Tissue-separating fatty acid adhesion barrier

Information

  • Patent Grant
  • 11083823
  • Patent Number
    11,083,823
  • Date Filed
    Friday, November 17, 2017
    7 years ago
  • Date Issued
    Tuesday, August 10, 2021
    3 years ago
Abstract
Exemplary embodiments of the present invention provide adhesion barriers having anti-adhesion and tissue fixating properties. The adhesion barriers are formed of fatty acid based films. The fatty acid-based films may be formed from fatty acid-derived biomaterials. The films may be coated with, or may include, tissue fixating materials to create the adhesion barrier. The adhesion barriers are well tolerated by the body, have anti-inflammation properties, fixate, well to tissue, and have a residence time sufficient to prevent post-surgical adhesions.
Description
FIELD OF THE INVENTION

The present invention generally relates to a tissue-separating adhesion barrier.


BACKGROUND

Medical films are often used in surgical settings as a physical barrier to separate certain organs from adjacent tissues and medical devices following surgical intervention or blunt dissection to help minimize adhesion formation post-surgery. For example, SEPRAFILM® (a film composed of chemically modified sugars), a product of Genzyme Corporation of Cambridge, Mass., is used in abdominal or pelvic surgeries as an implantable treatment intended to reduce the incidence, extent, and severity of postoperative adhesion formation between different tissues and organs and implantable medical devices such as soft tissue support membranes and mesh, or combinations of non-absorbable materials and meshes.


One example of a medical film is described in U.S. Pat. No. 5,017,229. The film of the '229 patent is formed from a water insoluble, gel that includes the reaction product of hyaluronic acid (“HA”), a polyanionic polysaccharide, and an activating agent. The gel described in the '229 patent can be provided in the form of an adhesion prevention composition, such as a membrane or composition suitable for incorporation into a syringe. The gel is formed into a film by being cast into a sheet form, extruded, compressed, or allowed to dehydrate in a flat sheet. When modified with polysaccharide, the biodegradable film forms the above-described SEPRAFILM® adhesion-limiting or adhesion-barrier product made commercially available as a dehydrated bio-dissolvable single layer sheet.


Implantable medical films may be placed at a target site, for example, between two tissues, during surgery. In order to prevent or limit postoperative adhesion formation, the film should remain at the target site for a requisite period of time. For example, some sources have noted that barrier functionality is required between 3 days and 10 days post-surgery (see, Peritoneal Surgery by Gere. S. DiZerega, Alan H. DeCherney, Published by Springer, 2000, page 21). In order to achieve this barrier functionality, a biodegradable film should remain in place at the target site and it should be absorbed by the body for a sufficient period of time to provide barrier functionality post surgery when adhesions form.


However, conventional medical films are resorbed into the body too quickly to provide effective barrier functionality during the time in which postoperative adhesion formation typically occurs. For example, many cross-linked carboxymethylcellulose (“CMC”) based films may be absorbed in-vivo within 7 days.


SUMMARY

As described in more detail below, a fatty-acid based film, such as a film made of fish oil, constructed with fixating materials, such as carboxymethylcellulose (“CMC”) or Na-CMC, may be provided to fixate the film and prevent migration of the film. Despite inflammatory characteristics of CMC and the rapid resorbtion characteristics of CMC and Na-CMC, the adhesion barrier is well-tolerated by the body, is non-inflammatory, does not migrate from a target site, and does not require cross-linking of the CMC. The adhesion barrier of the present invention effectively delays resorbtion to an acceptable post implantation duration (e.g., greater than 7 days). The combination of a fatty-acid based film with a fixating material such as CMC or Na-CMC results in an unexpected synergistic effect. Specifically, non-cross-linked CMC in the presence of the fatty-acid based film does not absorb into the body as quickly as cross-linked CMC that is not in the presence of a fatty acid. As a result, the fixating portion of the adhesion barrier is absorbed into the body at a much slower rate than other CMC-based films, so that barrier functionality is provided over the time period that adhesions are likely to form.


In some exemplary embodiments of the invention, the adhesion barrier is in the form of an emulsion. The emulsion may include fatty-acid based particles immersed in an emulsion base. The fatty-acid based particles may be formed by fragmenting a fatty-acid derived biomaterial associated with a cryogenic liquid. The emulsion base may include a mixture of a fixating material, such as CMC, with an aqueous-based solution, such as (but not limited to) water, saline, or Ringer's lactate solution.


