A biopsy is the removal of a tissue sample to examine tissue for signs of cancer or other disorders. Tissue samples are obtained in a variety of ways using various medical procedures involving a variety of the sample collection devices. For example, biopsies may be open (surgically removing tissue) or percutaneous (e.g. by fine needle aspiration, core needle biopsy or vacuum assisted biopsy). After the tissue sample is collected, the tissue sample is analyzed at a lab (e.g. a pathology lab, biomedical lab, etc.) that is set up to perform the appropriate tests (such as histological analysis).
Biopsy samples have been obtained in a variety of ways in various medical procedures including open and percutaneous methods using a variety of devices. For instance, some biopsy devices may be fully operable by a user using a single hand, and with a single insertion, to capture one or more biopsy samples from a patient. In addition, some biopsy devices may be tethered to a vacuum module and/or control module, such as for communication of fluids (e.g., pressurized air, saline, atmospheric air, vacuum, etc.), for communication of power, and/or for communication of commands and the like. Other biopsy devices may be fully or at least partially operable without being tethered or otherwise connected with another device. Biopsy devices may be used under stereotactic guidance, ultrasound guidance, MRI guidance, Positron Emission Mammography (“PEM” guidance), Breast-Specific Gamma Imaging (“BSGI”) guidance or otherwise.
At several steps during tissue processing using conventional techniques and instruments, it may be necessary to manually manipulate the tissue. This manual manipulation takes time and introduces the possibility of human error causing mistakes during the processing of tissue. Any human error during the processing of tissue can make the pathological examination of the tissue much more problematic to achieve the desired goal of having an accurate diagnosis. Thus, it is understood that a desired goal of modern tissue processing is the reduction of the requirement that tissue be manually manipulated.
Various devices and techniques for tissue handling are disclosed in International Pat. Pub. No. WO 2013/192606, entitled “Biopsy Tissue Sample Transport Device and Method of Using Thereof,” published on Dec. 27, 2013; International Pat. Pub. No. WO 2013/192607, entitled “Tissue Sample Container and Methods,” published on Dec. 27, 2013; International Pat. Pub. No. WO 2014/151603, entitled “Biopsy Device,” published on Sep. 25, 2014; U.S. Pat. No. 7,715,523, entitled “System and Apparatus for Rapid Stereotactic Breast Biopsy Analysis,” issued on May 11, 2010; U.S. Pat. No. 8,503,602, entitled “System and Apparatus for Rapid Stereotactic Breast Biopsy Analysis,” issued on Aug. 6, 2013; U.S. Pat. No. 8,485,987, entitled “Tissue Handling System with Reduced Operator Exposure,” issued Jul. 16, 2016; U.S. Pat. No. 8,802,034, “Tissue Container for Molecular and Histology Diagnostics Incorporating a Breakable Membrane,” issued on Aug. 12, 2014; and U.S. Pat. No. 9,056,317, “Tissue Container for Molecular and Histology Diagnostics Incorporating a Breakable Membrane,” issued on Jun. 16, 2016. The disclosure of each of the above-cited U.S. Patents is incorporated by reference herein.
While several systems and methods have been made and used for obtaining and processing a biopsy sample, it is believed that no one prior to the inventor has made or used the invention described in the appended claims.
While the specification concludes with claims which particularly point out and distinctly claim the invention, it is believed the present invention will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements. In the drawings some components or portions of components are shown in phantom as depicted by broken lines.
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the invention may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention; it being understood, however, that this invention is not limited to the precise arrangements shown.
The following description of certain examples of the invention should not be used to limit the scope of the present invention. Other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the invention. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
I. Exemplary Biopsy Device
Holster assembly (30) includes features that are operable to drive the cutter, features that are operable to fire needle (22) distally into tissue, and features that are operable to rotate needle (22) about a longitudinal axis of needle (22). In some versions, holster assembly (30) is coupled with a control module via a cable that is operable to provide electrical power and/or other electrical signals to holster assembly (30). In addition, or in the alternative, holster assembly (30) may receive a pressurized medium (e.g., air, hydraulic fluid, etc.) in order to provide motive force to drive the cutter of probe assembly (20).
In the present example, probe assembly (20) and holster assembly (30) are configured for use in a stereotactic image guided biopsy procedure. By way of example only, probe assembly (20) and holster assembly (30) may be constructed and operable in accordance with at least some of the teachings of U.S. Pub. No. 2014/0039343, entitled “Biopsy System,” published Feb. 6, 2014, the disclosure of which is incorporated by reference herein. Alternatively, probe assembly (20) and holster assembly (30) may be configured for use in (or otherwise be used in) an ultrasound image guided biopsy procedure and/or an MRI guided biopsy procedure. By way of further example only, probe assembly (20) and holster assembly (30) may be constructed and operable in accordance with at least some of the teachings of U.S. Pub. No. 2013/0150751, entitled “Biopsy Device with Slide-In Probe,” published Jun. 13, 2013, the disclosure of which is incorporated by reference herein. Alternatively, probe assembly (20) and holster assembly (30) may be constructed and operable in any other suitable fashion.
As noted above, tissue sample holder assembly (40) is configured to receive tissue samples that are severed by the cutter from tissue protruding through lateral aperture (26). As shown in
As also shown in
As best seen in
As noted above, rotatable member (44) is rotatable relative to probe assembly (20) to selectively index strip receiving chambers (46) relative to the cutter, to thereby selectively index tissue receiving chambers (120) of tissue sample strips (110) relative to the cutter. Rotatable member (44) is also operable to index plug receiving chamber (48) relative to the cutter. When rotatable member (44) is angularly positioned to index plug receiving chamber (48) relative to the cutter, plug (50) may be removed from plug receiving chamber (48) to enable insertion of a biopsy site marker applier instrument (or some other kind of instrument) through the cutter and needle assembly (22), thereby providing an access path to the biopsy site via lateral aperture (26). Otherwise, plug (50) may be left in plug receiving chamber (48) during operation of biopsy device (10), thereby sealing plug receiving chamber (48).
By way of example only, tissue sample holder (40) may be configured and operable in accordance with at least some of the teachings of U.S. Pub. No. 2014/0039343, entitled “Biopsy System,” published Feb. 6, 2014, the disclosure of which is incorporated by reference herein and/or U.S. Pub. No. 2014/0275999, entitled “Biopsy Device,” published Sep. 18, 2014, the disclosure of which is incorporated by reference herein.
