This application claims the benefit of Korean Patent Application No. 2009-18201, filed Mar. 3, 2009 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
1. Field of the Invention
Aspects of the present invention relate to a thin film transistor (TFT), a method of fabricating the same, and an organic light emitting diode (OLED) display device including the same. More particularly, aspects of the present invention relate to a TFT, a method of fabricating the same, and an OLED display device including the same, where the fabrication process can remove most of a metal catalyst remaining in a semiconductor layer formed from a polycrystalline silicon layer crystallized using the metal catalyst by gettering using a metal etchant.
2. Description of the Related Art
Thin film transistors (TFTs) have been typically used as active elements of active matrix liquid crystal display (AMLCD) devices, and switching and driving elements of organic light emitting diode (OLED) display devices. In these cases, it is necessary to control the characteristics of the TFTs according to the required characteristics of the elements of the particular devices. One of the important factors which determine the characteristics of the TFTs is leakage current.
In general, in a TFT having a semiconductor layer formed of a polycrystalline silicon layer which is crystallized by a crystallization method that does not use a metal catalyst, the leakage current tends to increase when the width of a channel region increases and tends to decrease when the length of the channel region increases. However, even though the length of the channel region is increased in order to reduce the leakage current, the effect is minor. Moreover, in a display device, if the length of the channel region is increased, the size of the entire device is also increased, and the aperture ratio is reduced. Thus, the length of the channel region is limited.
Recently, methods of crystallizing an amorphous silicon layer using a metal catalyst have been extensively studied, since the methods have advantages in that the crystallization can be achieved at a lower temperature over a shorter crystallization time than in a solid phase crystallization (SPC) method. Also, a broader range of process conditions can be used and the reproducibility is higher than in an excimer laser crystallization (ELC) method. However, in a TFT using a polycrystalline silicon layer that has been crystallized using a metal catalyst as a semiconductor layer, the leakage current of the TFT as a function of changes in the length or width of the channel region changes without a clear tendency, unlike the tendency that other TFTs demonstrate. Accordingly, a TFT having a semiconductor layer formed of a polycrystalline silicon layer crystallized using a metal catalyst has problems in that the leakage current as a function of the size of the channel region of the semiconductor layer cannot be estimated, and the size of the channel region of the semiconductor layer, which will be used to control the leakage current, cannot be determined.
Aspects of the present invention provide a thin film transistor (TFT), a method of fabricating the same, and an organic light emitting diode (OLED) display device including the same, where the fabrication process can remove most of a metal catalyst remaining in a semiconductor layer formed of a polycrystalline silicon layer crystallized using the metal catalyst by gettering using a metal etchant, thus improving the characteristics of the TFT.
According to an exemplary embodiment of the present invention, a TFT includes: a substrate; a buffer layer disposed on the substrate; a semiconductor layer disposed on the buffer layer; a gate electrode insulated from the semiconductor layer; a gate insulating layer insulating the semiconductor layer from the gate electrode; and source and drain electrodes insulated from the gate electrode and partially connected to the semiconductor layer, wherein the semiconductor layer comprises at least one groove.
According to another exemplary embodiment of the present invention, an OLED display device includes: a substrate; a buffer layer disposed on the substrate; a semiconductor layer disposed on the buffer layer; a gate electrode insulated from the semiconductor layer; a gate insulating layer insulating the semiconductor layer from the gate electrode; source and drain electrodes insulated from the gate electrode and partially connected to the semiconductor layer; an insulating layer disposed on the entire surface of the substrate; a first electrode disposed on the insulating layer and electrically connected to one of the source and drain electrodes; an organic layer; and a second electrode, wherein the semiconductor layer comprises at least one groove.
Additional aspects and/or advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
These and/or other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to the present embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present invention by referring to the figures.
Subsequently, an amorphous silicon layer 120 is formed on the buffer layer 110. The amorphous silicon layer 120 may be deposited by CVD or PVD. During or after the formation of the amorphous silicon layer 120, a dehydrogenation process may be performed to reduce the concentration of hydrogen.
Then, the amorphous silicon layer 120 is crystallized into a polycrystalline silicon layer. According to aspects of the present invention, the amorphous silicon layer is crystallized into a polycrystalline silicon layer by a crystallization method using a metal catalyst, such as a metal induced crystallization (MIC) technique, a metal induced lateral crystallization (MILC) technique, or a super grain silicon (SGS) technique. However, the crystallization techniques are not limited thereto.
The SGS technique is a method of crystallizing an amorphous silicon layer 120 in which the concentration of the metal catalyst diffused into the amorphous silicon layer 120 is lowered in order to control the grain size of the polycrystalline silicon to be within the range of several μm to several hundreds of μm. To lower the concentration of the metal catalyst diffused into the amorphous silicon layer 120, a diffusion layer 130 (see
In an exemplary embodiment of the present invention, the polycrystalline silicon layer may be formed by an SGS crystallization technique, which will now be described.
In the example shown, the diffusion layer 130 may be formed to a thickness of 1 through 2,000 Å. When the thickness of the diffusion layer 130 is less than 1 Å, it may be difficult to control the amount of metal catalyst that diffuses through the diffusion layer 130. When the thickness of the diffusion layer 130 is more than 2,000 Å, the amount of metal catalyst diffused into the amorphous silicon layer 120 may be too small, and thus it is difficult to crystallize the amorphous silicon layer 120 into a polycrystalline silicon layer.
