1. Field of the Invention
The present invention relates generally to printed circuit boards (PCBs), and in particular to a tightly-coupled PCB for mounting one or more receivers with multiple, independent radio frequency (RF) front ends in close proximity to multiple, respective antennas. The circuit is noise-filtered by electrically decoupling and isolating the conductive reference planes of the PCB.
2. Description of the Related Art
PCB manufacturing techniques are well-developed and enable the cost-effective production of circuits with virtually unlimited configurations and combinations of components. Typical PCB construction comprises one or more reference layers, which can provide power and ground (common) planar sources for the entire circuit. Component conductors are connected to the reference layers as required for their operation. Other layers conduct signals, and can be photo-etched with trace conductors linking other component conductors. Still further, microstrip traces can be mounted on the PCB surfaces or within the PCB layers for electrically coupling components.
Signal noise control represents a significant aspect of PCB circuit design. Such considerations are particularly significant in designing circuits with RF receiver and antenna components, because circuit noise from switching components, power sources, “skin effect” conductivity and other noise-producing elements can significantly interfere with the reception and processing of transmitted signals. For example, global navigation satellite system (GNSS, including global positioning system (GPS)) receivers operate in the microwave frequency range, whose high frequencies tend to increase noise-related reception problems and signal interference. For example, such systems are susceptible to multipath signal phenomena, which tend to reduce system accuracy and performance.
A previous solution has been to physically isolate the receiver and antenna components, which can be connected by a shielded RF cable. However, it is often more cost-effective to mount as many system components as possible on a single PCB. Moreover, locating the receiver and its antenna(s) in close proximity tends to improve performance by eliminating relatively lengthy RF connecting cables, provided the potential for noise interference can be controlled. “Smart” antennas combining antennas and receivers at single locations have previously been utilized, but do not electrically decouple the circuit components or utilize the ground reference planes for additional antenna area.
Therefore, the design criteria for GNSS receiver-antenna PCBs would preferably included minimizing overall size, placing the receiver and antenna components in close proximity, accommodating multiple antennas and controlling signal noise. Previous receiver-antenna PCBs and manufacturing methods have not provided the advantages and features of the present invention.
In the practice of an aspect of the present invention, a PCB is designed in a manner to isolate and control the inter-frequency noise sources, and provides for the use of components for decoupling reference layers thereof, which can further separate and decouple the ground planes. A receiver with multiple, independent RF front end components can be mounted on the PCB in close proximity to multiple antennas. The receiver and antennas are connected by optimized transmission lines embedded within the PCB between the ground planes, or by surface microstrip antenna traces. The impedance of the transmission lines is controlled during the process of manufacturing the PCB.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.
Certain terminology will be used in the following description for convenience in reference only and will not be limiting. For example, up, down, front, back, right and left refer to the invention as oriented in the view being referred to. The words “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the embodiment being described and designated parts thereof. Said terminology will include the words specifically mentioned, derivatives thereof and words of similar meaning.
Referring to
The antennas 4 and the receiver 6 are mounted on a multi-layer PCB 8, which can include multiple conductive layers separated by insulating layers formed of epoxy or other suitable material. The conductive layers can include reference layers adapted for powering the circuit 2 via a positive, power layer and one or more ground or common layers providing a ground plane(s) for the circuit. The PCB 8 can also include one or more signal layers, which can be photo-etched in a suitable circuit diagram pattern(s) for electrically coupling the circuit components. For example, the antennas 4 and the receiver 6 can be connected by RF transmission striplines or traces 10, which can be either embedded within the PCB 8 and shielded between the reference layers thereof in a sandwiching construction, or located on the PCB 8 surface and comprise surface microstrip antenna traces. If surface-mounted, the RF transmission striplines 10 would be bottom-shielded by the top layer of the PCB 8. The function of the RF transmission striplines 10 is preferably optimized by controlling impedance (Z), e.g. by varying the thickness of the traces 10.