In some instances it may be desirable to insert tissue sample tray (100) in a preservative or other protective medium after collecting tissue samples within each tissue receiving chamber (120) of tissue sample tray (100). As seen in
In the present example, jar (160) includes a cup (162) and a lid (166). Cup (162) defines a reservoir (164), which can be used to contain fluid within cup (162). Cup (162) defines a generally cylindrical shape that is sized to receive one or more tissue sample trays (100). Lid (166) generally corresponds to the cylindrical shape of cup (162). Lid (166) is further configured to be selectively fastened onto a top portion of cup (162). In the present example, lid (166) includes seals or other features configured to seal cup (162) relative to the exterior of cup (162). As described above, reservoir (164) is generally configured to hold fluid. Thus, lid (166) is corresponding configured to hold the fluid within cup (162).
As described above, jar (160) is generally filled with fluid. Thus, when tissue sample tray (100) is disposed within jar (160), tissue sample tray (100) is generally at least partially submerged in fluid. In the present example, fluid is generally configured to act as a preservative of tissue samples contained within tissue sample tray (100). By way of example only, one suitable preservative may include formalin. However, it should be understood that in other examples numerous alternative fluids as will be apparent to those of ordinary skill in the art in view of the teachings herein.
II. Exemplary Tissue Processing Cassette
Once tissue samples have been collected using biopsy device (10) or other similar devices described herein, it may be desirable to subject such tissue samples to further pathological analysis. To facilitate such analysis, such tissue samples may be subjected to a variety of processing steps described in greater detail below. During these processing steps, it may be desirable to dispose the collected tissue samples within a container or other device to help segregate and track the collected tissue samples relative to other tissue sample collected from the same or other patients as well as the same or other biopsy procedures.
Walls (212, 216, 220) are generally connected to form a rectangular pattern around floor (422). Each wall is generally solid, thereby forming a sample chamber (228) therein. As will be described in greater detail below, sample chamber (228) is generally configured to contain tissue samples within tissue processing cassette (200) when lid (230) is closed relative to base (210).
Distal wall (212) and proximal wall (216) each include a lid receiver (214, 218). Each lid receiver (214, 218) is generally configured to receive at least a portion of lid (230) to thereby selectively secure lid (230) to base (210). Although not shown, it should be understood that each lid receiver (214, 218) can include certain fastening features to facilitate securing lid (230) to base (210). As will be described in greater detail below, these fastening features generally facilitate a snap fit coupling mechanism. However, it should be understood that in other examples alternative coupling mechanisms may be used such as compression fit mechanisms, or any other suitable coupling mechanism as will be apparent to those of ordinary skill in the art in view of the teachings herein.
As described above, labeling surface (226) protrudes distally from distal wall (212). Labeling surface (226) is generally configured to receive a label to provide information to an operator related to the samples contained within tissue processing cassette (200). Although labeling surface (226) of the present example can receive a label (e.g., a pre-printed self-adhering label), it should be understood labeling surface (226) is also configured to permit direct printing of a label onto labeling surface (226). For instance, in some examples labels are laser etched onto labeling surface (226) using a printer configured to receive tissue processing cassette (200) and thereby print directly onto labeling surface (226). To facilitate such printing, it should be understood that labeling surface (226) can also be equipped with a colored coating that can be etched away by the printer described above.
Floor (222) includes a plurality of vents (224) arranged in an array across the surface of floor (222). Vents (224) are generally configured to promote the flow of fluid through floor (222), yet maintain tissue samples within sample chamber (228). To facilitate this configuration, vents (224) have a narrow rectangular form. In other examples, vents (224) can be configured with a variety of alternative shapes such as round, oval-shaped, square, and/or etc. Although vents (224) in the present example are arranged to uniformly occupy the entire surface of floor (222), it should be understood that in other examples vents (224) can be arranged in a variety of other ways. For instance, vents (224) can be isolated to a specific region or multiple regions of floor (222). Of course, other alternative arrangements for vents (224) will be apparent to those of ordinary skill in the art in view of the teachings herein.
Lid (230) comprises a cover portion (234) that is generally configured to engage base (210) to hold tissue samples within sample chamber (228) of base (210). Lid (230) further includes a lip (238) protruding from cover portion (234). Lip (238) extends around the perimeter of cover portion (234) defining a rectangular shape that corresponds to the rectangular shape defined by walls (212, 216, 220) of base (210). As will be understood, lip (238) is generally configured to fit within sample chamber (228) adjacent to each wall (212, 216, 220) to laterally secure and locate cover portion (234) relative to base (210) when lid (230) is in a closed position relative to base (210).
Like with floor (222) described above, cover portion (234) likewise includes a plurality of vents (236) arranged in an array across the surface of cover portion (234). Like vents (224) described above, vents (236) are generally configured to promote the flow of fluid through cover portion (234), yet maintain tissue samples within sample chamber (228). To facilitate this configuration, vents (236) have a narrow rectangular form. In other examples, vents (236) can be configured with a variety of alternative shapes such as round, oval-shaped, square, and/or etc. Although vents (236) in the present example are arranged to uniformly occupy the entire surface of cover portion (234), it should be understood that in other examples vents (236) can be arranged in a variety of other ways. For instance, vents (236) can be isolated to a specific region or multiple regions of cover portion (234). Of course, other alternative arrangements for vents (234) will be apparent to those of ordinary skill in the art in view of the teachings herein.
Lid (230) further comprises a proximal fastener (240) and distal fastener (242). Proximal fastener (240) is configured to engage lid receiver (218) of proximal wall (216), while distal fastener (242) is configured to engage lid receiver (214) of distal wall (212). Each fastener (240, 242) includes a tooth, lip, or other engagement feature that mates with a corresponding feature of each lid receiver (214, 218). As described above, this generally provides a snap fit coupling between each fastener (240, 242) and each lid receiver (216, 218) to selectively maintain lid (230) in the closed position.