Subsequently, a metal catalyst is deposited on the diffusion layer 130 to form a metal catalyst layer 140. The metal catalyst may be selected from the group consisting of nickel (Ni), palladium (Pd), silver (Ag), gold (Au), aluminum (Al), tin (Sn), antimony (Sb), copper (Cu), terbium (Tb), and cadmium (Cd), and preferably the metal catalyst may be Ni. The metal catalyst layer 140 may be formed to have a surface density of 1011 through 1015 atoms/cm2 on the diffusion layer 130. When the metal catalyst layer 140 is formed with a surface density of less than 1011 atoms/cm2, the number of seeds, which act as nuclei for crystallization, may be too small, and thus it may be difficult to crystallize the amorphous silicon layer into a polycrystalline silicon layer by the SGS crystallization technique. When the metal catalyst layer 140 is formed with a surface density of more than 1015 atoms/cm2, the amount of metal catalyst diffused into the amorphous silicon layer 120 is too large, and thus the grains produced in the polycrystalline silicon layer are smaller in size. Moreover, the amount of metal catalyst remaining in the polycrystalline silicon layer also increases, and thus the characteristics of a semiconductor layer formed by patterning the polycrystalline silicon layer may be poorer.
The annealing process may be performed at a temperature of about 200 to about 900° C., preferably at a temperature of about 350 to about 500° C. for several seconds to several hours to diffuse the metal catalyst. Under the annealing conditions described above, it is possible to prevent deformation of the substrate 100 caused by excessive annealing, and to lower production costs and increase yield. The annealing process may be one of a furnace process, a rapid thermal annealing (RTA) process, a UV process, and a laser process.
As illustrated in
The polycrystalline silicon layer 220 contains residual metal catalysts 140a and 140b, and the concentration of the residual metal catalysts 140a and 140b after the crystallization is about 1×1013 to 5×1014 atoms/cm2. The polycrystalline silicon layer 220 is etched with an etchant.
The etchant used is to remove nickel or nickel silicide and includes a mixture of 25% hydrochloric acid (HCl), 10% acetic acid (CH3COOH), and ironicchloride at various concentrations. Moreover, buffered oxide etch (BOE) such as HF or NH4F may be used. When the etchant is used to etch the polycrystalline silicon layer 220 for about 2 minutes, the residual metal catalysts are dissolved in the etchant, thus allowing the gettering process to proceed.
Referring to
Referring to
Although the grooves are formed on the surface of the polycrystalline silicon layer after gettering, the grooves have no significant effect on the characteristics of a semiconductor layer formed from the polycrystalline silicon layer.
Table 1 shows the characteristics of the semiconductor layer formed from the polycrystalline silicon layer 160 after gettering.
It can be seen from Table 1 that although the indentations “a” are present on the surface of the polycrystalline silicon layer, the threshold voltage (Vth) characteristics and the off-current (Ioff) characteristics are excellent. Thus, it is possible to effectively remove the metal catalyst by the above-described gettering.
Subsequently, to form a polycrystalline silicon layer 320a, an amorphous silicon layer is formed on the buffer layer 310. In the same manner as the exemplary embodiment of
Referring to
Subsequently, a metal layer for a gate electrode (not shown) is formed on the gate insulating layer 330 using a single layer of aluminum (Al) or an Al alloy such as aluminum-neodymium (Al—Nd), or a multi-layer having an Al alloy stacked on a chrome (Cr) or molybdenum (Mo) alloy, and a gate electrode 340 is formed to correspond to a channel region of the semiconductor layer 320 by etching the metal layer for a gate electrode using a photolithography process.
Then, referring to
Next, the interlayer insulating layer 350 and the gate insulating layer 330 are etched to form contact holes exposing source and drain regions of the semiconductor layer 320. Source and drain electrodes 360 and 361 connected to the source and drain regions through the contact holes are formed. In this case, the source and drain electrodes 360 and 361 may be formed of one selected from the group consisting of molybdenum (Mo) or a molybdenum (Mo) alloy, chromium (Cr), tungsten (W) or a (W) tungsten alloy, molybdenum-tungsten (MoW), aluminum (Al) or an aluminum alloy, aluminum-neodymium (Al—Nd), titanium (Ti), titanium-nitride (TiN), or copper (Cu) or a copper (Cu) alloy. Further examples include an alloy of molybdenum-tungsten (MoW), an alloy of aluminum-neodymium (AlNd), or titanium-nitride (TiN). Thus, a TFT including the semiconductor layer 320, the gate electrode 340, and the source and drain electrodes 360 and 361 is completed.
Referring to
Subsequently, referring to
Referring to
A via hole exposing the source or drain electrode 360 or 361 is formed by etching the insulating layer 365. A first electrode 370 connected to one of the source and drain electrodes 360 and 361 through the via hole is formed. The first electrode 370 may be an anode or a cathode. When the first electrode 370 is an anode, the anode may be formed of a transparent conductive layer formed of ITO, IZO, or ITZO, and when the first electrode 370 is a cathode, the cathode may be formed of Mg, Ca, Al, Ag, Ba, or an alloy thereof.
Subsequently, a pixel defining layer 375 having an opening that partially exposes the surface of the first electrode 370 is formed on the first electrode 370, and an organic layer 380 including an emission layer is formed on the exposed first electrode 370. The organic layer 380 may further include at least one of a hole injection layer, a hole transport layer, a hole blocking layer, an electron blocking layer, an electron injection layer, and an electron transport layer. Then, a second electrode 385 is formed on the organic layer 380. Thus, an OLED display device according to the exemplary embodiment of the present invention is completed.
According to aspects of the present invention as described above, it is possible to remove most of a metal catalyst remaining in a semiconductor layer formed from a polycrystalline silicon layer crystallized using the metal catalyst by gettering using a metal etchant, and thus a TFT having excellent electrical characteristics, a method of fabricating the same, and an OLED display device including the same may be provided.
Although a few exemplary embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in this exemplary embodiment without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0018201 | Mar 2009 | KR | national |