This disclosure relates generally to the field of integrated circuit (IC) structures and devices, and more specifically, to three-dimensional transistors with recessed gates incorporated in such IC structures and devices.
Typical fin field-effect transistors (FinFETs) have a fin-shaped channel region with a gate wrapped around the fin, and source and drain regions on either side of the gate. In this design, the channel region between the source and drain extends along a straight line directly under the gate. The arrangement can cause leakage current between the source and drain in the off state of the transistor; this leakage is referred to as subthreshold leakage. Subthreshold leakage reduces device reliability and can have considerable negative effects on power consumption. Particularly in transistors with low threshold voltages to cause transistors to turn, subthreshold leakage can become a significant power drain on the device. Therefore, it is desirable to reduce leakage currents in transistors.
Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements. Embodiments are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings.
The systems, methods and devices of this disclosure each have several innovative aspects, no single one of which is solely responsible for all desirable attributes disclosed herein. Details of one or more implementations of the subject matter described in this specification are set forth in the description below and the accompanying drawings.
Described herein are three-dimensional transistors with recessed gates and corresponding methods and devices. The transistor includes a channel material, e.g., a fin-shaped channel material having a longitudinal structure that extends parallel to an upper face of a support structure, e.g., a substrate. The channel material has a recessed portion, so that some part of the channel material extends higher than the recessed portion in a direction away from the support structure. Two source/drain (S/D) regions are formed in or on the channel material. A first S/D region is formed on a portion of the channel material that extends above the recessed portion, relative to the support structure. The second S/D region may be located on another portion of the channel material that extends above the recessed portion, i.e., on the other side of the recessed portion, so that both S/D regions are on a front-side of the channel material. Alternatively, the second S/D region may be located on the side of the channel material closer to the support structure, referred to as the back-side of the channel material.
A gate stack extends over the channel material and through the recessed portion. Unlike a traditional FinFET, where the gate stack is formed over the fin and is higher than the S/D regions relative to the support structure, in the recessed gate structure, the portion of the gate stack extending over the channel portion is closer to the support structure than the first S/D region. In a traditional FinFET, the shortest distance between the two S/D regions is a straight line that extends directly under the gate. Recessing the gate in the channel material extends the distance between the S/D regions, which reduces the leakage current between the S/D regions. For example, if the two S/D regions are both formed on the front-side of the device, the shortest path between the S/D regions is a “U” shape, with the gate stack extending through the center of the “U”.
In some embodiments, the gate fills a portion of the recess, leaving a gap between the gate and the first S/D region (and, in some embodiments, the second S/D region). In a typical FinFET structure, the channel region is directly under the gate stack, and the S/D regions are directly next to the gate stack and may extend underneath the gate stack. In this arrangement, the S/D regions may only be separated from the gate electrode by a thin layer of gate oxide, which can lead to higher leakage currents. By contrast, leaving a gap between the gate and the S/D regions helps reduce leakage currents. In other embodiments, the gate may fill the full recess, and in some embodiments, extend above the S/D regions. Extending the gate to the S/D regions reduces contact resistance, which makes it easier to turn on the transistor.
The three-dimensional transistors with recessed gates described herein may be implemented in one or more components associated with an IC or/and between various such components. In various embodiments, components associated with an IC include, for example, transistors, diodes, power sources, resistors, capacitors, inductors, sensors, transceivers, receivers, antennas, etc. Components associated with an IC may include those that are mounted on IC or those connected to an IC. The IC may be either analog or digital and may be used in a number of applications, such as microprocessors, optoelectronics, logic blocks, audio amplifiers, etc., depending on the components associated with the IC. The IC may be employed as part of a chipset for executing one or more related functions in a computer.
For purposes of explanation, specific numbers, materials and configurations are set forth in order to provide a thorough understanding of the illustrative implementations. However, it will be apparent to one skilled in the art that the present disclosure may be practiced without the specific details or/and that the present disclosure may be practiced with only some of the described aspects. In other instances, well known features are omitted or simplified in order not to obscure the illustrative implementations.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown, by way of illustration, embodiments that may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. Therefore, the following detailed description is not to be taken in a limiting sense.
Various operations may be described as multiple discrete actions or operations in turn, in a manner that is most helpful in understanding the claimed subject matter. However, the order of description should not be construed as to imply that these operations are necessarily order dependent. In particular, these operations may not be performed in the order of presentation. Operations described may be performed in a different order from the described embodiment. Various additional operations may be performed, and/or described operations may be omitted in additional embodiments.
For the purposes of the present disclosure, the phrase “A and/or B” means (A), (B), or (A and B). For the purposes of the present disclosure, the phrase “A, B, and/or C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B, and C). The term “between,” when used with reference to measurement ranges, is inclusive of the ends of the measurement ranges. The meaning of “a,” “an,” and “the” include plural references. The meaning of “in” includes “in” and ‘on.’
The description uses the phrases “in an embodiment” or “in embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments of the present disclosure, are synonymous. The disclosure may use perspective-based descriptions such as “above,” “below,” “top,” “bottom,” and “side”; such descriptions are used to facilitate the discussion and are not intended to restrict the application of disclosed embodiments. The accompanying drawings are not necessarily drawn to scale. The terms “substantially,” “close,” “approximately,” “near,” and “about,” generally refer to being within +/−20% of a target value. Unless otherwise specified, the use of the ordinal adjectives “first,” “second,” and “third,” etc., to describe a common object, merely indicate that different instances of like objects are being referred to, and are not intended to imply that the objects so described must be in a given sequence, either temporally, spatially, in ranking or in any other manner.
