1. Field of the Invention
This invention is directed to a thermal transfer device, such as a cold plate for use in indirectly cooling objects with a cooling liquid and, more particularly, to a thermal transfer device having spiral fluid pathways for efficiently conducting a cooling fluid into indirect thermal contact with an object to be cooled.
2. Description of the Related Art
Cold plates are well-known thermal transfer devices used for cooling objects that generate excessive heat, such as, without limitation, computer chips. Cold plates are generally placed into thermal contact with the object to be cooled, and pass a cooling liquid over a surface which separates the liquid from the actual object to be cooled. In this fashion, heat may be transferred between the fluid and the object, without the fluid ever coming into direct contact with the object.
Direct contact is generally avoided, because the properties of many cooling fluids may be deleterious to the object to be cooled, or toxic to the environment, so it is preferred that the fluid be contained within a sealed environment. At the very least, it is preferred that the cooling fluid be re-circulated for efficiency and economy.
To improve the efficiency of heat transfer, it is widely known to maximize the amount of surface area of the heat transfer surfaces that comes in contact with the heat transfer fluid. There is a limit, however, as to how this has been accomplished to date. For example, it is common to form the heat transfer surface which comes into contact with the heat transfer fluid with protrusions, such as fins, to increase the amount of surface area which interfaces with the heat transfer fluid. The addition of fins, however has the unwanted effect of interfering with the flow of the thermal transfer fluid, thereby lowering the rate of thermal transfer and impairing the overall efficiency of the thermal transfer device.
Although cold plates are generally well known and widely used, there is a continuing need to make cold plates more efficient, and, therefore, more competitive, cost-effective and useful. It is especially useful to provide a single cold plate that can be used for cooling two objects at the same time, such as two computer chips operating in a computer without having to install two separate cold plates.
It will also be appreciated by one of ordinary skill in the art that a “cold plate” can be used to heat an object, if the application calls for it, so that the heat transfer fluid is at a higher temperature than the object to be warmed. For ease of reference, however, thermal transfer devices may be called herein “cold plates” even though the same structure, in a different application, may in fact be used to heat an object.
It is therefore an object of the invention to provide a thermal transfer device which provides efficient and effective cooling of objects which may tend to overheat, such as computer chips.
It is a further object of the invention to provide an improved thermal transfer device having a plurality of spiral passages to increase the effective surface area exposed to a heat transfer fluid for cooling an object, and to thereby render the heat transfer device more efficient.
In accordance with these and other objects of the invention there is provided a thermal transfer system which includes a thermal transfer surface and a passageway for routing a heat transfer fluid from an inlet to an outlet while passing in thermal contact with the thermal transfer surface. The passageway has at least two spiral or helical passages and a connection channel connecting the at least two spiral passages to permit flow of the heat transfer fluid from a first spiral passage to a second spiral passage; thereby forming a path for the flow of the thermal fluid from the inlet, through the passageway, along the first spiral passage to the connection channel, then along the connection channel to the second spiral passage, and then to the passageway and to the outlet. This structure will provide a lengthened flow path of increased surface area for the heat transfer fluid and thereby provide more cooling to the heat transfer surface. The terms “helical” and “spiral” are used interchangeably herein.
Suitable heat transfer fluids are well known in the art and may include, for example, water, deionized water, a mixture of water and ethylene glycol, propylene glycol, dielectric cooling fluids, and petroleum-based cooling fluids.
In accordance with the preferred embodiments the invention may be used to cool high power devices such as thyristors, diodes and high-power computer chips.
Other objects and features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims. It should be further understood that the drawings are not necessarily drawn to scale and that, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.
For a further description of the invention, reference is made to the exemplary embodiments shown in the drawings, in which like numerals refer to like parts.
In accordance with a preferred embodiment of the invention, there is shown, generally at 10, a thermal transfer device, or “cold plate” in accordance with the invention. Thermal transfer device 10 includes a pair of opposed thermal transfer surfaces 12, 14. Thermal transfer surfaces 12, 14 are made of a suitable thermal transfer material, such as, copper, aluminum and alloys of steel. Thermal transfer surfaces 12, 14 are preferably generally planar and form the outer surfaces through which heat transfer activity takes place. Each thermal transfer surface 12, 14 contacts an object to be cooled, such as shown (diagrammatically) with respect to the outer surface of heat transfer surface 14 by circle 16. Although preferably generally planar, to provide the widest possible utility of thermal transfer device 10, thermal transfer surfaces 12, 14 may be formed in any desired shape, such as to conform to the shape of a specific object to be cooled. In the preferred embodiment, where the object to be cooled is a computer chip (not shown), a planar configuration is acceptable.
