This application claims priority to Taiwan Application Serial Number 108117380, filed May 20, 2019, which is herein incorporated by reference in its entirety.
The present invention relates to a tiling display device and a manufacturing method of the tiling display device.
The current reflective display device needs to be formed by splicing several reflective display panels so as to achieve a purpose for large size display. However, a gap would be produced between the adjacent panels because of the process tolerance and the assembly tolerance of each component. For example, a cutting tolerance of a thin film transistor (TFT) substrate, an interval (safety tolerance) between an upper protection sheet and the thin film transistor substrate, and an interval (safety tolerance) between a front panel laminate and the thin film transistor. These tolerances would accumulate to cause the joint of the tiling display device too big, affecting vision effect.
One aspect of the present disclosure is to provide a tiling display device.
According to one embodiment of the present disclosure, a tiling display device includes a support element, a plurality of thin film transistor substrates, a front panel laminate, and a protection sheet. The thin film transistor substrates are located on the support element and adjacent to each other. The front panel laminate is located on the thin film transistor substrates and includes a light transmissive film, a transparent conductive layer and a display medium layer. The transparent conductive layer is located on a bottom surface of the light transmissive film, and the display medium layer is located between the transparent conductive layer and the thin film transistor substrates. The protection sheet is located on a surface of the front panel laminate facing away from the thin film transistor substrates.
According to one embodiment of the present disclosure, an interval between the two adjacent thin film transistor substrates is in a range from 10 μm to 200 μm.
According to one embodiment of the present disclosure, the tiling display device further includes an adhesive layer. The adhesive layer is located between the thin film transistor substrates and the support element.
According to one embodiment of the present disclosure, the adhesive layer is an optical clear adhesive or a double-side adhesive.
According to one embodiment of the present disclosure, the support element is a flexible substrate.
According to one embodiment of the present disclosure, the support element is made of a material including glass, acrylic, carbon fiber, graphene or metal.
According to one embodiment of the present disclosure, an area of the support element is greater than a total area of the thin film transistor substrates.
According to one embodiment of the present disclosure, a total area of the thin film transistor substrates is greater than an area of the protection sheet, and the area of the protection sheet is greater than an area of the front panel laminate.
According to one embodiment of the present disclosure, a edge of each of the thin film transistor substrates includes a connection zone, and the connection zones are adjacent to each other.
According to one embodiment of the present disclosure, an extension direction of the thin film transistor substrates is parallel to an extension direction of the connection zones.
One aspect of the present disclosure is to provide a manufacturing method of a tiling display device.
According to one embodiment of the present disclosure, a manufacturing method of a tiling display device includes the steps as follows. A plurality of thin film transistor substrates is disposed on a support element, making the film transistor substrates adjacent to each other. A front panel laminate is disposed on the thin film transistor substrates, in which a transparent conductive layer of the front panel laminate is on a bottom surface of a light transmissive film of the front panel laminate, and a display medium layer of the front panel laminate is between the transparent conductive layer and the thin film transistor substrates. A protection sheet is disposed on a top surface of the front panel laminate.
According to one embodiment of the present disclosure, the manufacturing method further includes the steps as follows. A plurality of cutting zones are formed along edges of a plurality of active regions of a mother thin film transistor substrate, in which the cutting zones are respectively located outside the active regions. The mother thin film transistor substrate is cut along the cutting zones to form the thin film transistor substrates.
According to one embodiment of the present disclosure, the cutting zones of the mother thin film transistor substrate are cut by laser cutting.
According to one embodiment of the present disclosure, the thin film transistor substrates are disposed on the support element by an adhesion method.
According to one embodiment of the present disclosure, the thin film transistor substrates are disposed on the support element by a mask alignment mark.
In the aforementioned embodiments of the present disclosure, because only one front panel laminate is disposed on the thin film transistor substrates and only one protection sheet is disposed on the front panel laminate, a limitation of an interval (safety tolerance) between an edge of the front panel laminate and an edge of the thin film transistor substrates can be eliminated, and a limitation of an interval (safety tolerance) between an edge of the protection sheet and the edge of the thin film transistor substrates can be also eliminated. Only an interval (cutting tolerance) between the thin film transistor substrates would affect the size of the joining site, thereby significantly reducing the effect on vision. Furthermore, because only the thin film transistor substrates are spliced in the tiling display device in actual, and the front panel laminate and the protect sheet are above and cover the joining site, the effect on the vision can be further improved. The tiling display device of the present disclosure can be improved to achieve an invisible jointing site to human eye.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the invention as claimed.
The invention can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:
Reference will now be made in detail to the present embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
A plurality of embodiments of the present disclosure is illustrated in the drawings as follows, for clear explanation, many practice details will be described in the following. However, it should be understood that the practice details are not be used to limit the present disclosure. In other words, in some embodiments of the present disclosure, these details are optional in practice. Furthermore, for simplifying the drawings, some known structures and elements will be shown in simplified illustration.
Because the tiling display device 100 includes only one front panel laminate 130 located on the thin film transistor substrates 120a, 120b and only one protection sheet 140 located on the front panel laminate 130, a limitation of an interval (safety tolerance) between an edge of the front panel laminate and an edge of the thin film transistor substrate can be eliminated, and a limitation of an interval (safety tolerance) between an edge of the protection sheet and the edge of the thin film transistor substrate can be also eliminated, without being worried about that two adjacent front panel laminates or two adjacent protection sheets in a traditional tiling display device are rubbed, impacted, or overlapped with each other so as to need to purposely separate to further affect vision effect.
As a result, only an interval d (cutting tolerance) between the thin film transistor substrates 120a, 120b in the tiling display device 100 would affect a size of a joining site, thereby significantly reducing the effect on vision. Furthermore, since only the thin film transistor substrates 120a, 120b are spliced in the tiling display device 100 in actual, and the front panel laminate 130 and the protect sheet 140 are above and cover the joining site, the effect on the vision can be further improved.
The tiling display device 100 of the present disclosure can be improved to have an invisible joining site to human eye. In the present embodiment, the interval d between two adjacent thin film transistor substrates 120a, 120b may be in a range from 10 μm to 200 μm. When the interval d is reduced to an interval under 50 μm, an invisible joining site to human eye is achieved.
In addition, the tiling display device 100 further includes an adhesive layer 150. The adhesive layer 150 is located between the thin film transistor substrates 120a, 120b and the support element 110. The adhesive layer 150 may be an optical clear adhesive (OCA) or a double-side adhesive. The optical clear adhesive may be coated on bottom surfaces of the thin film transistor substrates 120a, 120b or a top surface of the support element 110, and the present disclosure is not limited in this regard.
In the present embodiment, the support element 110 may be a flexible substrate. The support element 110 may be made of a material including glass, acrylic, carbon fiber, graphene, or metal. Furthermore, as shown in
It should be understood that the connection relationship, materials and advantages of the aforementioned elements will not be described again. In the following description, a manufacturing method of the tiling display device 100 of
In the following description, the foregoing steps will be explained.
Please refer to
Next, in the step S2, the front panel laminate 130 is disposed on the thin film transistor substrates 120a, 120b. The transparent conductive layer 134 (see
Although the present invention has been described in considerable detail with reference to certain embodiments thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
108117380 | May 2019 | TW | national |