Exemplary embodiments of the present invention provide adhesion barriers and methods for formulating the adhesion barriers. In accordance with one exemplary embodiment of the present invention, the adhesion barrier takes the form of a fatty acid based film composition. The adhesion barrier includes a fatty acid based film derived from a cross-linked fatty acid-derived biomaterial and a tissue fixating coating formed from a material surrounding the fatty acid based film. The tissue fixating coating may be applied by any means known in the art.


In accordance with aspects of the present invention, the fatty acid-derived biomaterial is an omega-3 fatty acid. The fatty acid-derived biomaterial may, or may not be, crosslinked. The fatty acid-derived biomaterial may contain at least one lipid or omega-3 fatty acid; for example, the fatty acid-derived biomaterial may be a fish oil. The fish oil may further comprise vitamin E.


In accordance with one exemplary embodiment, the coherent material may be a polyanionic polysaccharide, such as carboxymethylcellulose (CMC). In accordance with another exemplary embodiment, the coherent material comprises a salt of CMC, such as sodium carboxymethylcellulose (Na-CMC).


In accordance with further aspects of the present invention, the fatty acid-derived biomaterial may reduce inflammation associated with the fixating material. In some embodiments, the adhesion barrier does not migrate from a surgical site of placement, while in further embodiments, the adhesion barrier has a residence time that is sufficient to prevent post-surgical adhesions.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other aspects, embodiments, objects, features and advantages of the invention can be more fully understood from the following description in conjunction with the accompanying drawings. In the drawings like reference characters generally refer to like features and structural elements throughout the various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.



FIG. 1 depicts an adhesion barrier in accordance with one example embodiment of the present invention.



FIG. 2 is a flow chart depicting an exemplary method for fabricating an exemplary adhesion barrier in accordance with one example embodiment of the present invention.



FIG. 3 depicts an adhesion barrier in accordance with one example embodiment of the present invention.



FIG. 4 depicts an adhesion barrier in accordance with one example embodiment of the present invention.



FIG. 5 depicts an adhesion barrier created as an emulsion in accordance with one example embodiment of the present invention.



FIG. 6 is a flow chart depicting an exemplary method for fabricating an exemplary adhesion barrier as depicted in FIG. 5.



FIGS. 7A, 7B, 7C, 7D, 7E, 7F, and 7G depict exemplary embodiments of an adhesion barrier coupled with various medical devices.





DETAILED DESCRIPTION

Exemplary aspects and embodiments of the present invention provide adhesion barriers formed from fatty acid-based films or fatty acid-based particles. The adhesion barriers have the fixating properties of materials, such as CMC-based films, with an additional unexpected synergistic effect, which substantially slows the rate at which the tissue fixating portion of the adhesion barrier is absorbed without requiring crosslinking of the CMC component.


Conventional Films


In some conventional products, hydrophilic tissue fixating components such as poly(ethylene glycol), poly(ethylene oxide), poly(HEMA), poly(N-vinyl pyrrolidone), poly(acrylic acid), carboxymethyl cellulose (CMC), chitosan, etc. are used to provide fixation of the film. This fixation can address the problem of film mobility or migration. However, these hydrophilic materials may exhibit appreciable foreign body reaction and inflammation, which are undesirable characteristics (see, e.g. European Patent Application EP20020080404).


Further, manufacturing these conventional tissue fixating components poses additional challenges. Specifically, the above tissue fixating components must be chemically crosslinked via functional end group modification, or by the use of chemical crosslinking agents, to provide suitable mechanical integrity for handling and insolubility in a wet environment. The use of chemical crosslinkers such as gluteraldehyde or aziridines requires the additional step of removing the excess crosslinking agents by washing or soaking, as these compounds are often less biocompatible than the desired hydrogel materials. These additional steps add to the expense and difficulty of the manufacturing process.


As noted above, films may be made of a polyanionic polysaccharide and hyaluronic acid. One preferred polyanionic polysaccharide used to make a film described in the '229 patent is CMC. The film in the '229 patent is formed with HA and CMC (“HA/CMC”). However, it has been noted that the method for preparing this type of film can be problematic because of the procedure for removing biologically toxic materials generated in the preparation (see, e.g., U.S. Patent Application Publication No. 2003/0124087). The '087 application notes that the hydration process in an HA/CMC preparation may cause difficulties in treatment and operation.