Lid (230) is secured to proximal wall (216) of base (210) with an integral living hinge (232). Living hinge (232) permits pivoting of lid (230) relative to base (210) such that lid (230) may move between an open position (e.g.,
As described above, tissue samples may be subjected to various processing and or analysis steps after the tissue samples are collected with biopsy device (10) or other suitable devices. During such steps, tissue processing cassette (200) can be used to facilitate transport, tracking, and storage of the collected tissue samples. In particular,
In the workflow (300) shown in
Regardless of the particular process for collecting tissue samples, once tissue samples are collected, they may be subjected to procedure room x-ray as shown in box (320). During procedure room x-ray, an operator uses x-ray imaging in the procedure room to perform preliminary analysis on the collected tissue samples. During this stage, the collected tissue samples are primarily analyzed using x-ray imaging to determine if any one or more of the collected tissue samples include calcifications or other suspicious features identifiable via x-ray. After this preliminary analysis, more tissue samples can be acquired, if an operator is not satisfied with the preliminary analysis. Alternatively, an operator may be satisfied with the originally collected tissue samples and move to the next step in the procedure.
After an operator is satisfied with preliminary procedure room x-ray analysis, the operator may insert tissue sample tray (100) or just the tissue samples into jar (160). As described above, jar (160) may be filled with formalin or other fluids to preserve the collected tissue samples for storage and/or transport as represented by box (330). Jar (160) is then transported to a pathology laboratory so that the tissue samples can be subjected to further analysis as represented by box (340).
Once jar (160) is received by the pathology laboratory, the samples can be subjected to accessioning as represented by box (342). Accessioning (342) used herein refers to the process of documenting the chain of custody of the collected tissue samples. It should be understood that this may include a variety of steps. For instance, in some examples, jar (160) can include a label that can be used to store, present, display, or otherwise provide patient information. This label can be printed during or after the biopsy procedure described above and represented by box (310). The label can then be adhered to jar (160) prior to transport to pathology as represented by box (340). Once jar (160) is received by pathology, an operator can record, scan, or otherwise collect information form the label to track the chain of custody of the collected tissue samples contained within jar (160).
Once accessioning is complete, the collected tissue samples are strained from the fluid contained within jar (160) as represented by box (350). The collected tissue samples then undergo gross examination by an operator as represented by box (360). Gross examination can include visual inspection of the collected tissue samples, palpitation of the collected tissue samples, and/or manipulating the collected tissue samples into a desired position. Preliminary observations can then be documented in a written record by an operator. Such written records can then be accessioned with the label described above with respect to accessioning and box (342).
After gross examination or during gross examination, the collected tissue samples are inserted into one or more tissue sample processing cassettes similar to tissue processing cassette (200) described above as represented by box (370). For instance, in the context of tissue processing cassette (200), each collected tissue sample is generally laid on floor (222) of base (210) longitudinally between distal wall (212) and proximal wall (216). Lid (230) is then pivoted to the closed position to enclose the collected tissue samples within sample chamber (228) of base (210). To promote tracking of the collected tissue samples, the tissue processing cassette can be labeled at this stage by either direct printing or adhering a self-adhering label to a structure similar to labeling surface (226) described above. This label can include certain patient information corresponding to the label described above with respect to accessioning and box (342).
Once the collected tissue samples are disposed within a tissue processing cassette similar to tissue processing cassette (200), the collected tissue samples are subjected to fixation as represented by box (380). The term fixation used herein refers to the process of using a fixative to preserve specimen integrity and to maintain the shape of cells. Generally, this process involves submerging the collected tissue samples within a fixative. One common fixative is 10% neutral buffered formalin, although other fixatives can be used. The collected tissue samples can be maintained within the fixative for a predetermined period of time. Suitable periods of time can vary according to a variety of factors. However, under many circumstances, a suitable period of time can be approximately 6 hours. This period is generally sufficient to provide stabilization of the proteins in the collected tissue samples to substantially to prevent degeneration of the collected tissue samples.
After fixation is complete, the collected tissue samples are subjected to various chemical solutions during the processing step represented by box (390). During this process, multiple tissue processing cassettes may be loaded into a basket for bulk processing. Various chemicals are then applied, which may enter each tissue processing cassette via vents similar to vents (224, 236) described above. Various chemicals may be used during this process such as alcohols of various concertation levels. For instance, when alcohol is used, moisture is removed from each collected tissue sample rendering each collected tissue sample hard in texture and generally dehydrated.
Once processing is complete, the collected tissue samples are subjected to embedding process represented by box (392). During the embedding process, the collected tissue samples are surrounded by a histological wax. In one merely exemplary embedding process, the tissue samples are removed from the tissue processing cassette and placed into a metal tray or container. Prior to placement of the tissue samples within the metal tray, the metal tray can be partially filled with an initial amount of molten wax. Once the samples are placed in the metal tray, the metal tray is then filled with molten wax. The tissue processing cassette is then placed on the top of the metal tray with the underside of the cassette facing the tissue samples. Additional molten wax is then added through the cassette to bond with wax in the metal tray. During this process, the metal tray can be placed on a cold plate or other cold surface to provide relatively quick solidification of the wax. Once solidification is complete, the collected tissue samples and cassette can be removed from the metal tray. It should be understood that once the tissue samples are prepared in this manner, the tissue samples are generally preserved for indefinite storage at room temperature.
After the embedding process is complete, thin slices of each collected tissue sample are acquired as represented by box (400). Sample sectioning may be performed using a microtome machine. Such a machine uses precision blades to slice thin samples longitudinally from each collected tissue sample. The thin sections are then placed on slides for viewing under suitable visualization means such as optical microscopes.
Once the tissue sample sections are placed on a slide, the sections are subjected to staining as represented by box (410). The portion of the collected tissue samples that remain in the tissue processing cassette are transported to storage as represented by box (420). During the staining process, various chemical compounds are applied to the tissue sample sections. Each chemical compound may be configured to react to different tissue cells. For instance, some compounds may be configured to specifically react with cancer cells, thereby staining cancer cells with a distinctive color relative to other cells. Although not represented in
Once staining is complete, the stained sample sections are analyzed by an operator using a microscope or other visualization means as represented by box (430). Based on this analysis a diagnosis may be generated as represented by box (440).