Multiple decouplers 12 form decoupling lines 14, which extend from the receiver 6 to respective ends 16 of the PCB 8. The lines 14 include bends 18 and form grounded isolation islands 20 which are relatively noise-free by virtue of the electrical decoupling function of the decouplers 12. The RF inputs via the antennas 4 are near the ends 16 of the PCB 8. The decoupling lines 14 can be formed with bends and other configurations as necessary in order to locate the RF input signals as close as possible to the physical RF connectors from within the RF transmission striplines 10 in order to provide optimal RF signal paths from the antennas 4 to the receiver 6. The decouplers 12 can comprise capacitors, resistors or inductors, which are chosen for impedance control based on characteristics and operating parameters of the circuit 2. The configurations and locations of the isolation islands 20 within the PCB also provide impedance control, in conjunction with the decoupling lines 14 and the operating parameters of the circuit 2. Such operating parameters can include such variables as power, voltage, current, frequency and amplitude of the signals encountered by the components of the circuit 2, including the operating ranges of such parameters. Multiple different capacitive values of the decouplers 12 can be utilized to filter specific frequencies between the decoupled component ground planes.
The decouplers 12 and the isolation islands 20 preferably extend between, yet still allow, electrical connections between the reference layers (e.g., ground planes and/or positive reference layer) of the PCB 8. The respective independent ground planes of the circuit components, such as the antennas 4, the receiver 6 and the RF transmission lines 10 are electrically decoupled by the decouplers 12. A relatively large area of isolation is preferably formed in the PCB 8 by the isolation islands 20 in order to maximize the signal noise-isolating operation of the decoupling lines 14.
In operation, the PCB circuit 2 can encounter noise and electrical interference from a variety of internal and external sources. High-frequency receivers, such as those utilized in GNSS (e.g., GPS), are somewhat susceptible to degradation of performance due to such interference, with the potential for resulting inaccuracies in their positioning functions. The isolation islands 20 tend to be relatively free of such noise signals whereby the antennas 4 can be located relatively close to the receiver 6 without being subjected to excessive noise.
The relatively close proximities of the antennas 4 to the receiver 6 tend to minimize signal delays and electromagnetic interference (EMI) problems, which can be associated with greater separation and correspondingly longer RF connecting leads. Noise from such signal sources as multipath signals, PCB skin effect, power source fluctuations, phase noise and EMI in general tend to be effectively dissipated by the impedance (capacitive, inductive and/or resistive) of the decouplers 12. Effective decoupling improves signal quality from the antennas 4 to the receiver 6. In the case of GNSS systems, greater positioning accuracy can be achieved. Another benefit of decoupling the PCB circuit 2 is that the need for sophisticated filtering and processing functions, which are commonly performed by processors using Kalman and other filtering software techniques, can be eliminated or at least reduced. A further advantage of the decoupled PCB circuit 2 is that the PCB ground planes provide additional antenna areas for increasing the effectiveness of the antennas 4. Still further, the additional costs associated with separate circuit boards and standalone components can be avoided by utilizing the decoupled PCB 8.
A tightly-coupled PCB circuit 52 comprising a first alternative aspect or embodiment of the present invention is shown in
As shown in
A tightly-coupled PCB circuit 102 comprising a second alternative aspect or embodiment of the present invention is shown in
A tightly-coupled PCB circuit 152 comprising a third alternative aspect or embodiment of the present invention is shown in
It is to be understood that the invention can be embodied in various forms, and is not to be limited to the examples discussed above. For example, the PCBs and the isolation islands can be formed in a variety of configurations. Moreover, various components can be assembled in different configurations to form a wide variety of PCB circuits, which can effectively utilize the closely-coupled construction of the present invention with isolation islands. For example, multiple antennas and receivers can be provided. Although GNSS receivers and patch antennas are shown, other RF receivers and antennas can be utilized. The range of components and configurations which can be utilized in the practice of the present invention is virtually unlimited.
