Field
This disclosure relates to data storage systems. More particularly, the disclosure relates to systems and methods for programming solid-state memory cells.
Description of Related Art
Certain solid-state memory devices, such as flash drives, store information in an array of memory cells constructed with floating gate transistors. Endurance of solid-state memory cells can be affected by temperature, among other factors.
Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of this disclosure. In addition, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure.
While certain embodiments are described, these embodiments are presented by way of example only, and are not intended to limit the scope of protection. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the scope of protection.
The headings provided herein are for convenience only and do not necessarily affect the scope or meaning of the claims. Disclosed herein are example configurations and embodiments relating to controller board layouts in data storage systems.
As used in this application, “non-volatile solid-state memory,” “non-volatile memory,” “NVM,” or variations thereof may refer to solid-state memory such as NAND flash. However, the systems and methods of this disclosure may also be useful in more conventional hard drives and hybrid drives including both solid-state and hard drive components. Solid-state memory may comprise a wide variety of technologies, such as flash integrated circuits, Phase Change Memory (PC-RAM or PRAM), Programmable Metallization Cell RAM (PMC-RAM or PMCm), Ovonic Unified Memory (OUM), Resistance RAM (RRAM), NAND memory, NOR memory, EEPROM, Ferroelectric Memory (Fe RAM), MRAM, or other discrete NVM (non-volatile solid-state memory) chips. The non-volatile solid-state memory arrays or storage devices may be physically divided into planes, blocks, pages, and sectors, as is known in the art. Other forms of storage (e.g., battery backed-up volatile DRAM or SRAM devices, magnetic disk drives, etc.) may additionally or alternatively be used.
The term “page,” or variations thereof, is used herein according to its broad and ordinary meaning. For example, “page” may refer to a block of a physical memory cells, or to the physical memory cells themselves. Furthermore, within a multi-level cell (MLC), “page” may refer to either of upper or lower pages, which may in term be associated with most significant bits (MSB), least significant bits (LSB), or other programming mechanism or scheme.
The present disclosure provides systems and methods for programming solid-state memory devices, wherein temperature information is utilized in adjusting program verify and/or read levels in order to improve data endurance. Multi-level cell (MLC) solid-state memory (e.g., NAND flash) is used in various computing/data storage systems, such as solid-state memory cards and solid-state drives (SSD). As memory technology is increasingly down-sized, data retention and endurance can become increasingly critical specifications in solid-state devices. Various factors can affect data retention and endurance in solid-state drives. For example, when the environmental temperature is higher, program disturb (PD) may become worse, thereby negatively impacting data endurance.
To improve the solid-state memory endurance, various methods and mechanisms may be used, such as, for example, reduced step size for tighter programming state distribution, as well as different programming schemes, such as foggy-fine programming, and the like. However, such solutions may result in undesirably poor performance in, e.g., even page programming, and/or increased memory design complexity.
Certain embodiments disclosed herein provide systems and methods for temperature compensation management during data programming for improving MLC endurance in solid-state memory. In certain embodiments, a system temperature sensor is utilized for temperature compensation management during data programming. When a certain temperature criterion is met, the system may apply temperature compensation to the relevant program verify levels, wherein program verify levels for one or more programming states may be shifted by some amount in order to more evenly distribute the programming states, or margins therebetween, thereby improving memory endurance.
Temperature Compensation Storage System
The data storage device 120 can store data received from the host system 110 such that the data storage device 120 acts as data storage for the host system 110. To facilitate this function, the controller 130 may implement a logical interface. The logical interface can present to the host system memory as a set of logical addresses (e.g., sequential/contiguous addresses) where data can be stored. Internally, the controller 130 can map logical addresses to various physical memory addresses in the non-volatile solid-state storage 140 and/or other memory module(s). Mapping data indicating the mapping of logical addresses to physical memory addresses may be maintained in the data storage device. For example, mapping table data may be stored in non-volatile solid-state storage 140 in order to allow for recreation of mapping tables following a power cycle.
The controller 130 may include one or more memory modules (not shown), such as non-volatile memory (e.g., ROM) and/or volatile memory (e.g., RAM, such as DRAM). In certain embodiments, the controller 130 may be configured to store information, including, for example, operating system(s) code, application code, system tables and/or other data, in the non-volatile solid-state storage 140. On power-up, the controller 130 may be configured to load such data for use in operation of the data storage device.
