1. Technical Field
The present disclosure relates to electrosurgical instruments, systems and methods of making the same. More particularly, the present disclosure relates to conductivity probes for sensing directional attributes of tissue and methods of making the same.
2. Discussion of Related Art
It has been observed that biological tissue has different thermal and/or electrical conductivities in different directions.
Thermal conductivity of biological tissues is dependent on the particular type of biological tissue and on the composition of the biological tissue. Different biological tissues exhibit different and/or unique thermal conductivity based on factors such as tissue density, vascularization, age, direction and distance to major blood vessels, etc. Additionally, different biological tissues may exhibit a different and/or unique thermal conductivity in different directions.
Electrical conductivity is not only determined by tissue type and composition, but also by other externally applied physical and chemical influences during thermal treatment, such as, for example, temperature inducement and saline pretreatment.
Knowing the thermal and/or electrical conductivity of tissue may be used by a surgeon in a number of applications, including, but not limited to, predicting the effect of thermal treatment on given tissue, identifying the location and size of internal structures, and enhancing the resolution of traditional imaging devices.
Accordingly, a need exists for thermal and electrical conductivity probes for sensing the directional attributes of tissue and methods of making the same.
A system for sensing attributes of tissue in at least one direction is provided. The system includes a thermal conductivity probe including a sensor configured to measure thermal conductivity in the target tissue in at least one direction, a power supply operatively connected to the thermal conductivity probe and being configured to supply power to the thermal conductivity probe, a multimeter operatively connected the thermal conductivity probe; an electrical conductivity probe including a sensor configured to measure electrical conductivity in the target tissue in at least one direction, an impedance analyzer to measure the tissue impedance (or equivalently electrical conductivity) and a computer operatively connected to at least one of the multimeter and impedance analyzer. In the system, the thermal conductivity probe and the electrical conductivity probe may be integrated into a single probe.
Also provided is a thermal conductivity probe for sensing directional attributes of tissue. The probe includes a body and a sensor operably connected to the body. The sensor includes a line heater having one or more resistive heating elements, a detector having one or more detector elements, and a substrate for supporting the line heater and the detector and to provide thermal conductivity contrast. The body of the probe may define a catheter configured for insertion into tissue. The pair of outer detector elements may form resistance temperature detector elements (RTD). The pair of inner heating elements may be substantially parallel. The probe may further include an array of sensors.
A method of making a thermal conductivity probe is also provided. The method includes providing an inert substrate, depositing a first layer on the substrate, depositing a second layer on the first layer, generating a first pattern in the first and second layers, generating a second pattern in the second layer, and depositing an insulative layer over the first and second layers. The first and second layers may be deposited using evaporation techniques. The first layer may be selected from the group consisting of titanium (Ti), titanium tungsten (TiW) and platinum (Pt). The second layer may be selected from the group consisting of gold (AU), iridium (Ir) and platinum-iridium (Pt-Ir). The first layer may measure about 50 nm thick. The second layer may measure about 500 nm thick. The first and second patterns may be generated using an etching technique.
In addition, an electrical conductivity probe for measuring attributes of tissue is provided. The probe includes a body and a sensor for sensing electrical conductivity. The sensor includes a pair of electrodes, a pair of bonding pads coupled to the pair of electrodes by a pair of electrical leads, and a substrate for supporting the electrodes, boding pads and leads. The pair of electrodes may be parallel. The body of the probe may define a catheter configured for insertion into tissue.
The sensor may include insulating material at least partially overlying the pair of electrodes, and an exposed region formed in the insulation and associated with each electrode.
A method of making an electrical conductivity probe is also provided. The method includes providing a substrate, depositing an adhesive layer on the substrate, depositing a conductive layer on the adhesive layer, generating a pattern on the adhesive layer and the conductive layer, and depositing an insulating layer over the conductive layer and the pattern. The adhesive layer and conductive layer may be deposited using evaporation techniques. The pattern may define first and second electrodes. The adhesive layer may be selected from the group consisting of titanium (Ti), titanium tungsten (TiW) and platinum (Pt), and may measure about 30 nm thick. The conductive layer selected from the group consisting of gold (AU), iridium (Ir) and platinum-iridium (Pt-Ir), and may measure about 330 nm thick. The insulative layer may be spun onto the conductive layer and pattern.
Embodiments of the present disclosure are disclosed herein with reference to the drawings, wherein:
The devices, systems and methods of the present disclosure provide for the sensing of directional attributes of tissue in order to help in predicting and/or planning thermal therapy procedures. In the drawings and in the description which follows, the term “proximal”, as is traditional, will refer to the end of the system, or component thereof, which is closest to the operator, and the term “distal” will refer to the end of the system, or component thereof, which is more remote from the operator.