This application claims the benefit of U.S. Provisional Application No. 60/975,727, filed Sep. 27, 2007, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3585537 | Rennick et al. | Jun 1971 | A |
3596228 | Reed, Jr. et al. | Jul 1971 | A |
3727710 | Sanders et al. | Apr 1973 | A |
3815272 | Marleau | Jun 1974 | A |
3899028 | Morris et al. | Aug 1975 | A |
3987456 | Gelin | Oct 1976 | A |
4132272 | Holloway et al. | Jan 1979 | A |
4170776 | MacDoran | Oct 1979 | A |
4180133 | Collogan et al. | Dec 1979 | A |
4398162 | Nagai | Aug 1983 | A |
4453614 | Allen et al. | Jun 1984 | A |
4529990 | Brunner | Jul 1985 | A |
4637474 | Leonard | Jan 1987 | A |
4667203 | Counselman, III | May 1987 | A |
4689556 | Cedrone | Aug 1987 | A |
4694264 | Owens et al. | Sep 1987 | A |
4710775 | Coe | Dec 1987 | A |
4714435 | Stipanuk et al. | Dec 1987 | A |
4739448 | Rowe et al. | Apr 1988 | A |
4751512 | Longaker | Jun 1988 | A |
4769700 | Pryor | Sep 1988 | A |
4785463 | Janc et al. | Nov 1988 | A |
4802545 | Nystuen et al. | Feb 1989 | A |
4812991 | Hatch | Mar 1989 | A |
4813991 | Hatch | Mar 1989 | A |
4858132 | Holmquist | Aug 1989 | A |
4864320 | Munson et al. | Sep 1989 | A |
4894662 | Counselman | Jan 1990 | A |
4916577 | Dawkins | Apr 1990 | A |
4918607 | Wible | Apr 1990 | A |
4963889 | Hatch | Oct 1990 | A |
5031704 | Fleischer et al. | Jul 1991 | A |
5100229 | Lundberg et al. | Mar 1992 | A |
5134407 | Lorenz et al. | Jul 1992 | A |
5148179 | Allison | Sep 1992 | A |
5152347 | Miller | Oct 1992 | A |
5155490 | Spradley et al. | Oct 1992 | A |
5155493 | Thursby et al. | Oct 1992 | A |
5156219 | Schmidt et al. | Oct 1992 | A |
5165109 | Han et al. | Nov 1992 | A |
5173715 | Rodal et al. | Dec 1992 | A |
5177489 | Hatch | Jan 1993 | A |
5185610 | Ward et al. | Feb 1993 | A |
5191351 | Hofer et al. | Mar 1993 | A |
5202829 | Geier | Apr 1993 | A |
5207239 | Schwitalia | May 1993 | A |
5239669 | Mason et al. | Aug 1993 | A |
5255756 | Follmer et al. | Oct 1993 | A |
5268695 | Dentinger et al. | Dec 1993 | A |
5293170 | Lorenz et al. | Mar 1994 | A |
5294970 | Dornbusch et al. | Mar 1994 | A |
5296861 | Knight | Mar 1994 | A |
5311149 | Wagner et al. | May 1994 | A |
5323322 | Mueller et al. | Jun 1994 | A |
5334987 | Teach | Aug 1994 | A |
5343209 | Sennott et al. | Aug 1994 | A |
5345245 | Ishikawa et al. | Sep 1994 | A |
5359332 | Allison et al. | Oct 1994 | A |
5361212 | Class et al. | Nov 1994 | A |
5365447 | Dennis | Nov 1994 | A |
5369589 | Steiner | Nov 1994 | A |
5375059 | Kyrtsos et al. | Dec 1994 | A |
5390124 | Kyrtsos | Feb 1995 | A |
5390125 | Sennott et al. | Feb 1995 | A |
5390207 | Fenton et al. | Feb 1995 | A |
5416712 | Geier et al. | May 1995 | A |
5442363 | Remondi | Aug 1995 | A |
5444453 | Lalezari | Aug 1995 | A |
5451964 | Babu | Sep 1995 | A |
5467282 | Dennis | Nov 1995 | A |
5471217 | Hatch et al. | Nov 1995 | A |
5476147 | Fixemer | Dec 1995 | A |
5477228 | Tiwari et al. | Dec 1995 | A |