In the following detailed description, various aspects of the illustrative implementations will be described using terms commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. For example, as used herein, a “logic state” of a ferroelectric memory cell refers to one of a finite number of states that the cell can have, e.g. logic states “1” and “0,” each state represented by a different polarization of the ferroelectric material of the cell. In another example, as used herein, a “READ” and “WRITE” memory access or operations refer to, respectively, determining/sensing a logic state of a memory cell and programming/setting a logic state of a memory cell. In other examples, the term “connected” means a direct electrical or magnetic connection between the things that are connected, without any intermediary devices, while the term “coupled” means either a direct electrical or magnetic connection between the things that are connected or an indirect connection through one or more passive or active intermediary devices. The term “circuit” means one or more passive and/or active components that are arranged to cooperate with one another to provide a desired function. In yet another example, a “high-k dielectric” refers to a material having a higher dielectric constant (k) than silicon oxide. The terms “oxide,” “carbide,” “nitride,” etc. refer to compounds containing, respectively, oxygen, carbon, nitrogen, etc.
As shown in
As is commonly known, source and drain terminals are interchangeable in transistors. Therefore, while the example of
In various embodiments, the access transistor 101 may be any metal oxide semiconductor (MOS) transistors which include drain, source, and gate terminals. In particular embodiments of the present disclosure, the access transistor 101 is a three-dimensional transistor with a recessed gate, such as any of the transistors illustrated in
Example Memory Cell with a FinFET
As shown, the FinFET 201 of
The transistor dielectric material 204 forms a shallow trench isolation (STI) disposed on either side of the fin 212. A portion of the fin 212 enclosed by the STI 204 forms a sub-fin 216. The STI material 204 may be a high-k dielectric including elements such as hafnium, silicon, oxygen, titanium, tantalum, lanthanum, aluminum, zirconium, barium, strontium, yttrium, lead, scandium, niobium, and zinc. Examples of high-k materials that may be used in the STI material 204 may include, but are not limited to, hafnium oxide, hafnium silicon oxide, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, tantalum oxide, tantalum silicon oxide, lead scandium tantalum oxide, and lead zinc niobate.
The fin 212 extends away from the base 202 in a direction substantially perpendicular to the base 202. The fin 212 may include one or more semiconductor materials, e.g., a stack of semiconductor materials, so that the upper-most portion 218 of the fin (namely, the portion of the fin 212 enclosed by the gate stack 206) serves as the channel region of the FinFET 201. The gate stack 206 wraps around the fin 212 as shown, with a channel portion 218 corresponding to the portion of the channel material of the fin 212 wrapped by the gate stack 206. In particular, the gate oxide 210 wraps around the channel material 214 of the fin 212, and the gate electrode material 208 wraps around the gate oxide 210. The channel portion 218 ends and the sub-fin portion 216 begins where the gate electrode 208 ends, which is typically where the STI 204 begins.
The fin 212 includes a source region and a drain region 220 and 222 on either side of the gate stack 206, thus realizing a transistor. As is well known in the art, source and drain regions are formed for the gate stack of each MOS transistor. As described above, the source and drain regions of a transistor are interchangeable. The source and drain regions 220/222 of the FinFET 201 may generally be formed using either an implantation/diffusion process or an etching/deposition process.
The FinFET 201 has a gate length (i.e., a distance between the source and drain regions 220 and 222 of the transistor terminal pair of the FinFET 201), a dimension measured along the fin 212, in the direction of the x-axis of an exemplary reference coordinate system x-y-z shown in
While not specifically shown in
In the prior art FinFET 201 in
A three-dimensional transistor with a recessed gate provides a longer channel length between a source and drain region while maintaining transistor density across a device. The recessed gate structure results in a longer path between the source and drain regions, which reduces leakage current.
A number of elements referred to in the description of
In general, implementations of the present disclosure may be formed or carried out on a substrate, such as a semiconductor substrate composed of semiconductor material systems including, for example, N-type or P-type materials systems. In one implementation, the semiconductor substrate may be a crystalline substrate formed using a bulk silicon or a silicon-on-insulator substructure. In other implementations, the semiconductor substrate may be formed using alternate materials, which may or may not be combined with silicon, that include but are not limited to germanium, indium antimonide, lead telluride, indium arsenide, indium phosphide, gallium arsenide, indium gallium arsenide, gallium antimonide, or other combinations of group III-V, group II-VI, or group IV materials. Although a few examples of materials from which the substrate may be formed are described here, any material that may serve as a foundation upon which a semiconductor device may be built falls within the spirit and scope of the present disclosure. In various embodiments the support structure 302 may include any such substrate that provides a suitable surface for providing the transistor 300. In some embodiments, one or more additional layers not shown in
In some embodiments, the channel material 304 may be composed of semiconductor material systems including, for example, N-type or P-type materials systems. In some embodiments, the channel material 304 may include a high mobility oxide semiconductor material, such as tin oxide, antimony oxide, indium oxide, indium tin oxide, titanium oxide, zinc oxide, indium zinc oxide, gallium oxide, titanium oxynitride, ruthenium oxide, or tungsten oxide. In some embodiments, the channel material 304 may include a combination of semiconductor materials where one semiconductor material may be used for the channel portion, and another material, sometimes referred to as a “blocking material,” may be used between the channel portion and the support structure 302 over which the transistor 300 is provided. In some embodiments, the channel material 304 may include a monocrystalline semiconductor, such as silicon (Si) or germanium (Ge). In some embodiments, the channel material 304 may include a compound semiconductor with a first sub-lattice of at least one element from group III of the periodic table (e.g., Al, Ga, In), and a second sub-lattice of at least one element of group V of the periodic table (e.g., P, As, Sb). In some embodiments, the channel material 304 is an epitaxial semiconductor material deposited on the support structure 302 using an epitaxial deposition process. The epitaxial semiconductor material may have a polycrystalline structure with a grain size between about 2 nanometers and 100 nanometers, including all values and ranges therein.
