The present disclosure relates to combined control of the temperature of a polishing pad and the flow rate of the polishing liquid, e.g., slurry, in chemical mechanical polishing (CMP).
An integrated circuit is typically formed on a substrate by the sequential deposition of conductive, semiconductive, or insulative layers on a semiconductor wafer. A variety of fabrication processes require planarization of a layer on the substrate. For example, one fabrication step involves depositing a filler layer over a non-planar surface and polishing the filler layer until the top surface of a patterned layer is exposed or a layer of desired thickness remains over. Planarization can also be used to enable subsequent photolithographic steps.
Chemical mechanical polishing (CMP) is one accepted method of planarization. This planarization method typically requires that the substrate be mounted on a carrier head. The exposed surface of the substrate is typically placed against a rotating polishing pad. The carrier head provides a controllable load on the substrate to push it against the polishing pad. A polishing liquid, typically a slurry with abrasive particles, supplied to the surface of the polishing pad.
The removal rate in the polishing process can be sensitive to temperature. Various techniques to control temperature during polishing have been proposed.
In one aspect, a chemical mechanical polishing system includes a platen to support a polishing pad, a carrier head to hold a substrate in contact with the polishing pad, a motor to generate relative motion between the platen and the carrier head, a polishing liquid delivery system including a port to dispense polishing liquid onto the polishing pad and a liquid flow controller in a flow line between the port and a polishing liquid supply to control a flow rate of the polishing liquid to the port, a temperature control system to control a temperature of the polishing pad, and a control system coupled to the liquid flow controller and the valve. The control system is configured to obtain a baseline removal rate value, obtain a baseline temperature value and a baseline polishing liquid flow rate value, store a function relating removal rate to polishing liquid flow rate and temperature, determine using the function a reduced polishing liquid flow rate value and an adjusted temperature value such that a resulting removal rate value is equal to or greater than the baseline removal rate value, and control the liquid flow controller to dispense the polishing liquid at the reduced polishing liquid flow rate value and control the temperature control system so that a polishing process temperature reaches the adjusted temperature value.
Implementations may include one or more of the following.
The temperature control system may be a heating system, e.g., one or more of a resistive heater in the platen, a heat lamp positioned to direct heat onto the polishing pad, or a dispenser to deliver a heated fluid other than the polishing liquid onto the polishing pad. The temperature control system may be a cooling system, e.g., one or more of coolant channels extending through the platen, a thermoelectric cooler on the platen, or a dispenser to deliver a coolant fluid other than the polishing liquid onto the polishing pad.
Possible advantages may include, but are not limited to, one or more of the following.
The flow rate of polishing liquid, e.g., slurry, to the polishing pad can be reduced while maintaining the removal rate. Less polishing liquid is used, thus reducing the cost of consumables and overall cost of operation.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Other aspects, features, and advantages will be apparent from the description and drawings, and from the claims.
The total cost of ownership of a chemical mechanical polishing system depends on both the initial capital costs for the polishing tool and the cost of consumable, e.g., polishing liquid, used in the polishing process. In particular, the polishing liquid, e.g., abrasive slurry, used in CMP can be a particularly large contributor to the overall costs. However, the flow rate of the polishing liquid cannot simply be arbitrarily decreased, as this can reduce the removal rate and thus decrease throughput. For example, in some metal polishing processes, reducing the slurry flow rate by 30% will result in a drop in the removal rate of 10%, and thus about a 10% drop in throughput.
Chemical mechanical polishing operates by a combination of mechanical abrasion and chemical etching at the interface between the substrate, polishing liquid, and polishing pad. As chemical-mechanical polishing is partially dependent on chemical reactions, the polishing process is a temperature-dependent process. Thus, the removal rate of most thin film materials in a CMP process is related to process temperature.
A technique that can be used to reduce the consumption of polishing liquid while maintaining a desired throughput is to modify the temperature of the polishing process so as to offset or compensate for the reduction in removal rate due to the reduction of in polishing liquid flow rate.
The polishing station 20 can include a polishing liquid supply system 50 to dispense a polishing liquid 52, such as an abrasive slurry, through a port 54 onto the polishing pad 30. The polishing liquid supply system 50 can include arm 56 supported by a base 58 to extend over the platen 24. The port 54 can be at the end of the arm 56. The port 54 can be coupled through a liquid flow controller 60 to a polishing liquid supply 62, e.g., a reservoir or tank that holds the polishing liquid. The polishing liquid can be an abrasive slurry.
