Ternary tungsten-containing resistive thin films

Information

  • Patent Grant
  • 8062977
  • Patent Number
    8,062,977
  • Date Filed
    Friday, January 30, 2009
    15 years ago
  • Date Issued
    Tuesday, November 22, 2011
    13 years ago
Abstract
Heater elements made of high resistivity ternary and quaternary thin films containing three or more of W, C, O, N and Si are provided. The thin films have resistivities at least about 1000 μΩ-cm at 50 to 60 Angstroms. The ternary and quaternary films have improved stability over binary films on anneal. Methods of depositing the thin films are also provided. The methods involve depositing the film from an organometallic tungsten precursor under conditions such that a highly resistive, continuous film is formed.
Description
BACKGROUND

Highly resistive thin films are used as heater elements for various applications. One key application is phase change memory, in which the different electrical resistivity values of the crystalline and amorphous states of chalcogenide glass are used to store data. The amorphous, high resistance state is typically used to represent a binary 0, with the crystalline, low resistance state representing a 1. A heater element is needed to switch a chalcogenide glass memory element from the crystalline phase to the amorphous phase. Thin film resistive heaters are also used in inkjet printers, micro-reactors and other devices.


SUMMARY OF INVENTION

Heater elements made of high resistivity ternary and quaternary thin films containing three or more of W, C, O, N and Si are provided. The thin films have resistivities at least about 1000 μΩ-cm at 50 to 60 Angstroms. The ternary and quaternary films have improved stability over binary films on anneal. Methods of depositing the thin films are also provided. The methods involve depositing the film from an organometallic tungsten precursor under conditions such that a highly resistive, yet electrically conductive continuous thin film is formed.


One aspect of the invention relates to methods of depositing a thin film resistive heater element. In certain embodiments, the methods involve providing a substrate having an exposed conductive region to a deposition chamber; exposing the exposed conductive region to a tungsten-containing organometallic precursor and a reducing agent to thereby deposit a ternary or higher order tungsten-containing film on the conductive region, wherein the film comprises at least two of: carbon, nitrogen, oxygen and silicon, each in an amount of at least 5 atomic percent and wherein the resistivity of the thin film is between about 1000-10000 μΩ-cm at 50 angstroms.


The methods may also involve performing a multiple thin film deposition cycles, each cycle including exposing the tungsten electrode (or other conductive region) to an organometallic precursor and an optional co-reactant to form a saturated layer of the precursor and the co-reactant and/or a product thereof on at least the exposed electrode; and exposing the saturated layer to a hydrogen plasma to form a portion of thin film heater element, said portion comprising tungsten and at least two of carbon, nitrogen, oxygen and silicon. The cycles may be repeated to deposit a tungsten-containing ternary or higher order thin film comprising tungsten and at least two of carbon, nitrogen, oxygen and silicon, said thin film having a resistivity of at least 4000 μΩ-cm at 50 angstroms.


Another aspect of the invention relates to thin film heater elements. In certain embodiments, the thin film heater element is made of tungsten and at least two of carbon, nitrogen, oxygen and silicon, each in an amount of at least 5 atomic percent, and having a resistivity of between about 1000-10000 μΩ-cm at 50 angstroms, or in certain embodiments about 2000-10000 μΩ-cm at 50 angstroms.





BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description can be more fully understood when considered in conjunction with the drawings in which:



FIG. 1 illustrates a cross-sectional view of one embodiment of a phase change memory cell with a resistive heating element.



FIGS. 2A and B are process flow sheets illustrating operations in methods of depositing a ternary or higher order thin film resistive heating element according to certain embodiments.



FIGS. 3A-C illustrate cross-sectional views of a partially fabricated phase change memory cell during various stages of thin film heater element formation according to certain embodiments.



FIGS. 4A and 4B illustrate cross-sectional views various embodiments of a thin film heater element deposited on an electrode.



FIG. 4C illustrates a cross-sectional view of a phase change memory cell with a resistive heating element.



FIG. 5 is a graph showing the composition of an organometallic tungsten film according to an embodiment.



FIG. 6 is a graph showing resistivity as a function of thickness for various WCNO films formed according to certain embodiments.



FIG. 7 is a schematic illustration showing an apparatus suitable for performing the methods described herein.





DETAILED DESCRIPTION
Introduction

In the following description, numerous specific details are set forth in order to provide a thorough understanding of the invention, which pertains to forming tungsten-containing thin film heater elements. Modifications, adaptations or variations of specific methods and of structures shown herein will be apparent to those skilled in the art and are within the scope of this invention.