One alternative to HA/CMC is sodium carboxymethylcellulose (“Na-CMC”). While Na-CMC is effective as an anti-adhesion agent, it is difficult to apply Na-CMC as an anti-adhesion barrier because it is absorbed in the body too fast to be effective as an adhesion barrier. Fast absorption of a CMC-based film into the body is problematic, because the film is resorbed before it can act as an effective adhesion barrier. For example, HA/CMC films can be absorbed in 7 days, while, as noted above, barrier functionality may be required between 3 days and 10 days post-surgery, and in some instances up to 8 weeks of barrier functionality is necessary.


Further, films made from salts of CMC, such as Na-CMC, can be difficult or problematic to produce. Producing these films may require immobilization of the CMC or stabilization by cross-linking, because the Na and CMC readily dissociate in aqueous media, allowing the CMC to dissolve. Cross-linking is the process of chemically joining two or more molecules with a chemical bond. Cross-linking of CMC can be accomplished, for example, by irradiating the CMC (see, e.g., Fei et al., Hydragel of Biodegradable Cellulose Derivative. I. Radiation-Induced Crosslinking of CMC, Journal of Applied Polymer Science, vol. 78, pp. 278-283 (2000)).


Without immobilization or stabilization of the CMC by cross-linking, the transition from solid to liquid significantly reduces the ability of Na-CMC films to provide effective barrier protection. Cross-linking CMC results in additional problems. Radiation-induced cross-linking of unmodified CMC requires the presence of a medium such as water to mobilize the macromolecules and allow for assembly. Solid phase irradiation of CMC results in degradation of the material by scission of the glycosidic bond.


Cross-linked CMC films also have the limit of being quickly resorbed in-vivo, i.e. within 7 days. In addition, CMC films are known to cause inflammation, and may lack adhesiveness and affinity (see, e.g., '087 application at paragraphs [0009]-[0013]).


Exemplary Embodiments

In contrast to conventional adhesion barriers, embodiments of the present invention provide an adhesion barrier that resides at a target site for a sufficient time to provide barrier functionality, does not require that the CMC component be cross-linked, and does not provoke a significant inflammatory response. In accordance with exemplary embodiments of the present invention, fatty acid-based films or fatty acid-based particles composed of fatty acid-derived biomaterials are used as a resorbable tissue-separating adhesion barrier material. Omega-3 and omega-6 fatty acids are examples of fatty acids that may be obtained from, for example, fish oil. Omega-3 fatty acids include eicosapentaenoic acid (EPA), docosahexanoic acid (DHA), and alpha-linolenic acid (ALA).


Fatty acid-based barriers composed of fatty acid-derived biomaterials effectively separate adjacent tissue surfaces, are well tolerated by the body, and do not exhibit the inflammatory response typical of other resorbable and permanent implant materials. While CMC-based films adhere well to tissue, CMC-based films readily dissolve in aqueous media in about 7 days.


Combining fatty acid-based films or particles with fixating materials as described herein results in an effective anti-adhesion barrier with fixating and anti-inflammation properties. Additionally, combining these two types of materials also yields an unexpected synergistic result—specifically, an adhesion barrier formed from a combination of CMC and a fatty acid-based film or fatty acid-based particles remains at the treatment site providing barrier functionality beyond 7 days and for up to 28 days or longer, without crosslinking the CMC. This provides sufficient residence time to effectively provide post-surgery barrier functionality.


Prior to describing the aspects of the present invention, it should be noted that, as used herein, the term “biocompatible,” means compatible with living tissue (e.g., not toxic or injurious). Biocompatible compounds may hydrolyze into non-inflammatory components that are subsequently bio-absorbed by surrounding tissue. Biocompatible compounds are also referred to herein as “biomaterials.”


Films include substances formed by compressing a gel, or by allowing or causing a gel to dehydrate, or by curing the gel using heat and/or light in various ways. In addition, films can be chemically formed in accordance with processes known by those of ordinary skill in the art.


In addition to films, exemplary embodiments of the present invention include emulsions. An emulsion is a solution of two or more immiscible liquids. In one exemplary embodiment, the emulsion is formed from an emulsion base mixed with fatty-acid based particles. The fatty-acid based particles may be derived from a fatty-acid based film.


As used herein, a fatty-acid based material is meant to encompass any form of material that the fatty acid may take, including films and particles.