III. Exemplary Integrated Tissue Collection and Processing System
In some instances it may be desirable to combine certain elements of the tissue sample holder assembly (40) described above with the tissue analysis cassette (200) described above. For instance, manipulation of tissue samples generally risks degrading the quality of the tissue samples each time the tissue samples are manipulated due to the fragility of the tissue. Transferring tissue samples between elements like tissue sample tray (100) described above and tissue processing cassette (200) described above often result in at least some manipulation of the tissue samples being transferred. Thus, transferring tissue samples between various elements may be undesirable in certain circumstances because this can lead to degradation of tissue sample quality. It is therefore desirable to reduce the number of containers used to deposit tissue samples during the workflow (300) described above.
In addition to manipulation of tissue samples being generally undesirable, transferring tissue samples between different containers (e.g., tissue sample tray (100), tissue processing cassette (200)) can lead to mislabeling or tacking errors associated with tissue samples as the tissue samples progress through the workflow (300) described above. For instance, when tissue sample are transferred from tissue sample tray (100) to tissue processing cassette (200), incorrect patient information might be printed on tissue processing cassette (200). Another possibility is that an incorrect label may be placed on tissue processing cassette (200). Thus, transferring tissue samples between different containers also includes the risk of generating errors in tissue sample tracking. Accordingly, it is desirable to reduce the number of containers used in the workflow (300) described above to generally improve tissue sample integrity and reduce operator error.
Although various devices and methods are described below for reducing the number of containers used in the workflow (300) described above are described herein, it should be understood that various alternative configurations will be apparent to those of ordinary skill in the art in view of the teachings herein. For instance, some suitable alternative configurations may combine various features of one embodiment described below with various features of another alternative embodiment. Still other suitable alternative configurations may omit various features of one or more embodiments. Of course, other suitable configurations will be apparent to those of ordinary skill in the art in view of the teachings herein.
A. Exemplary Cassette Assembly
As best seen in
Walls (512, 516, 520) are interconnected to form the outer perimeter of cassette tray (510). Internally, cassette tray (510) includes a plurality of inner divider walls (522) extending longitudinally from distal wall (512) to proximal wall (516). Each inner divider wall (522) is positioned parallel relative to sidewalls (520) an equal distance apart to define a plurality of discrete sample chambers (523). Each sample chamber (523) is generally configured to hold a single tissue sample severed by biopsy device (10). Although the present example includes four discrete sample chambers (523), it should be understood that in other examples any other suitable number of sample chambers (523) can be used. In such examples, it should be understood that each sample chamber (523) can be configured for receiving more than a single tissue sample as with sample chambers (523) in the present example.
Floor (524) is positioned below walls (512, 516, 520, 522). In the present example, each wall (512, 516, 520, 522) is integral with each wall. However, in other examples one or more of each wall (512, 516, 520, 522) can be separate from floor (524) and attached with adhesive or some form of mechanical fastening. Floor (524) includes a plurality of vents (526). Vents (526) are generally configured to promote the flow of fluid through floor (524), yet maintain tissue samples within each sample chamber (523). To facilitate this configuration, vents (526) have a narrow rectangular form. In other examples, vents (526) can be configured with a variety of alternative shapes such as round, oval-shaped, square, and/or etc. Although vents (526) in the present example are arranged to uniformly occupy the entire surface of floor (524), it should be understood that in other examples vents (526) can be arranged in a variety of other ways. For instance, vents (526) can be isolated to a specific region or multiple regions of floor (524). Of course, other alternative arrangements for vents (526) will be apparent to those of ordinary skill in the art in view of the teachings herein.
Floor (524) is opposite to an open space above each sample chamber (523). Thus, the upper portion of cassette tray (510) is generally open. Because of this, tissue samples may be deposited into each sample chamber (523) through openings (514) in distal wall (512) or through the open upper portion of cassette tray (510). As will be described in greater detail below, tissue samples are generally contained within each sample chamber (523) once cassette tray (510) is received within cover (540).
Cassette tray (510) further includes a labeling portion (528) protruding proximally from proximal wall (516). Labeling portion (528) generally defines a triangular or wedge shape that provides a flat smooth surface for printing or otherwise adhering a label to the surface of labeling portion (528). As similarly described above with respect to labeling surface (226) of tissue processing cassette (200), labeling portion (528) is generally configured to provide readily accessible patient information to an operator to aid with tracking of tissue samples as they progress through the biopsy and sample analysis procedure.
Unlike labeling surface (226) described above with respect to tissue processing cassette (200), at least a portion of labeling portion (528) is generally oversized relative to the height of sidewalls (520) or the lateral length of proximal wall (516). This feature generally provides a blocking or sealing feature for cassette tray (510) to promote the flow of fluid through cassette tray (510). As will be described in greater detail below, cassette tray (510) is generally insertable into cover (540) or other components. When inserted into cover (540) or other suitable components, labeling portion (528) blocks at least a portion of cover (540) and/or other components to force fluid flow through vents (526) rather than other features of cassette tray (510).
As best seen in
Unlike filter portion (542), support portion (546) omits structures similar to vents (544). Instead, support portion (546) includes a support structure (548) defining a plurality of open spaces (549). As will be understood, support portion (546) is generally adjacent to floor (524) of cassette tray (510) when cassette tray (510) is inserted into cover (540). Thus, including structures similar to vents (544) is not entirely necessary due to the presence of vents (526) in floor (524) of cassette tray (510). However, it should be understood that in some examples support portion (546) may include structures similar to vents (544).
Support structure (548) forms a generally cross-shaped pattern in support portion (546). This structure is generally configured to provide rigidity to cover (540) and is further configured to hold cassette tray (510) within cover (540) when cassette tray (510) is disposed within cover (540). Although support structure (548) forms a generally cross-shaped pattern in the present example, it should be understood that in other examples support structure (548) can take on a variety of other forms. For instance, in some examples support structure (548) can have a lath-shaped structure. In other examples, support structure (548) can have a lattice shaped structure. In still other examples, support structure (548) can be formed of a plurality of concentric circles, or any other configuration as will be apparent to those of ordinary skill in the art in view of the teachings herein.
Support structure (548) is further configured to interact with detents (530, 532) of cassette tray (510). As will be described in greater detail below, cassette tray (510) is generally insertable into cover (540) at a plurality of discrete positions relative to cover (540). During insertion, detents (530, 532) of cassette tray (510) interact with support structure (548) to bias cassette tray (510) towards each discrete position. Due to the cross-shaped pattern of support structure (548), support structure (548) provides three discrete positions of cassette tray (510) relative to cover (540). Of course, in other examples where support structure (548) defines a different shape, support structure (548) can provide more or less discrete positions for cassette tray (510) relative to cover (540).
