Through silicon via with reduced shunt capacitance

Information

  • Patent Grant
  • 9006846
  • Patent Number
    9,006,846
  • Date Filed
    Tuesday, September 20, 2011
    13 years ago
  • Date Issued
    Tuesday, April 14, 2015
    9 years ago
Abstract
This document refers to apparatus and methods for a device layer of a microelectromechanical system (MEMS) sensor having vias with reduced shunt capacitance. In an example, a device layer can include a substrate having a pair of trenches separated in a horizontal direction by a portion of the substrate, wherein each trench of the pair of trenches includes first and second vertical layers including dielectric, the first and second vertical layers separated by a third vertical layer including polysilicon.
Description
BACKGROUND

Microelectromechanical system (MEMS) chips can include multiple layers including a via layer. The via layer can include dielectric trenches used to form electrodes for sensing characteristics of the MEMS device within the MEMS chip. Such trenches are referred to in U.S. Pat. No. 7,539,003. The dielectric trenches can have significant shunt capacitance that can degrade performance of the MEMS device, such as MEMS devices used for capacitive sensing or radio frequency (RF) applications.


OVERVIEW

In certain examples, a microelectromechanical system (MEMS) sensor can include vias with reduced shunt capacitance. In an example, a device layer can include a substrate having a pair of trenches separated in a horizontal direction by a portion of the substrate, wherein each trench of the pair of trenches includes first and second vertical layers including a dielectric, the first and second vertical layers separated by a third vertical layer including polysilicon.


This overview is intended to provide an overview of subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive explanation of the invention. The detailed description is included to provide further information about the present patent application.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.



FIG. 1 illustrates generally a cross-section of an example MEMS device.



FIG. 2 illustrates generally a layout view of an example via layer.



FIG. 3A illustrates generally an equivalent circuit 300 of an example TSV structure of a via layer.



FIG. 3B illustrates generally an alternative layout equivalent circuit of an example TSV structure of a via layer.



FIG. 4 illustrates generally a comparison of impedance as a function of frequency of various trench structures and a sense capacitance.



FIG. 5 illustrates generally a comparison of sense capacitor impedance to shunt impedance for four trench configurations as a function of frequency.





DETAILED DESCRIPTION

The inventors have discovered structures and methods for forming electrodes in a via layer of a MEMS device that significantly reduces shunt capacitance associated with existing designs. In certain examples, a layer of an integrated MEMS device can include through silicon via (TSV) structures with multiple high-resistivity, poly filled layers interleaved with multiple dielectic layers. The TSV structures can couple the high resistivity poly in series with the dielectric, thus, reducing the capacitive shunting effect on a sense capacitor of the MEMS device. In certain examples, an operating frequency of the the electronics associated with the MEMS device can be selected such that the impedance of the sense capacitor is larger than the impedance of the shunt capacitance, thus, reducing the effect of the shunt capacitance. In an example, a dielectric trench including low-K dielectric or a combination of low-k dielectric and other materials, such as thermal oxides, doped oxides, or other dielectric materials can lower shunt capacitance, for example, where the low-k dielectric includes a dielectric constant that is lower than oxides used in the trench. In an example, the low-K dielectric can have a dielectric constant that is about half of the dielectric constant of oxide.


In certain examples, a trench can be partially filled with poly and under negative pressure, e.g., vacuum. The dielectric constant of the area of the trench under vacuum can be four times lower than oxide, thus reducing the shunt capacitance with respect to an oxide filled trench.



FIG. 1 illustrates generally a cross-section of an example MEMS device 100. In certain examples, the MENS device 100 can include three layers, a cap layer 101, a device layer 102, and a via layer 103. The device layer 102 can include moveable portions 104 supported by an anchor 105. In certain examples, the moveable portions 104 of the MEMS device 100 can be etched from a silicon wafer. The etched device layer 102 can include structures that allow sensing of in-plane and out-of plane movement of the moveable portions 104. In certain examples, the moveable portions 104 can be driven to oscillate at a particular frequency to allow sensing of angular acceleration of the MEMS device 100.


The cap layer 101 can provide at least a portion of an environmental enclosure of the moveable portions 104 of the device layer 102. In certain examples, the cap layer 101 can include a recess (not shown) to accommodate the movement of the moveable portions 104 of the device layer 102. In an example, the cap layer 101 can restrict the movement of the moveable portions 104 of the device layer 102, such as when the MEMS device 100 is mechanically shocked. In certain embodiments, the cap layer 101 is bonded to the device layer 102 such that a vacuum can be maintained about the moveable portions 104 of the device layer 102.


The via layer 103 can also provide a portion of an environmental enclosure of the moveable portions 104 of the device layer 102. In certain examples, the via layer 103 can include electrodes 106, 107, 108 for sensing or driving the moveable portions 104 of the device layer 102. In an example, one or more of the device layer electrodes, for example a drive electrode 107 can provide a drive signal to the device layer 102. In an example, one or more sense electrodes 106, 108 of the via layer 103 can provide sensing information indicative of movement of the moveable portions 104 of the device layer 102. In certain example, the sensing information can include changes in sense capacitance related to the movement of the moveable portions 104 of the device layer 102. In an example, trenches 109, 110 within the via layer 103 can provide a degree of electrical isolation of the sense electrodes.



FIG. 2 illustrates generally a layout view of an example via layer 203 including trench, or via, structures that can provide reduced shunt capacitance compared to existing structures. The layout of the via layer 203 includes areas for multiple electrodes. In an example, the layout of the via layer 203 can include a drive electrode 207 near the center and sense electrodes 206, 208 surrounding the drive electrode 207. In certain examples, the sense electrodes can be isolated from the drive electrode 207, as well as, an outer area of silicon of the via layer 203, by dielectric trenches, or via structures 209, 210. Referencing FIG. 1, but extendable to the example of FIG. 2, in an example, the dielectric trenches 109, 110 can include a first trench region 113 including a vertical layer of polysilicon 114 positioned between vertical layers of dielectric 115. In an example, a second trench region 117, separated from the first trench region by a vertical layer of monocrystalline silicon 116, can include a second vertical layer of polysilicon 118 positioned between layers of dielectric 115. With regard to FIG. 1, a drive signal can be applied to the moveable portions 104 of the device layer 102 through a section of the via layer 103, e.g., anchor electrode 107, electrically isolated from a sense electrode 106, 108 by a quadruple dielectric trench 110. In an example, the other side of the sense electrode 106, 108, opposite the drive electrode 107, can be isolated from a grounded part of the via layer 103 through another quadruple dielectric trench 109.


In an example, not shown, an isolating trench can surround the sensing electrode, and a separate trench can be formed around the anchor electrode for connecting drive voltage. As the drive voltage is not sensitive to shunt capacitance, a simple single trench can be used for isolating the anchor electrode.


A sensor of the MEMS device can include a sense capacitance coupled to the sense electrode 106, 108. Movement of the moveable portions 104 of the device layer 102 can change the sense capacitance. The sense electrode 106, 108, including low resistance monocrystalline in certain examples, can be used to measure the changes of the sense capacitance.



