, select the number of randomized trials or iterations to test, select the number of LSH dividers to define in each trial, etc.
In some embodiments, a graphical or tabular user interface may be provided to display the results of the BP model evaluation method 400. For example, the interface may display information about the data being applied; the quality of the LSH trials (e.g., the “lift” or performance improvement that the model is expected to provide to the contact center system); a visualization or 2D projection of the size and type of LSH clusters defined in the best trial, and a list of IF/THEN/ELSE, predicates, or other formulae for defining or applying the LSH dividers/clusters to contact data in script or other computer program code.
The constructed BP model may be loaded or otherwise applied to a BP module operating within the contact center system. For example, if a contact (e.g., caller) arrives in a contact center system (e.g., call center), the BP module may determine data about the contact/caller, apply the BP model to the contact data to assign the contact to one of the clusters according to the LSH technique defined by the BP model. Subsequently, a BP strategy may be used to pair the contact of the assigned type/cluster to an available agent preferred according to a BP strategy. The paired contact and agent may then be connected for communication or other type of interaction within the contact center system.
At this point it should be noted that behavioral pairing model evaluation in a contact center system in accordance with the present disclosure as described above may involve the processing of input data and the generation of output data to some extent. This input data processing and output data generation may be implemented in hardware or software. For example, specific electronic components may be employed in a behavioral pairing model evaluation module or similar or related circuitry for implementing the functions associated with pairing model evaluation in a contact center system in accordance with the present disclosure as described above. Alternatively, one or more processors operating in accordance with instructions may implement the functions associated with BP in a contact center system in accordance with the present disclosure as described above. If such is the case, it is within the scope of the present disclosure that such instructions may be stored on one or more non-transitory processor readable storage media (e.g., a magnetic disk or other storage medium), or transmitted to one or more processors via one or more signals embodied in one or more carrier waves.
The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Further, although the present disclosure has been described herein in the context of at least one particular implementation in at least one particular environment for at least one particular purpose, those of ordinary skill in the art will recognize that its usefulness is not limited thereto and that the present disclosure may be beneficially implemented in any number of environments for any number of purposes. Accordingly, the claims set forth below should be construed in view of the full breadth and spirit of the present disclosure as described herein.
Number | Name | Date | Kind |
---|---|---|---|
5155763 | Bigus et al. | Oct 1992 | A |