With the cross-shaped pattern of support portion (546), support portion (546) defines four total open spaces (549). Open spaces (549) are generally configured to promote fluid flow through cover (540) between vents (544) of filter portion (542) and open spaces (549). As will be described in greater detail below, this permits fluid to flow through cassette tray (510) when cassette tray (510) is disposed within cover (540).
As described above, cover (540) includes a plurality of walls (550, 554) extending between filter portion (542) and support portion (546). Walls (550, 554) include a pair of sidewalls (550) and a distal wall (554). Sidewalls (550) and distal wall (554) are both solid to generally promote rigidity of cover (540). Each sidewall (550) includes a plurality of grips (552), which promote manipulation of cover (540) by an operator. Walls (550, 554) together with filter portion (542) and support portion (546) together are configured to define an enclosure for cassette tray (510) that holds tissue samples within cassette tray (510), while permitting fluid to flow through cassette tray (510).
Opposite distal wall (554), filter portion (542), support portion (546), and sidewalls (550) define a proximal opening (558). Proximal opening (558) is generally configured to receive at least a portion of cassette tray (510) such that cassette tray (510) may be inserted into cover (540). Although proximal opening (558) is shown in the present example as having a generally rectangular shape, it should be understood that proximal opening (558) is generally a function of the shape of cover (540) and cassette tray (510). Thus, in examples where cassette tray (510) and/or cover (540) take on different shapes, proximal opening (558) may also be correspondingly different.
Once distal detents (530) are disposed within the open spaces (549) that are oriented proximally on support portion (546) as shown in
Once cassette tray (510) is initially inserted into cover (540), an operator can insert cassette tray (510) further into cover (540) in the proximal direction towards the position shown in
Once distal detents (530) are clear of support structure (548), distal detents (530) will flex back to their original position and into the open spaces (549) oriented distally on cover (540). Once distal detents (530) are disposed within the open spaces (549) that are oriented distally on support portion (546) as shown in
Once cassette tray (510) is inserted into cover (540) to the position shown in
Once cassette tray (510) is positioned relative to cover (540) as shown in
B. Exemplary Tissue Sample Holder Assembly with Imaging System
In some examples it may be desirable to use cassette tray (510) in connection with biopsy device (10) such that tissue samples are collected directly into cassette tray (510) rather than into a structure similar to tissue sample tray (100) described above. Because cassette tray (510) includes a generally rigid structure, it should be understood that cassette tray (510) is generally not insertable directly into rotatable member (44) described above. Instead, it may be desirable to replace tissue sample holder assembly (40) with an alternative tissue sample holder assembly to facilitate use of cassette tray (510) directly with biopsy device (10). As described above, tissue sample holder assembly (40) is generally configured to be completely removable from probe assembly (20) of biopsy device (10). Thus, a suitable alternative tissue sample holder assembly may be used in lieu of tissue holder assembly (40), provided certain vacuum and tissue sample collection couplings remain consistent between the suitable alternative tissue sample holder assembly and tissue sample holder assembly (40).
It may be further beneficial to immediately examine a recently biopsied tissue specimen through certain imaging modalities to thereby quickly analyze and assess the tissue properties. However, an operator may be limited in how quickly the tissue sample can be analyzed by an imaging device due to the time elapsed extracting the tissue sample from the tissue sample holder assembly, positioning the tissue sample into an examination container, and subsequently inserting the examination container into an imaging system to produce images of the specimen for analysis. A tissue sample holder assembly that is adapted to directly associate with an imaging system may be beneficial to reduce the amount of time and effort required to analyze a tissue sample during a biopsy procedure. Furthermore, being able to take an immediate image of a tissue specimen that was recently biopsied from a patient allows an operator to confirm whether the targeted tissue was successfully acquired at each instance of tissue extraction, thereby reducing the number of tissue samples extracted from the patient.
In biopsy devices such as device (10) described above, it may be beneficial to configure the components of the device, such as an alternate tissue sample holder that facilities the use of cassette tray (510), to cooperate with certain imaging modalities to thereby simplify the process for an operator to obtain and review graphical representations or other images of the biopsied tissue specimen. This practice may eliminate several intermediate steps required in generating images of a biopsied specimen and thus maximize the effectiveness of analyzing the characteristics of a tissue sample of a patient. It may be further desirable to integrate the imaging system with a tissue sample holder assembly into a single assembly, while in other instances it may be desirable to adapt the tissue sample holder assembly to function in association with a separate imaging modality.
Although not shown, in some versions tissue sample holder assembly (600) may be connected to biopsy device (10) through a remote tissue collection assembly that is configured to permit tissue sample holder assembly (600) to be remotely positioned at a location adjacent to an operator while biopsy device (10) remains positioned adjacent to the biopsy site where a patient is located. In this instance, the remote tissue collection assembly is configured to transport the tissue samples extracted by biopsy device (10) from the biopsy site to the remote location of tissue sample holder assembly (600) through a series of transport conduits. The remote positioning of tissue sample holder assembly (600) relative to biopsy device (10) may be beneficial to allow an operator to visually inspect the tissue samples as they are extracted by positioning tissue sample holder assembly (600) nearby rather than directly coupled to biopsy device (10) adjacent the biopsy site. Examples of assemblies and methods that may be used to remotely position tissue sample holder assembly (600) from biopsy device (10) are described in U.S. App. No. 62/607,698, entitled “Remote Tissue Collection Indexing and Processing Cassette,” filed on Dec. 19, 2017.