As used herein, the term “thermal treatment” is understood to include and is not limited to radio-frequency (RF) treatment, laser treatment, microwave treatment and cryoablation treatment.
1. Sensing System
With reference to
As seen in
2. Thermal Conductivity Probe
A micro thin-film thermal conductivity probe has been developed to measure thermal conductivity of biological tissues based on the principle of traditional hot-wire method. An embodiment of the design of the microprobe of the present disclosure includes a resistive line heating element on a substrate and a Resistance Temperature Detector (RTD) based temperature sensor.
With continued reference to
Probe 200 further includes a microprobe sensor 220 suitably secured to catheter 210. Microprobe sensor 220 may be disposed at least partially within catheter 210, on an outer surface of catheter 210, imbedded in the outer surface of catheter 210 and/or according to any other suitable method. As seen in
In one embodiment, line heating element 222 has a width “W1” of approximately 100 microns (μm) and a length “L1” of approximately 5000 microns (μm). Meanwhile, detector element 224 may have a width “W2” of approximately 100 μm and a length of approximately 1500 μm. The dimensions disclosed herein are representative, it is envisioned and within the scope of the present disclosure for the dimensions to have any suitable value, such as, for example, having lengths that are approximately 3.0 times greater than the lengths “L1”, “L2” specified or having lengths that are approximately 0.2 times less than the lengths specified. The width “W” of the substrate 226 is greater than the widths “W1” and “W2”. It is contemplated that the lengths selected, for example, may be chosen far optimal use in a specific target tissue, e.g., liver, lung, kidney, muscle, etc.
As best seen in
Turning now to
As seen in
As seen in
Wires (not shown) may be welded, soldered, ball bonded, epoxied, etc. to each bonding pad 202, 204 and microprobe sensor 220 may then be placed within elongate body 210 (see
3. Method of Using Thermal Conductivity Probe
With reference to
According to a method of the present disclosure, a 5V output, generated by power source “PS”, is used to provide a constant current through heating elements 222a, 222b. A resistance change of the RTD elements 224a, 224b, due to the transient temperature elevation, is measured by multimeter “M”, an impedance analyzer or the like. Computer “C” is used to monitor, record and acquire the data and/or readings generated by microprobe sensor 220.
The transient time response of the RTD elements 224a, 224b depends on the thermal conductivity of the surrounding medium and the substrate. A theoretical analysis of the transient conduction, for a configuration where the heater source is sandwiched between two materials (the substrate and the surrounding medium), shows that the composite thermal conductivity calculated from the temperature versus the logarithm of time response is simply an average of the thermal conductivity of the two materials.
The equation for the calculation is:
In use, catheter 210 is inserted into the target tissue “T” and microprobe sensor 220 is activated to determine the thermal conductivity of said target tissue. Thermal conductivity probe 200 is adapted to measure thermal conductance Keff as represented by the following equation, as commonly known in the field:
where:
4. Electrical Conductivity Probe
With reference to
Probe 300 further includes a sensor 320 suitably secured to catheter 310. Sensor 320 may be disposed at least partially within catheter 310, on an outer surface of catheter 310, imbedded in the outer surface of catheter 310 and/or according to any other suitable.
As seen in
In one embodiment, each electrode 322a, 322b has a width “W3” of approximately 150 μm and a length “L3” of approximately 2,000 μm. While the dimensions disclosed herein are representative or exemplary, it is envisioned and within the scope of the present disclosure for the dimensions to have any suitable value, such as, for example, having lengths that are approximately 3.0 times greater than the lengths specified or having lengths that are approximately 0.2 times less than the lengths specified. It is contemplated that the lengths selected, for example, may be chosen for optimal use in a specific target tissue, e.g., liver, lung, kidney, muscle, etc. As best seen in
Turning now to
As seen in
Wires (not shown) may be welded, soldered, ball bonded, epoxied, etc. to each bonding pad 304 and sensor 320 may then be paced within elongate body 310 (see
5. Method of Using Electrical Conductivity Probe
With reference to
According to a method of the present disclosure, a 500 kHz output frequency, generated by multimeter “M”, is used to provide electrosurgical energy to electrodes 322a, 322b. A return pad or electrode (not shown) is employed to complete a circuit with electrodes 322a, 322b, via tissue “T”. The computer “C” is used to monitor, record and acquire the data and/or readings generated by sensor 320.