The controller 130 may receive memory access commands from the host system, including programming commands, and implement such programming commands in the non-volatile memory array using a programming module 136. For example, the programming module 136 may implement a desirable programming scheme suitable for the non-volatile solid-state storage 140. In certain embodiments, the programming module 136 is configured to implement an MLC programming scheme, in which cells of solid-state memory are programmed to store a charge level representative of two or more bits of data. Such a programming scheme is described in further detail below with reference to
Errors in solid-state memory can be caused by a number of conditions. For example, program disturb may result from memory cells not currently being programmed receiving elevated voltage stress, wherein charge may collect on the floating gate of solid-state transistors that causes the cells to appear to be programmed to some degree. Elevated temperature during programming may accelerate disturbance in neighboring cells, thereby increasing program disturb failures and ultimately resulting in higher raw bit-error-rate (RBER) and/or degradation of memory endurance.
In order to reduce the effects of temperature-related program disturb, the programming module 136 and/or other modules of the data storage device 120 may be configured to execute temperature compensation management in connection with the programming of the solid-state storage 140. Such temperature compensation may involve applying offset program verify levels based at least in part on temperature signals provided and/or generated by a temperature sensor module 150 of the data storage device 120. The temperature sensor 150 may be configured to detect temperature levels associated with at least a portion of the solid-state storage device and/or data storage device 120.
MLC Programming
In decoding memory cells, one or more reference voltage levels, referred to herein as “voltage read levels,” may be used to read the cells to determine what charge state the cells belong to.
Programming in an MLC programming scheme may be performed in multiple stages.
In certain embodiments, MLC programming comprises two steps: in a first step, as illustrated in
Following LSB programming, the MSB page may be programmed, as illustrated in
Temperature Compensation
As discussed herein, in certain solid-state memory devices, such as NAND flash memory, device temperature can be a significant factor affecting program disturb and/or program state distribution, particularly after heavy program/erase (P/E) stress. More frequent occurrences of program disturb failures and/or wider program state distribution may degrade the memory endurance. The impact of temperature on program disturb occurrences and program state distributions is illustrated in some of the following figures.
Increased overlap between the erased and ‘A’ states at higher temperatures may result in a smaller margin between such states than exists between the ‘B’ and ‘C’ states and/or ‘C’ and ‘D’ states. In order to compensate for such uneven margins at higher temperatures, certain embodiments disclosed herein provide for offsetting of program verify levels and/or voltage read levels associated with one or more distributions, such as the ‘A’ state distribution and/or ‘B’ state distribution. For example, by offsetting such levels to the right (that is, in the positive voltage direction), the margins between the states may be evened out to some degree.
In certain embodiments, the program verify level associated with the farthest right distribution is not offset, or offset to a lesser degree than the other programming states. Such an offsetting scheme may advantageously result in improved bit error rates.
The offset values Offset-A and Offset B may be calculated or determined in any desirable manner, wherein such calculation or determination is based at least in part on the detected temperature associated with the relevant memory cells. In certain embodiments, a solid-state memory controller maintains a look-up table comprising program verify level offset values, or information indicative of the same, wherein the controller uses detected temperature values and/or program/erase cycling condition data in identifying and retrieving the offset program verify level(s). Furthermore, bit error rate information may additionally, or alternatively, be used to determine offset values. In certain embodiments, program verify offset values/levels may be determined based on substantially real-time calculations, wherein the program verify offset values/levels are a function of one or more of temperature, P/E count, bit error rate, or other factors.
In certain embodiments, in addition to program verify level offset, voltage read levels may also be offset to account for the offset program verify levels. For example, changing program verify levels may result in the system needing to perform read retry in order to find suitable read levels. In an embodiment, read levels are shifted by a factor of 0.5 compared to program verify level shift. That is, where program verify levels are shifted by 1 unit, read levels may be shifted by 0.5 units.
Systems not utilizing program verify level offsetting, as disclosed herein, may experience a greater number of error between the erased and ‘A’ states than between other states of the distribution. As described in detail below, using temperature compensation systems and methods disclosed here, and by taking advantages of tighter voltage distributions at high temperature, the upper page failure rate may be reduced compared to non-compensated high and low-temperature embodiments, and the lower page failures may be comparable to low-temperature embodiments.