5206903 | Kohler et al. | Apr 1993 | A |
5327490 | Cave | Jul 1994 | A |
5537470 | Lee | Jul 1996 | A |
5702253 | Bryce et al. | Dec 1997 | A |
5825869 | Brooks et al. | Oct 1998 | A |
5903641 | Tonisson | May 1999 | A |
5907601 | David et al. | May 1999 | A |
5926538 | Deryugin et al. | Jul 1999 | A |
6049603 | Schwartz et al. | Apr 2000 | A |
6052460 | Fisher et al. | Apr 2000 | A |
6064731 | Flockhart et al. | May 2000 | A |
6088444 | Walker et al. | Jul 2000 | A |
6163607 | Bogart et al. | Dec 2000 | A |
6222919 | Hollatz et al. | Apr 2001 | B1 |
6292555 | Okamoto | Sep 2001 | B1 |
6324282 | McIllwaine et al. | Nov 2001 | B1 |
6333979 | Bondi et al. | Dec 2001 | B1 |
6389132 | Price | May 2002 | B1 |
6389400 | Bushey et al. | May 2002 | B1 |
6408066 | Andruska et al. | Jun 2002 | B1 |
6411687 | Bohacek et al. | Jun 2002 | B1 |
6424709 | Doyle et al. | Jul 2002 | B1 |
6434230 | Gabriel | Aug 2002 | B1 |
6496580 | Chack | Dec 2002 | B1 |
6504920 | Okon et al. | Jan 2003 | B1 |
6519335 | Bushnell | Feb 2003 | B1 |
6535601 | Flockhart et al. | Mar 2003 | B1 |
6570980 | Baruch | May 2003 | B1 |
6587556 | Judkins et al. | Jul 2003 | B1 |
6603854 | Judkins et al. | Aug 2003 | B1 |
6639976 | Shellum et al. | Oct 2003 | B1 |
6661889 | Flockhart et al. | Dec 2003 | B1 |
6704410 | McFarlane et al. | Mar 2004 | B1 |
6707904 | Judkins et al. | Mar 2004 | B1 |
6714643 | Gargeya et al. | Mar 2004 | B1 |
6763104 | Judkins et al. | Jul 2004 | B1 |
6774932 | Ewing et al. | Aug 2004 | B1 |
6775378 | Villena et al. | Aug 2004 | B1 |
6798876 | Bala | Sep 2004 | B1 |
6829348 | Schroeder et al. | Dec 2004 | B1 |
6832203 | Villena et al. | Dec 2004 | B1 |
6859529 | Duncan et al. | Feb 2005 | B2 |
6922466 | Peterson et al. | Jul 2005 | B1 |
6937715 | Delaney | Aug 2005 | B2 |
6956941 | Duncan et al. | Oct 2005 | B1 |
6970821 | Shambaugh et al. | Nov 2005 | B1 |
6978006 | Polcyn | Dec 2005 | B1 |
7023979 | Wu et al. | Apr 2006 | B1 |
7039166 | Peterson et al. | May 2006 | B1 |
7050566 | Becerra et al. | May 2006 | B2 |
7050567 | Jensen | May 2006 | B1 |
7062031 | Becerra et al. | Jun 2006 | B2 |
7068775 | Lee | Jun 2006 | B1 |
7092509 | Mears et al. | Aug 2006 | B1 |
7103172 | Brown et al. | Sep 2006 | B2 |
7158628 | McConnell et al. | Jan 2007 | B2 |
7184540 | Dezonno et al. | Feb 2007 | B2 |
7209549 | Reynolds et al. | Apr 2007 | B2 |
7231032 | Nevman et al. | Jun 2007 | B2 |
7231034 | Rikhy et al. | Jun 2007 | B1 |
7236584 | Torba | Jun 2007 | B2 |
7245716 | Brown et al. | Jul 2007 | B2 |
7245719 | Kawada et al. | Jul 2007 | B2 |
7266251 | Rowe | Sep 2007 | B2 |
7269253 | Wu et al. | Sep 2007 | B1 |
7353388 | Gilman et al. | Apr 2008 | B1 |
7398224 | Cooper | Jul 2008 | B2 |
7593521 | Becerra et al. | Sep 2009 | B2 |
7676034 | Wu et al. | Mar 2010 | B1 |
7725339 | Aykin | May 2010 | B1 |
7734032 | Kiefhaber et al. | Jun 2010 | B1 |
7798876 | Mix | Sep 2010 | B2 |
7826597 | Berner et al. | Nov 2010 | B2 |
7864944 | Khouri et al. | Jan 2011 | B2 |
7899177 | Bruening et al. | Mar 2011 | B1 |
7916858 | Heller et al. | Mar 2011 | B1 |
7940917 | Lauridsen et al. | May 2011 | B2 |
7961866 | Boutcher et al. | Jun 2011 | B1 |
7995717 | Conway et al. | Aug 2011 | B2 |
8000989 | Kiefhaber et al. | Aug 2011 | B1 |
8010607 | McCormack et al. | Aug 2011 | B2 |
8094790 | Conway et al. | Jan 2012 | B2 |