For ease of reference herein, the term “outer”, when referring to the relative position of elements in thermal transfer device 10, means in the direction(s) towards the object(s) to be cooled, and “inner” means in the direction opposite thereto, so that the “outer” surface of heat transfer surface 12 is at the bottom of heat transfer device 10 and hidden from view in
Attached to the respective inner sides of thermal transfer surfaces 12, 14 are respective thermal conductive layers 18, 20. Thermal conductive layers 18, 20 are generally planar on their outer sides, which abut thermal transfer surfaces 12, 14, and contain connecting channels 22 therethrough. Thermal conductive layers 18 and 20 are preferably made of copper, aluminum or alloys of steel. The configuration of connecting channels 22 will be described below.
Attached to the respective inner sides of thermal conductive layers 18, 20 are respective support layers 24, 26 having respective first holes 28 and second holes 30 therein. Support layers 24, 26 are preferably made of copper, aluminum or alloys of steel.
Attached to the inner sides of both support layers 24, 26 is a central layer 32 having an inlet 34 for receiving a thermally conducting fluid (not shown) from a reservoir (also not shown) and an outlet 36 for returning the thermally conducting fluid to the reservoir. Central layer 32 is preferably made of copper, aluminum or alloys of steel but composite materials or plastic could be used for this component. Using a non-electrically conductive material such as a composite or plastic for this component could be advantageous in terms of material and manufacturing cost and would also serve to electrically isolate the fluid connections from the components being cooled or heated, should that be called for by the application. The construction of central layer 32 is best seen by reference to
In one embodiment, portions of the inlet 34 and outlet 36 may also be formed in the support layers 24, 26. In such an embodiment, it will be appreciated that the fluid connections will no longer be electrically isolated from the components to be cooled, particularly because layers 24 and 26 may be comprised of metal.
As seen in
Lands 48 are separated by an open channel 54 leading to outlet 36.
The components thus far described are assembled together as layers in a sandwich, by any convenient means, such as screws, brazing, welding or adhesive bonding. It is important to note that the completed thermal transfer device is preferably tightly assembled so that there is no leakage of the thermal transfer fluid during use for reasons previously described. In the preferred embodiment, the components of thermal transfer device 10 are connected by brazing.
It will also be appreciated by one of ordinary skill in the art that thermal transfer device 10 has two halves, an upper half and a lower half, that are essentially mirror images of one another.
In addition to the various layers already described, thermal transfer device 10 further includes a plurality of grooved rods 58. Grooved rods 58 may be formed of any suitable thermally conductive material, and are formed as screws or bolts, but are preferably formed as rods made of copper having a helical groove or threading on their outer cylindrical surface.
Turning now to
The dimension of the diameter D of the grooved rods 58 can reasonably vary from between 3 mm to 20 mm; the height H can vary from between 0.5 mm to 8 mm, the width W can vary from between 0.5 mm to 5 mm and the pitch P can vary from between 1.5 mm to 9 mm. The following dimensions are for two presently-preferred embodiments;
D=10 mm, W=1 mm, P=3 mm, H=2 mm;
D=8 mm, W=1 mm, P=3 mm, H=2 mm.
It is also preferred that the length L be greater than double the value of the pitch P and lie within the following range 2D<L<10D. Still other dimensions and arrangements can be readily employed to implement the desired heat dissipating properties of the device based on the intended application.
It will be appreciated that although helical grooves or threading is disclosed and described above, other thread form configurations such as trapezoidal, triangular, truncated, etc. can be used as is known in the art.
The path of fluid flow is shown in
Thermal transfer device 10 thus provides a convenient and more efficient way to transfer heat by use of a single essentially uninterrupted passageway, having multiple internal passages, for the flow of the thermal transfer fluid from inlet 34 to outlet 36 as shown in
The thermal transfer fluid will travel in an essentially serpentine pattern along (both up and down in
The path of travel of the thermal transfer fluid is greatly lengthened by use of the defined spiral passages which provide greatly increased heat transfer surface area in contact with the thermal transfer fluid, thereby enhancing the overall efficiency of heat transfer device 10 when compared to the prior art.
It will be appreciated by one of ordinary skill in the art that thermal transfer surfaces 12, 14 could be formed integrally with the respective thermal conductive layer 18, 20 without departing from the scope or teaching of the invention herein, and that making those elements as single pieces or as two pieces is a mere matter of design choice.
Thus, while there have shown and described and pointed out fundamental novel features of the invention as applied to a preferred embodiment thereof, it will be understood that various omissions and substitutions and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the invention. For example, it is expressly intended that all combinations of those elements which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Moreover, it should be recognized that structures and/or elements shown and/or described herein may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/27352 | 3/7/2011 | WO | 00 | 10/8/2013 |