5477458 | Loomis | Dec 1995 | A |
5490073 | Kyrtsos | Feb 1996 | A |
5491636 | Robertson | Feb 1996 | A |
5495257 | Loomis | Feb 1996 | A |
5504482 | Schreder | Apr 1996 | A |
5511623 | Frasier | Apr 1996 | A |
5519620 | Talbot et al. | May 1996 | A |
5521610 | Rodal | May 1996 | A |
5523761 | Gildea | Jun 1996 | A |
5534875 | Diefes et al. | Jul 1996 | A |
5543804 | Buchler et al. | Aug 1996 | A |
5546093 | Gudat et al. | Aug 1996 | A |
5548293 | Cohen et al. | Aug 1996 | A |
5561432 | Knight | Oct 1996 | A |
5563786 | Torii | Oct 1996 | A |
5568152 | Janky et al. | Oct 1996 | A |
5568162 | Samsel et al. | Oct 1996 | A |
5583513 | Cohen | Dec 1996 | A |
5589835 | Gildea et al. | Dec 1996 | A |
5592382 | Colley | Jan 1997 | A |
5596328 | Stangeland et al. | Jan 1997 | A |
5600670 | Turney | Feb 1997 | A |
5604506 | Rodal | Feb 1997 | A |
5608393 | Hartman | Mar 1997 | A |
5610522 | Locatelli et al. | Mar 1997 | A |
5610616 | Vallot et al. | Mar 1997 | A |
5610845 | Slabinski | Mar 1997 | A |
5612883 | Shaffer et al. | Mar 1997 | A |
5615116 | Gudat et al. | Mar 1997 | A |
5617100 | Akiyoshi et al. | Apr 1997 | A |
5617317 | Ignagni | Apr 1997 | A |
5621646 | Enge et al. | Apr 1997 | A |
5638077 | Martin | Jun 1997 | A |
5644139 | Allen et al. | Jul 1997 | A |
5664632 | Frasier | Sep 1997 | A |
5673491 | Brenna et al. | Oct 1997 | A |
5680140 | Loomis | Oct 1997 | A |
5684696 | Rao et al. | Nov 1997 | A |
5706015 | Chen et al. | Jan 1998 | A |
5717593 | Gvili | Feb 1998 | A |
5725230 | Walkup | Mar 1998 | A |
5731786 | Abraham et al. | Mar 1998 | A |
5739785 | Allison et al. | Apr 1998 | A |
5757316 | Buchler | May 1998 | A |
5765123 | Nimura et al. | Jun 1998 | A |
5777578 | Chang et al. | Jul 1998 | A |
5810095 | Orbach et al. | Sep 1998 | A |
5828336 | Yunck et al. | Oct 1998 | A |
5838562 | Gudat et al. | Nov 1998 | A |
5854987 | Sekine et al. | Dec 1998 | A |
5862501 | Talbot et al. | Jan 1999 | A |
5864315 | Welles, II et al. | Jan 1999 | A |
5864318 | Cozenza et al. | Jan 1999 | A |
5875408 | Pinto | Feb 1999 | A |
5877725 | Kalafus | Mar 1999 | A |
5890091 | Talbot et al. | Mar 1999 | A |
5899957 | Loomis | May 1999 | A |
5906645 | Kagawa et al. | May 1999 | A |
5912798 | Chu | Jun 1999 | A |
5914685 | Kozlov et al. | Jun 1999 | A |
5917448 | Mickelson | Jun 1999 | A |
5918558 | Susag | Jul 1999 | A |
5919242 | Greatline et al. | Jul 1999 | A |
5923270 | Sampo et al. | Jul 1999 | A |
5926079 | Heine et al. | Jul 1999 | A |
5927603 | McNabb | Jul 1999 | A |
5928309 | Korver et al. | Jul 1999 | A |
5929721 | Munn et al. | Jul 1999 | A |
5933110 | Tang | Aug 1999 | A |
5935183 | Sahm et al. | Aug 1999 | A |
5936573 | Smith | Aug 1999 | A |
5940026 | Popeck | Aug 1999 | A |
5941317 | Mansur | Aug 1999 | A |
5943008 | Van Dusseldorf | Aug 1999 | A |
5944770 | Enge et al. | Aug 1999 | A |
5945917 | Harry | Aug 1999 | A |
5949371 | Nichols | Sep 1999 | A |