A carrier head 70 is operable to hold a substrate 10 against the polishing pad 30. The carrier head 70 is suspended from a support structure 72, e.g., a carousel or a track, and is connected by a drive shaft 74 to a carrier head rotation motor 76 so that the carrier head can rotate about an axis 71. Optionally, the carrier head 70 can oscillate laterally, e.g., on sliders on the carousel, by movement along the track, or by rotational oscillation of the carousel itself.
The carrier head 70 can include a flexible membrane 80 having a substrate mounting surface to contact the back side of the substrate 10, and a plurality of pressurizable chambers 82 to apply different pressures to different zones, e.g., different radial zones, on the substrate 10. The carrier head 70 can include a retaining ring 84 to hold the substrate.
In operation, the platen is rotated about its central axis 25, and the carrier head is rotated about its central axis 71 (see arrow B in
The polishing station 20 can also include a pad conditioner 90 with a conditioner disk 92 held by a conditioner head 93 at the end of a conditioner arm 94. The conditioner disk 92 can be used to maintain the surface roughness of the polishing pad 30.
In some implementations, the polishing station 20 includes a temperature sensor 64 to monitor a temperature in the polishing station or a component of/in the polishing station, e.g., the temperature of the polishing pad 30 and/or slurry 38 on the polishing pad. For example, the temperature sensor 64 could be an infrared (IR) sensor, e.g., an IR camera, positioned above the polishing pad 30 and configured to measure the temperature of the polishing pad 30 and/or slurry 38 on the polishing pad. In particular, the temperature sensor 64 can be configured to measure the temperature at multiple points along the radius of the polishing pad 30 in order to generate a radial temperature profile. For example, the IR camera can have a field of view that spans the radius of the polishing pad 30.
In some implementations, the temperature sensor is a contact sensor rather than a non-contact sensor. For example, the temperature sensor 64 can be thermocouple or IR thermometer positioned on or in the platen 24. In addition, the temperature sensor 64 can be in direct contact with the polishing pad.
In some implementations, multiple temperature sensors could be spaced at different radial positions across the polishing pad 30 in order to provide the temperature at multiple points along the radius of the polishing pad 30. This technique could be use in the alternative or in addition to an IR camera.
Although illustrated in
The polishing system 20 also includes a temperature control system 100 to control the temperature of the polishing pad 30 and/or slurry 38 on the polishing pad. The temperature control system 100 that operates by delivering a temperature-controlled medium onto the polishing surface 36 of the polishing pad 30 (or onto a polishing liquid that is already present on the polishing pad). The temperature control system can a heating system 102 and/or a cooling system 104 The heating system 102 operates by delivering a hot fluid, e.g., hot water or steam. The cooling system 102 operates by delivering a coolant, e.g., cold water or air.
The medium can be delivered by flowing through apertures, e.g., holes or slots, e.g., provided by one or more nozzles, on a delivery arm. The apertures can be provided by a manifold that is connected to a source of the heating medium.
An example heating system 102 includes an arm 110 that extends over the platen 24 and polishing pad 30 from an edge of the polishing pad to or at least near (e.g., within 5% of the total radius of the polishing pad) the center of polishing pad 30. The arm 110 can be supported by a base 112, and the base 112 can be supported on the same frame 40 as the platen 24. The base 112 can include one or more an actuators, e.g., a linear actuator to raise or lower the arm 110, and/or a rotational actuator to swing the arm 110 laterally over the platen 24. The arm 110 is positioned to avoid colliding with other hardware components such as the polishing head 70, pad conditioning disk 92, the polishing liquid dispensing arm 56, and coolant delivery arm 130.
Multiple openings 114 are formed in the bottom surface of the arm 110. Each opening 114 is configured to direct a heating fluid, e.g., gas or vapor, e.g., steam, onto the polishing pad 30. The openings can be nozzles 116 that direct the heating fluid in a spray 118 onto the polishing pad 30.
