1. Field of the Invention
This invention relates generally to electronic devices, and more particularly to a system for providing thermal management of portable electronic devices.
2. Description of the Related Art
Handheld computing devices, such as smart phones, tablet computers and e-book readers, present significant thermal management challenges. There is ongoing user demand for devices that are not only smaller form factor for greater portability but also powerful enough to handle video and other computing intensive tasks. The provision for significant computing power in a relatively small form device often translates into the need for significant thermal management of the heat dissipating devices.
One common solution used to transfer heat from a processor in a small form device includes the use of a heat spreader that is in thermal contact with the processor. The heat spreader is in turn, in thermal contact with a heat exchanger via a heat pipe or other structure. The heat exchanger often includes an air mover such as a fan. One example of such a conventional device is the model LE1700 manufactured by Motion Computing, Inc. The LE1700 includes a very thin fan connected thermally to a heat spreader mounted to the microprocessor by way of a heat pipe. The fan vents air to the external ambient environment by way of a small vent. An Acer model Iconia is another conventional example.
There is an ongoing push to reduce the size, weight and cost of portable computing devices. Weight and form reductions can make portable devices easier to carry, hold and manipulate, and thus improve the user experience. However, there remains user demand for computing performance even if form factors are reduced. To cool such devices, some conventional designs use passive only thermal management. However, passive cooling limits the performance of the platform to the thermal limits of the system. Another conventional solution involves the use of an after-market add-on fan arrangement. The arrangement uses a fan to blow air across the exterior of the computing device. This conventional design cannot move air across a heat dissipating component inside the computing device.
Another potential pitfall associated with the conventional thermal management system just described is the issue of both acoustic and electrical noise associated with a cooling fan. Such issues can be reduced though not completely eliminated through the use of appropriate noise filtering circuitry and fan and vent design. However, there remains the issue of power consumption to run the fan.
The present invention is directed to overcoming or reducing the effects of one or more of the foregoing disadvantages.
In accordance with one aspect of an embodiment of the present invention, a method of thermally managing a portable computing device is provided that includes placing the portable computing device on a stand that has a support plate with a first surface. The computing device is placed such that a second surface of the portable computing device contacts the first surface of the support plate. Heat is transferred from the computing device to the support plate by conduction and heat received by the stand from the computing device is transferred to the ambient environment.
In accordance with another aspect of an embodiment of the present invention, a method of manufacturing a stand for supporting and thermally managing a portable computing device that has a first surface is provided. The method includes providing a support plate having a second surface to contact the first surface of the computing device and transfer heat from the computing device by conduction. A first wall is coupled to the support plate. The first wall is adapted to bear against a member supporting the stand. The stand is operable to transfer heat received from the computing device to the ambient environment.
In accordance with another aspect of an embodiment of the present invention, a stand for supporting and thermally managing a portable computing device that has a first surface is provided. The stand includes a support plate that has a second surface to contact the first surface of the computing device and transfer heat from the computing device by conduction. The stand is operable to transfer heat received from the computing device to the ambient environment.
The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:
Various embodiments of a stand for supporting and thermally managing a portable computing device are disclosed. One variant of the stand is fanless and includes a support plate that has a surface to contact an opposing surface of the portable computing device and transfer heat from the computing device by conduction. The stand is operable to transfer heat received from the computing device to the ambient environment by radiation and convection. The stand may include a wall coupled to the support plate to bear against a member supporting the stand, such as a television or computing monitor. Various features may be added to the stand to aid in heat transfer without raising acoustic issues, such as thermoelectric coolers, thermally emissive coatings, heat sinks and surface texturing. Additional details will now be described.
In the drawings described below, reference numerals are generally repeated where identical elements appear in more than one figure. Turning now to the drawings, and in particular to
As noted above, the stand 100 provides both physical support for the computing device 110 as well as thermal management. In this respect, the stand 100 may include a support plate 135 upon which the computing device 110 may seat. The support plate 135 may be integrally formed with or otherwise attached to a downwardly extending wall 140. An optional lip 145 may be connected or integrally formed with the plate 135 to prevent the computing device 110 from sliding off of the support plate 135 by movement in the direction of the arrow 150 for example. In the illustrative embodiment, the footprint of the support plate 135 generally tracks the footprint of the computing device 110. However, the footprint of the plate 135 may differ from the computing device 110.