Exemplary Film Embodiments


FIG. 1 depicts an adhesion barrier 100 according to one embodiment of the present invention. The adhesion barrier 100 includes a fatty acid-based film 110. The fatty acid-based film 110 may be formed by any of the methods known in the art. In one embodiment, a crosslinked, fatty acid-derived biomaterial comprises an oil that may be natural or derived from synthetic sources and is used to form the fatty acid-based film 110. The crosslinked, fatty acid-derived biomaterial can comprise a biological oil, such as an oil containing at least one lipid or omega-3 fatty acid, including a fish oil. The biomaterial further can include vitamin E.


The adhesion barrier 100 also includes a tissue fixating coating 120 formed from an fixating material. In one embodiment, the fixating material is a polyanionic polysaccharide. In another embodiment, the fixating material comprises carboxymethylcellulose (CMC). In yet another embodiment, the fixating material comprises sodium carboxymethylcellulose (Na-CMC).



FIG. 2 is a flow chart depicting an exemplary method for fabricating the adhesion barrier 100. At step 210, a fatty acid-based film 110 is prepared by one of the methods known in the art. For example, as described in U.S. patent application Ser. No. 11/237,420, which is incorporated herein by reference in its entirety, fish oil may be exposed to heating and/or UV irradiation to form a cross-linked, fatty acid-derived biomaterial such as a gel. The gel may further be compressed or dehydrated to form a film. One of ordinary skill in the art will appreciate that other methodologies may be utilized to form the fatty acid-based film 110, and the present invention is by no means limited to the particular methods described in the above-referenced application or patent. For example, the fatty acid-based film 110 may be prepared according to the procedure described in U.S. patent application Ser. No. 11/237,264, which is now U.S. Pat. No. 8,795,703, both of which are incorporated herein by reference in their entirety.


The oil component may also be hardened, as described in the '420 application, in addition to other known methodologies. The step of hardening can include hardening, or curing, such as by introduction of UV light, heat, or oxygen, chemical curing, or other curing or hardening method. The purpose of the hardening or curing is to transform the more liquid consistency of the oil component or oil composition into a more solid film, while still maintaining sufficient flexibility to allow bending and wrapping of the film as desired.


In some embodiments, the oil component is subjected to a surface treatment prior to coating, such as a plasma treatment.


At step 220, the fatty acid-based film 110 is optionally cut to an appropriate size. The final dimensions of the cut fatty acid-based film 110 will be dependent on the specific application.


At step 230, a coating solution of tissue fixating material is prepared. In accordance with one exemplary embodiment of the present invention, the coating solution is composed of 0.1%-5% (weight/volume) non-crosslinked high molecular weight Na-CMC with a degree of substitution of 0.65-0.85 (although degrees of substitution below 0.65 and up to a theoretical limit of 3 are also acceptable) in a water solution, such as deionized water or Sterile Water for Injection (SWFI). Optionally, the coating solution may include a plasticizing agent, such as glycerin, propylene glycol, poly ethylene glycol, triacetin citrate or triacetin.


At weight/volume concentrations higher than about 5%, the solution becomes a solid-like gel, which may be difficult to work with. Generally, most solutions with a concentration of less than 5% are physically workable, but care should be taken with the mass loading of, for example, Na-CMC on the surface of the film. If there is too little Na-CMC it will result in an adhesion barrier with insufficient tissue fixation. Low Na-CMC concentration may require many coating applications to achieve to the desired loading. In one embodiment, a weight/volume concentration of 2% is used. We have found that a minimum dry loading of 1.0 mg/cm2 may be used to achieve adequate tissue fixation in-vivo.


A high molecular weight of, for example, 700,000 for Na-CMC may be used for the tissue fixating material. In separate evaluations of chitosan, the inventors have found that tissue fixation appears to increase with molecular weight.


Based on experimental observations, and not being bound by theory, the tissue fixation is due to the hydroscopicity of the coating. Because the hydroscopicity increases with increasing degrees of substitution, all practical ranges of degrees of substitution are acceptable in the present invention. A degree of substitution of between 0.65-1.2 is a range that is practical and readily available


At step 240, the coating solution is applied to the fatty acid-based film 110 using any standard coating method, such as dip coating, spray coating, brushing, casting, or spin coating. At step 250, the coating is allowed to dry for a suitable amount of time, for example 2-24 hours. Alternatively, an apparatus may be used to accelerate drying through various known methods, so long as the temperature of the coating solution is not raised too high (resulting in an aqueous or gelatinous coating). For example, the film may be vacuum dried.