For some example N-type transistor embodiments (i.e., for the embodiments where the transistor 300 is an N-type metal-oxide-semiconductor (NMOS)), the channel material 304 may advantageously include a III-V material having a high electron mobility, such as, but not limited to InGaAs, InP, InSb, and InAs. For some such embodiments, the channel material 304 may be a ternary III-V alloy, such as InGaAs, GaAsSb, InAsP, or InPSb. For some InxGa1-xAs fin embodiments, In content (x) may be between 0.6 and 0.9, and may advantageously be at least 0.7 (e.g., In0.7Ga0.3As).
In some embodiments with highest mobility, the channel material 304 may be an intrinsic III-V material, i.e., a III-V semiconductor material not intentionally doped with any electrically active impurity. In alternate embodiments, a nominal impurity dopant level may be present within the channel material 304, for example to further fine-tune a threshold voltage Vt, or to provide HALO pocket implants, etc. Even for impurity-doped embodiments however, impurity dopant level within the channel material 304 may be relatively low, for example below 1015 dopant atoms per cubic centimeter (cm−3), and advantageously below 1013 cm−3.
For some example P-type transistor embodiments (i.e., for the embodiments where the transistor 300 is a P-type metal-oxide-semiconductor (PMOS)), the channel material 304 may advantageously be a group IV material having a high hole mobility, such as, but not limited to Ge or a Ge-rich SiGe alloy. For some example embodiments, the channel material 304 may have a Ge content between 0.6 and 0.9, and advantageously may be at least 0.7. In some embodiments with highest mobility, the channel material 304 may be intrinsic III-V (or IV for P-type devices) material and not intentionally doped with any electrically active impurity. In alternate embodiments, one or more a nominal impurity dopant level may be present within the channel material 304, for example to further set a threshold voltage (Vt), or to provide HALO pocket implants, etc. Even for impurity-doped embodiments however, impurity dopant level within the channel portion is relatively low, for example below 1015 cm−3, and advantageously below 1013 cm−3.
In some embodiments, the transistor 300 may be a thin film transistor (TFT). A TFT is a special kind of a field-effect transistor made by depositing a thin film of an active semiconductor material, as well as a dielectric layer and metallic contacts, over a supporting layer that may be a non-conducting layer. At least a portion of the active semiconductor material forms a channel of the TFT. If the transistor 300 is a TFT, the channel material 304 may include a high mobility oxide semiconductor material, such as tin oxide, antimony oxide, indium oxide, indium tin oxide, titanium oxide, zinc oxide, indium zinc oxide, indium gallium zinc oxide (IGZO), gallium oxide, titanium oxynitride, ruthenium oxide, or tungsten oxide. In general, if the transistor 300 is a TFT, the channel material 304 may include one or more of tin oxide, cobalt oxide, copper oxide, antimony oxide, ruthenium oxide, tungsten oxide, zinc oxide, gallium oxide, titanium oxide, indium oxide, titanium oxynitride, indium tin oxide, indium zinc oxide, nickel oxide, niobium oxide, copper peroxide, IGZO, indium telluride, molybdenite, molybdenum diselenide, tungsten diselenide, tungsten disulfide, N- or P-type amorphous or polycrystalline silicon, germanium, indium gallium arsenide, silicon germanium, gallium nitride, aluminum gallium nitride, indium phosphite, and black phosphorus, each of which may possibly be doped with one or more of gallium, indium, aluminum, fluorine, boron, phosphorus, arsenic, nitrogen, tantalum, tungsten, and magnesium, etc. In some embodiments, the channel material 304 may have a thickness between about 5 and 75 nanometers, including all values and ranges therein. In some embodiments, a thin film channel material 304 may be deposited at relatively low temperatures, which allows depositing the channel material 304 within the thermal budgets imposed on back end fabrication to avoid damaging other components, e.g., front end components such as the logic devices.