Thin film resistive heater elements are used in various applications, including ink-jet printers, micro-reactors, and other micro-instruments. One key application employing thin film resistive heater elements is phase change memory. Described herein are ternary, quaternary and higher order tungsten-containing thin film heater elements. The films are deposited from an organometallic tungsten precursor. They have high resistivity, with the resistivity stable on anneal to 900 C. Although the thin film heater elements are described with particular application to phase change memory cells, the heater elements and methods of forming them may also be used in other applications.



FIG. 1 shows a cross-sectional view of a phase change memory cell. The cell includes a conductive layer 110, a lower electrode 130, a phase change material 160, a second electrode 140, and a heater element 150. Lower electrode 130 is in a first dielectric layer 120, and heater element 150 is in a second dielectric layer 170. The cell may be formed on a semiconductor substrate.


Phase change material 160 is typically a chalcogenide glass material, though other materials that are capable of changing from a crystalline to an amorphous state or vice versa upon application or withdrawal of heat may also be used. Because the electrical resistivity of the amorphous state of the chalcogenide material is significantly higher than the crystalline state, the phase change material can be used to store data. The amorphous, highly resistive state is used to represent one bit value (0 or 1) with the crystalline, low resistive state used to represent the other bit value.


Conductive layer 110 may be an address line, e.g., a column line, row line, bit line or word line, used to program or read information stored using the phase change material. The conductive layer may be connected to external addressing circuitry.


The electrodes are made of electrically conductive materials. In the example shown in FIG. 1, the lower electrode 130 is a plug, e.g., a tungsten plug. The first dielectric layer 120 may be silicon oxide, silicon nitride or any other type of electrically insulating material. Second dielectric material 170 is electrically and thermally insulating may be made of the same or different material as dielectric layer 120.


Heater element 150 is a material that generates heat in response to the electrical current passing through the adjacent electrode, lower electrode 130. The resistivity of heater element 150 is high relative to that of electrode 130 to generate heat from the current. In operation a current or voltage pulse is applied to the heater element to generate heat. The heat generated by the heater element heats the phase-change material to a temperature above its crystallization temperature and below its melting temperature to achieve a crystalline state, which typically represents a bit value of 1. To change the phase change material back to its amorphous state, the heater element heats the material above its melting point. The phase change material is then quenched to achieve an amorphous state, which typically represents a bit value of 0.


Binary films such as WN (tungsten nitride), TiN (titanium nitride) and tantalum nitride are examples of the materials currently used as thin film heater elements. Difficulties with these films for heater elements includes thermal stability on anneal and/or resistivity dependence on temperature. Tungsten nitride for example undergoes a phase transition at temperatures lower than 900 C. Another difficulty is depositing thin films having high resistivity and that are continuous and conducting.


Novel ternary and quaternary tungsten-containing thin film heater elements are provided herein. The thin films have high resisitivity (e.g., around 5000 μΩ-cm for a 50-60 angstrom film). The films are stable on anneal to 900° C. and have electric contact to the underlying surface (e.g., the tungsten plug electrode in FIG. 1). The ternary and quaternary films have better thermal stability on anneal as compared to binary films. The dependence of resistivity on temperature for the ternary and quaternary films is lower than for binary films such as TiN and WN. Also provided are methods of depositing the ternary and quaternary films. The films are deposited from organometallic tungsten precursors, which have been found to produce thin continuous and conducting films.



FIG. 2A is a process flow sheet illustrating operations in a method of depositing a thin film heater element according to certain embodiments. First in an operation 201, a substrate on which the thin film is to be deposited is provided to a deposition chamber. The thin film is generally deposited on a conductive region (e.g., an electrode or a conductive contact to an electrode). The substrate may take various forms. For example, in applications in which the phase change memory is embedded within a complementary metal oxide silicon (CMOS) device, the substrate may be a semiconductor substrate having various films or layers of a partially fabricated integrated circuit. FIG. 3A shows on example of a substrate that may be supplied to the deposition chamber. Conductive layer 310 is on a semiconductor substrate (not shown). Electrode 330 is a tungsten plug, which provides a conductive path from conductive layer 310, and is surrounded by dielectric material 320. Second dielectric layer 370 has been deposited over first dielectric layer 320 and electrode 330, with a hole 352 exposing at least part of electrode 330. Note that the structure shown in FIG. 3A is one example of a structure on which the thin film heater elements described herein may be deposited. The thin film heater elements may be deposited on any desired substrate including partially fabricated micro-electro-mechanical system substrates. In many embodiments, the substrate provided to the deposition has at least an exposed electrode surface, as in FIG. 3A. Providing a substrate to a deposition chamber may involve placing the substrate on a pedestal, chuck or other substrate holder in the deposition chamber, e.g., using a robot or other wafer handling apparatus. In certain embodiments, the substrate may undergo various processing operations in the deposition chamber prior to the thin film deposition, including deposition of other layers, in which case providing the substrate to the chamber may involve keeping it there after a previous process.