FIG. 3A illustrates generally an equivalent circuit 300 of an example TSV structure of a via layer. In certain examples, the equivalent circuit can include a drive electrode 307, a sense electrode 306, a sense capacitance 326, a first TSV network 310 and a second TSV network 309. The sense capacitance 326 can vary with movements of the device layer. In an example, the first TSV network 310 can represent an isolating trench between the drive electrode 307 and the sense electrode 306. The second TSV network 309 can represent an isolating trench between the sense electrode 306 and a perimeter portion of the via layer. Each network 309, 310 can include four capacitive elements 315 and three resistive elements 314, 316. The capacitive elements 315 can be associated with four vertical dielectric layers discussed above with respect to FIGS. 1 and 2. Two of the three resistive elements 314 can be associated with the two vertical layers of polysilicon. In an example, the third resistive element 316 can be associated with the vertical layer of low resistance monocrystalline silicon. The relatively high resistive vertical layers of polysilicon 314 coupled in series with the shunt capacitance 315 of the dielectric can reduce the shunting effect on the sensor improving the performance of the sense capacitance 326.



FIG. 3B illustrates generally an alternative layout equivalent circuit of an example TSV structure of a via layer. Because the drive voltage is not substantially sensitive to shunt capacitance, for example, due to a low source impedance, degradation of performance of the MEMS sensor can occur due to loading of the sense capacitor output. In examples employing the alternative layout, the equivalent circuit 330 shows the shunt capacitance of the TSV structures 331, 332 loads both sides of the sense capacitance 326.


Additional improvements to reduce shunt capacitance can be achieved by using different combinations and types of polysilicon and dielectric. For example, when a vertical dielectric layer includes two materials such as thermal oxide, with dielectric constant about 3.9 to ensure hermeticity, and low k dielectric, with dielectric constant about 2 to provide structural strength during fabrication, additional shunt capacitance reduction can be achieved. In certain examples, low-k dielectric materials can be porous, thus not capable of maintaining vacuum. Therefore, some low-k dielectrics are not suitable for 100% trench fill. A combination dielectric layer can maintain vacuum and provide benefits associated with a low-k dielectric.


In an example, shunt capacitance reduction, X, can depend on the amount of oxide (O %) and low K dielectric (D %) as a function of the trench length and each dielectric constant, K1 and K2 respectively. For example,

X=(K2*D+K1*O)/K1

If oxide represents 20% of the trench and low k dielectric 80% and K1=3.9, K2=2, then,

X=(2*0.8+3.9*0.2)/3.9=0.61,

representing 39% reduction of shunt capacitance in comparison to a trench filled with oxide only.


If the trench length is 4.0 mm, via layer 200 um, trench area is 0.8 mm2, resulting in oxide capacitance of about 27.6 pF for 1 um thick dielectric. Filling 80% of trench with low k dielectric material can reduce the capacitance to about 16.8 pF.


Partially filing the non-dielectric vertical layers of a trench can also reduce shunt capacitance. In certain examples, if part of the polysilicon fill is removed (etched) during fabrication of the TSV, the shunt capacitance can be further reduced. The reduction impact can be similar to that of using low-k dielectric. The reduction impact can be greater when the polysilican layer is several time thicker than the dielectric layer and the trench is exposed to vacuum which can have a dielectric constant of about 1, which is twice as low as some low-k dielectrics. For the previous example trench, if about 80% of the polythickness is removed, the shunt capacitance can drop from about 27.6 pf to about 6.1 pf.



FIG. 4 illustrates generally a comparison of impedance as a function of frequency of various trench structures and a 1 pf sense capacitance 405. The various trench structures include, single 401, double 402 and quadruple 403 trench structures with high resistivity poly fill, and a quadruple trench structure 404 employing a low-k dielectric and 80% polysilicon etch back.


Degradation of the signal to noise ratio, thus loss of available performance, can be proportional to the ratio of sense capacitor impedance to shunt impedance. FIG. 5 illustrates generally a comparison of sense capacitor impedance to shunt impedance for four trench configurations as a function of frequency. The four configurations include, single 501, double 502 and quadruple trench structures 503 with high resistivity poly fill, and a quadruple trench structure 504 employing a low-k dielectric and 80% polysilicon etch back. Selecting an operating frequency of electronics where the ratio is lower than 1 enables drastic reduction of shunting impact of TSV capacitance. High resistance poly silicon can provide a low signal to noise ratio at sufficiently low to avoid excessive power consumption. For example, the comparison shows that the single trench structure did not see the ratio of sense capacitor impedance to shunt impedance get below 1 over the illustrated frequency range. In contrast, the quadruple trench structure with low-k dielectric and 20% poly fill had the ratio of sense capacitor impedance to shunt impedance below 1 at DC and below 0.1 at about 639 kHz. In general, the lower the operating frequency of the MEMS device the lower the power consumption, which can be provide significant advantages when using the MEMS device in a mobile system with a limited energy supply source.


ADDITIONAL NOTES AND EXAMPLES

In Example 1, a method includes etching at least a pair of trenches in a first side of a silicon substrate, forming an oxide layer upon the first side of the silicon substrate, forming a polysilicon layer on the oxide layer, etching back the polysilicon layer within each trench of the pair of trenches to a predefined depth, and forming a dielectric layer on the sidewalls of the trenches, the dielectric layer including a portion of the oxide layer and a second dielectric material;


In Example 2, the method of Example 1 optionally includes forming a nitride layer atop the oxide layer.


In Example 3, the forming the nitride layer of any one or more of Examples 1-2 optionally includes removing a portion of the polysilicon layer to the upper surface of the oxide layer at the trench, wherein removing a portion of the polysilicon layer includes leaving a portion of the poly silicon layer within the trenches.


In Example 4, the forming a nitride layer atop the oxide layer of any one or more of Examples 1-3 optionally includes includes forming a resist layer atop the nitride layer.


In Example 5, the method of any one or more of Examples 1-4 optionally includes patterning the resist layer to define boundaries for a recess.


In Example 6, the method of any one or more of Examples 1-5 optionally includes removing a portion of the nitride to further define the boundary of the recess.


In Example 7, the method of any one or more of Examples 1-6 optionally includes etching the recess into the silicon substrate.


In Example 8, the etching the recess of any one or more of Examples 1-7 optionally includes removing a portion of the oxide layer from sidewalls of the trenches.


In Example 9, the forming the oxide layer of any one or more of Examples 1-8 optionally includes forming an oxide layer on sidewalls of the trenches.


In Example 10, the method of any one or more of Examples 1-9 optionally includes bonding a portion of the first side of the silicon substrate to a device layer of a MEMS sensor.


In Example 11, the method of any one or more of Examples 1-10 optionally includes grinding a second side of the silicon substrate to expose a first end of the trenches.


In Example 12, a via layer for a MEMS device can include a substrate having a pair of trenches separated in a horizontal direction by a portion of the substrate, wherein each trench of the pair of trenches includes first and second vertical layers including a first material, the first and second vertical layers separated by a third vertical layer including a second material, wherein the first material includes a dielectric.