The channel material 304 has a fin shape that extends away from the support structure 302 in a direction substantially perpendicular to the support structure 302, i.e., perpendicular to the upper face 344 of the support structure 302 and extending in the z-direction in the exemplary reference coordinate system x-y-z shown in
As shown in
Returning to
The gate stack includes a gate dielectric 306 and a gate electrode 308. In some embodiments, the gate dielectric 306 may include one or more high-k dielectrics. Examples of high-k materials that may be used in the gate dielectric 306 may include, but are not limited to, hafnium oxide, hafnium silicon oxide, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, tantalum oxide, tantalum silicon oxide, lead scandium tantalum oxide, and lead zinc niobate. The gate dielectric 306 may be deposited using a conformal deposition process, such as atomic layer deposition (ALD) or chemical vapor deposition (CVD). Conformal deposition generally refers to deposition of a certain coating on any exposed surface of a given structure. A conformal coating may, therefore, be understood as a coating that is applied to exposed surfaces of a given structure, and not, for example, just to the horizontal surfaces. In some embodiments, an annealing process may be carried out on the gate dielectric 306 during manufacture of the transistor 300 to improve the quality of the gate dielectric 306. The gate dielectric 306 may have a thickness, a dimension measured in the direction of the y-axis of the reference coordinate system x-y-z shown in
The gate electrode 308 may include at least one P-type work function metal or N-type work function metal, depending on whether the transistor 300 is a PMOS transistor or an NMOS transistor (P-type work function metal used as the gate electrode 308 when the transistor 300 is a PMOS transistor and N-type work function metal used as the gate electrode 308 when the transistor 300 is an NMOS transistor). For a PMOS transistor, metals that may be used for the gate electrode 308 may include, but are not limited to, ruthenium, palladium, platinum, cobalt, nickel, and conductive metal oxides (e.g., ruthenium oxide). For an NMOS transistor, metals that may be used for the gate electrode 308 include, but are not limited to, hafnium, zirconium, titanium, tantalum, aluminum, alloys of these metals, and carbides of these metals (e.g., hafnium carbide, zirconium carbide, titanium carbide, tantalum carbide, and aluminum carbide). In some embodiments, the gate electrode 308 may consist of a stack of two or more metal layers, where one or more metal layers are work function metal layers and at least one metal layer is a fill metal layer. Further layers may be included next to the gate electrode 308 for other purposes, such as to act as a diffusion barrier layer or/and an adhesion layer.
In the example shown in
Returning to
The S/D regions 312 may generally be formed using either an implantation/diffusion process or an etching/deposition process. In the former process, dopants such as boron, aluminum, antimony, phosphorous, or arsenic may be ion-implanted into the channel material to form the source and drain regions. An annealing process that activates the dopants and causes them to diffuse further into the channel material 304 typically follows the ion implantation process. In the latter process, the channel material 304 may first be etched to form recesses at the locations of the source and drain regions. An epitaxial deposition process may then be carried out to fill the recesses with material that is used to fabricate the source and drain regions. In some implementations, the S/D regions 312 may be fabricated using a silicon alloy such as silicon germanium or silicon carbide. In some implementations, the epitaxially deposited silicon alloy may be doped in situ with dopants such as boron, arsenic, or phosphorous. In further embodiments, the S/D regions 312 may be formed using one or more alternate semiconductor materials such as germanium or a group III-V material or alloy. And in further embodiments, one or more layers of metal and/or metal alloys may be used to form the S/D regions 312.
In various embodiments, one or more layers of metal and/or metal alloys may be used to form the S/D contact electrodes 310. For example, the electrically conductive materials of the S/D contact electrodes 310 may include one or more metals or metal alloys, with materials such as copper, ruthenium, palladium, platinum, cobalt, nickel, hafnium, zirconium, titanium, tantalum, and aluminum, tantalum nitride, tungsten, doped silicon, doped germanium, or alloys and mixtures of any of these. In some embodiments, the S/D contact electrodes 310 may include one or more electrically conductive alloys, oxides, or carbides of one or more metals. In some embodiments, the S/D contact electrodes 310 may include a doped semiconductor, such as silicon or another semiconductor doped with an N-type dopant or a P-type dopant. Metals may provide higher conductivity, while doped semiconductors may be easier to pattern during fabrication. Although
As shown in
As illustrated in
The arrangement shown in
Additional Examples of Three-Dimensional Transistor with Recessed Pate and Front-Side Contacts
In the example shown in
As noted above, in the example shown in
In the example shown in
Example Three-Dimensional Transistor with Recessed Gate and Backside Contact
The transistor 900 includes two S/D regions 912-1 and 912-2 formed from the S/D material 312 coupled to two contact electrodes 910-1 and 910-2 formed from the contact electrode material 310. The first contact electrode 910-1 is a front-side contact, similar to the contact electrode 310-1 shown in
For example, a first memory cell includes a first transistor 300-1 coupled to a first capacitor 1110-1, and a second memory cell includes a second transistor 300-2 coupled to a second capacitor 1110-2. The capacitors 1110 are each coupled to the first contact electrode of the corresponding transistor; e.g., the capacitor 1110-1 is coupled to the first contact electrode 310-1 of the first transistor 300-1. The capacitors 1110 are further coupled to a PL, as shown in
The gate electrodes 308 extend in the y-direction in the orientation of
For example, a first memory cell includes a transistor 900-1 coupled to a capacitor 1410-1, and a second memory cell includes a transistor 900-2 coupled to a capacitor 1410-2. The capacitors 1410 are each coupled to the second contact electrode of the corresponding transistor; e.g., the capacitor 1410-1 is coupled to the second contact electrode 910-2 of the first transistor 900-1. The capacitors 1410 extend into the support structure 302, or the second contact electrode 910-2 may extend through the support structure 302, with the capacitors 1410 formed in a layer below the support structure 302. The capacitors 1410 are further coupled to a PL, as shown in
The three-dimensional transistors with recessed gates disclosed herein may be included in any suitable electronic device.
The IC device 1600 may include one or more device layers 1604 disposed on the substrate 1602. The device layer 1604 may include features of one or more transistors 1640 (e.g., metal oxide semiconductor field-effect transistors (MOSFETs)) formed on the substrate 1602. The device layer 1604 may include, for example, one or more source and/or drain (S/D) regions 1620, a gate 1622 to control current flow in the transistors 1640 between the S/D regions 1620, and one or more S/D contacts 1624 to route electrical signals to/from the S/D regions 1620. The transistors 1640 may include additional features not depicted for the sake of clarity, such as device isolation regions, gate contacts, and the like. The transistors 1640 are not limited to the type and configuration depicted in
Each transistor 1640 may include a gate 1622 formed of at least two layers, a gate electrode layer and a gate dielectric layer.