Returning to FIG. 2A, the substrate is then exposed to an organometallic precursor and a reducing agent in an operation 203. In certain embodiments, the organometallic precursor is a non-halogen containing organometallic tungsten precursor, with examples including tungsten hexacarbonyl, dicyclopentadienyl dihydrido tungsten, ethylcyclopentadienyl tricarbonylhydrido tungsten, ethylcyclopentadienyl dicarbonyl nitrosyl tungsten. As indicated above, after being reduced, the organometallic tungsten precursor forms a film containing at least two of: W, C, O, N and Si. The C, O, N, or Si components of the film may be introduced into the film from the organometallic precursor or from a coreactant, e.g., a nitrogen-containing co-reactant such as NH3, an oxygen-containing co-reactant such as O2, and a hydrocarbon co-reactant such as C2H6. The reducing agent may be any suitable reducing agent, including hydrogen, a silane, ammonia, a hydrocarbon, etc. The reducing agent may be activated (e.g., atomic hydrogen) or non-activated. In certain embodiments, the carbon, nitrogen and silicon components of the ternary or quaternary film may be in whole or in part introduced by the reducing agent (e.g., using ammonia as a reducing/nitriding agent).


Deposition of the ternary or quaternary film in operation 203 may be performed by a chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), pulsed nucleation layer (PNL), plasma-enhance atomic layer deposition, or ion-induced atomic layer deposition (iALD) process. Deposition continues until the desired film thickness is deposited—for phase change memory cell applications about 50-100 angstroms is generally desired for the thin film heater element. FIG. 3B shows the substrate of FIG. 3A after deposition of the ternary or quaternary film 350.


After the deposition process, an optional anneal process may be performed See 205 in FIG. 2A. Because the deposited film is a ternary or higher order film, it is unlikely to undergo any phase transitions during the anneal process. This is unlike binary films such as tungsten nitride or titanium nitride, which undergo phase transitions at temperatures as low as 600C. Any post-deposition operations required to form the heater element are then performed in an operation 207, such a chemical-mechanical planarization. FIG. 3C shows the example of FIG. 3B, in which excess material 350 on the dielectric layer surface is removed. The phase change material may then be deposited or formed on the heater element by any appropriate method. See 209. Although not indicated in the figure, a nitride liner may be deposited on the heater element prior to deposition of the phase change material.



FIG. 2B shows an example of depositing the ternary or higher order heater element thin film according to a certain embodiment of the method described above. In this embodiment, the film is deposited by alternating cycles of organometallic precursor doses and hydrogen plasma exposure. As with the process shown in FIG. 2A, the process begins by providing the substrate on which the heater element is to be deposited to a deposition chamber (201). In an operation 231, the organometallic precursor is pulsed to form a saturated film on the substrate surface. Although not shown, an optional co-reactant may also be pulsed, either with the organometallic precursor. At this point, the saturated film typically contains tungsten, and at least two of carbon, oxygen, nitrogen and silicon. Although not shown, the chamber may be purged or evacuated at this point. The substrate is then exposed to a hydrogen plasma in an operation 233. The hydrogen plasma reduces the saturated layer, forming the ternary or quaternary film. As discussed further below, the hydrogen plasma controls the composition and resistivity of the deposited film; longer exposure time has been shown to result in more carbide incorporation in the film and a reduction in oxygen and nitrogen. Resistivity is also affected by the exposure time. By tuning the exposure time the resistivity of the deposited film is controlled. Operations 231 and 233 are then repeated as many times as necessary to deposit the desired film thickness. See 235. The process shown in FIG. 2B may be extended to other reducing agents, e.g., ammonia, that may be provided in a plasma.