As an alternative to coating the fatty acid-based film with a fixating material, the fixating material may be introduced into the original oil or gel before it is formed into a film. An example of an adhesion barrier in accordance with such an embodiment is shown in FIG. 3. As shown, the adhesion barrier 300 is formed of a fatty acid-based film 310. The adhesion barrier 300 further includes fixating particles 320 formed from a fixating material, such as Na-CMC. Such an embodiment may be formed, for example, by a pressed particle method in which particles of a fatty acid, such as O3FA, are formed and particles of a fixating material are formed. The two types of particles are then mixed together and pressed to form an adhesion barrier. One of ordinary skill in the art will appreciate other methods for combining two materials together to form an intermixed, composite, type of material. All such methods, to the extent compatible with the materials discussed herein, are contemplated in the present invention.



FIG. 4 depicts another alternative embodiment of the present invention. In the adhesion barrier depicted in FIG. 4, the adhesion barrier 400 is formed of a fatty acid-based film 410. The fatty acid-based film 410 is coated with an fixating coating 420 on only one side. Such an adhesion barrier may be formed, for example, by brushing or spraying the fixating coating 420 on only a single side of the fatty-acid based film 410. Other means of coating fatty-acid based film 410 on a single side will be apparent to one having ordinary skill in the art in light of the present disclosure. Alternatively, the fatty acid-based film 410 may be coated on two or more surfaces without entirely surrounding the fatty acid-based film. Accordingly, tissue fixation can be achieved on one or both sides of the fatty acid-based film.


Exemplary Emulsion Embodiments


FIG. 5 depicts another alternative embodiment of the present invention. The adhesion barrier 500 depicted in FIG. 5 is an emulsion of fatty-acid based particles 510 mixed with an emulsion base 520, such as a CMC and water mixture.


The fatty-acid based particles 510 may be formed by associating a cross-linked fatty acid-derived biomaterial with a cryogenic liquid and fragmenting the biomaterial/cryogenic liquid composition, such that fatty acid particles are formed. In one embodiment, the source of the cross-linked fatty acid-derived biomaterial is a fish oil, e.g., a fish oil that has been heated or exposed to UV-radiation in order to cross link some or all of the fatty acids of the fish oil.


In one embodiment, associating the cross-linked fatty acid-derived biomaterial with a cryogenic liquid includes suspending, submerging, and surrounding the cross-linked fatty acid-derived biomaterial. In another embodiment, the cryogenic liquid comprises liquid nitrogen. The cross-linked fatty acid-derived biomaterial/cryogenic liquid composition can be fragmented using one or more of grinding, shearing, shocking, shattering, granulating, pulverizing, shredding, crushing, homogenizing, sonicating, vibrating, and/or milling. The cryogenic liquid can be substantially removed by evaporation, either before fragmentation or after the particles are formed.


The cross-linked, fatty acid-derived biomaterial can comprise an oil that may be natural or derived from synthetic sources. The cross-linked, fatty acid-derived biomaterial can comprise a biological oil, such as an oil containing at least one lipid or omega-3 fatty acid, such as a fish oil. The fish oil further can include vitamin E. As described herein, the fish oil is exposed to heating and/or UV irradiation to form a cross-linked, fatty acid-derived biomaterial (e.g., gel). In one embodiment, before being associated with a cryogenic liquid, the cross-linked material is in the form of a film. In another embodiment, the film is coarsely ground prior to association with the cryogenic liquid.


When the cross-linked, fatty acid-derived biomaterial is in the form of a film, a therapeutic agent can be loaded into the film before particle formation, during particle formation, or after particle formation. In still another embodiment, the film is coated with a therapeutic agent/solvent mixture. The therapeutic agent can be dissolved in a solvent, such as methanol or ethanol, and the therapeutic agent/solvent mixture can be applied to the film, e.g., by dipping or spraying.


Once prepared, the fatty-acid based particles 510 can be soaked in a therapeutic agent dissolved in solvent, such as hexane, isopar, water, ethanol, methanol, proglyme, methylene chloride, acetonitrile, acetone, or MEK, and the solvent can be substantially removed, resulting in fatty acid particles associated with a therapeutic agent.