Temperature Compensation Process
Certain embodiments disclosed herein provide a temperature compensation management mechanism for improving data endurance in a solid-state memory module by reducing the occurrences of decoding failure at high temperature. One example embodiment of a temperature compensation management process is described as follows: (1) The programming temperature is detected by an on-chip temperature sensor; (2) if the detected programming temperature is higher than certain criteria, such as 25° C. by a certain amount, then the programming of the solid-state memory module may be executed with temperature compensation on the ‘A’ state verify level (VA′) and ‘B’ state verify level (VB′), as illustrated in
VA′=VA+Offset-A; and (1)
VB′=VB+Offset-B; (2)
where Offset-A and Offset-B are the verify level offset for temperature compensation, depending on the detected temperature, and wherein VA and VB are the default program verify levels for the ‘A’ state and ‘B’ state, respectively. The verify level offset for temperature compensation at each different temperature, as well as P/E cycling condition, may be either a pre-determined value, or a variable value based on a function of the detected temperature.
The process 700 involves determining one or more offset program verify levels based on the received temperature information at block 704. The offset program verify levels may be determined in any suitable or desirable manner. For example, the data storage device controller may maintain a table or other data structure that may be cross-referenced with current and/or historical temperature values, P/E cycle data, or other information. For example, when data is programmed in the device, the programming temperature and/or P/E cycle associated with the solid-state memory, or portion thereof, may be recorded in connection with such programming. In certain embodiments, the process 700 involves programming memory cells using the offset voltage verify level(s) at block 706.
If the temperature is greater than the threshold temperature, the process 800 may involve programming memory cells of the one or more solid-state memory arrays using offset program verify level(s), as shows at blocks 808 and 810. Furthermore, the process may involve reading memory cells from the one or more solid-state memory arrays using offset voltage read levels that reflect the offset program verify levels. In certain embodiments, the process 800 provides reduced bit error rate for solid-state memory programmed at relatively high temperature.
Effect of Temperature Compensation
The temperature compensation curve may reflect program verify levels for states ‘A’ and/or ‘B’ that are shifted in the positive voltage direction by some amount. As shown, the intersection point 904 between the erased and ‘A’ states for the temperature compensation curve is at a lower point on the ‘bit count’ axis than the corresponding point 903 for the high-temperature non-compensation curve, thereby indicating a lower RBER for the temper compensation distribution. That is, at high temperature, with the temperature compensation management, the overall upper page read failures and RBER may be reduced because the ‘A’ state and ‘B’ state are programmed with higher verify levels so that the cross point of the erased state and ‘A’ state is lower. Because the margin between the erased and ‘A’ states is significant in upper page decoding, the shifting of the intersection point 904 downward can provide reduced error rate at higher temperature compared to non-compensated embodiments at lower temperatures as well as higher temperatures, is indicated by the relative position of the low-temperature non-compensated intersection point 905.
Furthermore, due to the tighter voltage distribution at high temperature, the higher verify levels with temperature compensation offset may allow for the ‘A’ state and ‘B’ state cross point, as well as the ‘B’ state and ‘C’ state cross point to be at similar levels as the lower-temperature (25° C.) distribution. Therefore, the lower page failures and RBER with temperature compensation may provide performance similar to that of cells exposed to a lower-temperature environment.
Based on the detected programming temperature, the temperature compensation management may be applied on the program verify levels by adding the temperature compensation offset to the trim, or default, verify levels. Through implementation of temperature compensation as disclosed herein, the bit error rate may be reduced, thereby improving the MLC endurance at high temperature.
In certain embodiments, implementation of temperature compensation as described herein may provide an overall net improvement in bit error rate by a factor of approximately 0.2 or greater. Bit error rate performance may depend on P/E cycling. In certain embodiments, P/E count and temperature information are tracked using device firmware. The temperature compensation for different temperatures and different P/E cycle conditions can be characterized and optimized. Temperature compensation management may be implemented by the system whenever the temperature at programming can be detected and/or tracked.