In the example process scheme depicted in FIGS. 3A-3C, the film is deposited in an inlaid hole in a dielectric layer. For small holes, highly conformal processes such as ALD processes may be preferred for deposition. The process scheme shown in FIGS. 3A-3C is just an example of one of a multitude of possible process sequences in forming a phase change memory cell. The processes described in FIGS. 3A and 3B are not limited to such a sequence. For example, formation of the thin film heater elements is not limited to conformal deposition in holes. Depending on the process scheme, the film may be deposited on a planar surface. FIG. 4A shows an example of a thin film heater element 450 deposited on an electrode 420 and FIG. 4B shows an example of a thin film heater element deposited on an electrode 420 and dielectric material 430. Subsequent process operations, e.g., forming a mask and removing regions of the deposited thin film may be used to form the heater element. It should also be noted that the phase change memory cell shown in FIG. 1 is just an example of such a structure. FIG. 4C shows another example, with lower electrode 422, heater element 452, phase change material 462, and upper electrode 442. Heater element 452 contacts lower electrode 422 and phase change material 462. In this case, the ternary or quaternary tungsten thin film may be deposited conformally on the lower electrode. Regardless of the ultimate shape of the thin film or particular processing scheme used, the thin film may be deposited as described in FIG. 2A or 2B.


Organometallic Tungsten (OMW) Precursors


The thin film resistive heating elements are deposited from organometallic tungsten precursors. The organometallic tungsten (OMW) precursor is typically a halogen-free compound that may contain oxygen and nitrogen. According to various embodiments, OMW precursor may be aliphatic or aryl, including alkyl, alkenyl, alkynyl and phenyl groups. The OMW precursor may also have carbon and/or nitrogen in the form of carbonyl, nitrosyl and amino groups. Specific examples may include tungsten hexacarbonyl, dicyclopentadienyl dihydrido tungsten, ethylcyclopentadienyl tricarbonylhydrido tungsten, ethylcyclopentadienyl dicarbonyl nitrosyl tungsten.


In certain embodiments, the organometallic tungsten precursor may be introduced with a co-reactant, e.g., a carbon or nitrogen containing compound, to tune the composition of the deposited film.


Composition and Properties of Ternary or Quaternary Thin Film Heater Elements


The deposited thin films contain tungsten and at least two of C, O, N, Si, Ge, S, P, B and Al. Other impurities may also be present. In general, in order for an element be considered one of the components of a ternary (three-component) or quaternary (four-component) film (as opposed to an impurity), the element is at least 2 (atomic) percent of the film. FIG. 5 shows a composition of a film deposited from the organometallic tungsten precursor ethylcyclopentadienyl dicarbonyl nitrosyl tungsten. In this example, the film contains about 70% tungsten, 17% carbon and 5% nitrogen. A small amount of oxygen is also present. (The silicon indicated is due to deposition on a silicon oxide substrate). Examples of ternary films are WCO, WCN, WCSi, WNSi, and WNO. Examples of quaternary and higher order films are WCNO, WCNOSi, WCNSi and WCOSi .


In certain embodiments, the as-deposited film composition may be tuned by using a hydrogen or other reducing agent plasma, for example, in an ALD process. It has been found that in an ALD process of alternating pulses of organometallic precursor and H plasma exposure, increasing the plasma dose time increased the amount of carbide, while decreasing the amount of nitrogen and oxygen in the final film. This indicates that the plasma results in converting carbon to carbide, and removing oxygen and nitrogen. In certain embodiments, a co-reactant may also be used in conjunction with the organometallic precursor to tune the film properties.


Thin films for heater elements in phase change memory cells generally require resistivities greater than around 1000 μΩ-cm at 50-60 angstroms, or 5000 μΩ-cm at 50-60 angstroms in certain embodiments, though the required resistivity is dependent on the particular application. (Because resistivity depends on thickness, particularly at the small thicknesses of thin films, resistivity at a particular thickness is discussed as a film property, comparable across different films of different thicknesses). FIG. 6 shows resistivity for three high resistivity quaternary WCNO films, A, B and C, as a function of film thickness. Films A, B and C were deposited from ethylcyclopentadienyl dicarbonyl nitrosyl tungsten using alternate cycles of precursor does and H plasma exposure. Resistivity is shown both pre and post-anneal (400 C O2 anneal for 10 minutes). As can be seen from the figure, the three sets of films (A, B and C) have different resistivity thickness curves. At about 50 angstroms, for example, the resistivity ranges from about 2000 μΩ-cm to about 10000 μΩ-cm. By controlling the plasma dose, the film resistivity can be controlled as desired within this range. Note that the resistivity is measurable at 15 angstroms (and other experiments show that sheet resistance of a film deposited from the same precursor is measurable as low as 10 angstroms), showing that the films are continuous at these very low thicknesses.