Before use, the impedance values by the micro electrical probe are calibrated in different salinity levels against the standard four-electrode probe which provides a direct measure of the electrical conductivity. A calibration curve is generated that relate the impedance value given by the micro electrical probe to the electrical conductivity measured by the standard four-electrode probe at different salinity levels. The electrical conductivity can be calculated by comparing the impedance value with the calibration curve. In use, catheter 310 is inserted into the target tissue “T” and sensor 320 is activated to determine the electrical conductivity of said target tissue “T”.
While each of the above embodiments illustrates a single sensor 220, 320 associated with each respective device 200, 300, in accordance with the present disclosure, devices 200, 300 may employ or include at least two or multiple sensors 220, 320 disposed around a circumference thereof. As seen in
As seen in
According to an alternate embodiment of the present disclosure, as seen in
As seen in
As seen in
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
The present application is a divisional of, and claims priority to, U.S. patent application Ser. No. 12/016,754filed Jan. 18, 2008, published as U.S. patent application US 2008/0175299 A1 by Mahajan et al., entitled “THERMAL AND ELECTRICAL CONDUCTIVITY PROBES AND METHODS OF MAKING THE SAME”, now U.S. Pat. No. 7,951,144, entitled “THERMAL AND ELECTRICAL CONDUCTIVITY PROBES AND METHODS OF MAKING THE SAME”, issued on May 31, 2011, which claims the benefit of and priority to U.S. Provisional Application Ser. No. 60/881,238, filed on Jan. 19, 2007, the entire content of each of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
D223367 | Kountz | Apr 1972 | S |
4038975 | Vrana et al. | Aug 1977 | A |
4291708 | Frei et al. | Sep 1981 | A |
D263020 | Rau, III | Feb 1982 | S |
D266842 | Villers et al. | Nov 1982 | S |
D278306 | McIntosh | Apr 1985 | S |
4537203 | Machida | Aug 1985 | A |
4617939 | Brown et al. | Oct 1986 | A |
4719441 | Horn | Jan 1988 | A |
4729385 | Juncosa et al. | Mar 1988 | A |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
4902138 | Goeldner et al. | Feb 1990 | A |
4955383 | Faupel | Sep 1990 | A |
4960109 | Lele | Oct 1990 | A |
4966158 | Honma et al. | Oct 1990 | A |
5035514 | Newman | Jul 1991 | A |
5184620 | Cudahy et al. | Feb 1993 | A |
5184624 | Brown et al. | Feb 1993 | A |
5217014 | Hahn et al. | Jun 1993 | A |
5320101 | Faupel et al. | Jun 1994 | A |
5353802 | Ollman | Oct 1994 | A |
D354218 | Van de Peer | Jan 1995 | S |
5630426 | Eggers et al. | May 1997 | A |
5704355 | Bridges | Jan 1998 | A |
5800350 | Coppleson et al. | Sep 1998 | A |
5959241 | Sriram et al. | Sep 1999 | A |
6026323 | Skladnev et al. | Feb 2000 | A |
D424693 | Pruter | May 2000 | S |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
6190378 | Jarvinen | Feb 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6467951 | Ghoshal | Oct 2002 | B1 |
D487039 | Webster et al. | Feb 2004 | S |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
6845264 | Skladnev et al. | Jan 2005 | B1 |
D525361 | Hushka | Jul 2006 | S |
D531311 | Guerra et al. | Oct 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
D535027 | James et al. | Jan 2007 | S |
D541418 | Schechter et al. | Apr 2007 | S |
D541938 | Kerr et al | May 2007 | S |
D564662 | Moses et al. | Mar 2008 | S |
D576932 | Strehler | Sep 2008 | S |
D594736 | Esjunin | Jun 2009 | S |
D594737 | Kelly et al. | Jun 2009 | S |
D606203 | Husheer et al. | Dec 2009 | S |
D613412 | DeCarlo | Apr 2010 | S |
D634010 | DeCarlo | Mar 2011 | S |
20020173731 | Martin et al. | Nov 2002 | A1 |
20030097130 | Muller et al. | May 2003 | A1 |
20040015162 | McGaffigan | Jan 2004 | A1 |