The therapeutic agent can be one or more of an antioxidant, anti-inflammatory agent, anti-coagulant agent, drug to alter lipid metabolism, anti-proliferative, anti-neoplastic, tissue growth stimulant, functional protein/factor delivery agent, anti-infective agent, imaging agent, anesthetic agent, chemotherapeutic agent, tissue absorption enhancer, anti-adhesion agent, germicide, analgesic, antiseptic, or pharmaceutically acceptable salts, esters, or prodrugs thereof. In particular embodiments, the therapeutic agent is selected from the group consisting of rapamycin, marcaine, Cyclosporine A (referred to herein as “CSA”), ISA 247 (referred to herein as “ISA”) and rifampicin.


In one embodiment, the mean particle size of the fatty-acid based particles 510 is in the range of about 1 micron to about 50 microns, e.g., 1 micron to about 10 microns. In another embodiment, the particles have a distribution of size of about 1-20 μm (v,0.1), 21-40 μm (v,0.5), and 41-150 μm (v,0.9).


The emulsion base 520 is a liquid or aqueous-based solution which does not combine with the fatty-acid based particles 510 when mixed. In one example, the emulsion base is a CMC and water mixture. Other suitable emulsion bases include, but are not limited to, saline solutions and Ringer's lactate solution. The emulsion base may include a tissue coherent material.



FIG. 6 is a flowchart depicting an exemplary method for creating the adhesion barrier of FIG. 5. At step 610, an emulsion base solution is prepared. In one example, an emulsion base solution comprising a CMC and water mixture (4.2% w/w) was prepared using a Silverson Homogenizer (8 kRPM) and was allowed to swell at room temperature overnight.


At step 620, fatty-acid based film particles are prepared, as described above. Specifically, the fatty-acid based particles may be formed by: (a) combining a cross-linked, fatty acid-derived biomaterial (e.g., a cross-linked fish oil) and a therapeutic agent to form a first composition; (b) submerging, surrounding, or suspending the composition in a cryogenic liquid (c) fragmenting the composition; and (d) optionally removing the dispersing media.


The dispersing media may comprise a solvent that will not dissolve the therapeutic agent or the cross-linked, fatty acid-derived biomaterial. In still another embodiment, the solvent is hexane, Isopar, water, ethanol, methanol, Proglyme, methylene chloride, acetonitrile, acetone, MEK, liquid nitrogen, and other solvents that do not fully dissolve the therapeutic agent. In another embodiment, the cross-linked, fatty acid-derived biomaterial is in the form of a film. In another embodiment, the film is coarsely ground prior to association with the therapeutic agent.


The starting materials may be fragmented into solid particles by impacting the starting materials with a rod that is magnetically actuated. For example, a Spex Certiprep Cryomill (model 6750) can be used to fragment solid materials into particles. The composition can be placed in an enclosed vial, and a rod like impactor is enclosed in the vial. The vial is maintained at cryogenic temperatures, and the rod is rapidly oscillated in the vial by means of magnets.


In one example, fish oil was partially cured then cast into a thin film 6 mil (0.006″) in thickness. The thin film was UV cured for 15 minutes, heat cured in an oven at 93° C. for 24 hours, and then cooled for 24 hours. The cured fish oil films were ground with a mortar and pestle in the presence of liquid nitrogen. The thin film particles were further ground using a cryogrinder for 8 cycles. In each of the 8 cycles, the cryogrinder was on for 2 minutes at speed 15 and off for 2 minutes. The particles were stored at −20° C.


At step 630, the particles are homogenized with a fatty acid in order to form a fatty acid-based solution. In one exemplary embodiment, 1 gram of the particles was homogenized with 8 grams of fish oil using the Silverson Homogenizer (8 kRPM) until all the particles were evenly dispersed.


At step 640, the emulsion base is mixed with the fatty acid-based solution to form an emulsion. In one example, the fatty acid-based solution was mixed with 31 grams of 4.2% CMC gel (after swelling) using the Silverson Homogenizer (8 kRPM).


At step 650, the emulsion is sterilized. For example, the emulsion may be e-beam sterilized at a dose of 23 kGy.


An exemplary emulsion was prepared following steps 610-650. The resulting emulsion had a viscosity in the range of 50,000-75,000 cP.


In use, the adhesion barrier of the present invention is applied at a target site, for example a surgical site. The adhesion barrier may be applied between two areas of interest—for example, between tissues, organs, meshes, or other non-absorbable materials. The fixating properties of the adhesion barrier cause the adhesion barrier to fixate to the areas of interest so that the barrier does not migrate from the target site.