Rotatable member (620) is generally configured to receive cassette tray (510) and position cassette tray (510) relative to probe assembly (20) to thereby collect a tissue sample within each sample chamber (523) of cassette tray (510). Rotatable member (620) is also generally configured to receive sensor (680) and position sensor (680) relative to cassette tray (510) to thereby generate images of the collected tissue samples within each sample chamber (523) of cassette tray (510). Rotatable member (620) comprises a circular base (621), a sensor manifold (630) or mount protruding proximally from base (621), and a cassette manifold (640) or mount, also protruding from base (621). The circular shape of base (621) is generally configured for receipt within coupler (610) such that at least a portion of base (621) abuts sealing lip (614) of coupler (610). Accordingly, as best seen in
As further seen in
Sensor manifold (630) generally defines a hollow curved protrusion protruding proximally from base (621) defined by lower wall (642) and a pair of sidewalls (632). Sensor manifold (630) is generally sized and shaped to receive sensor (680) to thereby attach sensor (680) relative to cassette manifold (640). In particular, sensor manifold (630) is positioned below manifold (640) such that sensor (680) is received directly below cassette tray (510), as seen in
As best seen in
Of the four access openings (622), circular base (621) includes a corresponding vacuum opening (626). Access openings (622) are configured to provide fluid communication between probe assembly (20) and inner chamber (652) of manifold (640). Access openings (622) include respective channels that commence at opening (622) formed at circular base (621) and extend through manifold (640) at four distinct locations. In particular, the positions of access openings (622) correspond to distinct rotational orientations of rotatable member (620) relative to probe assembly (20). In other words, access openings (622) serve as tissue receiving channels that are orientated about manifold (620) at various predetermined locations that correspond to a respective portion within inner chamber (652) of manifold (640), as seen in
Access openings (622) are generally configured to individually receive tissue samples from the cutter of biopsy device (10) through probe assembly (20) such that only one access opening (622) maintains fluid communication with probe assembly (20) at a given moment depending on the particular rotational alignment of rotatable member (620) relative to probe assembly (20). As will be described in greater detail below, manifold (640) of rotatable member (620) can be rotated to align an access opening (622) with probe assembly (20) to thereby establish fluid communication between the cutter of biopsy device (10) and a particular channel (523) of cassette tray (510) that is aligned with that access opening (622). In other words, each respective access opening (622) aligns with a particular channel (523) of cassette tray (510) contained within inner chamber (652) such that access opening (622) can be used to provide a particular channel (523) access to the biopsy site when rotated to align with the cutter of biopsy device (10).
Rotatable member (620) further includes vacuum openings (626) extending into inner chamber (652) and positioned below each access openings (622), respectively, as seen in
As seen, channels (627) may comprise a straight, angular, or irregular shape and/or alignment in correspondence to the respective locations of access openings (622) and vacuum openings (626). The varying configurations of channels (627) allow vacuum openings (626) to be aligned in a straight line along the distal end of rotatable member (620), as best seen in
As best seen in
As shown in
Although not shown, it should be understood that sensor (680) may include additional or alternative internal components than those depicted. For example, sensor (680) may include components corresponding to those included in an interline transfer CCD sensor, frame transfer CCD sensor, on-chip A/D conversion CMOS sensor, off-chip A/D conversion CMOS sensor, those used in short-wave infrared (SWIR) imaging, or thermal imaging. Such internal components of sensor (680) may include various transistors, pixels (photodiodes or photocapacitors), and/or other components as will be apparent to those of ordinary skill in the art. The size and shape of the pixels in sensor (680) may vary to optimize, among other things, the imaging optics, saturation capacities, and signal-to-noise ratios, resolution, spatial frequencies and contrast. The overall size of sensor (680) may also vary to optimize the system's field of view. By way of example only, sensor (680) may be sized as ¼″, ⅓″, ½″, 1/1.8″, ⅔″, 1″, 1.2″ or any other size as will be apparent to those of ordinary skill in the art.
As seen in
Although not shown in
As seen in
In this instance, as similarly described above with respect to
As a result, an image of the tissue sample is immediately generated by imaging system (670) for the benefit of an operator's timely review and assessment. In the present example, an operator is not required to initially disassemble tissue sample holder (600) from biopsy device (10), to subsequently remove the tissue sample from cassette tray (510) for subsequent placement into an examination container (not shown) before being able to generate an image of the tissue sample. Once a first image is taken of the initial tissue sample deposited within manifold (640), tissue sample holder assembly (600) may be moved to an alternative position to fill another chamber (523) of cassette tray (510) with a subsequent tissue sample. In particular, as seen in
In this instance, a different chamber (523) of cassette tray (510) becomes aligned with the cutter of biopsy device (10). Thus, any subsequent tissue sample(s) extracted by the cutter of biopsy device (10) will be transferred to this subsequent chamber (523) that is now in alignment with the particular access opening (622) that is in communication with probe assembly (20). At this stage, a subsequent image may be taken with the use of imaging system (670) as similarly described above to thereby generate a new image of cassette tray (510) that includes the recently added tissue sample(s) contained in cassette tray (510). It should be understood that the first tissue sample remains within cassette tray (510) when the subsequent image is generated by imaging system (670), such that both tissue samples will appear in the new image taken with imaging device (690). However, due to the isolated arrangement provided in cassette tray (510) by the presence of chambers (523), the tissue samples contained therein will be readily distinguishable such that an operator may easily inspect the multiple tissue samples in the image generated by imaging system (670).
Alternatively, or subsequently, as seen in
Although not shown, it should be understood that rotatable member (620) may be rotated relative to probe assembly (20) in any other order than that depicted and described above. It will also be apparent to those of ordinary skill in the art that an operator may cease rotating rotatable member (620) relative to probe assembly (20) once a sufficient number of tissue samples have been deposited within cassette tray (510). In other words, although tissue sample holder assembly (600) is described above as being used to collect a tissue sample in each chamber (523) of cassette tray (510), it should be understood that in some uses it may be desirable to only collect samples in one or more specific chambers (523) of cassette tray (510). Accordingly, in some uses rotatable member (620) may be rotated to skip some chambers (523). Similarly, it should be understood that an operator is not required to further rotate rotatable member (620) through to each access opening (622) iteration. Rather, an operator may simply cease rotation rotating member (620) when the procedure is completed. It should also be understood that cassette tray (510) may be removed from manifold (622) at any point during the engagement of tissue sample holder assembly (600).
With tissue sample (90) deposited within a particular chamber (523) of cassette tray (540), chamber (523) isolates tissue sample (90) from any other tissue samples (90) previously deposited, or to be deposited, within other chambers (523) of cassette tray (510). Although not shown, it should be understood that a seal may be included within inner chamber (652) of manifold (640) that is configured to form an airtight seal against cassette tray (510) when received within manifold (640). In this instance, the seal of manifold (640) will abut a proximal portion of cassette tray (510) to prevent any fluid and/or tissue samples (90) from exiting cassette trays (510).