20040037343 | Tanaka et al. | Feb 2004 | A1 |
20050090881 | Frank et al. | Apr 2005 | A1 |
20070049915 | Haemmerich et al. | Mar 2007 | A1 |
20070060921 | Janssen et al. | Mar 2007 | A1 |
20080025366 | McBurney | Jan 2008 | A1 |
20080161797 | Wang et al. | Jul 2008 | A1 |
20080177199 | Podhajsky | Jul 2008 | A1 |
20100118916 | Thomsen, III | May 2010 | A1 |
20110118721 | Brannan | May 2011 | A1 |
20110118730 | DeCarlo | May 2011 | A1 |
20110118731 | Ladtkow | May 2011 | A1 |
20110152853 | Manley et al. | Jun 2011 | A1 |
20110172659 | Brannan | Jul 2011 | A1 |
20110184403 | Brannan | Jul 2011 | A1 |
20110190754 | Kim et al. | Aug 2011 | A1 |
20110196362 | Rossetto | Aug 2011 | A1 |
20110203104 | Mahajan et al. | Aug 2011 | A1 |
20110208177 | Brannan | Aug 2011 | A1 |
20110208180 | Brannan | Aug 2011 | A1 |
20110208184 | Brannan | Aug 2011 | A1 |
20110213351 | Lee et al. | Sep 2011 | A1 |
20110213352 | Lee et al. | Sep 2011 | A1 |
20110213353 | Lee et al. | Sep 2011 | A1 |
20110218527 | Prakash et al. | Sep 2011 | A1 |
20110224504 | Ladtkow et al. | Sep 2011 | A1 |
20110238053 | Brannan et al. | Sep 2011 | A1 |
20110238054 | Kim et al. | Sep 2011 | A1 |
20110238055 | Kim et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
1103807 | Jun 1995 | CN |
390937 | Mar 1924 | DE |
1099658 | Feb 1961 | DE |
1139927 | Nov 1962 | DE |
1149832 | Jun 1963 | DE |
1439302 | Jan 1969 | DE |
2439587 | Feb 1975 | DE |
2455174 | May 1975 | DE |
2407559 | Aug 1975 | DE |
2415263 | Oct 1975 | DE |
2429021 | Jan 1976 | DE |
2460481 | Jun 1976 | DE |
2602517 | Jul 1976 | DE |
2504280 | Aug 1976 | DE |
2627679 | Jan 1977 | DE |
2540968 | Mar 1977 | DE |
2820908 | Nov 1978 | DE |
2803275 | Aug 1979 | DE |
2823291 | Nov 1979 | DE |
2946728 | May 1981 | DE |
3143421 | May 1982 | DE |
3045996 | Jul 1982 | DE |
3120102 | Dec 1982 | DE |
3510586 | Oct 1986 | DE |
3604823 | Aug 1987 | DE |
8712328 | Mar 1988 | DE |
3711511 | Jun 1988 | DE |
3904558 | Aug 1990 | DE |
3942998 | Jul 1991 | DE |
4238263 | May 1993 | DE |
4303882 | Aug 1994 | DE |
4339049 | May 1995 | DE |
29616210 | Jan 1997 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19717411 | Nov 1998 | DE |
19751108 | May 1999 | DE |
19801173 | Jul 1999 | DE |
19848540 | May 2000 | DE |
10224154 | Dec 2003 | DE |
10310765 | Sep 2004 | DE |
10328514 | Mar 2005 | DE |
102004022206 | Dec 2005 | DE |
202005015147 | Mar 2006 | DE |
0 246 350 | Nov 1987 | EP |
0 521 264 | Jan 1993 | EP |
0 556 705 | Aug 1993 | EP |
0 558 429 | Sep 1993 | EP |
0 836 868 | Apr 1998 | EP |
0 882 955 | Dec 1998 | EP |
1 159 926 | May 2001 | EP |
0 648 515 | Apr 2003 | EP |
179 607 | Nov 1906 | FR |
1 275 415 | Oct 1961 | FR |
1 347 865 | Nov 1963 | FR |
2 235 669 | Jan 1975 | FR |
2 276 027 | Jan 1976 | FR |
2 313 708 | Dec 1976 | FR |
2 502 935 | Oct 1982 | FR |
2 517 953 | Jun 1983 | FR |
2 573 301 | May 1986 | FR |
2 862 813 | May 2005 | FR |
2 864 439 | Jul 2005 | FR |
5-5106 | Jan 1993 | JP |
05-40112 | Feb 1993 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
08056955 | Mar 1996 | JP |
08252263 | Oct 1996 | JP |
09000492 | Jan 1997 | JP |
09010223 | Jan 1997 | JP |
11244298 | Sep 1999 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001008944 | Jan 2001 | JP |
2001029356 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
2001231870 | Aug 2001 | JP |
2008142467 | Jun 2008 | JP |
166452 | Nov 1964 | SU |
401367 | Nov 1974 | SU |
727201 | Apr 1980 | SU |
WO9944520 | Sep 1999 | WO |
WO0054682 | Sep 2000 | WO |
WO0070333 | Nov 2000 | WO |
WO2004052182 | Jun 2004 | WO |
WO2010035831 | Apr 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20110203104 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
60881238 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12016754 | Jan 2008 | US |
Child | 13098199 | US |