The various openings 114 can direct heating fluid onto different radial zones on the polishing pad 30. Adjacent radial zones can overlap. Optionally, some of the openings 1144 can be oriented so that a central axis of the spray from that opening is at an oblique angle relative to the polishing surface 36. The heating fluid can be directed from one or more of the openings 141 to have a horizontal component in a direction opposite to the direction of motion of polishing pad 30 in the region of impingement as caused by rotation of the platen 24.
Although
The arm 110 can be supported by the base 112 so that the openings 114 are separated from the polishing pad 30 by a gap. The gap can be 0.5 to 5 mm. In particular, the gap can be selected such that the heat of the heating fluid does not significantly dissipate before the fluid reaches the polishing pad. For example, the gap can be selected such that steam emitted from the openings does not condense before reaching the polishing pad.
The heating system 104 can include a source 120 of hot fluid, and the source 120 can be connected to the arm 110 by a fluid passage that flows through a controllable valve 122. The source 120 can be a steam generator, e.g., a vessel in which water is boiled to generate steam gas. The passage can be provide by one or more of tubing, piping or channels through a solid body.
The heating fluid can be mixed with another gas, e.g., air, or a liquid, e.g., heated water, or the heating fluid can be substantially pure steam. In some implementations, other chemicals are added to the heating fluid.
Assuming steam is used, the temperature of the steam can be 90 to 200° C. when the steam is generated (e.g., in the fluid source 120). The temperature of the steam can be between 90 to 150° C. when the steam is dispensed through the openings 116, e.g., due to heat loss in transit. In some implementations, steam is delivered by the openings 116 at a temperature of 70-100° C., e.g., 80-90° C. In some implementations, the steam delivered by the nozzles is superheated, i.e., is at a temperature above the boiling point.
The polishing system 20 can also include a cooling system 104. The cooling system 104 can be constructed similarly to the heating system 102 as described above, with an arm 130 supported by a base 132 and having apertures 134, a source 140, and a fluid passage that connects the source 140 to the arm through a controllable valve 142. However, the source 140 is a source of a coolant fluid, and the cooling system 104 dispenses the coolant fluid onto the polishing pad 30, e.g., in a spray 138.
The coolant fluid can be a liquid, e.g, water at or below 20° C., a gas at or below 20° C., or a mixture of liquid and gas. For example, the coolant fluid can be air with aerosolized water droplets. The opening can be provided by a nozzle, and the nozzle can be a convergent-divergent nozzle so that the coolant fluid is further cooled by flowing through the nozzle. In some implementations, the liquid component is solidified by the temperature drop through the nozzle, e.g., the coolant fluid can include ice crystals when sprayed onto the polishing pad.
The polishing system can also include a high pressure rinsing system, e.g., an arm with nozzles to spray a rinsing liquid onto the polishing pad, and a wiper blade or body to evenly distribute the polishing liquid 38 across the polishing pad 30.
The polishing system 20 also includes a controller 200 to control operation of various components, e.g., polishing liquid delivery system 50 and the temperature control system 100. The controller 200 can be configured to receive the temperature measurements from the temperature sensor 64. The controller 200 can compare the measured temperature to a target temperature, and control the valves 122 and/or 142 to control the flow rate of the heating fluid and/or coolant onto the polishing pad 30 to achieve the target temperature.
The desired temperature and the flow rate of the polishing liquid can be set in conjunction to achieve a desired removal rate while reducing the consumption of polishing liquid.
In order to determine the appropriate temperature, data relating the removal rate to polishing liquid flow rates and temperatures is obtained. For example, one or more test substrates can polished at a variety of polishing liquid flow rates and temperatures, and the removal rate at each pair of conditions (holding other polishing parameters constant) is measured. This data can be stored in a lookup table (LUT) with removal rate as a function of both flow rate (e.g., as the column) and temperature (e.g., as the row).
As shown by broken line 208, if a polishing process had been run at about 45° C. and a flow rate of 350 cc/min, increasing the temperature of the polishing process to 65° C. permits the flow rate to be reduced to 200 cc/min while maintaining the same removal rate, i.e., a reduction of about 43% consumption of the slurry.