Experimental

Three sets of WCNO films were deposited from an ethylcyclopentadienyl dicarbonyl nitrosyl tungsten precursor, alternating pulses of the precursor with a hydrogen plasma. The films were deposited on a modified Altus 200 mm apparatus available from Novellus Systems. Resisitivity of various thicknesses of film was measured, both pre- and post-anneal. Results are presented in FIG. 6.


Apparatus


The methods of the invention may be carried out in various types of deposition apparatus available from various vendors. Examples of suitable apparatus include a Novellus Concept 2 Altus, a Concept-2 Altus-S, a Concept 3 Altus deposition systems, all available from Novellus Systems, Inc. of San Jose, Calif., or any of a variety of other commercially available CVD processing systems. In some cases, the process can be performed on multiple deposition stations sequentially. See, e.g., U.S. Pat. No. 6,143,082, which is incorporated herein by reference for all purposes. In some embodiments, the thin film deposition process is performed at a first station or at first and second stations that are one of two, four, five or even more deposition stations positioned within a single deposition chamber. The reducing gases and the organometallic precursor may be alternately introduced to the surface of the semiconductor substrate at the first station, using an individual gas supply system that creates a localized atmosphere at the substrate surface.



FIG. 7 is a block diagram of a processing system suitable for conducting tungsten thin film deposition processes in accordance with embodiments of the invention. The system 700 includes a transfer module 703. The transfer module 703 provides a clean, pressurized environment to minimize the risk of contamination of substrates being processed as they are moved between the various reactor modules. Mounted on the transfer module 703 is a multi-station reactor 709 capable of performing PNL deposition and CVD according to embodiments of the invention. Chamber 709 may include multiple stations 711, 713, 715, and 717 that may sequentially perform these operations. For example, chamber 709 could be configured such that station 711 performs PNL deposition, station 713 performs multi-pulse reducing agent treatment, and stations 715 and 717 perform CVD.


Also mounted on the transfer module 703 may be one or more single or multi-station modules 707 capable of performing plasma or chemical (non-plasma) pre-cleans. The module may also be used for various other treatments, e.g., post-deposition nitriding treatments. The system 700 also includes one or more (in this case two) wafer source modules 701 where wafers are stored before and after processing. An atmospheric robot (not shown) in the atmospheric transfer chamber 719 first removes wafers from the source modules 701 to loadlocks 721. A wafer transfer device (generally a robot arm unit) in the transfer module 703 moves the wafers from loadlocks 721 to and among the modules mounted on the transfer module 703.


In certain embodiments, a system controller is employed to control process conditions during deposition. The controller will typically include one or more memory devices and one or more processors. The processor may include a CPU or computer, analog and/or digital input/output connections, stepper motor controller boards, etc.


The controller may control all of the activities of the deposition apparatus. The system controller executes system control software including sets of instructions for controlling the timing, mixture of gases, chamber pressure, chamber temperature, wafer temperature, RF power levels, wafer chuck or pedestal position, and other parameters of a particular process. Other computer programs stored on memory devices associated with the controller may be employed in some embodiments.


Typically there will be a user interface associated with the controller. The user interface may include a display screen, graphical software displays of the apparatus and/or process conditions, and user input devices such as pointing devices, keyboards, touch screens, microphones, etc.


The computer program code for controlling the deposition and other processes in a process sequence can be written in any conventional computer readable programming language: for example, assembly language, C, C++, Pascal, Fortran or others. Compiled object code or script is executed by the processor to perform the tasks identified in the program.


The controller parameters relate to process conditions such as, for example, process gas composition and flow rates, temperature, pressure, plasma conditions such as RF power levels and the low frequency RF frequency, cooling gas pressure, and chamber wall temperature. These parameters are provided to the user in the form of a recipe, and may be entered utilizing the user interface.


Signals for monitoring the process may be provided by analog and/or digital input connections of the system controller. The signals for controlling the process are output on the analog and digital output connections of the deposition apparatus.