In Example 13, the second material of any one or more of Examples 1-12 optionally includes polysilicon.


In Example 14, the third vertical layer of any one or more of Examples 1-13 optionally includes a volume including less than 80% polysilicon.


In Example 15, the third vertical layer of any one or more of Examples 1-14 optionally includes a volume including less than 20% polysilicon.


In Example 16, the first and second vertical layers of any one or more of Examples 1-16 optionally includes thermal oxide.


In Example 17, each of the first and second vertical layers of any one or more of Examples 1-16 optionally includes thermal oxide and a third material having a dielectric constant lower than the dielectric constant of the thermal oxide.


In Example 18, the first material of any one or more of Examples 1-17 optionally includes a thermal oxide and the second material of Example 17 optionally includes a dielectric having a dielectric constant lower than the dielectric constant of the thermal oxide.


In Example 19, a sensor can include a cap layer, a device layer, coupled to the cap layer, including a proof mass, and a via layer coupled to the device layer, wherein the device layer can include a silicon substrate having a pair of trenches separated in a horizontal direction by a portion of the silicon substrate, and wherein each trench of the pair of trenches includes first and second vertical layers including a dielectric separated by a third vertical layer including polysilicon.


In Example 20, the third vertical layer of any one or more of Examples 1-19 optionally includes a volume including less than 80% polysilicon.


In Example 21, the third vertical layer of any one or more of Examples 1-20 optionally includes a volume including less than 20% polysilicon.


In Example 22, the first and second vertical layers of any one or more of Examples 1-21 optionally includes thermal oxide.


In Example 23, each of the first and second vertical layers of any one or more of Examples 1-22 optionally includes thermal oxide and a second material having a dielectric constant lower than the dielectric constant of the thermal oxide.


The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as “examples.” All publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.


In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.


The above description is intended to be illustrative, and not restrictive. In other examples, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims
  • 1. A via layer for a MEMS device, the via layer comprising; a substrate having a pair of trenches separated in a horizontal direction by a portion of the substrate, wherein each trench of the pair of trenches includes first and second vertical layers including a dielectric, the first and second vertical layers separated by a third vertical layer including polysilicon, wherein each of the first and second vertical layers include thermal oxide and a third material having a dielectric constant lower than the dielectric constant of the thermal oxide.
  • 2. The via layer of claim 1, wherein less than about 80% of the volume of the third vertical layer includes polysilicon.
  • 3. The via layer of claim 1, wherein less than about 20% of the volume of the third vertical layer includes polysilicon.
  • 4. The via layer of claim 1, wherein the first and second vertical layers include thermal oxide.
  • 5. A sensor comprising: a cap layer;a device layer, coupled to the cap layer, including a proof mass; anda via layer coupled to the device layer, wherein the device layer includes: a silicon substrate having a pair of trenches separated in a horizontal direction by a portion of the silicon substrate,wherein each trench of the pair of trenches includes first and second vertical layers including a dielectric separated by a third vertical layer including polysilicon; andwherein each of the first and second vertical layers include thermal oxide and a second material having a dielectric constant lower than the dielectric constant of the thermal oxide.
  • 6. The sensor of claim 5, wherein less than about 80% of the volume of the third vertical layer includes polysilicon.
  • 7. The sensor of claim 5, wherein less than about 20% of the volume of the third vertical layer includes polysilicon.
  • 8. The sensor of claim 5, wherein the first and second vertical layers include thermal oxide.
CLAIM OF PRIORITY