Although
In general, because the rate of chemical reactions increases with temperature, in many polishing operations the removal rate will increase with temperature. For example, in a typical metal polishing process, the removal rate increases with temperature. Thus, the function stored in the controller can include a range over which the removal rate increases, e.g., increases monotonically, as temperature increases. Thus, the techniques described below that utilize a removal rate that increase with temperature can be used with polishing of a metal layer, e.g., copper, tungsten, cobalt, etc. On the other hand, there are some polishing process, e.g., polishing of some oxide materials, in which the removal rate decreases with temperature. In this case, the function stored in the controller can include a range over which the removal rate decreases, e.g., decreases monotonically, as temperature increases. Thus, the techniques described below that utilize a removal rate that decreases with temperature can be used with polishing of an oxide layer, e.g., silicon oxide.
Returning to
However, the control system 200 can also be configure to select at least a portion of the polishing operation during which the polishing liquid flow rate will be reduced from the baseline flow rate, but the temperature will be modified to so that the resulting removal rate remains equal to or increases relative to the baseline removal rate. In some implementations, the portion of the polishing operation substantially corresponds to a bulk polishing operation, i.e., before exposure of an underlying layer. In some implementations, the selected portion begins at a set point (either a set time or a set percentage of the total expected polishing time) after the start of polishing. Alternatively, the selected portion can begin when the polishing operation begins. In some implementations, the selected portion ends at a set point (either a set time or a set percentage of the total expected polishing time) before the expected polishing endpoint. Determining the expected endpoint can take into account the adjusted polishing rate and polishing time discussed below. Alternatively, the selected portion can extend to the end of the operation, e.g., as determined by time or by an endpoint detection based on an in-situ monitoring system.
In order to determine the modified temperature and flow rate, the control system 200 can select a modified temperature TCONTROL. In particular, using the multi-variable function described above, the controller 200 can find a modified temperature TMOD that, at the current baseline flow rate FR0, increases the removal rate from the baseline removal rate RR0 to a modified removal rate RRT-MOD. For example, the controller can attempt to maximize the removal rate for the baseline flow rate FR0. This can be subject to various constraints, e.g., operator safety or temperature range capacity of the temperature control system. The controller can calculate an increase in removal rate resulting from the modified temperature TCONTROL. The removal rate increase can range from 1-100%.
The control system 200 can then calculate a maximum flow rate reduction such that a resulting reduction in removal rate is no more than the increase in removal rate resulting from the modified temperature. Using the multi-variable function described above, the control system can find a reduced polishing liquid flow rate FRT-MOD at which the resulting removal RRT,FR-MOD is equal to or greater than the baseline removal rate RR0. The reduction in the polishing liquid flow rate can ranging from 1-99%, e.g., 15-60%.
To remove same target amount of the layer, the total baseline polish time can be adjusted, e.g., to TMOD=T0*RR0/RRT-MOD (assuming that the temperature control is applied for the entire polishing operation).
The total slurry consumption (SCMOD) in a temperature-controlled CMP process is FRT-MOD*TMOD, which is lower than the baseline slurry consumption SC0=FR0*T0. The percentage of total slurry saving provided by a temperature-controlled CMP process is SCMOD/SC0.
In some cases, the removal rate of a temperature-controlled CMP process can be lower than baseline removal rate, provided that (i) total slurry consumption in the temperature-controlled process is still lower than baseline slurry consumption, and (ii) the throughput of the whole CMP tool is not negatively impacted.
As an alternative approach to determining the modified temperature and flow rate, the control system can determine a reduced polishing flow rate, calculate a reduction in removal rate resulting from the reduced polishing flow rate based on the second function, and calculate a minimum temperature change based on the first function to compensate for the reduction in removal rate.
The control system 200, and the functional operations thereof, can be implemented in digital electronic circuitry, in tangibly-embodied computer software or firmware, in computer hardware, or in combinations of one or more of them. The computer software can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions encoded on a tangible non transitory storage medium for execution by, or to control the operation of, a processor of a data processing apparatus. The electronic circuitry and data processing apparatus can include a general purpose programmable computer, a programmable digital processor, and/or multiple digital processors or computers, as well as be special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).
For the control system to be “configured to” perform particular operations or actions means that the system has installed on it software, firmware, hardware, or a combination of them that in operation cause the system to perform the operations or actions. For one or more computer programs to be configured to perform particular operations or actions means that the one or more programs include instructions that, when executed by data processing apparatus, cause the apparatus to perform the operations or actions.
A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made. Accordingly, other embodiments are within the scope of the following claims.