The system software may be designed or configured in many different ways. For example, various chamber component subroutines or control objects may be written to control operation of the chamber components necessary to carry out the inventive deposition processes. Examples of programs or sections of programs for this purpose include substrate positioning code, process gas control code, pressure control code, heater control code, and plasma control code.


A substrate positioning program may include program code for controlling chamber components that are used to load the substrate onto a pedestal or chuck and to control the spacing between the substrate and other parts of the chamber such as a gas inlet and/or target. A process gas control program may include code for controlling gas composition and flow rates and optionally for flowing gas into the chamber prior to deposition in order to stabilize the pressure in the chamber. A pressure control program may include code for controlling the pressure in the chamber by regulating, e.g., a throttle valve in the exhaust system of the chamber. A heater control program may include code for controlling the current to a heating unit that is used to heat the substrate. Alternatively, the heater control program may control delivery of a heat transfer gas such as helium to the wafer chuck.


Examples of chamber sensors that may be monitored during deposition include mass flow controllers, pressure sensors such as manometers, and thermocouples located in pedestal or chuck. Appropriately programmed feedback and control algorithms may be used with data from these sensors to maintain desired process conditions.


The foregoing describes implementation of embodiments of the invention in a single or multi-chamber semiconductor processing tool.

Claims
  • 1. A method of depositing a thin film comprising: providing a substrate having an exposed conductive region to a deposition chamber; exposing the exposed conductive region to a tungsten-containing organometallic precursor and a reducing agent to thereby deposit a ternary or higher order tungsten-containing film on the conductive region, wherein the film comprises at least two of: carbon, nitrogen, oxygen silicon, germanium, sulfur, phosphorus, boron and aluminum, each in an amount of at least 1 atomic percent and wherein the resistivity of the thin film is between about 1000-10000 μΩ-cm at 50 angstroms.
  • 2. The method of claim 1 wherein the film comprises at least two of carbon, nitrogen, oxygen silicon, germanium, sulfur, phosphorus, boron and aluminum, each in an amount of at least 5 atomic percent.
  • 3. The method of claim 1 wherein the resistivity of the thin film is at least about 5000 μΩ-cm at 50 angstroms.
  • 4. The method of claim 1 further comprising forming a phase change material adjacent to the thin film.
  • 5. The method of claim 1 wherein exposing the conductive region to a tungsten-containing precursor and a reducing agent comprises multiple cycles of alternately exposing the conductive region to the organometallic tungsten precursor and a hydrogen plasma.
  • 6. The method of claim 1 wherein the thickness of the deposited ternary or higher order tungsten-containing thin film is between about 50 and 100 angstroms.
  • 7. The method of claim 1 wherein the conductive region is at least part of a tungsten electrode.
  • 8. The method of claim 1 further comprising depositing a nitride liner on the ternary or higher order thin film.
  • 9. The method of claim 1 wherein the tungsten-containing film is a WCNO film.
  • 10. The method of claim 1 wherein the resistivity is between about 4000 and 6000 μΩ-cm at 50 angstroms.
  • 11. The method of claim 1 further comprising annealing the ternary or higher order tungsten-containing film at a temperature of up to 900 C.
  • 12. The method of claim 1, further comprising receiving an indication or determining that the resistivity of the film deposited from the organometallic precursor under a control set of operations is lower or higher than the desired resistivity; and increasing or decreasing hydrogen plasma exposure time based on that determination or indication.
CROSS REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Provisional Patent Application No. 61/025,237 filed Jan. 31, 2008, titled TERNARY TUNGSTEN-CONTAINING THIN FILM HEATER ELEMENTS.