This application is a U.S. National Stage Filing under 35 U.S.C. 371 from International Patent Application Serial No. PCT/US2011/052417 filed on Sep. 20, 2011, and published on Mar. 29, 2012 as WO 2012/040245 A2 and republished on Jun. 7, 2012 as WO 2012/040245 A3, which claims the benefit of priority under 35 U.S.C. §119(e) to Bryzek, et al., U.S. Provisional Patent Application Ser. No. 61/384,319, entitled “TSV WITH REDUCED SHUNT CAPACITANCE”, filed Sep. 20, 2010, each of which are hereby incorporated by reference herein in its entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2011/052417 9/20/2011 WO 00 6/18/2013
Publishing Document Publishing Date Country Kind
WO2012/040245 3/29/2012 WO A
US Referenced Citations (183)
Number Name Date Kind
4896156 Garverick Jan 1990 A
5487305 Ristic et al. Jan 1996 A
5491604 Nguyen et al. Feb 1996 A
5600064 Ward Feb 1997 A
5723790 Andersson Mar 1998 A
5751154 Tsugai May 1998 A
5760465 Alcoe et al. Jun 1998 A
5765046 Watanabe et al. Jun 1998 A
6131457 Sato Oct 2000 A
6214644 Glenn Apr 2001 B1
6301965 Chu et al. Oct 2001 B1
6351996 Nasiri et al. Mar 2002 B1
6366468 Pan Apr 2002 B1
6390905 Korovin et al. May 2002 B1
6501282 Dummermuth et al. Dec 2002 B1
6504385 Hartwell Jan 2003 B2
6553835 Hobbs et al. Apr 2003 B1
6722206 Takada Apr 2004 B2
6725719 Cardarelli Apr 2004 B2
6781231 Minervini et al. Aug 2004 B2
6848304 Geen Feb 2005 B2
7051590 Lemkin et al. May 2006 B1
7054778 Geiger et al. May 2006 B2
7093487 Mochida Aug 2006 B2
7166910 Minervini et al. Jan 2007 B2
7202552 Zhe et al. Apr 2007 B2
7210351 Lo et al. May 2007 B2
7221767 Mullenborn et al. May 2007 B2
7240552 Acar et al. Jul 2007 B2
7258011 Nasiri et al. Aug 2007 B2
7258012 Xie et al. Aug 2007 B2
7266349 Kappes Sep 2007 B2
7293460 Zarabadi et al. Nov 2007 B2
7301212 Mian et al. Nov 2007 B1
7305880 Caminada et al. Dec 2007 B2
7358151 Araki et al. Apr 2008 B2
7436054 Zhe Oct 2008 B2
7449355 Lutz et al. Nov 2008 B2
7451647 Matsuhisa et al. Nov 2008 B2
7454967 Skurnik Nov 2008 B2
7518493 Bryzek et al. Apr 2009 B2
7539003 Ray May 2009 B2
7544531 Grosjean Jun 2009 B1
7595648 Ungaretti et al. Sep 2009 B2
7600428 Robert et al. Oct 2009 B2
7616078 Prandi et al. Nov 2009 B2
7622782 Chu et al. Nov 2009 B2
7706149 Yang et al. Apr 2010 B2
7781249 Laming et al. Aug 2010 B2
7795078 Ramakrishna et al. Sep 2010 B2
7859352 Sutton Dec 2010 B2
7950281 Hammerschmidt May 2011 B2
8004354 Pu et al. Aug 2011 B1
8006557 Yin et al. Aug 2011 B2
8037755 Nagata et al. Oct 2011 B2
8113050 Acar et al. Feb 2012 B2
8171792 Sameshima May 2012 B2
8201449 Ohuchi et al. Jun 2012 B2
8250921 Nasiri et al. Aug 2012 B2
8375789 Prandi et al. Feb 2013 B2
8421168 Allen et al. Apr 2013 B2
8476970 Mokhtar et al. Jul 2013 B2
8508290 Elsayed et al. Aug 2013 B2
8710599 Marx et al. Apr 2014 B2
8739626 Acar Jun 2014 B2
8742964 Kleks et al. Jun 2014 B2
8754694 Opris et al. Jun 2014 B2
8813564 Acar Aug 2014 B2
20020021059 Knowles et al. Feb 2002 A1
20020117728 Brosnihhan et al. Aug 2002 A1
20020178831 Takada Dec 2002 A1
20020189352 Reeds, III et al. Dec 2002 A1
20020196445 Mcclary et al. Dec 2002 A1
20030038415 Anderson et al. Feb 2003 A1
20030061878 Pinson Apr 2003 A1
20030200807 Hulsing, II Oct 2003 A1
20030222337 Stewart Dec 2003 A1
20040119137 Leonardi et al. Jun 2004 A1
20040177689 Cho et al. Sep 2004 A1
20040211258 Geen Oct 2004 A1
20040219340 McNeil et al. Nov 2004 A1
20040231420 Xie et al. Nov 2004 A1
20040251793 Matushisa Dec 2004 A1
20050005698 McNeil et al. Jan 2005 A1
20050097957 Mcneil et al. May 2005 A1
20050139005 Geen Jun 2005 A1
20050189635 Humpston et al. Sep 2005 A1
20050274181 Kutsuna et al. Dec 2005 A1
20060032308 Acar et al. Feb 2006 A1
20060034472 Bazarjani et al. Feb 2006 A1
20060043608 Bernier et al. Mar 2006 A1
20060097331 Hattori May 2006 A1
20060137457 Zdeblick Jun 2006 A1
20060207328 Zarabadi et al. Sep 2006 A1
20060213265 Weber et al. Sep 2006 A1
20060213266 French et al. Sep 2006 A1
20060213268 Asami et al. Sep 2006 A1
20060246631 Lutz et al. Nov 2006 A1
20070013052 Zhe et al. Jan 2007 A1
20070034005 Acar et al. Feb 2007 A1
20070040231 Harney et al. Feb 2007 A1
20070042606 Wang et al. Feb 2007 A1
20070047744 Harney et al. Mar 2007 A1
20070071268 Harney et al. Mar 2007 A1
20070085544 Viswanathan Apr 2007 A1
20070099327 Hartzell et al. May 2007 A1
20070114643 DCamp et al. May 2007 A1
20070165888 Weigold Jul 2007 A1
20070205492 Wang Sep 2007 A1
20070220973 Acar Sep 2007 A1
20070222021 Yao Sep 2007 A1
20070284682 Laming et al. Dec 2007 A1
20080049230 Chin et al. Feb 2008 A1
20080081398 Lee et al. Apr 2008 A1
20080083958 Wei et al. Apr 2008 A1
20080083960 Chen et al. Apr 2008 A1
20080092652 Acar Apr 2008 A1
20080122439 Burdick et al. May 2008 A1
20080157238 Hsiao Jul 2008 A1
20080157301 Ramakrishna et al. Jul 2008 A1
20080169811 Viswanathan Jul 2008 A1
20080202237 Hammerschmidt Aug 2008 A1
20080245148 Fukumoto Oct 2008 A1
20080247585 Leidl et al. Oct 2008 A1
20080251866 Belt et al. Oct 2008 A1
20080290756 Huang Nov 2008 A1
20080302559 Leedy Dec 2008 A1
20080314147 Nasiri Dec 2008 A1
20090064780 Coronato et al. Mar 2009 A1
20090072663 Ayazi et al. Mar 2009 A1
20090140606 Huang Jun 2009 A1
20090166827 Foster et al. Jul 2009 A1
20090175477 Suzuki et al. Jul 2009 A1
20090183570 Acar et al. Jul 2009 A1
20090194829 Chung et al. Aug 2009 A1
20090263937 Ramakrishna et al. Oct 2009 A1
20090266163 Ohuchi et al. Oct 2009 A1
20100019393 Hsieh et al. Jan 2010 A1
20100024548 Cardarelli Feb 2010 A1
20100038733 Minervini Feb 2010 A1
20100044853 Dekker et al. Feb 2010 A1
20100052082 Lee Mar 2010 A1
20100058864 Hsu et al. Mar 2010 A1
20100072626 Theuss et al. Mar 2010 A1
20100089154 Ballas et al. Apr 2010 A1
20100122579 Hsu et al. May 2010 A1
20100155863 Weekamp Jun 2010 A1
20100206074 Yoshida et al. Aug 2010 A1
20100212425 Hsu et al. Aug 2010 A1
20100224004 Suminto et al. Sep 2010 A1
20100236327 Mao et al. Sep 2010 A1
20110030473 Acar Feb 2011 A1
20110030474 Kuang et al. Feb 2011 A1
20110031565 Marx et al. Feb 2011 A1
20110094302 Schofield et al. Apr 2011 A1
20110120221 Yoda May 2011 A1
20110121413 Allen et al. May 2011 A1
20110146403 Rizzo Piazza Roncoroni et al. Jun 2011 A1
20110265564 Acar et al. Nov 2011 A1
20110285445 Huang et al. Nov 2011 A1
20130139591 Acar Jun 2013 A1
20130139592 Acar Jun 2013 A1
20130192364 Acar Aug 2013 A1
20130192369 Acar et al. Aug 2013 A1
20130247666 Acar Sep 2013 A1
20130247668 Bryzek Sep 2013 A1
20130250532 Bryzek et al. Sep 2013 A1
20130257487 Opris et al. Oct 2013 A1
20130263641 Opris et al. Oct 2013 A1