8126133 | Everingham et al. | Feb 2012 | B1 |
8140441 | Cases et al. | Mar 2012 | B2 |
8175253 | Knott et al. | May 2012 | B2 |
8229102 | Knott et al. | Jul 2012 | B2 |
8249245 | Jay et al. | Aug 2012 | B2 |
8295471 | Spottiswoode et al. | Oct 2012 | B2 |
8300798 | Wu et al. | Oct 2012 | B1 |
8359219 | Chishti et al. | Jan 2013 | B2 |
8433597 | Chishti et al. | Apr 2013 | B2 |
8472611 | Chishti | Jun 2013 | B2 |
8565410 | Chishti et al. | Oct 2013 | B2 |
8634542 | Spottiswoode et al. | Jan 2014 | B2 |
8644490 | Stewart | Feb 2014 | B2 |
8670548 | Xie et al. | Mar 2014 | B2 |
8699694 | Chishti et al. | Apr 2014 | B2 |
8712821 | Spottiswoode | Apr 2014 | B2 |
8718271 | Spottiswoode | May 2014 | B2 |
8724797 | Chishti et al. | May 2014 | B2 |
8731178 | Chishti et al. | May 2014 | B2 |
8737595 | Chishti et al. | May 2014 | B2 |
8750488 | Spottiswoode et al. | Jun 2014 | B2 |
8781100 | Spottiswoode et al. | Jul 2014 | B2 |
8781106 | Afzal | Jul 2014 | B2 |
8792630 | Chishti et al. | Jul 2014 | B2 |
8824658 | Chishti | Sep 2014 | B2 |
8879715 | Spottiswoode et al. | Nov 2014 | B2 |
8903079 | Xie et al. | Dec 2014 | B2 |
8929537 | Chishti et al. | Jan 2015 | B2 |
8995647 | Li et al. | Mar 2015 | B2 |
9020137 | Chishti et al. | Apr 2015 | B2 |
9025757 | Spottiswoode et al. | May 2015 | B2 |
9215323 | Chishti | Dec 2015 | B2 |
9277055 | Spottiswoode et al. | Mar 2016 | B2 |
9300802 | Chishti | Mar 2016 | B1 |
9426296 | Chishti et al. | Aug 2016 | B2 |
9712676 | Chishti | Jul 2017 | B1 |
9712679 | Chishti et al. | Jul 2017 | B2 |
20010032120 | Stuart et al. | Oct 2001 | A1 |
20020018554 | Jensen et al. | Feb 2002 | A1 |
20020046030 | Haritsa et al. | Apr 2002 | A1 |
20020059164 | Shtivelman | May 2002 | A1 |
20020082736 | Lech et al. | Jun 2002 | A1 |
20020110234 | Walker et al. | Aug 2002 | A1 |
20020111172 | DeWolf et al. | Aug 2002 | A1 |
20020131399 | Philonenko | Sep 2002 | A1 |
20020138285 | DeCotiis et al. | Sep 2002 | A1 |
20020143599 | Nourbakhsh et al. | Oct 2002 | A1 |
20020161765 | Kundrot et al. | Oct 2002 | A1 |
20020184069 | Kosiba et al. | Dec 2002 | A1 |
20020196845 | Richards et al. | Dec 2002 | A1 |
20030002653 | Uckun | Jan 2003 | A1 |
20030081757 | Mengshoel et al. | May 2003 | A1 |
20030095652 | Mengshoel et al. | May 2003 | A1 |
20030169870 | Stanford | Sep 2003 | A1 |
20030174830 | Boyer et al. | Sep 2003 | A1 |
20030217016 | Pericle | Nov 2003 | A1 |
20040028211 | Culp et al. | Feb 2004 | A1 |
20040057416 | McCormack | Mar 2004 | A1 |
20040096050 | Das et al. | May 2004 | A1 |
20040098274 | Dezonno et al. | May 2004 | A1 |
20040101127 | Dezonno et al. | May 2004 | A1 |
20040109555 | Williams | Jun 2004 | A1 |
20040133434 | Szlam et al. | Jul 2004 | A1 |
20040210475 | Starnes et al. | Oct 2004 | A1 |
20040230438 | Pasquale et al. | Nov 2004 | A1 |
20040267816 | Russek | Dec 2004 | A1 |
20050013428 | Walters | Jan 2005 | A1 |
20050043986 | McConnell et al. | Feb 2005 | A1 |
20050047581 | Shaffer et al. | Mar 2005 | A1 |
20050047582 | Shaffer et al. | Mar 2005 | A1 |
20050071223 | Jain et al. | Mar 2005 | A1 |
20050129212 | Parker | Jun 2005 | A1 |
20050135593 | Becerra et al. | Jun 2005 | A1 |
20050135596 | Zhao | Jun 2005 | A1 |
20050187802 | Koeppel | Aug 2005 | A1 |
20050195960 | Shaffer et al. | Sep 2005 | A1 |
20050286709 | Horton et al. | Dec 2005 | A1 |