This application claims priority to U.S. Application Ser. No. 63/045,684, filed on Jun. 29, 2020, the disclosure of which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4450652 | Walsh | May 1984 | A |
4919232 | Lofton | Apr 1990 | A |
5088242 | Lubbering et al. | Feb 1992 | A |
5196353 | Sandhu et al. | Mar 1993 | A |
5478435 | Murphy et al. | Dec 1995 | A |
5597442 | Chen et al. | Jan 1997 | A |
5643050 | Chen | Jul 1997 | A |
5709593 | Guthrie | Jan 1998 | A |
5722875 | Iwashita et al. | Mar 1998 | A |
5738574 | Tolles et al. | Apr 1998 | A |
5762544 | Zuniga et al. | Jun 1998 | A |
5765394 | Rhoades | Jun 1998 | A |
5851135 | Sandhu et al. | Dec 1998 | A |
5851846 | Matsui et al. | Dec 1998 | A |
5868003 | Simas et al. | Feb 1999 | A |
5873769 | Chiou et al. | Feb 1999 | A |
5957750 | Brunelli | Sep 1999 | A |
6000997 | Kao et al. | Dec 1999 | A |
6012967 | Satake et al. | Jan 2000 | A |
6023941 | Rhoades | Feb 2000 | A |
6095898 | Hennofer et al. | Aug 2000 | A |
6121144 | Marcyk et al. | Sep 2000 | A |
6151913 | Lewis et al. | Nov 2000 | A |
6159073 | Wiswesser et al. | Dec 2000 | A |
6257954 | Ng et al. | Jul 2001 | B1 |
6257955 | Springer et al. | Jul 2001 | B1 |
6264789 | Pandey et al. | Jul 2001 | B1 |
6280289 | Wiswesser et al. | Aug 2001 | B1 |
6315635 | Lin | Nov 2001 | B1 |
6399501 | Birang et al. | Jun 2002 | B2 |
6422927 | Zuniga | Jul 2002 | B1 |
6461980 | Cheung et al. | Oct 2002 | B1 |
6494765 | Gitis et al. | Dec 2002 | B2 |
6543251 | Gasteyer, III et al. | Apr 2003 | B1 |
6640151 | Somekh et al. | Oct 2003 | B1 |
6647309 | Bone | Nov 2003 | B1 |
6776692 | Zuniga et al. | Aug 2004 | B1 |
6829559 | Bultman et al. | Dec 2004 | B2 |
7008295 | Wiswesser et al. | Mar 2006 | B2 |
7016750 | Steinkirchner et al. | Mar 2006 | B2 |
7196782 | Fielden et al. | Mar 2007 | B2 |
8349247 | Ueno | Jan 2013 | B2 |
8845391 | Sone et al. | Sep 2014 | B2 |
9005999 | Xu et al. | Apr 2015 | B2 |
9067296 | Ono et al. | Jun 2015 | B2 |
9475167 | Maruyama et al. | Oct 2016 | B2 |
9579768 | Motoshima et al. | Feb 2017 | B2 |
9630295 | Peng et al. | Apr 2017 | B2 |
9782870 | Maruyama et al. | Oct 2017 | B2 |
10035238 | Maruyama et al. | Jul 2018 | B2 |
20010055940 | Swanson | Dec 2001 | A1 |
20020039874 | Hecker et al. | Apr 2002 | A1 |
20020058469 | Pinheiro et al. | May 2002 | A1 |
20020065002 | Handa et al. | May 2002 | A1 |
20030055526 | Avanzino et al. | Mar 2003 | A1 |
20030211816 | Liu et al. | Nov 2003 | A1 |
20040097176 | Cron | May 2004 | A1 |
20050024047 | Miller et al. | Feb 2005 | A1 |
20050042877 | Salfelder et al. | Feb 2005 | A1 |
20050048882 | Kiuchi et al. | Mar 2005 | A1 |
20050211377 | Chen et al. | Sep 2005 | A1 |
20070035020 | Umemoto | Feb 2007 | A1 |
20070238395 | Kimura et al. | Oct 2007 | A1 |
20090258573 | Muldowney et al. | Oct 2009 | A1 |
20100047424 | Cousin et al. | Feb 2010 | A1 |
20100081360 | Xu et al. | Apr 2010 | A1 |
20100227435 | Park et al. | Sep 2010 | A1 |
20100279435 | Xu et al. | Nov 2010 | A1 |
20110159782 | Sone et al. | Jun 2011 | A1 |