5955973 | Anderson | Sep 1999 | A |
5956250 | Gudat et al. | Sep 1999 | A |
5969670 | Kalafus et al. | Oct 1999 | A |
5987383 | Keller et al. | Nov 1999 | A |
6014101 | Loomis | Jan 2000 | A |
6014608 | Seo | Jan 2000 | A |
6018313 | Englemayer et al. | Jan 2000 | A |
6023239 | Kovach | Feb 2000 | A |
6052647 | Parkinson et al. | Apr 2000 | A |
6055477 | McBurney et al. | Apr 2000 | A |
6057800 | Yang et al. | May 2000 | A |
6061390 | Meehan et al. | May 2000 | A |
6061632 | Dreier | May 2000 | A |
6062317 | Gharsalli | May 2000 | A |
6069583 | Silvestrin et al. | May 2000 | A |
6076612 | Carr et al. | Jun 2000 | A |
6081171 | Ella | Jun 2000 | A |
6100842 | Dreier et al. | Aug 2000 | A |
6122595 | Varley et al. | Sep 2000 | A |
6128574 | Diekhans | Oct 2000 | A |
6144335 | Rogers et al. | Nov 2000 | A |
6191730 | Nelson, Jr. | Feb 2001 | B1 |
6191733 | Dizchavez | Feb 2001 | B1 |
6198430 | Hwang et al. | Mar 2001 | B1 |
6198992 | Winslow | Mar 2001 | B1 |
6199000 | Keller et al. | Mar 2001 | B1 |
6205401 | Pickhard et al. | Mar 2001 | B1 |
6215828 | Signell et al. | Apr 2001 | B1 |
6229479 | Kozlov et al. | May 2001 | B1 |
6230097 | Dance et al. | May 2001 | B1 |
6233511 | Berger et al. | May 2001 | B1 |
6236916 | Staub et al. | May 2001 | B1 |
6236924 | Motz | May 2001 | B1 |
6253160 | Hanseder | Jun 2001 | B1 |
6256583 | Sutton | Jul 2001 | B1 |
6259398 | Riley | Jul 2001 | B1 |
6266595 | Greatline et al. | Jul 2001 | B1 |
6285320 | Olster et al. | Sep 2001 | B1 |
6292132 | Wilson | Sep 2001 | B1 |
6307505 | Green | Oct 2001 | B1 |
6313788 | Wilson | Nov 2001 | B1 |
6314348 | Winslow | Nov 2001 | B1 |
6325684 | Knight | Dec 2001 | B1 |
6336066 | Pellenc et al. | Jan 2002 | B1 |
6345231 | Quincke | Feb 2002 | B2 |
6356602 | Rodal et al. | Mar 2002 | B1 |
6377889 | Soest | Apr 2002 | B1 |
6380888 | Kucik | Apr 2002 | B1 |
6389345 | Phelps | May 2002 | B2 |
6392589 | Rogers et al. | May 2002 | B1 |
6397147 | Whitehead et al. | May 2002 | B1 |
6415229 | Diekhans | Jul 2002 | B1 |
6418031 | Archambeault | Jul 2002 | B1 |
6421003 | Riley et al. | Jul 2002 | B1 |
6424915 | Fukuda et al. | Jul 2002 | B1 |
6431576 | Viaud et al. | Aug 2002 | B1 |
6434462 | Bevly et al. | Aug 2002 | B1 |
6445983 | Dickson et al. | Sep 2002 | B1 |
6445990 | Manring | Sep 2002 | B1 |
6449558 | Small | Sep 2002 | B1 |
6463091 | Zhodzicshsky et al. | Oct 2002 | B1 |
6463374 | Keller et al. | Oct 2002 | B1 |
6466871 | Reisman et al. | Oct 2002 | B1 |
6469663 | Whitehead et al. | Oct 2002 | B1 |
6484097 | Fuchs et al. | Nov 2002 | B2 |
6501422 | Nichols | Dec 2002 | B1 |
6515619 | McKay, Jr. | Feb 2003 | B1 |
6516271 | Upadhyaya et al. | Feb 2003 | B2 |
6539303 | McClure et al. | Mar 2003 | B2 |
6542077 | Joao | Apr 2003 | B2 |
6549835 | Deguchi | Apr 2003 | B2 |
6553299 | Keller et al. | Apr 2003 | B1 |
6553300 | Ma et al. | Apr 2003 | B2 |
6553311 | Aheam et al. | Apr 2003 | B2 |
6570534 | Cohen et al. | May 2003 | B2 |