The gate electrode layer may be formed on the gate interconnect support layer and may consist of at least one P-type workfunction metal or N-type workfunction metal, depending on whether the transistor is to be a PMOS or an NMOS transistor, respectively. In some implementations, the gate electrode layer may consist of a stack of two or more metal layers, where one or more metal layers are workfunction metal layers and at least one metal layer is a fill metal layer. Further metal layers may be included for other purposes, such as a barrier layer or/and an adhesion layer.
For a PMOS transistor, metals that may be used for the gate electrode include, but are not limited to, ruthenium, palladium, platinum, cobalt, nickel, and conductive metal oxides, e.g., ruthenium oxide. A P-type metal layer will enable the formation of a PMOS gate electrode with a workfunction that is between about 4.9 electron Volts (eV) and about 5.2 eV. For an NMOS transistor, metals that may be used for the gate electrode include, but are not limited to, hafnium, zirconium, titanium, tantalum, aluminum, alloys of these metals, and carbides of these metals such as hafnium carbide, zirconium carbide, titanium carbide, tantalum carbide, aluminum carbide, tungsten, tungsten carbide. An N-type metal layer will enable the formation of an NMOS gate electrode with a workfunction that is between about 3.9 eV and about 4.2 eV.
In some embodiments, when viewed as a cross section of the transistor 1640 along the source-channel-drain direction, the gate electrode may be formed as a U-shaped structure that includes a bottom portion substantially parallel to the surface of the substrate and two sidewall portions that are substantially perpendicular to the top surface of the substrate. In other embodiments, at least one of the metal layers that form the gate electrode may simply be a planar layer that is substantially parallel to the top surface of the substrate and does not include sidewall portions substantially perpendicular to the top surface of the substrate. In other embodiments, the gate electrode may be implemented as a combination of U-shaped structures and planar, non-U-shaped structures. For example, the gate electrode may be implemented as one or more U-shaped metal layers formed atop one or more planar, non-U-shaped layers. In some embodiments, the gate electrode may consist of a V-shaped structure (e.g., when a fin of a FinFET transistor does not have a “flat” upper surface, but instead has a rounded peak).
Generally, the gate dielectric layer of a transistor 1640 may include one layer or a stack of layers, and the one or more layers may include silicon oxide, silicon dioxide, and/or a high-k dielectric material. The high-k dielectric material included in the gate dielectric layer of the transistor 1640 may include elements such as hafnium, silicon, oxygen, titanium, tantalum, lanthanum, aluminum, zirconium, barium, strontium, yttrium, lead, scandium, niobium, and zinc. Examples of high-k materials that may be used in the gate dielectric layer include, but are not limited to, hafnium oxide, hafnium silicon oxide, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, and lead zinc niobate. In some embodiments, an annealing process may be carried out on the gate dielectric layer to improve its quality when a high-k material is used.
Although not specifically shown in
The S/D regions 1620 may be formed within the substrate 1602 adjacent to the gate 1622 of each transistor 1640, using any suitable processes known in the art. For example, the S/D regions 1620 may be formed using either an implantation/diffusion process or a deposition process. In the former process, dopants such as boron, aluminum, antimony, phosphorous, or arsenic may be ion-implanted into the substrate 1602 to form the S/D regions 1620. An annealing process that activates the dopants and causes them to diffuse farther into the substrate 1602 may follow the ion implantation process. In the latter process, an epitaxial deposition process may provide material that is used to fabricate the S/D regions 1620. In some implementations, the S/D regions 1620 may be fabricated using a silicon alloy such as silicon germanium or silicon carbide. In some embodiments, the epitaxially deposited silicon alloy may be doped in situ with dopants such as boron, arsenic, or phosphorous. In some embodiments, the S/D regions 1620 may be formed using one or more alternate semiconductor materials such as germanium or a group III-V material or alloy. In further embodiments, one or more layers of metal and/or metal alloys may be used to form the S/D regions 1620. In some embodiments, an etch process may be performed before the epitaxial deposition to create recesses in the substrate 1602 in which the material for the S/D regions 1620 is deposited.
Electrical signals, such as power and/or input/output (I/O) signals, may be routed to and/or from the transistors 1640 of the device layer 1604 through one or more interconnect layers disposed on the device layer 1604 (illustrated in
The interconnect structures 1628 may be arranged within the interconnect layers 1606-1610 to route electrical signals according to a wide variety of designs (in particular, the arrangement is not limited to the particular configuration of interconnect structures 1628 depicted in
In some embodiments, the interconnect structures 1628 may include trench contact structures 1628a (sometimes referred to as “lines”) and/or via structures 1628b (sometimes referred to as “holes”) filled with an electrically conductive material such as a metal. The trench contact structures 1628a may be arranged to route electrical signals in a direction of a plane that is substantially parallel with a surface of the substrate 1602 upon which the device layer 1604 is formed. For example, the trench contact structures 1628a may route electrical signals in a direction in and out of the page from the perspective of
The interconnect layers 1606-1610 may include a dielectric material 1626 disposed between the interconnect structures 1628, as shown in
In some embodiments, the dielectric material 1626 disposed between the interconnect structures 1628 in different ones of the interconnect layers 1606-1610 may have different compositions. In other embodiments, the composition of the dielectric material 1626 between different interconnect layers 1606-1610 may be the same.