20060098803 | Bushey et al. | May 2006 | A1 |
20060110052 | Finlayson | May 2006 | A1 |
20060124113 | Roberts | Jun 2006 | A1 |
20060184040 | Keller et al. | Aug 2006 | A1 |
20060222164 | Contractor et al. | Oct 2006 | A1 |
20060233346 | McIlwaine et al. | Oct 2006 | A1 |
20060262918 | Karnalkar et al. | Nov 2006 | A1 |
20060262922 | Margulies et al. | Nov 2006 | A1 |
20070036323 | Travis | Feb 2007 | A1 |
20070071222 | Flockhart et al. | Mar 2007 | A1 |
20070121602 | Sin et al. | May 2007 | A1 |
20070121829 | Tal et al. | May 2007 | A1 |
20070136342 | Singhai et al. | Jun 2007 | A1 |
20070154007 | Bernhard | Jul 2007 | A1 |
20070174111 | Anderson et al. | Jul 2007 | A1 |
20070198322 | Bourne et al. | Aug 2007 | A1 |
20070219816 | Van Luchene et al. | Sep 2007 | A1 |
20070274502 | Brown | Nov 2007 | A1 |
20080002823 | Fama et al. | Jan 2008 | A1 |
20080008309 | Dezonno et al. | Jan 2008 | A1 |
20080046386 | Pieraccinii et al. | Feb 2008 | A1 |
20080065476 | Klein et al. | Mar 2008 | A1 |
20080118052 | Houmaidi et al. | May 2008 | A1 |
20080152122 | Idan et al. | Jun 2008 | A1 |
20080181389 | Bourne et al. | Jul 2008 | A1 |
20080199000 | Su et al. | Aug 2008 | A1 |
20080267386 | Cooper | Oct 2008 | A1 |
20080273687 | Knott et al. | Nov 2008 | A1 |
20090043670 | Johansson et al. | Feb 2009 | A1 |
20090086933 | Patel et al. | Apr 2009 | A1 |
20090190740 | Chishti et al. | Jul 2009 | A1 |
20090190743 | Spottiswoode | Jul 2009 | A1 |
20090190744 | Xie et al. | Jul 2009 | A1 |
20090190745 | Xie et al. | Jul 2009 | A1 |
20090190746 | Chishti et al. | Jul 2009 | A1 |
20090190747 | Spottiswoode | Jul 2009 | A1 |
20090190748 | Chishti et al. | Jul 2009 | A1 |
20090190749 | Xie et al. | Jul 2009 | A1 |
20090190750 | Xie et al. | Jul 2009 | A1 |
20090232294 | Xie et al. | Sep 2009 | A1 |
20090234710 | Belgaied Hassine et al. | Sep 2009 | A1 |
20090245493 | Chen et al. | Oct 2009 | A1 |
20090304172 | Becerra et al. | Dec 2009 | A1 |
20090318111 | Desai et al. | Dec 2009 | A1 |
20090323921 | Spottiswoode et al. | Dec 2009 | A1 |
20100020959 | Spottiswoode | Jan 2010 | A1 |
20100020961 | Spottiswoode | Jan 2010 | A1 |
20100054431 | Jaiswal et al. | Mar 2010 | A1 |
20100054452 | Afzal | Mar 2010 | A1 |
20100054453 | Stewart | Mar 2010 | A1 |
20100086120 | Brussat et al. | Apr 2010 | A1 |
20100111285 | Chishti | May 2010 | A1 |
20100111286 | Chishti | May 2010 | A1 |
20100111287 | Xie et al. | May 2010 | A1 |
20100111288 | Afzal et al. | May 2010 | A1 |
20100142698 | Spottiswoode et al. | Jun 2010 | A1 |
20100183138 | Spottiswoode et al. | Jul 2010 | A1 |
20110022357 | Vock et al. | Jan 2011 | A1 |
20110031112 | Birang et al. | Feb 2011 | A1 |
20110066481 | Vazacopoulos | Mar 2011 | A1 |
20110069821 | Korolev et al. | Mar 2011 | A1 |
20110125048 | Causevic et al. | May 2011 | A1 |
20120051536 | Chishti et al. | Mar 2012 | A1 |
20120051537 | Chishti et al. | Mar 2012 | A1 |
20120224680 | Spottiswoode et al. | Sep 2012 | A1 |
20120278136 | Flockhart et al. | Nov 2012 | A1 |
20130003959 | Nishikawa et al. | Jan 2013 | A1 |
20130251137 | Chishti et al. | Sep 2013 | A1 |
20140044246 | Klemm et al. | Feb 2014 | A1 |
20140079210 | Kohler et al. | Mar 2014 | A1 |
20140119531 | Tuchman et al. | May 2014 | A1 |
20140341370 | Li et al. | Nov 2014 | A1 |
20150055772 | Klemm et al. | Feb 2015 | A1 |