20130263665 Opris et al. Oct 2013 A1
20130265070 Kleks et al. Oct 2013 A1
20130265183 Kleks et al. Oct 2013 A1
20130268227 Opris et al. Oct 2013 A1
20130268228 Opris et al. Oct 2013 A1
20130269413 Tao et al. Oct 2013 A1
20130270657 Acar et al. Oct 2013 A1
20130270660 Bryzek et al. Oct 2013 A1
20130271228 Tao et al. Oct 2013 A1
20130277772 Bryzek et al. Oct 2013 A1
20130298671 Acar et al. Nov 2013 A1
20130328139 Acar Dec 2013 A1
20130341737 Bryzek et al. Dec 2013 A1
20140070339 Marx Mar 2014 A1
Foreign Referenced Citations (106)
Number Date Country
1389704 Jan 2003 CN
1816747 Aug 2006 CN
1948906 Apr 2007 CN
101038299 Sep 2007 CN
101180516 May 2008 CN
101270988 Sep 2008 CN
101426718 May 2009 CN
101813480 Aug 2010 CN
101858928 Oct 2010 CN
102597699 Jul 2012 CN
103209922 Jul 2013 CN
103210278 Jul 2013 CN
103221331 Jul 2013 CN
103221332 Jul 2013 CN
103221333 Jul 2013 CN
103221778 Jul 2013 CN
103221779 Jul 2013 CN
103221795 Jul 2013 CN
103238075 Aug 2013 CN
103363969 Oct 2013 CN
103363983 Oct 2013 CN
103364590 Oct 2013 CN
103364593 Oct 2013 CN
103368503 Oct 2013 CN
103368562 Oct 2013 CN
103368577 Oct 2013 CN
103376099 Oct 2013 CN
103376102 Oct 2013 CN
103403495 Nov 2013 CN
203275441 Nov 2013 CN
203275442 Nov 2013 CN
103663344 Mar 2014 CN
203719664 Jul 2014 CN
104094084 Oct 2014 CN
104105945 Oct 2014 CN
112011103124 Dec 2013 DE
102013014881 Mar 2014 DE
1460380 Sep 2004 EP
1521086 Apr 2005 EP
1688705 Aug 2006 EP
1832841 Sep 2007 EP
1860402 Nov 2007 EP
2053413 Apr 2009 EP
2259019 Dec 2010 EP
09089927 Apr 1997 JP
10239347 Sep 1998 JP
2005024310 Jan 2005 JP
2005114394 Apr 2005 JP
2005294462 Oct 2005 JP
2007024864 Feb 2007 JP
2008294455 Dec 2008 JP
2009075097 Apr 2009 JP
2009186213 Aug 2009 JP
2010025898 Feb 2010 JP
2010506182 Feb 2010 JP
1020110055449 May 2011 KR
1020130052652 May 2013 KR
1020130052653 May 2013 KR
1020130054441 May 2013 KR
1020130055693 May 2013 KR
1020130057485 May 2013 KR
1020130060338 Jun 2013 KR
1020130061181 Jun 2013 KR
101311966 Sep 2013 KR
1020130097209 Sep 2013 KR
101318810 Oct 2013 KR
1020130037462 Oct 2013 KR
1020130112789 Oct 2013 KR
1020130112792 Oct 2013 KR
1020130112804 Oct 2013 KR
1020130113385 Oct 2013 KR
1020130113386 Oct 2013 KR
1020130113391 Oct 2013 KR
1020130116189 Oct 2013 KR
1020130116212 Oct 2013 KR
101332701 Nov 2013 KR
1020130139914 Dec 2013 KR
1020130142116 Dec 2013 KR
101352827 Jan 2014 KR
1020140034713 Mar 2014 KR
I255341 May 2006 TW
WO-0175455 Oct 2001 WO
WO-2008059757 May 2008 WO
WO-2008087578 Jul 2008 WO
WO-2009050578 Apr 2009 WO
WO-2009156485 Dec 2009 WO
WO-2011016859 Feb 2011 WO
WO-2011016859 Feb 2011 WO
WO-2012037492 Mar 2012 WO
WO-2012037492 Mar 2012 WO
WO-2012037501 Mar 2012 WO
WO-2012037501 Mar 2012 WO
WO-2012037536 Mar 2012 WO
WO-2012037537 Mar 2012 WO
WO-2012037538 Mar 2012 WO
WO-2012037539 Mar 2012 WO
WO-2012037539 Mar 2012 WO
WO-2012037540 Mar 2012 WO
WO-2012040194 Mar 2012 WO
WO-2012040211 Mar 2012 WO
WO-2012040245 Mar 2012 WO
WO-2012040245 Mar 2012 WO
WO-2013115967 Aug 2013 WO
WO-2013116356 Aug 2013 WO
WO-2013116514 Aug 2013 WO
WO-2013116522 Aug 2013 WO
Non-Patent Literature Citations (204)
Entry
“U.S. Appl. No. 12/849,742, Notice of Allowance mailed Nov. 29, 2013”, 7 pgs.
“U.S. Appl. No. 12/849,787, Notice of Allowance mailed Dec. 11, 2013”, 9 pgs.
“U.S. Appl. No. 13/362,955, Response filed Feb. 17, 2014 to Restriction Requirement mailed Dec. 17, 2013”, 9 pgs.
“U.S. Appl. No. 13/362,955, Restriction Requirement mailed Dec. 17, 2013”, 6 pgs.
“U.S. Appl. No. 13/363,537, Non Final Office Action mailed Feb. 6, 2014”, 10 pgs.
“U.S. Appl. No. 13/742,942, Notice of Allowance mailed Jan. 28, 2014”, 9 pgs.
“U.S. Appl. No. 13/746,016, Notice of Allowance mailed Jan. 17, 2014”, 10 pgs.
“U.S. Appl. No. 13/755,841, Restriction Requirement mailed Feb. 21, 2014”, 6 pgs.
“Chinese Application Serial No. 201180053926.1, Office Action mailed Jan. 13, 2014”, 7 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action mailed Jan. 16, 2014”, 8 pgs.
“Chinese Application Serial No. 201180055029.4, Office Action mailed Jan. 13, 2014”, 7 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action mailed Jan. 30, 2014”, 3 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action mailed Oct. 25, 2013”, 8 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Dec. 24, 2013 to Office Action mailed Oct. 25, 2013”, 11 pgs.
“Chinese Application Serial No. 201320565239.4, Office Action mailed Jan. 16, 2014”, w/English Translation, 3 pgs.
“European Application Serial No. 10806751.3, Extended European Search Report mailed Jan. 7, 2014”, 7 pgs.
“Korean Application Serial No. 10-2013-0109990, Amendment filed Dec. 10, 2013”, 4 pgs.
“Korean Application Serial No. 10-2013-7009775, Office Action mailed Dec. 27, 2013”, 8 pgs.
“Korean Application Serial No. 10-2013-7009775, Response filed Oct. 29, 2013 to Office Action mailed Sep. 17, 2013”, w/English Claims, 23 pgs.
“Korean Application Serial No. 10-2013-7009777, Office Action mailed Jan. 27, 2014”, 5 pgs.
“Korean Application Serial No. 10-2013-7009777, Response filed Nov. 5, 2013 to Office Action mailed Sep. 17, 2013”, 11 pgs.
“Korean Application Serial No. 10-2013-7009788, Office Action mailed Dec. 27, 2013”, w/English Translation, 10 pgs.
“Korean Application Serial No. 10-2013-7009788, Response filed Oct. 29, 2013 to Office Action mailed Aug. 29, 2013”, w/English Claims, 22 pgs.
“U.S. Appl. No. 12/849,787, Non Final Office Action mailed May 28, 2013”, 18 pgs.
“U.S. Appl. No. 12/947,543, Notice of Allowance mailed Dec. 17, 2012”, 11 pgs.
“U.S. Appl. No. 13/821,598, Preliminary Amendment mailed Mar. 8, 2013”, 7 pgs.
“U.S. Appl. No. 13/821,609, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,619, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“DigiSiMic™ Digital Silicon Microphone Pulse Part No. TC100E”, TC100E Datasheet version 4.2 DigiSiMic™ Digital Silicon Microphone. (Jan. 2009), 6 pgs.
“Epcos MEMS Microphone With TSV”, 1 pg.
“International Application Serial No. PCT/US2011/051994, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 8 pgs.
“International Application Serial No. PCT/US2011/052340, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 5 pgs.
“International Application Serial No. PCT/US2011/052340, Search Report mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052340, Written Opinion mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052369, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/021411, International Search Report mailed Apr. 30, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/021411, Written Opinion mailed Apr. 30, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/023877, International Search Report mailed May 14, 2013”, 3 pgs.