6577952 | Geier et al. | Jun 2003 | B2 |
6587761 | Kumar | Jul 2003 | B2 |
6606542 | Hauwiller et al. | Aug 2003 | B2 |
6611228 | Toda et al. | Aug 2003 | B2 |
6611754 | Klein | Aug 2003 | B2 |
6611755 | Coffee et al. | Aug 2003 | B1 |
6622091 | Perlmutter et al. | Sep 2003 | B2 |
6631916 | Miller | Oct 2003 | B1 |
6643576 | O'Connor et al. | Nov 2003 | B1 |
6646603 | Dooley et al. | Nov 2003 | B2 |
6657875 | Zeng et al. | Dec 2003 | B1 |
6671587 | Hrovat et al. | Dec 2003 | B2 |
6688403 | Bernhardt et al. | Feb 2004 | B2 |
6703973 | Nichols | Mar 2004 | B1 |
6711501 | McClure et al. | Mar 2004 | B2 |
6721638 | Zeitler | Apr 2004 | B2 |
6732024 | Rekow et al. | May 2004 | B2 |
6744404 | Whitehead et al. | Jun 2004 | B1 |
6754584 | Pinto et al. | Jun 2004 | B2 |
6774843 | Takahashi | Aug 2004 | B2 |
6792380 | Toda | Sep 2004 | B2 |
6819269 | Flick | Nov 2004 | B2 |
6822314 | Beasom | Nov 2004 | B2 |
6865465 | McClure | Mar 2005 | B2 |
6865484 | Miyasaka et al. | Mar 2005 | B2 |
6900992 | Kelly et al. | May 2005 | B2 |
6922635 | Rorabaugh | Jul 2005 | B2 |
6931233 | Tso et al. | Aug 2005 | B1 |
6967538 | Woo | Nov 2005 | B2 |
6990399 | Hrazdera et al. | Jan 2006 | B2 |
7006032 | King et al. | Feb 2006 | B2 |
7026982 | Toda et al. | Apr 2006 | B2 |
7027918 | Zimmerman et al. | Apr 2006 | B2 |
7031725 | Rorabaugh | Apr 2006 | B2 |
7089099 | Shostak et al. | Aug 2006 | B2 |
7142956 | Heiniger et al. | Nov 2006 | B2 |
7162348 | McClure et al. | Jan 2007 | B2 |
7191061 | McKay et al. | Mar 2007 | B2 |
7231290 | Steichen et al. | Jun 2007 | B2 |
7248211 | Hatch et al. | Jul 2007 | B2 |
7271766 | Zimmerman et al. | Sep 2007 | B2 |
7277784 | Weiss | Oct 2007 | B2 |
7292186 | Miller et al. | Nov 2007 | B2 |
7324915 | Altman | Jan 2008 | B2 |
7358896 | Gradincic et al. | Apr 2008 | B2 |
7373231 | McClure et al. | May 2008 | B2 |
7388539 | Whitehead et al. | Jun 2008 | B2 |
7395769 | Jensen | Jul 2008 | B2 |
7428259 | Wang et al. | Sep 2008 | B2 |
7437230 | McClure et al. | Oct 2008 | B2 |
7451030 | Eglington et al. | Nov 2008 | B2 |
7479900 | Horstemeyer | Jan 2009 | B2 |
7505848 | Flann et al. | Mar 2009 | B2 |
7522100 | Yang et al. | Apr 2009 | B2 |
7571029 | Dai et al. | Aug 2009 | B2 |
7689354 | Heiniger et al. | Mar 2010 | B2 |
7839334 | Rofougaran | Nov 2010 | B2 |
20030014171 | Ma et al. | Jan 2003 | A1 |
20030187560 | Keller et al. | Oct 2003 | A1 |
20030208319 | Ell et al. | Nov 2003 | A1 |
20040039514 | Steichen et al. | Feb 2004 | A1 |
20040212533 | Whitehead et al. | Oct 2004 | A1 |
20050080559 | Ishibashi et al. | Apr 2005 | A1 |
20050225955 | Grebenkemper et al. | Oct 2005 | A1 |
20050265494 | Goodlings | Dec 2005 | A1 |
20060167600 | Nelson et al. | Jul 2006 | A1 |
20060215739 | Williamson et al. | Sep 2006 | A1 |
20060251173 | Wang et al. | Nov 2006 | A1 |
20070078570 | Dai et al. | Apr 2007 | A1 |
20070088447 | Stothert et al. | Apr 2007 | A1 |
20070121708 | Simpson | May 2007 | A1 |