20160080573 | Chishti | Mar 2016 | A1 |
20170308909 | Faith | Oct 2017 | A1 |
20180052933 | Verma | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
2008349500 | May 2014 | AU |
2009209317 | May 2014 | AU |
2009311534 | Aug 2014 | AU |
102301688 | May 2014 | CN |
102017591 | Nov 2014 | CN |
0 493 292 | Jul 1992 | EP |
0 949 793 | Oct 1999 | EP |
1 032 188 | Aug 2000 | EP |
1335572 | Aug 2003 | EP |
11-098252 | Apr 1999 | JP |
2000-078291 | Mar 2000 | JP |
2000-078292 | Mar 2000 | JP |
2000-092213 | Mar 2000 | JP |
2000-236393 | Aug 2000 | JP |
2001-292236 | Oct 2001 | JP |
2001-518753 | Oct 2001 | JP |
2002-297900 | Oct 2002 | JP |
3366565 | Jan 2003 | JP |
2003-187061 | Jul 2003 | JP |
2004-056517 | Feb 2004 | JP |
2004-227228 | Aug 2004 | JP |
2006-345132 | Dec 2006 | JP |
2007-324708 | Dec 2007 | JP |
2011-511533 | Apr 2011 | JP |
2011-511536 | Apr 2011 | JP |
5421928 | Feb 2014 | JP |
5631326 | Nov 2014 | JP |
5649575 | Jan 2015 | JP |
316118 | Dec 2013 | MX |
322251 | Jul 2014 | MX |
587100 | Oct 2013 | NZ |
587101 | Oct 2013 | NZ |
591486 | Jan 2014 | NZ |
592781 | Mar 2014 | NZ |
1-2010-501704 | Feb 2014 | PH |
1-2010-501705 | Feb 2015 | PH |
WO-1999017517 | Apr 1999 | WO |
WO-2001063894 | Aug 2001 | WO |
WO-2006124113 | Nov 2006 | WO |
WO-2010053701 | May 2010 | WO |
WO-2011081514 | Jul 2011 | WO |
Entry |
---|
Anonymous. (2006) “Performance Based Routing in Profit Call Centers,” The Decision Makers' Direct, located at www.decisioncraft.com, Issue Jan. 6, 2012 (3 pages). |
Canadian Office Action issued in Canadian Patent Application No. 2713526, dated Oct. 25, 2016, 7 pages. |
Chen, G., et al., “Enhanced Locality Sensitive Clustering High Dimensional Space,” Transactions on Electrical and Electronic Materials, vol. 15, No. 3, pp. 125-129 (Jun. 25, 2004). |
Cleveland, William S., “Robust Locally Weighted Regression and Smoothing Scatterplots,” Journal of the American Statistical Association, vol. 74, No. 368, pp. 829-836 (Dec. 1979). |
Extended European Search Report issued by the European Patent Office for European Application No. 17154781.3 dated May 4, 2017 (7 pages). |
Gans, N. et al. (2003), “Telephone Call Centers: Tutorial, Review and Research Prospects,” Manufacturing & Service Operations Management, vol. 5, No. 2, pp. 79-141, 84 pages. |
International Preliminary Report on Patentability issued in connection with PCT Application No. PCT/US2009/066254 dated Jun. 14, 2011 (6 pages). |
International Search Report and Written Opinion issued by the European Patent Office as International Searching Authority for International Application No. PCT/IB2016/001762 dated Feb. 20, 2017 (15 pages). |
International Search Report and Written Opinion issued by the European Patent Office as International Searching Authority for International Application No. PCT/IB2016/001776 dated Mar. 3, 2017 (16 pages). |
International Search Report and Written Opinion issued by the European Patent Office as International Searching Authority for International Application No. PCT/IB2017/000570 dated Jun. 30, 2017 (13 pages). |
International Search Report issued in connection with International Application No. PCT/US13/33268 dated May 31, 2013 (2 pages). |
International Search Report issued in connection with PCT Application No. PCT/US/2009/054352 dated Mar. 12, 2010, 5 pages. |