“International Application Serial No. PCT/US2013/023877, Written Opinion mailed May 14, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/024149, Written Opinion mailed”, 4 pages.
“International Application Serial No. PCT/US2013/024149, International Search Report mailed”, 7 pages.
“T4020 & T4030 MEMS Microphones for Consumer Electronics”, Product Brief 2010, Edition Feb. 2010, (2010), 2 pgs.
Acar, Cenk, et al., “Chapter 4: Mechanical Design of MEMS Gyroscopes”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 73-110.
Acar, Cenk, et al., “Chapter 6: Linear Multi DOF Architecture—Sections 6.4 and 6.5”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 158-178.
Acar, Cenk, et al., “Chapter 7: Torsional Multi-DOF Architecture”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (209), 187-206.
Acar, Cenk, et al., “Chapter 8: Distributed-Mass Architecture”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 207-224.
Acar, Cenk, et al., “Chapter 9: Conclusions and Future Trends”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 225-245.
Krishnamurthy, Rajesh, et al., “Drilling and Filling, but not in your Dentist's Chair A look at some recent history of multi-chip and through silicon via (TSV) technology”, Chip Design Magazine, (Oct./Nov. 2008), 7 pgs.
“U.S. Appl. No. 12/849,742, Supplemental Notice of Allowability mailed Mar. 17, 2014”, 3 pgs.
“U.S. Appl. No. 12/849,742, Supplemental Notice of Allowability mailed May 5, 2014”, 2 pgs.
“U.S. Appl. No. 12/849,787, Supplemental Notice of Allowability mailed Mar. 21, 2014”, 3 pgs.
“U.S. Appl. No. 13/362,955, Non Final Office Action mailed Apr. 15, 2014”, 9 pgs.
“U.S. Appl. No. 13/363,537, Response filed Jun. 6, 2014 to Non Final Office Action mailed Feb. 6, 2014”, 11 pgs.
“U.S. Appl. No. 13/742,942, Supplemental Notice of Allowability mailed Apr. 10, 2014”, 2 pgs.
“U.S. Appl. No. 13/755,841, Notice of Allowance mailed May 7, 2014”, 8 pgs.
“U.S. Appl. No. 13/755,841, Preliminary Amendment filed Oct. 10, 2013”, 10 pgs.
“U.S. Appl. No. 13/755,841, Response filed Apr. 21, 2014 to Restriction Requirement mailed Feb. 21, 2014”, 7 pgs.
“U.S. Appl. No. 13/821,589, Restriction Requirement mailed Apr. 11, 2014”, 10 pgs.
“Chinese Application Serial No. 2010800423190, Office Action mailed Mar. 26, 2014”, 10 pgs.
“Chinese Application Serial No. 201180053926.1, Response filed Apr. 29, 2014 to Office Action mailed Jan. 13, 2014”, w/English Claims, 10 pgs.
“Chinese Application Serial No. 201180055029.4, Response filed May 27, 2014 to Office Action mailed Jan. 13, 2014”, w/English Claims, 29 pgs.
“Chinese Application Serial No. 201180055309.5, Office Action mailed Mar. 31, 2014”, w/English Claims, 7 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Mar. 18, 2014 to Office Action mailed Jan. 30, 2014”, w/English Claims, 20 pgs.
“Chinese Application Serial No. 201320565239.4, Response filed Mar. 31, 2014 to Office Action mailed Jan. 16, 2014”, w/English Claims, 38 pgs.
“European Application Serial No. 118260070.2, Office Action mailed Mar. 12, 2014”, 1 pg.
“European Application Serial No. 11826070.2, Extended European Search Report mailed Feb. 21, 2014”, 5 pgs.
“European Application Serial No. 11826071.0, Extended European Search Report mailed Feb. 20, 2014”, 6 pgs.
“European Application Serial No. 11826071.0, Office Action mailed Mar. 12, 2014”, 1 pg.
“European Application Serial No. 13001692.6, Response filed Apr. 1, 2014 to Extended European Search Report mailed Jul. 24, 2013”, 19 pgs.
“European Application Serial No. 13001721.3, Response filed Apr. 7, 2014 to Extended European Search Report mailed Jul. 18, 2013”, 25 pgs.
“Korean Application Serial No. 10-2013-7009777, Response filed Apr. 28, 2014”, w/English Claims, 19 pgs.
“U.S. Appl. No. 12/849,742, Response filed Sep. 30, 2013 to Non-Final Office Action mailed Mar. 28, 2013”, 12 pgs.
“U.S. Appl. No. 12/849,787, Response filed Oct. 28, 2013 to Non Final Office Action mailed May 28, 2013”, 12 pgs.
“Chinese Application Serial No. 201180053926.1, Amendment filed Aug. 21, 2013”, w/English Translation, 13 pgs.
“Chinese Application Serial No. 201180055309.5, Voluntary Amendment filed Aug. 23, 2013”, w/English Translation, 13 pgs.
“Chinese Application Serial No. 201320165465.3, Office Action mailed Jul. 22, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320165465.3, Response filed Aug. 7, 2013 to Office Action mailed Jul. 22, 2013”, w/English Translation, 39 pgs.
“Chinese Application Serial No. 201320171504.0, Office Action mailed Jul. 22, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320171504.0, Response filed Jul. 25, 2013 to Office Action mailed Jul. 22, 2013”, w/English Translation, 33 pgs.
“Chinese Application Serial No. 201320171616.6, Office Action mailed Jul. 10, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320171757.8, Office Action mailed Jul. 11, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320171757.8, Response filed Jul. 25, 2013 to Office Action mailed Jul. 11, 2013”, w/English Translation, 21 pgs.
“Chinese Application Serial No. 201320171757.8, Response filed Jul. 26, 2013 to Office Action mailed Jul. 10, 2013”, w/English Translation, 40 pgs.
“Chinese Application Serial No. 201320172128.7, Office Action mailed Jul. 12, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320172128.7, Response filed Aug. 7, 2013 to Office Action mailed Jul. 12, 2013”, w/English Translation, 39 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action mailed Jul. 9, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Sep. 16, 2013 to Office Action mailed Jul. 9, 2013”, w/English Translation, 24 pgs.
“Chinese Application Serial No. 201320172367.2, Office Action mailed Jul. 9, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320172367.2, Response filed Sep. 16, 2013 to Office Action mailed Jul. 9, 2013”, w/English Translation, 24 pgs.
“Chinese Application Serial No. 201320185461.1, Office Action mailed Jul. 23, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320185461.1, Response filed Sep. 10, 2013 to Office Action mailed Jul. 23, 2013”, w/English Translation, 25 pgs.
“Chinese Application Serial No. 201320186292.3, Office Action mailed Jul. 19, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320186292.3, Response filed Sep. 10, 2013 to Office Action mailed Jul. 19, 2013”, w/English Translation, 23 pgs.