With cassette tray (510) positioned within inner chamber (652), vacuum walls (641) extending upwardly from lower wall (622) maintain cassette tray (510) at an elevated position to thereby provide ample space for vacuum chambers (643) to receive any fluid dispensed from tissue samples (90) deposited therein. In other words, vacuum walls (641) extend along lower wall (622) in parallel alignment with chambers (523) of cassette tray (510) when inserted into inner chamber (652). Vacuum walls (641) extend along the substantial longitudinal length of cassette tray (510) to thereby provide support for cassette tray (510) when received within manifold (640). Vacuum chambers (643) similarly extends along lower wall (622) and are in fluid communication with cassette tray (510) through vents (526) of floor (524). Vacuum chambers (643) are in communication with a respective vacuum opening (626) to communicate vacuum from probe assembly (20) into cassette tray (510). In particular, vacuum enters manifold (640) through the particular vacuum opening (626) that is in communication with a vacuum port (76) of probe assembly (20). Next, vacuum travels through vacuum chamber (626) and upwardly through vents (526) of cassette tray (510). Vacuum then travels through into inner chamber (652) of manifold (640). In this instance, the vacuum is now in communication with the particular access opening (622) that is currently aligned with the cutter of biopsy device (10). Vacuum is then used to pull tissue sample (90) through needle (22) and into the corresponding chamber (523) of cassette tray (510).
Once a sample is received within chamber (523) of cassette tray (510), rotatable member (620) is rotated to a subsequent position relative to probe assembly (20), as shown in
With cassette tray (510) completely removed from rotatable member (620), an operator may next desire to perform further analysis on the collected tissue samples (90). At this stage, cassette tray (510) may be manipulated for a visual inspection of each tissue sample to supplement the visual inspection of the generated images of the tissue samples. If an operator is not satisfied with the results at this stage, undesirable tissue samples may be discarded and the same cassette tray (510) may be inserted back into manifold (640) of rotatable member (620) for collection of addition tissue samples. Alternatively, an entirely new cassette tray (510) may be placed into manifold (640) of rotatable member (620) for collection of additional tissue samples.
Once tissue sample are collected to the satisfaction of an operator, the operator may desire to transport tissue samples to a pathology laboratory. At this stage, an operator may mark or place a label onto labeling portion (528) to ensure chain of custody through the workflow. Alternatively, in some uses, labeling portion (528) may already be labeled at this stage. For instance, in some uses labeling potion (528) may be labeled at the beginning of the biopsy procedure before collecting any tissue samples. Alternatively, in some uses labeling portion (528) may be prelabeled with a bar code, QR code, or another computer readable medium. Where such computer readable mediums are used, labeling portion (528) may be scanned as various stages to associate the computer readable medium with the patient. This may include multiple scans throughout the procedure such as before the biopsy procedure, after collection of tissue samples, after procedure room x-ray, and/or etc.
Once chain of custody has been established using labeling portion (528), cassette tray (510) may be inserted into cover (540) as described above. The combination of cassette tray (510) and cover (540) may then be inserted into jar (160) described above. As described above, jar (160) may be filled with a fluid such as formalin to preserve the collected tissue samples during transport and/or storage. Although cassette tray (510) is described herein as being used with the same jar (160) described above, it should be understood that other alternative jars or containers may be used for transport and/or storage of cassette tray (510). For instance, in some examples jar (160) may be replaced with a container of a variety of shapes and sizes. In other examples, cover (540) itself may be used to transport cassette tray (510). Of course, in such examples structures of cover (540) such as vents (544) and/or open spaces (549) can be closed so that cover (540) can hold fluids such as formalin.
After the combination of cassette tray (510) and cover (540) is inserted into jar (160), jar (160) may be transported to the pathology laboratory as shown in
IV. Exemplary Combinations
The following examples relate to various non-exhaustive ways in which the teachings herein may be combined or applied. It should be understood that the following examples are not intended to restrict the coverage of any claims that may be presented at any time in this application or in subsequent filings of this application. No disclaimer is intended. The following examples are being provided for nothing more than merely illustrative purposes. It is contemplated that the various teachings herein may be arranged and applied in numerous other ways. It is also contemplated that some variations may omit certain features referred to in the below examples. Therefore, none of the aspects or features referred to below should be deemed critical unless otherwise explicitly indicated as such at a later date by the inventors or by a successor in interest to the inventors. If any claims are presented in this application or in subsequent filings related to this application that include additional features beyond those referred to below, those additional features shall not be presumed to have been added for any reason relating to patentability.
A biopsy device, comprising: (a) a body; (b) a needle extending distally from the body; (c) a tissue sample holder, wherein the needle is in communication with the tissue sample holder, wherein the tissue sample holder includes a rotatable member defining a cassette housing and a sensor housing; (d) a cassette tray including a plurality of tissue sample chambers, wherein the cassette tray is configured for receipt within the cassette housing of the tissue sample holder; and (e) a sensor, wherein the sensor is operable to digitally convert and transmit data, wherein the sensor is configured for receipt within the sensor housing of the tissue sample holder; wherein the rotatable member is rotatable relative to the body.
The biopsy device of Example 1, further comprising an imaging device operable to communicate with the sensor.
The biopsy device of Example 2, wherein the imaging device is configured to transmit energy beams towards the tissue sample holder.
The biopsy device of any one or more of Examples 2 through 3, wherein the imaging device and the sensor are configured to cooperate to generate x-ray images of tissue samples received within the cassette tray.
The biopsy device of any one or more of Examples 1 through 4, wherein the sensor includes an electronic circuit, an imager, a fiber optic plate, and a scintillator.
The biopsy device of any one or more of Examples 1 through 5, wherein the sensor housing is positioned adjacent to the cassette housing.
The biopsy device of any one or more of Examples 1 through 6, wherein the sensor is configured to digitally transmit data in response to the energy from the imaging device.
The biopsy device of any one or more of Examples 2 through 5, wherein the imaging device comprises a beam transmitter.
The biopsy device of Example 8, wherein the beam transmitter is a boom-mounted x-ray source.
The biopsy device of Example 8, wherein the beam transmitter is a handheld x-ray source.