International Search Report issued in connection with PCT Application No. PCT/US2008/077042 dated Mar. 13, 2009 (3 pages). |
International Search Report issued in connection with PCT Application No. PCT/US2009/031611 dated Jun. 3, 2009 (5 pages). |
International Search Report issued in connection with PCT Application No. PCT/US2009/066254 dated Feb. 24, 2010 (4 pages). |
International Search Report issued in connection with PCT/US2009/061537 dated Jun. 7, 2010 (5 pages). |
International Search Report issued in connection with PCT/US2013/033261 dated Jun. 14, 2013 (3 pages). |
International Search Report issued in connection with PCT/US2013/33265 dated Jul. 9, 2013 (2 pages). |
Japanese Office Action issued by the Japan Patent Office for Application No. 2015-503396 dated Jun. 29, 2016 (7 pages). |
Koole, G. (2004). “Performance Analysis and Optimization in Customer Contact Centers,” Proceedings of the Quantitative Evaluation of Systems, First International Conference, Sep. 27-30, 2004 (4 pages). |
Koole, G. et al. (Mar. 6, 2006). “An Overview of Routing and Staffing Algorithms in Multi-Skill Customer Contact Centers,” Manuscript, 42 pages. |
Ntzoufras, “Bayesian Modeling Using Winbugs”. Wiley Interscience, Chapter 5, Normal Regression Models, Oct. 18, 2007, pp. 155-220 (67 pages). |
Press, W. H. and Rybicki, G. B., “Fast Algorithm for Spectral Analysis of Unevenly Sampled Data,” The Astrophysical Journal, vol. 338, pp. 277-280 (Mar. 1, 1989). |
Riedmiller, M. et al. (1993). “A Direct Adaptive Method for Faster Back Propagation Learning: The RPROP Algorithm,” 1993 IEEE International Conference on Neural Networks, San Francisco, CA, Mar. 28-Apr. 1, 1993, 1:586-591. |
Stanley et al., “Improving call center operations using performance-based routing strategies,” Calif. Journal of Operations Management, 6(1), 24-32, Feb. 2008; retrieved from http://userwww.sfsu.edu/saltzman/Publist.html. |
Subsequent Substantive Examination Report issued in connection with Philippines Application No. 1-2010-501705 dated Jul. 14, 2014 (1 page). |
Substantive Examination Report issued in connection with Philippines Application No. 1/2011/500868 dated May 2, 2014 (1 page). |
Written Opinion of the International Searching Authority issued in connection with International Application No. PCT/US13/33268 dated May 31, 2013, 7 pages. |
Written Opinion of the International Searching Authority issued in connection with PCT Application No. PCT/US/2009/054352 dated Mar. 12, 2010, 5 pages. |
Written Opinion of the International Searching Authority issued in connection with PCT Application No. PCT/US2008/077042 dated Mar. 13, 2009, 6 pages. |
Written Opinion of the International Searching Authority issued in connection with PCT Application No. PCT/US2009/031611 dated Jun. 3, 2009, 7 pages. |
Written Opinion of the International Searching Authority issued in connection with PCT Application No. PCT/US2009/066254 dated Feb. 24, 2010, 5 pages. |
Written Opinion of the International Searching Authority issued in connection with PCT/US2009/061537 dated Jun. 7, 2010, 10 pages. |
Written Opinion of the International Searching Authority issued in connection with PCT/US2013/033261 dated Jun. 14, 2013, 7 pages. |
Written Opinion of the International Searching Authority issued in connection with PCT/US2013/33265 dated Jul. 9, 2013, 7 pages. |