US Referenced Citations (99)
Number Name Date Kind
4746375 Lacovangelo May 1988 A
4804560 Shioya et al. Feb 1989 A
5028565 Chang et al. Jul 1991 A
5227329 Kobayashi et al. Jul 1993 A
5250329 Miracky et al. Oct 1993 A
5326723 Petro et al. Jul 1994 A
5391394 Hansen Feb 1995 A
5661080 Hwang et al. Aug 1997 A
5726096 Jung Mar 1998 A
5795824 Hancock Aug 1998 A
5804249 Sukharev et al. Sep 1998 A
5817576 Tseng et al. Oct 1998 A
5926720 Zhao et al. Jul 1999 A
5956609 Lee et al. Sep 1999 A
6001729 Shinriki et al. Dec 1999 A
6017818 Lu Jan 2000 A
6037263 Chang Mar 2000 A
6066366 Berenbaum et al. May 2000 A
6099904 Mak et al. Aug 2000 A
6107200 Takagi et al. Aug 2000 A
6143082 McInerney et al. Nov 2000 A
6174812 Hsiung et al. Jan 2001 B1
6206967 Mak et al. Mar 2001 B1
6245654 Shih et al. Jun 2001 B1
6265312 Sidhwa et al. Jul 2001 B1
6277744 Yuan et al. Aug 2001 B1
6294468 Gould-Choquette et al. Sep 2001 B1
6297152 Itoh et al. Oct 2001 B1
6309966 Govindarajan et al. Oct 2001 B1
6355558 Dixit et al. Mar 2002 B1
6404054 Oh et al. Jun 2002 B1
6465347 Ishizuka et al. Oct 2002 B2
6551929 Kori et al. Apr 2003 B1
6566250 Tu et al. May 2003 B1
6566262 Rissman et al. May 2003 B1
6607976 Chen et al. Aug 2003 B2
6635965 Lee et al. Oct 2003 B1
6706625 Sudijono et al. Mar 2004 B1
6720261 Anderson et al. Apr 2004 B1
6740585 Yoon et al. May 2004 B2
6791102 Johnson et al. Sep 2004 B2
6797340 Fang et al. Sep 2004 B2
6844258 Fair et al. Jan 2005 B1
6861356 Matsuse et al. Mar 2005 B2
6902763 Elers et al. Jun 2005 B1
6905543 Fair et al. Jun 2005 B1
6908848 Koo Jun 2005 B2
6936538 Byun Aug 2005 B2
6939804 Lai et al. Sep 2005 B2
6962873 Park Nov 2005 B1
7005372 Levy et al. Feb 2006 B2
7141494 Lee et al. Nov 2006 B2
7157798 Fair et al. Jan 2007 B1
7196351 Chiang et al. Mar 2007 B2
7211144 Lu et al. May 2007 B2
7211819 Karpov May 2007 B2
7220671 Simka et al. May 2007 B2
7262125 Wongsenakhum et al. Aug 2007 B2
7416979 Yoon et al. Aug 2008 B2
7429402 Gandikota et al. Sep 2008 B2
7589017 Chan et al. Sep 2009 B2
7655567 Gao et al. Feb 2010 B1
7691749 Levy et al. Apr 2010 B2
7754604 Wongsenakhum et al. Jul 2010 B2
7772114 Chan et al. Aug 2010 B2
7955972 Chan et al. Jun 2011 B2
20010008808 Gonzalez Jul 2001 A1
20010014533 Sun Aug 2001 A1
20010015494 Ahn Aug 2001 A1
20010044041 Badding et al. Nov 2001 A1
20020090796 Desai et al. Jul 2002 A1
20020177316 Miller et al. Nov 2002 A1
20030059980 Chen et al. Mar 2003 A1
20030104126 Fang et al. Jun 2003 A1
20030127043 Lu et al. Jul 2003 A1
20040014315 Lai et al. Jan 2004 A1
20040044127 Okubo et al. Mar 2004 A1
20040142557 Levy et al. Jul 2004 A1
20040202786 Wongsenakhum et al. Oct 2004 A1
20040206267 Sambasivan et al. Oct 2004 A1
20050031786 Lee et al. Feb 2005 A1
20050059236 Nishida et al. Mar 2005 A1
20050136594 Kim Jun 2005 A1
20060094238 Levy et al. May 2006 A1
20070099420 Dominguez et al. May 2007 A1
20070190780 Chung et al. Aug 2007 A1
20080081127 Thompson et al. Apr 2008 A1
20080124926 Chan et al. May 2008 A1
20080254623 Chan et al. Oct 2008 A1
20080280438 Lai et al. Nov 2008 A1
20080285335 Elmegreen et al. Nov 2008 A1
20090149022 Chan et al. Jun 2009 A1
20090163025 Humayun et al. Jun 2009 A1
20100035427 Chan et al. Feb 2010 A1
20100055904 Chen et al. Mar 2010 A1
20100159694 Chandrashekar et al. Jun 2010 A1
20100267230 Chandrashekar et al. Oct 2010 A1
20100267235 Chen et al. Oct 2010 A1
20100273327 Chan et al. Oct 2010 A1
Foreign Referenced Citations (1)
Number Date Country
WO0127347 Apr 2001 WO
Provisional Applications (1)
Number Date Country
61025237 Jan 2008 US