20120034846 | Minamihaba et al. | Feb 2012 | A1 |
20120040592 | Chen et al. | Feb 2012 | A1 |
20120190273 | Ono et al. | Jul 2012 | A1 |
20120276816 | Ono | Nov 2012 | A1 |
20130023186 | Motoshima et al. | Jan 2013 | A1 |
20130045596 | Eda et al. | Feb 2013 | A1 |
20140004626 | Xu | Jan 2014 | A1 |
20140024297 | Cahndraeskaran et al. | Jan 2014 | A1 |
20140187122 | Ishibashi | Jul 2014 | A1 |
20150024661 | Peng et al. | Jan 2015 | A1 |
20150196988 | Watanabe | Jul 2015 | A1 |
20150224621 | Motoshima et al. | Aug 2015 | A1 |
20150224623 | Xu et al. | Aug 2015 | A1 |
20170232572 | Brown | Aug 2017 | A1 |
20170239778 | Maruyama | Aug 2017 | A1 |
20170355059 | Benner | Dec 2017 | A1 |
20180236631 | Eto et al. | Aug 2018 | A1 |
20190126428 | Martuyama et al. | May 2019 | A1 |
20190143476 | Wu | May 2019 | A1 |
20200001425 | Huang | Jan 2020 | A1 |
20200001426 | Soundararajan et al. | Jan 2020 | A1 |
20200001427 | Soundararajan et al. | Jan 2020 | A1 |
20200262024 | Chang et al. | Aug 2020 | A1 |
20210046602 | Wu et al. | Feb 2021 | A1 |
20210046603 | Wu et al. | Feb 2021 | A1 |
20210046604 | Wu et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
101500721 | Aug 2009 | CN |
102179757 | Sep 2011 | CN |
207171777 | Apr 2018 | CN |
H11-033897 | Feb 1999 | JP |
2000-015561 | Jan 2000 | JP |
2003-197586 | Jul 2003 | JP |
2004-202666 | Jul 2004 | JP |
2004-306173 | Nov 2004 | JP |
2005-311246 | Nov 2005 | JP |
2007-035973 | Feb 2007 | JP |
2013-042066 | Feb 2013 | JP |
2014-188596 | Oct 2014 | JP |
2015-131361 | Jul 2015 | JP |
2018-030181 | Mar 2018 | JP |
10-2006-0076332 | Jul 2006 | KR |
10-2009-0046468 | May 2009 | KR |
10-2012-0084671 | Jul 2012 | KR |
10-2016-0145305 | Dec 2016 | KR |
10-1816694 | Jan 2018 | KR |
10-2020-0056015 | May 2020 | KR |
201101385 | Jan 2011 | TW |
201304908 | Jan 2013 | TW |
202000368 | Jan 2020 | TW |
WO 199013735 | Nov 1990 | WO |
WO 200058054 | Oct 2000 | WO |
WO 200217411 | Feb 2002 | WO |
WO 2014113220 | Jul 2014 | WO |
Entry |
---|
Banerjee et al., “Post CMP Aqueous and CO2 Cryogenic Cleaning Technologies for Low k and Copper Integration,” CMPUG Symposium, Poster Abstract, Jan. 2015, 2 pages. |
International Search Report and Written Opinion in International Appln. No. PCT/US2021/039007, dated Oct. 18, 2021, 10 pages. |
Sampumo et al., “Pad Surface Thermal Management during Copper Chemical Mechanical Planarization,” Presented Oct. 1, 2015 at lie International Conference on Planarization/CMP Technology, 2015, Sep. 30-Oct. 2, 2015, Session D-4, Chandler, AZ, USA, 24 pages. |
Wu et al., “Pad Surface Thermal Management during Copper Chemical: Mechanical Planarization,” ECS Journal of Solid State Science and Technology, Apr. 2015, 4(7):P206-12. |
Office Action in Taiwanese Appln. No. 110123523, dated Aug. 5, 2022, 14 pages (with English search report). |
Office Action in Indian Appln. No. 202347003540, dated Apr. 6, 2023, 5 pages (with English translation). |
Number | Date | Country | |
---|---|---|---|
20210402553 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
63045684 | Jun 2020 | US |