Additional details of the stand 100 and the computing device 110 may be understood by referring now also to
In this illustrative embodiment, the wall 140 is integrally formed with the support plate 135 and oriented at an angle θ1 relative to the support plate 135 as shown. The angle θ1 may be slightly less than 90° to facilitate a type of engagement of the stand 100 with another component to be described in conjunction with the next figure. The computing device 10 is shown positioned on the support plate 135 near but not in physical contact with the supporting lip 145. However, physical contact with the lip 145 is envisioned and would actually facilitate better conductive heat transfer from the computing device 110 to the stand 100.
As noted above, the computing device 110 can take on a virtually limitless number of types of configurations. For the purposes of discussion, the illustrated embodiment of the computing device 110 may be a portable computing device that includes a variety of internal features. For example, the chassis 152 of the computing device 110 may house a system board 165. A variety of components may be mounted on the system board 165. For example, a packaged processor that includes a package substrate 170 and a semiconductor chip or integrated circuit 175 may be mounted on the system board 165. To provide thermal management for the processor 175, a heat spreader 180 may be placed in thermal contact with the semiconductor chip 175 by way of the thermal interface material layer 185. The heat spreader 180 may be composed of a variety of thermally conducting materials, such as, for example, copper, aluminum, gold, silver, graphite or other types of materials. The thermal interface material 185 may be composed of well-known polymer materials such as silicone paste, thermal greases, gap pads or other types of TIMS. The semiconductor chip 175 may be any of a myriad of different types of semiconductor chips such as microprocessors, graphics processors, combined microprocessor/graphics processors sometimes known as application processing units, application specific integrated circuits, memory devices, systems on a chip, optical devices, passive components, interposers, or other devices and mounted to other devices, such as circuit boards as desired. The heat spreader 180 is in thermal contact with the lower wall 153 of the chassis 152. This contact may be direct or there may be another TIM (not shown) positioned between the heat spreader 180 and the lower wall 153. Optionally, the heat spreader 180 may be positioned above the lower wall 153 to leave an air gap.
Attention is now directed to
An alternate exemplary embodiment of a stand 200 may be understood by referring now to
Attention is now directed to
Attention is now turned to
In addition, the external surfaces of the stand 400 may be provided with a suitable thermally emissive coating 464, again by way of a suitable applicator 469 or otherwise. The coating 464 may be designed to facilitate the transfer of radiative heat 159 from the stand 400 to the ambient environment. The coating 464 may be composed of a variety of materials. For example, and in the event that the stand 400 is composed of aluminum, the coating 464 may be composed of anodized aluminum. Optionally, dark pigmented thermal paints or other materials may be used for the coating 464.
In addition, the stand 400 may be provided with one or more thermoelectric coolers 471, 472 and 473. In this illustrative embodiment, the thermoelectric coolers 471, 472 and 473 may be positioned in the support plate 435. The thermoelectric coolers 471, 472 and 473 may be fitted to the stand 400 by way of drop-in openings 474 as shown or by other means. The thermoelectric coolers 471, 472 and 473 may number more or less than three and may be provided with the requisite electrical power by way of a power port 477, which can be serviced by a power supply plug 478 as shown. The power port 477 can power other electrical devices associated with the stand 400 (potentially including the device 110 by way of inductive or other wireless charging).
In addition, one or more heat pipes 481 may be connected to the stand 400. One of the heat pipes 481 may be connected to a heat sink 483 and another embedded in the stand 400 as shown. The heat sink 483 may configured as a radiative spreader or a vapor chamber or both. Multiple heat pipes 481 and heat sinks 483 may be used and they may be arranged in a myriad of different ways. As with the heat pipes 481, one or more vapor chambers 484 may be fitted to the stand. Any of these thermoelectric coolers 471, 472, etc., heat pipes 481 and/or vapor chambers 484 may positioned near anticipated hot spots of the computing device 110. Indeed, the computing device 110 may be thermally mapped and the stand 400 tailored accordingly.
Different types of fans could be added to the stand 400, such as a mechanical fan(s) 486, a piezoelectic fan(s) 487 or other types. A purely mechanical fan 486 will have some acoustic signature, but a piezoelectric fan(s) 487 emitting low frequency pulses 489 to move air may not. For example, pulses in the 200 to 1000 Hz range should be inaudible.
Finally, one or more external surfaces of the stand 400 may be textured to increase the surface area available for transfer of radiative heat 159 and convective heat 160. Here, corrugations 491 are added to the wall 440, but other texturing may be used.
As noted elsewhere herein, many configurations may be used for a thermal management stand.
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.