The present invention relates generally to heat dissipation in semiconductor devices, and, more particularly, to a cooling device employing thermoelectric structures and through-silicon-via (TSV).
As semiconductor process technology progresses, more and more devices can be integrated in a given die size, and at the same time the integrated circuit (IC) can run at greater clock speed (higher frequency). This results in higher power dissipation thus an increase in the die temperature. The increased die temperature will directly affect the performance of the IC due to mobility degradation at high temperature. Long term wise, the quality and reliability of the IC will also be affected due to electromigration and oxide breakdown. The lifetime of IC devices exponentially decrease with the increasing die temperature.
IC chips are conventionally cooled by fans, heat sinks, circulated liquids or thermoelectric effects. The fans, heat sinks and circulated liquids are often time very bulky and may not effectively reduce uneven temperature distribution within the IC chip. The circulated liquids, additionally, have a leakage problem over time. The thermoelectric effect refers to a temperature difference created by an electric potential. However, running electricity itself generates Joule heating which undermines the thermoelectric cooling effect, and lowers the cooling efficiency thereof.
As such, what is desired is an efficient heat dissipation packaging system utilizing thermoelectric cooling that does not contribute extra Joule heating and is easy to assemble and occupies less space.
This invention discloses a thermoelectric structure for cooling an integrated circuit (IC) chip, the thermoelectric structure comprises a first type superlattice layer formed on top of the IC chip connected to a first voltage, and a second type superlattice layer formed on the bottom of the IC chip connected to a second voltage, the second voltage being different from the first voltage, wherein an power supply current flows through the first and second type superlattice layer for cooling the IC chip. If the first type superlattice layer is a P type, then the second type superlattice layer is an N type, and a ground power supply voltage is connected to the P type superlattice layer, while a high voltage power supply voltage is connected to the N type superlattice layer.
The construction and method of operation of the invention, however, together with additional objectives and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
The drawings accompanying and forming part of this specification are included to depict certain aspects of the invention. A clearer conception of the invention, and of the components and operation of systems provided with the invention, will become more readily apparent by referring to the exemplary, and therefore non-limiting, embodiments illustrated in the drawings, wherein like reference numbers (if they occur in more than one view) designate the same elements. The invention may be better understood by reference to one or more of these drawings in combination with the description presented herein.
The present invention discloses a thermoelectric cooling system that has a superlattice cooling structure and dissipates heat using chip's main power supply. The thermoelectric cooling system in accordance with the present invention benefits from flip-chip package structure and through-silicon-via (TSV) technology.
The superlattice layer 120 or 130 is a material with periodically alternating layers of several substances. For instance, a superlattice layer can be grown from layers of Si and layers of SiGe with a molecular beam epitaxy (MBE) machine. In accordance with the present invention, the first superlattice layer 120 is P-type and may be exemplarily formed by alternating layers of Bi2Te3 and Sb2Te3, so that holes in the first superlattice 120 serve as a refrigerant. The holes drift in the same direction as the current, i.e., from the bottom to the top of the first superlattice layer 120. Thereby heat generated by the chip 100 will be actively dissipated to the ambient by the first superlattice 120. The second superlattice layer 130, on the other hand, is N-type and may be exemplarily formed by alternating layers of Bi2Te3 and Bi2Te2.83Se0.17, so that electrons in the second superlattice 130 serve as a refrigerant. The electrons drift in the opposite direction as the current, i.e., from the top to the bottom of the second superlattice 130. Thereby heat generated by the chip 100 will also be actively dissipated to the ambient by the second superlattice 130.
In constructing the chip 100, a skilled in the art may apply a first buffer layer (not shown) between the processed layer 110 and the first superlattice layer 120, as well as a second buffer layer (also not shown) between the substrate 102 and the second superlattice layer 130. The first buffer layer may have the same doping concentration as the first superlattice layer 120 for reducing strain due to lattice mismatch between the processed layer 110 and the first superlattice layer 120. Similarly, the second buffer layer may have the same doping concentration as the second superlattice layer 130 for reducing strain due to lattice mismatch between the substrate 102 and the second superlattice layer 130.
It is well known that when current is sent through a circuit made of dissimilar materials, such as the first and second superlattice layer 120 and 130 of
Cooling efficiency can be measured by figure-of-merit (Z) which has an expression:
In Eq. 1, the electrical_conductivity is improved by the large areas of the superlattice layers 120 and 130 which reduce the resistance in conducting the main power supply to the chip 100. At the same time, the thermal_conductivity is reduced due to the blocking of the feedback heating by the superlattice layers 120 and 130. Therefore the Z and hence the cooling efficiency of the chip 100 with the sandwiched superlattice structure is very high.
The above illustration provides many different embodiments or embodiments for implementing different features of the invention. Specific embodiments of components and processes are described to help clarify the invention. These are, of course, merely embodiments and are not intended to limit the invention from that described in the claims.
Although the invention is illustrated and described herein as embodied in one or more specific examples, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention, as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5452206 | Turrietta et al. | Sep 1995 | A |
6614109 | Cordes et al. | Sep 2003 | B2 |
6696635 | Prasher | Feb 2004 | B2 |
6981380 | Chrysler et al. | Jan 2006 | B2 |
7196411 | Chang | Mar 2007 | B2 |
7342169 | Venkatasubramanian et al. | Mar 2008 | B2 |
7638705 | Venkatasubramanian | Dec 2009 | B2 |
7679203 | Bharathan et al. | Mar 2010 | B2 |
RE41801 | Venkatasubramanian | Oct 2010 | E |
20040018729 | Ghoshal et al. | Jan 2004 | A1 |
20040262745 | Cordes et al. | Dec 2004 | A1 |
20070252257 | Baek et al. | Nov 2007 | A1 |
20090020148 | Boukai et al. | Jan 2009 | A1 |
20090173976 | Augusto | Jul 2009 | A1 |
20100008620 | Chang et al. | Jan 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20100155700 A1 | Jun 2010 | US |