Those skilled in the art will appreciate that in some embodiments, other types of temperature compensation systems can be implemented while remaining within the scope of the present disclosure. In addition, the actual steps taken in the processes discussed herein may differ from those described or shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, and/or others may be added.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of protection. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the protection. For example, the various components illustrated in the figures may be implemented as software and/or firmware on a processor, application-specific integrated circuit (ASIC), field-programmable gate array (FPGA), or dedicated hardware. Also, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Although the present disclosure provides certain preferred embodiments and applications, other embodiments that are apparent to those of ordinary skill in the art, including embodiments which do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. Accordingly, the scope of the present disclosure is intended to be defined only by reference to the appended claims.
All of the processes described above may be embodied in, and fully automated via, software code modules executed by one or more general purpose or special purpose computers or processors. The code modules may be stored on any type of computer-readable medium or other computer storage device or collection of storage devices. Some or all of the methods may alternatively be embodied in specialized computer hardware.
This application is a continuation of U.S. application Ser. No. 14/482,852 filed on Sep. 10, 2014, entitled “TEMPERATURE COMPENSATION MANAGEMENT IN SOLID-STATE MEMORY” to Liang et al., to be issued on Mar. 1, 2016, as U.S. Pat. No. 9,275,741, the disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5982663 | Park | Nov 1999 | A |
6856556 | Hajeck | Feb 2005 | B1 |
7057958 | So et al. | Jun 2006 | B2 |
7126857 | Hajeck | Oct 2006 | B2 |
7430136 | Merry, Jr. et al. | Sep 2008 | B2 |
7447807 | Merry et al. | Nov 2008 | B1 |
7463528 | Mokhlesi et al. | Dec 2008 | B2 |
7502256 | Merry, Jr. et al. | Mar 2009 | B2 |
7509441 | Merry et al. | Mar 2009 | B1 |
7583535 | Sekar et al. | Sep 2009 | B2 |
7596643 | Merry, Jr. et al. | Sep 2009 | B2 |
7653778 | Merry, Jr. et al. | Jan 2010 | B2 |
7685337 | Merry, Jr. et al. | Mar 2010 | B2 |
7685338 | Merry, Jr. et al. | Mar 2010 | B2 |
7685374 | Diggs et al. | Mar 2010 | B2 |
7733712 | Walston et al. | Jun 2010 | B1 |
7765373 | Merry et al. | Jul 2010 | B1 |
7898855 | Merry, Jr. et al. | Mar 2011 | B2 |
7911865 | Incarnati et al. | Mar 2011 | B2 |
7912991 | Merry et al. | Mar 2011 | B1 |
7936603 | Merry, Jr. et al. | May 2011 | B2 |
7962792 | Diggs et al. | Jun 2011 | B2 |
8078918 | Diggs et al. | Dec 2011 | B2 |
8090899 | Syu | Jan 2012 | B1 |
8095851 | Diggs et al. | Jan 2012 | B2 |
8108692 | Merry et al. | Jan 2012 | B1 |
8122185 | Merry, Jr. et al. | Feb 2012 | B2 |
8127048 | Merry et al. | Feb 2012 | B1 |
8135903 | Kan | Mar 2012 | B1 |
8151020 | Merry, Jr. et al. | Apr 2012 | B2 |
8161227 | Diggs et al. | Apr 2012 | B1 |
8166245 | Diggs et al. | Apr 2012 | B2 |
8213255 | Hemink et al. | Jul 2012 | B2 |
8243525 | Kan | Aug 2012 | B1 |
8254172 | Kan | Aug 2012 | B1 |
8261012 | Kan | Sep 2012 | B2 |
8296625 | Diggs et al. | Oct 2012 | B2 |