“European Application Serial No. 13001692.6, European Search Report mailed Jul. 24, 2013”, 5 pgs.
“European Application Serial No. 13001696.7, Extended European Search Report mailed Aug. 6, 2013”, 4 pgs.
“European Application Serial No. 13001721.3, European Search Report mailed Jul. 18, 2013”, 9 pgs.
“International Application Serial No. PCT/US2013/024138, International Search Report mailed May 24, 2013”, 3 pgs.
“International Application Serial No. PCT/US2013/024138, Written Opinion mailed May 24, 2013”, 4 pgs.
“Korean Application Serial No. 10-2013-7009775, Office Action mailed Sep. 17, 2013”, w/English Translation, 6 pgs.
“Korean Application Serial No. 10-2013-7009777, Office Action mailed Sep. 17, 2013”, w/English Translation, 8 pgs.
“Korean Application Serial No. 10-2013-7009788, Office Action mailed Aug. 29, 2013”, w/English Translation, 6 pgs.
“Korean Application Serial No. 10-2013-7009790, Office Action mailed Jun. 26, 2013”, W/English Translation, 7 pgs.
“Korean Application Serial No. 10-2013-7009790, Response filed Aug. 26, 2013 to Office Action mailed Jun. 26, 2013”, w/English Claims, 11 pgs.
“Korean Application Serial No. 10-2013-7010143, Office Action mailed May 28, 2013”, w/English Translation, 5 pgs.
“Korean Application Serial No. 10-2013-7010143, Response filed Jul. 24, 2013 to Office Action mailed May 28, 2013”, w/English Claims, 14 pgs.
Ferreira, Antoine, et al., “A Survey of Modeling and Control Techniques for Micro- and Nanoelectromechanical Systems”, IEEE Transactions on Systems, Man and Cybernetics—Part C: Applications and Reviews vol. 41, No. 3., (May 2011), 350-364.
Fleischer, Paul E, “Sensitivity Minimization in a Single Amplifier Biquad Circuit”, IEEE Transactions on Circuits and Systems. vol. Cas-23, No. 1, (1976), 45-55.
Reljin, Branimir D, “Properties of SAB filters with the two-pole single-zero compensated operational amplifier”, Circuit Theory and Applications: Letters to the Editor. vol. 10, (1982), 277-297.
Sedra, Adel, et al., “Chapter 8.9: Effect of Feedback on the Amplifier Poles”, Microelectronic Circuits, 5th edition, (2004), 836-864.
Song-Hee, Cindy Paik, “A MEMS-Based Precision Operational Amplifier”, Submitted to the Department of Electrical Engineering and Computer Sciences MIT, [Online]. Retrieved from the Internet: <URL: http://dspace.mit.edu/bitstream/handle/1721.1/16682/57138272.pdf?. . . >, (Jan. 1, 2004), 123 pgs.
“U.S. Appl. No. 12/849,742, Non Final Office Action mailed Mar. 28, 2013”, 9 pgs.
“U.S. Appl. No. 12/849,742, Non Final Office Action mailed Aug. 23, 2012”, 9 pgs.
“U.S. Appl. No. 12/849,742, Response filed Jan. 23, 2012 to Non Final Office Action mailed Aug. 23, 2012”, 10 pgs.
“U.S. Appl. No. 12/849,787, Response filed Feb. 4, 2013 to Restriction Requirement mailed Oct. 4, 2012”, 7 pgs.
“U.S. Appl. No. 12/849,787, Restriction Requirement mailed Oct. 4, 2012”, 5 pgs.
“U.S. Appl. No. 13/813,443, Preliminary Amendment mailed Jan. 31, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,586, Preliminary Amendment mailed Mar. 8, 2013”, 6 pgs.
“U.S. Appl. No. 13/821,589, Preliminary Amendment mailed Mar. 8, 2013”, 6 pgs.
“U.S. Appl. No. 13/821,793, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,842, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,853, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“Application Serial No. PCT/US2011/051994, International Republished Application mailed Jun. 7, 2012”, 1 pg.
“Application Serial No. PCT/US2011/052006, International Republished Application mailed Jun. 7, 2012”, 1 pg.
“Application Serial No. PCT/US2011/052417, International Republished Application mailed Jun. 7, 2012”, 1 pg.
“International Application Serial No. PCT/US2010/002166, International Preliminary Report on Patentability mailed Feb. 16, 2012”, 6 pgs.
“International Application Serial No. PCT/US2010/002166, International Search Report mailed Feb. 28, 2011”, 3 pgs.
“International Application Serial No. PCT/US2010/002166, Written Opinion mailed Feb. 28, 2011”, 4 pgs.
“International Application Serial No. PCT/US2011/051994, International Search Report mailed Apr. 16, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/051994, Written Opinion mailed Apr. 16, 2012”, 6 pgs.
“International Application Serial No. PCT/US2011/052006, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 7 pgs.
“International Application Serial No. PCT/US2011/052006, Search Report mailed Apr. 16, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052006, Written Opinion mailed Apr. 16, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052059, International Preliminary Report on Patentability mailed Jan. 22, 2013”, 14 pgs.
“International Application Serial No. PCT/US2011/052059, Search Report mailed Apr. 20, 2012”, 4 pgs.
“International Application Serial No. PCT/US2011/052059, Written Opinion mailed Apr. 20, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/052060, International Preliminary Report on Patentability mailed Jan. 22, 2013”, 12 pgs.
“International Application Serial No. PCT/US2011/052060, International Search Report Apr. 20, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052060, Written Opinion mailed Apr. 20, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/052061, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 6 pgs.
“International Application Serial No. PCT/US2011/052061, International Search Report mailed Apr. 10, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052061, Written Opinion mailed Apr. 10, 2012”, 4 pgs.
“International Application Serial No. PCT/US2011/052064, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 5 pgs.
“International Application Serial No. PCT/US2011/052064, Search Report mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052064, Written Opinion mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052065, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 7 pgs.
“International Application Serial No. PCT/US2011/052065, International Search Report mailed Apr. 10, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052065, Written Opinion mailed Apr. 10, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052369, International Search Report mailed Apr. 24, 2012”, 6 pgs.
“International Application Serial No. PCT/US2011/052369, Written Opinion mailed Apr. 24, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052417, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 6 pgs.
“International Application Serial No. PCT/US2011/052417, International Search Report mailed Apr. 23, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052417, Written Opinion mailed Apr. 23, 2012”, 4 pgs.