20070205940 | Yang et al. | Sep 2007 | A1 |
20070285308 | Bauregger et al. | Dec 2007 | A1 |
20080129586 | Martin | Jun 2008 | A1 |
20080170378 | Ou-Yang | Jul 2008 | A1 |
20080204312 | Euler | Aug 2008 | A1 |
20090171583 | DiEsposti | Jul 2009 | A1 |
20090174587 | DiLellio et al. | Jul 2009 | A1 |
20090174622 | Kanou | Jul 2009 | A1 |
20090177395 | Stelpstra | Jul 2009 | A1 |
20090177399 | Park et al. | Jul 2009 | A1 |
20090259397 | Stanton | Oct 2009 | A1 |
20090259707 | Martin et al. | Oct 2009 | A1 |
20090262014 | DiEsposti | Oct 2009 | A1 |
20090262018 | Vasilyev et al. | Oct 2009 | A1 |
20090262974 | Lithopoulos | Oct 2009 | A1 |
20090265054 | Basnayake | Oct 2009 | A1 |
20090265101 | Jow | Oct 2009 | A1 |
20090265104 | Shroff | Oct 2009 | A1 |
20090273372 | Brenner | Nov 2009 | A1 |
20090273513 | Huang | Nov 2009 | A1 |
20090274079 | Bhatia et al. | Nov 2009 | A1 |
20090274113 | Katz | Nov 2009 | A1 |
20090276155 | Jeerage et al. | Nov 2009 | A1 |
20090295633 | Pinto et al. | Dec 2009 | A1 |
20090295634 | Yu et al. | Dec 2009 | A1 |
20090299550 | Baker | Dec 2009 | A1 |
20090322597 | Medina Herrero et al. | Dec 2009 | A1 |
20090322598 | Fly et al. | Dec 2009 | A1 |
20090322600 | Whitehead et al. | Dec 2009 | A1 |
20090322601 | Ladd et al. | Dec 2009 | A1 |
20090322606 | Gronemeyer | Dec 2009 | A1 |
20090326809 | Colley et al. | Dec 2009 | A1 |
20100013703 | Tekawy et al. | Jan 2010 | A1 |
20100026569 | Amidi | Feb 2010 | A1 |
20100030470 | Wang et al. | Feb 2010 | A1 |
20100039316 | Gronemeyer et al. | Feb 2010 | A1 |
20100039318 | Kmiecik | Feb 2010 | A1 |
20100039320 | Boyer et al. | Feb 2010 | A1 |
20100039321 | Abraham | Feb 2010 | A1 |
20100060518 | Bar-Sever et al. | Mar 2010 | A1 |
20100063649 | Wu | Mar 2010 | A1 |
20100084147 | Aral | Apr 2010 | A1 |
20100085249 | Ferguson et al. | Apr 2010 | A1 |
20100085253 | Ferguson et al. | Apr 2010 | A1 |
20100103033 | Roh | Apr 2010 | A1 |
20100103034 | Tobe et al. | Apr 2010 | A1 |
20100103038 | Yeh et al. | Apr 2010 | A1 |
20100103040 | Broadbent | Apr 2010 | A1 |
20100106414 | Whitehead | Apr 2010 | A1 |
20100106445 | Kondoh | Apr 2010 | A1 |
20100109944 | Whitehead et al. | May 2010 | A1 |
20100109945 | Roh | May 2010 | A1 |
20100109947 | Rintanen | May 2010 | A1 |
20100109948 | Razoumov et al. | May 2010 | A1 |
20100109950 | Roh | May 2010 | A1 |
20100111372 | Zheng et al. | May 2010 | A1 |
20100114483 | Heo et al. | May 2010 | A1 |
20100117899 | Papadimitratos et al. | May 2010 | A1 |
20100117900 | van Diggelen et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
07244150 | Sep 1995 | JP |
WO9836288 | Aug 1998 | WO |
WO0024239 | May 2000 | WO |
WO03019430 | Mar 2003 | WO |
WO2005119386 | Dec 2005 | WO |
WO 2009066183 | May 2009 | WO |
WO2009126587 | Oct 2009 | WO |
WO2009148638 | Dec 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20090085815 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
60975727 | Sep 2007 | US |