The biopsy device of any one or more of Examples 1 through 10, wherein the cassette tray is removably attached to the cassette housing by a seal such that the cassette tray is removable from the tissue sample holder.
The biopsy device of Example 11, wherein the seal is configured to generate a compression fit against the cassette tray when received in the cassette housing.
The biopsy device of any one or more of Examples 1 through 13, wherein the sensor is removably attached to the sensor housing by a flexible detent such that the cassette tray is removable from the tissue sample holder.
The biopsy device of any one or more of Examples 1 through 13, wherein the tissue sample holder includes a coupler configured to releasably couple the cassette housing and sensor housing to the body.
The biopsy device of any one or more of Examples 1 through 14, wherein the cassette housing is configured to receive at least one tissue sample from the needle such that the at least one tissue sample is deposited within the cassette tray contained within the cassette housing.
The biopsy device of any one or more of Examples 1 through 15, wherein the cassette housing includes at least one access opening configured to receive tissue samples from the body.
The biopsy device of Example 16, wherein the cassette housing includes four access openings.
The biopsy device of any one or more of Examples 16 through 17, wherein the cassette housing is configured to selectively rotate between the four access openings to thereby provide fluid communication between each access opening of the four access opening and the needle.
The biopsy device of any one or more of Examples 1 through 19, wherein the cassette housing includes at least one vacuum opening configured to provide a vacuum within the cassette housing.
The biopsy device of any one or more of Examples 16 through 19, wherein the cassette housing includes four vacuum openings in association with the four access openings.
The biopsy device of any one or more of Examples 19 through 20, wherein the cassette housing includes at least one channel extending from the at least one vacuum opening.
The biopsy device of any or more of Examples 19 through 21, wherein the cassette housing is configured to selectively rotate between the four vacuum openings to thereby provide fluid communication between a particular vacuum opening of the four vacuum openings and the body.
The biopsy device of any one or more of Examples 1 through 22, wherein the cassette tray further includes one or more indicia, wherein each indicia of the one or more indicia corresponds to a respective sample chamber.
The biopsy device of Example 23, wherein the plurality of chambers of the cassette tray includes a proximal wall, wherein the one or more indicia are disposed on the proximal wall.
The biopsy device of any one or more of Examples 23 through 24, wherein the one or more indicia are configured to be visible under x-ray imaging.
A method of taking an image of a biopsied tissue sample from a biopsy device, the biopsy device including a body, a needle, and a tissue sample holder, the method comprising the steps of: (a) inserting the needle into tissue to extract a sample; (b) inserting a cassette tray into the tissue sample holder, wherein the cassette tray includes a plurality of chambers; (c) rotating the tissue sample holder relative to the body to align one of the plurality of chambers with the needle; (d) transferring the tissue sample from the needle to the tissue sample holder such that the tissue sample is stored in the chamber of the cassette tray; (e) inserting a sensor into the tissue sample holder such that the sensor is positioned adjacent to the cassette tray; (f) positioning an imaging device adjacent to the tissue sample holder such that the imaging device is aligned toward the cassette tray and the sensor; and (e) activating the imaging device to transmit energy toward the tissue sample and the sensor.
The method of Example 26, further comprising generating an image of the tissue sample.
The method of Example 27, further comprising displaying a graphical representation or depiction of the tissue sample.
The method of any one or more of Examples 26 through 28, the method further comprising rotating the tissue sample holder to align a different chamber of the plurality of chambers with the needle.
A biopsy device, comprising: (a) a body; (b) a cutter extending distally from the body; and (c) a tissue sample holder, wherein the cutter is in communication with the tissue sample holder, wherein the tissue sample holder is selectively rotatable relative to the body, wherein the tissue sample holder includes a first port and a second port; wherein the first port is configured to slidably receive a cassette tray therein, wherein the second port is configured to slidably receive a sensor configured to digitally convert and transmit data therein.
A biopsy device, comprising: (a) a body; (b) a needle extending distally from the body; and (c) a tissue sample holder, wherein the needle is in communication with the tissue sample holder, wherein the tissue sample holder includes a rotatable member defining a at least one housing, wherein the at least one housing is configured to releasably hold a cassette tray and sensor therein, wherein the rotatable member is configured to rotate relative to the body to position the cassette tray in a plurality of tissue collection positions.
The biopsy device of Example 31, wherein the tissue sample holder includes a second housing configured to releasably hold the sensor therein.
The biopsy device of Example 32, wherein second housing is configured to position the sensor relative to the cassette tray to permit collection of data via the sensor related to one or more tissue samples collected within the cassette tray.
A biopsy device, comprising: (a) a body; (b) a needle extending distally from the body; and (c) a tissue sample holder, wherein the needle is in communication with the tissue sample holder, wherein the tissue sample holder includes a rotatable member defining a at least one housing, wherein the at least one housing is configured to releasably hold a sensor therein, wherein the rotatable member is configured to rotate relative to the body.
A biopsy device, comprising: (a) a body; (b) a needle extending distally from the body; and (c) a tissue sample holder, wherein the needle is in communication with the tissue sample holder, wherein the tissue sample holder includes a rotatable member defining a first housing and a second housing, wherein the first housing is sized and shaped to receive a tray, wherein the tray includes a plurality of dividers, wherein the tray is configured to releasably detach from within the first housing of the tissue sample holder; wherein the second housing is sized and shaped to receive a data transmitter, wherein the data transmitter is configured to releasably detach from within the second housing of the tissue sample holder; wherein the rotatable member is configured to rotate relative to the body such that the tray and the data transmitter are operable to rotate with the rotatable member when received with the first and second housings.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
It should be understood that any of the versions of instruments described herein may include various other features in addition to or in lieu of those described above. By way of example only, any of the instruments described herein may also include one or more of the various features disclosed in any of the various references that are incorporated by reference herein. It should also be understood that the teachings herein may be readily applied to any of the instruments described in any of the other references cited herein, such that the teachings herein may be readily combined with the teachings of any of the references cited herein in numerous ways. Other types of instruments into which the teachings herein may be incorporated will be apparent to those of ordinary skill in the art.
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
This application claims priority to U.S. Provisional Patent App. No. 62/607,765 entitled “Tissue Collection and Processing Cassette with Applied Imaging,” filed Dec. 19, 2017, the disclosure of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62607765 | Dec 2017 | US |