Beyne, E, et al., “Through-silicon via and die stacking technologies for microsystems-integration”, IEEE International Electron Devices Meeting, 2008. IEDM 2008., (Dec. 2008), 1-4.
Cabruja, Enric, et al., “Piezoresistive Accelerometers for MCM-Package-Part II”, The Packaging Journal of Microelectromechanical Systems. vol. 14, No. 4, (Aug. 2005), 806-811.
Ezekwe, Chinwuba David, “Readout Techniques for High-Q Micromachined Vibratory Rate Gyroscopes”, Electrical Engineering and Computer Sciences University of California at Berkeley, Technical Report No. UCB/EECS-2007-176, http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-176.html, (Dec. 21, 2007), 94 pgs.
Rimskog, Magnus, “Through Wafer Via Technology for MEMS and 3D Integration”, 32nd IEEE/CPMT International Electronic Manufacturing Technology Symposium, 2007. IEMT '07., (2007), 286-289.
“U.S. Appl. No. 13/362,955, Final Office Action mailed Nov. 19, 2014”, 5 pgs.
“U.S. Appl. No. 13/363,537, Notice of Allowance mailed Nov. 7, 2014”, 5 pgs.
“U.S. Appl. No. 13/821,586, Response filed Nov. 24, 2014 to Restriction Requirement mailed Sep. 22, 2014”, 6 pgs.
“U.S. Appl. No. 13/821,589, Response filed Nov. 10, 2014 to Non Final Office Action mailed Jul. 9, 2014”, 15 pgs.
“U.S. Appl. No. 13/821,598, Non Final Office Action mailed Nov. 20, 2014”, 9 pgs.
“Chinese Application Serial No. 201180055029.4, Response filed Nov. 14, 2014 to Office Action mailed Jul. 2, 2014”, w/English Claims, 23 pgs.
“European Application Serial No. 11827384.6, Extended European Search Report mailed Nov. 12, 2014”, 6 pgs.
“U.S. Appl. No. 13/362,955, Response filed Aug. 15, 2014 to Non Final Office Action mailed May 15, 2014”, 13 pgs.
“U.S. Appl. No. 13/363,537, Examiner Interview Summary mailed Sep. 29, 2014”, 3 pgs.
“U.S. Appl. No. 13/363,537, Final Office Action mailed Jun. 27, 2014”, 8 pgs.
“U.S. Appl. No. 13/363,537, Response filed Sep. 29, 2014 to Final Office Action mailed Jun. 27, 2014”, 9 pgs.
“U.S. Appl. No. 13/742,942, Notice of Allowance mailed Jan. 28, 2014”, 8 pgs.
“U.S. Appl. No. 13/755,841, Supplemental Notice of Allowability Jun. 27, 2014”, 2 pgs.
“U.S. Appl. No. 13/821,586, Restriction Requirement mailed Sep. 22, 2014”, 4 pgs.
“U.S. Appl. No. 13/821,589, Non Final Office Action mailed Jul. 9, 2014”, 10 pgs.
“U.S. Appl. No. 13/821,589, Response to Restriction Requirement mailed Apr. 11, 2014”, 6 pgs.
“U.S. Appl. No. 13/821,598, Response filed Oct. 15, 2014 to Restriction Requirement mailed Aug. 15, 2014”, 8 pgs.
“U.S. Appl. No. 13/821,598, Restriction Requirement mailed Aug. 15, 2014”, 11 pgs.
“U.S. Appl. No. 13/821,853, Non Final Office Action mailed Jul. 30, 2014”, 10 pgs.
“U.S. Appl. No. 13/860,761, Non Final Office Action mailed Aug. 19, 2014”, 13 pgs.
“Chinese Application Serial No. 2010800423190, Response filed Aug. 11, 2014 to Office Action mailed Mar. 26, 2014”, w/English Claims, 11 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action mailed Sep. 4, 2014”, w/English Claims, 11 pgs.
“Chinese Application Serial No. 201180054796.3, Response filed Jun. 30, 2014 to Office Action mailed Jan. 16, 2014”, w/English Claims, 3 pgs.
“Chinese Application Serial No. 201180055029.4, Office Action mailed Jul. 2, 2014”, w/English Translation, 5 pgs.
“Chinese Application Serial No. 201180055309.5, Response filed Aug. 13, 2014 to Office Action mailed Mar. 31, 2014”, w/English Claims, 27 pgs.
“Chinese Application Serial No. 201310118845.6, Office Action mailed Sep. 9, 2014”, 8 pgs.
“Chinese Application Serial No. 201310119472.4, Office Action mailed Sep. 9, 2014”, w/English Translation, 11 pgs.
“Chinese Application Serial No. 201380007588.7, Notification to Make Rectification mailed Aug. 18, 2014”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201380007615.0, Notification to Make Rectification mailed Aug. 18, 2014”, w/English Translation, 2 pgs.
“European Application Serial No. 10806751.3, Response filed Jul. 24, 2014 to Office Action mailed Jan. 24, 2014”, 26 pgs.
“European Application Serial No. 11826043.9, Office Action mailed May 6, 2013”, 2 pgs.
“European Application Serial No. 11826043.9, Response filed Nov. 4, 2013 to Office Action mailed May 6, 2013”, 6 pgs.
“European Application Serial No. 11826067.8, Extended European Search Report mailed Oct. 6, 2014”, 10 pgs.
“European Application Serial No. 11826068.6, Extended European Search Report mailed Jul. 16, 2014”, 10 pgs.
“European Application Serial No. 11826070.2, Response filed Sep. 19, 2014 to Office Action mailed Mar. 12, 2014”, 11 pgs.
“European Application Serial No. 11826071.0, Response filed Sep. 19, 2014 to Office Action mailed Mar. 12, 2014”, 20 pgs.
“European Application Serial No. 11827347.3, Office Action mailed May 2, 2013”, 6 pgs.
“European Application Serial No. 11827347.3, Response filed Oct. 30, 2013 to Office Action mailed May 2, 2013”, 9 pgs.
“European Application Serial No. 13001695.9, European Search Report mailed Oct. 5, 2014”, 6 pgs.
“European Application Serial No. 13001719.7, Extended European Search Report mailed Jun. 24, 2014”, 10 pgs.
“International Application Serial No. PCT/US2013/021411, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 7 pgs.
“International Application Serial No. PCT/US2013/023877, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 7 pgs.
“International Application Serial No. PCT/US2013/024138, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 6 pgs.
“International Application Serial No. PCT/US2013/024149, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 6 pgs.
Dunn, C, et al., “Efficient linearisation of sigma-delta modulators using single-bit dither”, Electronics Letters 31(12), (Jun. 1995), 941-942.
Kulah, Haluk, et al., “Noise Analysis and Characterization of a Sigma-Delta Capacitive Silicon Microaccelerometer”, 12th International Conference on Solid State Sensors, Actuators and Microsystems, (2003), 95-98.
Sherry, Adrian, et al., “AN-609 Application Note: Chopping on Sigma-Delta ADCs”, Analog Devices, [Online]. Retrieved from the Internet: <URL: http://www.analog.com/static/imported-files/application—notes/AN-609.pdf>, (2003), 4 pgs.
Xia, Guo-Ming, et al., “Phase correction in digital self-oscillation drive circuit for improve silicon MEMS gyroscope bias stability”, Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on, IEEE, (Nov. 1, 2010), 1416-1418.
Related Publications (1)
Number Date Country
20130277773 A1 Oct 2013 US
Provisional Applications (1)
Number Date Country
61384319 Sep 2010 US