8312207 | Merry, Jr. et al. | Nov 2012 | B2 |
8316176 | Phan et al. | Nov 2012 | B1 |
8341339 | Boyle et al. | Dec 2012 | B1 |
8375151 | Kan | Feb 2013 | B1 |
8392635 | Booth et al. | Mar 2013 | B2 |
8397107 | Syu et al. | Mar 2013 | B1 |
8407449 | Colon et al. | Mar 2013 | B1 |
8423722 | Deforest et al. | Apr 2013 | B1 |
8433858 | Diggs et al. | Apr 2013 | B1 |
8443167 | Fallone et al. | May 2013 | B1 |
8447920 | Syu | May 2013 | B1 |
8458435 | Rainey, III et al. | Jun 2013 | B1 |
8472274 | Fai et al. | Jun 2013 | B2 |
8478930 | Syu | Jul 2013 | B1 |
8489854 | Colon et al. | Jul 2013 | B1 |
8503237 | Horn | Aug 2013 | B1 |
8521972 | Boyle et al. | Aug 2013 | B1 |
8542537 | Parker | Sep 2013 | B2 |
8549236 | Diggs et al. | Oct 2013 | B2 |
8583835 | Kan | Nov 2013 | B1 |
8601311 | Horn | Dec 2013 | B2 |
8601313 | Horn | Dec 2013 | B1 |
8612669 | Syu et al. | Dec 2013 | B1 |
8612804 | Kang et al. | Dec 2013 | B1 |
8615681 | Horn | Dec 2013 | B2 |
8638602 | Horn | Jan 2014 | B1 |
8639872 | Boyle et al. | Jan 2014 | B1 |
8683113 | Abasto et al. | Mar 2014 | B2 |
8700834 | Horn et al. | Apr 2014 | B2 |
8700950 | Syu | Apr 2014 | B1 |
8700951 | Call et al. | Apr 2014 | B1 |
8706985 | Boyle et al. | Apr 2014 | B1 |
8707104 | Jean | Apr 2014 | B1 |
8713066 | Lo et al. | Apr 2014 | B1 |
8713357 | Jean et al. | Apr 2014 | B1 |
8719531 | Strange et al. | May 2014 | B2 |
8724422 | Agness et al. | May 2014 | B1 |
8725931 | Kang | May 2014 | B1 |
8745277 | Kan | Jun 2014 | B2 |
8751728 | Syu et al. | Jun 2014 | B1 |
8755233 | Nagashima | Jun 2014 | B2 |
8769190 | Syu et al. | Jul 2014 | B1 |
8769232 | Suryabudi et al. | Jul 2014 | B2 |
8775720 | Meyer et al. | Jul 2014 | B1 |
8782327 | Kang et al. | Jul 2014 | B1 |
8788778 | Boyle | Jul 2014 | B1 |
8788779 | Horn | Jul 2014 | B1 |
8788880 | Gosla et al. | Jul 2014 | B1 |
8793429 | Call et al. | Jul 2014 | B1 |
9275741 | Liang | Mar 2016 | B1 |
20090091979 | Shalvi | Apr 2009 | A1 |
20090290432 | Park | Nov 2009 | A1 |
20090310408 | Lee | Dec 2009 | A1 |
20100103726 | Bae | Apr 2010 | A1 |
20100110815 | Lee | May 2010 | A1 |
20100174849 | Walston et al. | Jul 2010 | A1 |
20100250793 | Syu | Sep 2010 | A1 |
20110099323 | Syu | Apr 2011 | A1 |
20110283049 | Kang et al. | Nov 2011 | A1 |
20120260020 | Suryabudi et al. | Oct 2012 | A1 |
20120278531 | Horn | Nov 2012 | A1 |
20120284460 | Guda | Nov 2012 | A1 |
20120324191 | Strange et al. | Dec 2012 | A1 |
20130132638 | Horn et al. | May 2013 | A1 |
20130145106 | Kan | Jun 2013 | A1 |
20130290793 | Booth et al. | Oct 2013 | A1 |
20140059405 | Syu et al. | Feb 2014 | A1 |
20140101369 | Tomlin et al. | Apr 2014 | A1 |
20140104955 | Kwak | Apr 2014 | A1 |
20140115427 | Lu | Apr 2014 | A1 |
20140133220 | Danilak et al. | May 2014 | A1 |
20140136753 | Tomlin et al. | May 2014 | A1 |
20140149826 | Lu et al. | May 2014 | A1 |
20140157078 | Danilak et al. | Jun 2014 | A1 |
20140181432 | Horn | Jun 2014 | A1 |
20140223255 | Lu et al. | Aug 2014 | A1 |
Entry |
---|
Dengtai Zhao, et al., U.S. Appl. No. 14/026,017, filed Sep. 13, 2013, 18 pages. cited by applicant. |
Office Action dated Jul. 17, 2015 from U.S. Appl. No. 14/482,852, 22 pages. |
Notice of Allowance dated Oct. 27, 2015 from U.S. Appl. No. 14/482,852, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20160172051 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14482852 | Sep 2014 | US |
Child | 15053133 | US |