A first interconnect layer 1606 (referred to as Metal 1 or “M1”) may be formed directly on the device layer 1604. In some embodiments, the first interconnect layer 1606 may include trench contact structures 1628a and/or via structures 1628b, as shown. The trench contact structures 1628a of the first interconnect layer 1606 may be coupled with contacts (e.g., the S/D contacts 1624) of the device layer 1604.
A second interconnect layer 1608 (referred to as Metal 2 or “M2”) may be formed directly on the first interconnect layer 1606. In some embodiments, the second interconnect layer 1608 may include via structures 1628b to couple the trench contact structures 1628a of the second interconnect layer 1608 with the trench contact structures 1628a of the first interconnect layer 1606. Although the trench contact structures 1628a and the via structures 1628b are structurally delineated with a line within each interconnect layer (e.g., within the second interconnect layer 1608) for the sake of clarity, the trench contact structures 1628a and the via structures 1628b may be structurally and/or materially contiguous (e.g., simultaneously filled during a dual-damascene process) in some embodiments.
A third interconnect layer 1610 (referred to as Metal 3 or “M3”) (and additional interconnect layers, as desired) may be formed in succession on the second interconnect layer 1608 according to similar techniques and configurations described in connection with the second interconnect layer 1608 or the first interconnect layer 1606.
The IC device 1600 may include a solder resist material 1634 (e.g., polyimide or similar material) and one or more bond pads 1636 formed on the interconnect layers 1606-1610. The bond pads 1636 may be electrically coupled with the interconnect structures 1628 and configured to route the electrical signals of the transistor(s) 1640 to other external devices. For example, solder bonds may be formed on the one or more bond pads 1636 to mechanically and/or electrically couple a chip including the IC device 1600 with another component (e.g., a circuit board). The IC device 1600 may have other alternative configurations to route the electrical signals from the interconnect layers 1606-1610 than depicted in other embodiments. For example, the bond pads 1636 may be replaced by or may further include other analogous features (e.g., posts) that route the electrical signals to external components.
In some embodiments, the circuit board 1702 may be a printed circuit board (PCB) including multiple metal layers separated from one another by layers of dielectric material and interconnected by electrically conductive vias. Any one or more of the metal layers may be formed in a desired circuit pattern to route electrical signals (optionally in conjunction with other metal layers) between the components coupled to the circuit board 1702. In other embodiments, the circuit board 1702 may be a non-PCB substrate.
The IC device assembly 1700 illustrated in
The package-on-interposer structure 1736 may include an IC package 1720 coupled to an interposer 1704 by coupling components 1718. The coupling components 1718 may take any suitable form for the application, such as the forms discussed above with reference to the coupling components 1716. Although a single IC package 1720 is shown in
The interposer 1704 may be formed of an epoxy resin, a fiberglass-reinforced epoxy resin, a ceramic material, or a polymer material such as polyimide. In some implementations, the interposer 1704 may be formed of alternate rigid or flexible materials that may include the same materials described above for use in a semiconductor substrate, such as silicon, germanium, and other group III-V and group IV materials. The interposer 1704 may include metal interconnects 1708 and vias 1710, including but not limited to TSVs 1706. The interposer 1704 may further include embedded devices 1714, including both passive and active devices. Such devices may include, but are not limited to, capacitors, decoupling capacitors, resistors, inductors, fuses, diodes, transformers, sensors, electrostatic discharge (ESD) devices, and memory devices. More complex devices such as radio frequency (RF) devices, power amplifiers, power management devices, antennas, arrays, sensors, and microelectromechanical systems (MEMS) devices may also be formed on the interposer 1704. The interposer 1704 may further include one or more three-dimensional transistors with recessed gates, as described herein. The package-on-interposer structure 1736 may take the form of any of the package-on-interposer structures known in the art.
The IC device assembly 1700 may include an IC package 1724 coupled to the first face 1740 of the circuit board 1702 by coupling components 1722. The coupling components 1722 may take the form of any of the embodiments discussed above with reference to the coupling components 1716, and the IC package 1724 may take the form of any of the embodiments discussed above with reference to the IC package 1720.
The IC device assembly 1700 illustrated in
A number of components are illustrated in
Additionally, in various embodiments, the computing device 1800 may not include one or more of the components illustrated in
The computing device 1800 may include a processing device 1802 (e.g., one or more processing devices). As used herein, the term “processing device” or “processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory. The processing device 1802 may include one or more digital signal processors (DSPs), application-specific ICs (ASICs), central processing units (CPUs), graphics processing units (GPUs), cryptoprocessors (specialized processors that execute cryptographic algorithms within hardware), server processors, or any other suitable processing devices. The computing device 1800 may include a memory 1804, which may itself include one or more memory devices such as volatile memory (e.g., dynamic random-access memory (DRAM)), nonvolatile memory (e.g., read-only memory (ROM)), flash memory, solid state memory, and/or a hard drive. In some embodiments, the memory 1804 may include memory that shares a die with the processing device 1802. This memory may be used as cache memory and may include embedded dynamic random-access memory (eDRAM) or spin transfer torque magnetic random-access memory (STT-MRAM).
In some embodiments, the computing device 1800 may include a communication chip 1812 (e.g., one or more communication chips). For example, the communication chip 1812 may be configured for managing wireless communications for the transfer of data to and from the computing device 1800. The term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a nonsolid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not.
The communication chip 1812 may implement any of a number of wireless standards or protocols, including but not limited to Institute for Electrical and Electronic Engineers (IEEE) standards including Wi-Fi (IEEE 802.11 family), IEEE 802.16 standards (e.g., IEEE 802.16-2005 Amendment), Long-Term Evolution (LTE) project along with any amendments, updates, and/or revisions (e.g., advanced LTE project, ultramobile broadband (UMB) project (also referred to as “3GPP2”), etc.). IEEE 802.16 compatible Broadband Wireless Access (BWA) networks are generally referred to as WiMAX networks, an acronym that stands for Worldwide Interoperability for Microwave Access, which is a certification mark for products that pass conformity and interoperability tests for the IEEE 802.16 standards. The communication chip 1812 may operate in accordance with a Global System for Mobile Communication (GSM), General Packet Radio Service (GPRS), Universal Mobile Telecommunications System (UMTS), High-Speed Packet Access (HSPA), Evolved HSPA (E-HSPA), or LTE network. The communication chip 1812 may operate in accordance with Enhanced Data for GSM Evolution (EDGE), GSM EDGE Radio Access Network (GERAN), Universal Terrestrial Radio Access Network (UTRAN), or Evolved UTRAN (E-UTRAN). The communication chip 1812 may operate in accordance with Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Digital Enhanced Cordless Telecommunications (DECT), Evolution-Data Optimized (EV-DO), and derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The communication chip 1812 may operate in accordance with other wireless protocols in other embodiments. The computing device 1800 may include an antenna 1822 to facilitate wireless communications and/or to receive other wireless communications (such as AM or FM radio transmissions).
In some embodiments, the communication chip 1812 may manage wired communications, such as electrical, optical, or any other suitable communication protocols (e.g., the Ethernet). As noted above, the communication chip 1812 may include multiple communication chips. For instance, a first communication chip 1812 may be dedicated to shorter-range wireless communications such as Wi-Fi or Bluetooth, and a second communication chip 1812 may be dedicated to longer-range wireless communications such as global positioning system (GPS), EDGE, GPRS, CDMA, WiMAX, LTE, EV-DO, or others. In some embodiments, a first communication chip 1812 may be dedicated to wireless communications, and a second communication chip 1812 may be dedicated to wired communications.
The computing device 1800 may include battery/power circuitry 1814. The battery/power circuitry 1814 may include one or more energy storage devices (e.g., batteries or capacitors) and/or circuitry for coupling components of the computing device 1800 to an energy source separate from the computing device 1800 (e.g., AC line power).
The computing device 1800 may include a display device 1806 (or corresponding interface circuitry, as discussed above). The display device 1806 may include any visual indicators, such as a heads-up display, a computer monitor, a projector, a touchscreen display, a liquid crystal display (LCD), a light-emitting diode display, or a flat panel display, for example.
The computing device 1800 may include an audio output device 1808 (or corresponding interface circuitry, as discussed above). The audio output device 1808 may include any device that generates an audible indicator, such as speakers, headsets, or earbuds, for example.
The computing device 1800 may include an audio input device 1824 (or corresponding interface circuitry, as discussed above). The audio input device 1824 may include any device that generates a signal representative of a sound, such as microphones, microphone arrays, or digital instruments (e.g., instruments having a musical instrument digital interface (MIDI) output).
The computing device 1800 may include a GPS device 1818 (or corresponding interface circuitry, as discussed above). The GPS device 1818 may be in communication with a satellite-based system and may receive a location of the computing device 1800, as known in the art.
The computing device 1800 may include an other output device 1810 (or corresponding interface circuitry, as discussed above). Examples of the other output device 1810 may include an audio codec, a video codec, a printer, a wired or wireless transmitter for providing information to other devices, or an additional storage device.
The computing device 1800 may include an other input device 1820 (or corresponding interface circuitry, as discussed above). Examples of the other input device 1820 may include an accelerometer, a gyroscope, a compass, an image capture device, a keyboard, a cursor control device such as a mouse, a stylus, a touchpad, a bar code reader, a Quick Response (QR) code reader, any sensor, or a radio frequency identification (RFID) reader.
The computing device 1800 may have any desired form factor, such as a hand-held or mobile computing device (e.g., a cell phone, a smart phone, a mobile internet device, a music player, a tablet computer, a laptop computer, a netbook computer, an ultrabook computer, a personal digital assistant (PDA), an ultramobile personal computer, etc.), a desktop computing device, a server or other networked computing component, a printer, a scanner, a monitor, a set-top box, an entertainment control unit, a vehicle control unit, a digital camera, a digital video recorder, or a wearable computing device. In some embodiments, the computing device 1800 may be any other electronic device that processes data.
The following paragraphs provide various examples of the embodiments disclosed herein.
Example 1 provides an IC device that includes a support structure having an upper face; a channel material having a longitudinal structure extending in a direction parallel to the upper face of the support structure; a first S/D region at a first distance from the support structure; a second S/D region; and a gate stack having a portion over a portion of the channel material so that the portion of the channel material is between the portion of the gate stack and the support structure, where the portion of the gate stack over the portion of the channel material is at a second distance from the support structure, the second distance being smaller than the first distance.
Example 2 provides the IC device of example 1, further including a first contact coupled to the first S/D region and a second contact coupled to the second S/D region.
Example 3 provides the IC device of example 1 or 2, where the first S/D region and the second S/D region are in a first layer over the support structure, the portion of the gate stack over the portion of the channel material is in a second layer over the support structure, and the second layer is between the support structure and the first layer.
Example 4 provides the IC device of example 1 or 2, where the first S/D region is in a first layer over the support structure, the portion of the gate stack over the portion of the channel material is in a second layer over the support structure, the second S/D region is in a third layer over the support structure, the second layer is between the third layer and the first layer, and the third layer is between the support structure and the second layer.
Example 5 provides the IC device of any one of the preceding examples, where the channel material has a recess, and the portion of the gate stack extending over the portion of the channel material is in the recess.
Example 6 provides the IC device of example 5, where the recess includes two sidewalls and a base, and the gate stack includes a gate dielectric material along the base and at least a portion of each of the two sidewalls.
Example 7 provides the IC device of example 6, where the gate stack further includes a gate electrode material within the recess, and the gate dielectric material is between the gate electrode material and the channel material.
Example 8 provides the IC device of example 7, where the gate dielectric material extends along each of the sidewalls to a top face of the channel material, and the gate electrode material extends above the top face of the channel material.
Example 9 provides the IC device of example 6, further including an insulator material above the gate electrode material and within the recess.
Example 10 provides the IC device of any one of the preceding examples, where the first distance is between about 20 and 400 nanometers, including all values and ranges therein, e.g., between about 40 and 60 nanometers.
Example 11 provides the IC device of any one of the preceding examples, where the second distance is between about 3 and 100 nanometers, including all values and ranges therein, e.g., between about 3 and 10 nanometers.
Example 12 provides the IC device of any one of examples 1-11, where the channel material is a thin film semiconductor material.
Example 13 provides the IC device of any one of examples 1-11, where the channel material is an epitaxial semiconductor material having a grain size between 2 nanometers and 100 nanometers.
Example 14 provides an IC device including a support structure; a channel material extending over the support structure, the channel material including a recess; a first S/D region in a portion of the channel material on one side of the recess; a second S/D region in a portion of the channel material on the other side of the recess; and a gate stack extending over the channel material through the recess, where a shortest path in the channel material, around the recess, between the first S/D region and the second S/D region is a non-straight line.
Example 15 provides the IC device of example 14, further including a capacitor coupled to the first S/D region, the capacitor and the first transistor forming a memory cell.
Example 16 provides the IC device of example 14 or 15, where the shortest path has a U shape around the recess.
Example 17 provides the IC device of any one of examples 14-16, where the recess has a first sidewall, a base, and a second sidewall, and the shortest path between the first S/D region and the second S/D region is in the channel material extending along the first sidewall, the base, and the second sidewall.
Example 18 provides the IC device of example 17, where the first S/D region is a first distance from the support structure, the base of the recess is a second distance from the support structure, and the second distance is less than the first distance.
Example 19 provides a method of fabricating IC device, the method including forming a channel material over a support structure, the channel material having a longitudinal structure extending in a direction parallel to an upper face the support structure; forming a first S/D region; forming a second S/D region; forming a recess in the channel material, where a bottom of the recess is at a first distance from the support structure that is less than a second distance between the first S/D region and the support structure; and forming a gate stack in the recess.
Example 20 provides the method of example 19, where forming the gate stack includes conformally depositing a layer of a gate dielectric material in the recess, and providing a gate electrode material in the recess so that the gate dielectric material is between the gate electrode material and the channel material.
Example 21 provides an IC device including a support structure having a top face and a bottom face, and a plurality of transistors over the support structure, a first of the plurality of transistors including a channel material having a recess therein; a first S/D region on a first side of the recess; a second S/D region on a second side of the recess opposite the first side; and a gate electrode extending through the recess in the channel material and physically and electrically coupled to a gate electrode of a second of the plurality of transistors.
Example 22 provides the IC device of example 21, further including a first contact to the first S/D region and a second contact to the second S/D region.
Example 23 provides the IC device of example 21 or 22, further including a capacitor coupled to the first S/D region, the capacitor and the first transistor forming a memory cell.
Example 24 provides the IC device of any one of examples 21-23, the channel material having a longitudinal structure extending in a first direction parallel to an upper face of the support structure, and the recess extending through the channel material in a second direction perpendicular to the first direction.
Example 25 provides the IC device of any one of examples 21-24, where the gate electrode of the first transistor and the gate electrode of the second transistor are electrically coupled to a word-line contact.
Example 26 provides an IC package that includes an IC die, including one or more of the memory/IC devices according to any one of the preceding examples. The IC package may also include a further component, coupled to the IC die.
Example 27 provides the IC package according to example 26, where the further component is one of a package substrate, a flexible substrate, or an interposer.
Example 28 provides the IC package according to examples 26 or 27, where the further component is coupled to the IC die via one or more first level interconnects.
Example 29 provides the IC package according to example 28, where the one or more first level interconnects include one or more solder bumps, solder posts, or bond wires.
Example 30 provides a computing device that includes a circuit board; and an IC die coupled to the circuit board, where the IC die includes one or more of the memory/IC devices according to any one of the preceding examples (e.g., memory/IC devices according to any one of examples 1-25), and/or the IC die is included in the IC package according to any one of the preceding examples (e.g., the IC package according to any one of examples 26-29).
Example 31 provides the computing device according to example 30, where the computing device is a wearable computing device (e.g., a smart watch) or hand-held computing device (e.g., a mobile phone).
Example 32 provides the computing device according to examples 30 or 31, where the computing device is a server processor.
Example 33 provides the computing device according to examples 30 or 31, where the computing device is a motherboard.
Example 34 provides the computing device according to any one of examples 30-33, where the computing device further includes one or more communication chips and an antenna.
The above description of illustrated implementations of the disclosure, including what is described in the Abstract, is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. While specific implementations of, and examples for, the disclosure are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. These modifications may be made to the disclosure in light of the above detailed description.