It should also be noted that the present description makes use of meshes as an example of a medical device that can be combined with the adhesion barriers of the present disclosure. However, the present disclosure is not limited to use with meshes. Instead, any number of other implantable medical devices can be combined with the adhesion barriers in accordance with the teachings of the present disclosure. Such medical devices include catheters, grafts, balloons, prosthesis, stents, other medical device implants, and the like. Furthermore, implantation refers to both temporarily implantable medical devices, as well as permanently implantable medical devices.



FIGS. 7A, 7B, 7C, 7D, 7E, 7F, and 7G illustrate some of the forms of medical devices mentioned above in combination with the adhesion barriers 710 of the present disclosure. FIG. 7A shows a graft 720 with the adhesion barrier 710 coupled or adhered thereto. FIG. 7B shows a catheter balloon 730 with the adhesion barrier 710 coupled or adhered thereto. FIG. 7C shows a stent 740 with the adhesion barrier 710 coupled or adhered thereto. FIG. 7D illustrates a stent 750 in accordance with one embodiment of this disclosure. The stent 750 is representative of a medical device that is suitable for having particles applied thereon to effect a therapeutic result. The stent 750 is formed of a series of interconnected struts having gaps formed there between. The stent 750 is generally cylindrically shaped. FIG. 7E illustrates a coated surgical mesh (coated with the adhesion barrier 710), represented as a biocompatible mesh structure 760, in accordance with one embodiment of the present disclosure. The biocompatible mesh structure 760 is flexible, to the extent that it can be placed in a flat, curved, or rolled configuration within a patient. The biocompatible mesh structure 760 is implantable, for both short term and long term applications. Depending on the particular formulation of the biocompatible mesh structure 760, the biocompatible mesh structure 760 will be present after implantation for a period of hours to days, or possibly months, or permanently. FIG. 7F illustrates an adhesion barrier 710 in the form of a stand alone film in accordance with one embodiment of the present disclosure. The adhesion barrier 710 is flexible, to the extent that it can be placed in a flat, curved, or rolled, configuration within a patient. The adhesion barrier 710 is implantable, for both short term and long term applications. Depending on the particular formulation of the adhesion barrier 710, the adhesion barrier 710 will be present after implantation for a period of hours to days, or possibly months. FIG. 7G illustrates the adhesion barrier 710 and a medical device in the form of a mesh 770. In the figure, the adhesion barrier 710 and mesh 770 are shown in exploded view. In instances of the mesh 770, it can be useful to have one side of the mesh support a rougher surface to encourage tissue in-growth, and the other side of the mesh with an anti-adhesion, anti-inflammatory, and/or non-inflammatory surface to prevent the mesh from injuring surrounding tissue or causing inflammation. The coupling of the adhesion barrier 710 with the mesh 770 achieves such a device. Each of the medical devices illustrated, in addition to others not specifically illustrated or discussed, can be combined with the adhesion barrier 710 using the methods described herein, or variations thereof. Accordingly, the present disclosure is not limited to the example embodiments illustrated. Rather, the embodiments illustrated are merely example implementations of the present disclosure.


Post surgery, the surgical incision is closed and the target site is allowed to heal. Under normal conditions without use of an adhesion barrier, adhesions would begin to form between the areas of interest. For example, fibrous bands may form between tissues and organs 3 to 10 days post surgery. When the adhesion barrier is present at the target site, the adhesion barrier prevents adhesions from forming. Because the adhesion barrier fixates sufficiently to the areas of interest, and because the adhesion barrier is absorbed into the body relatively slowly, the adhesion barrier is in place at the target site at the time adhesions would otherwise form.


After barrier functionality is no longer needed, the adhesion barrier is absorbed into the body.


Exemplary illustrative embodiments are described below.


Example 1: Bench Top Force of Detachment—Non Sterile Samples

A coating solution composed of 2% (w/v) non-crosslinked high molecular weight Na-CMC with a degree of substitution of 0.65 (Sigma) in deionized water was applied to 15 one inch square fatty acid-based films and allowed to dry to form adhesion barriers in accordance with embodiments of the present invention. The adhesion barriers were placed on freshly slaughtered bovine intestine that was rinsed in tap water prior to testing. The adhesion barriers were allowed to remain on the tissue for 3 minutes before testing. A Chatillon gauge was used to measure the force of detachment in the direction parallel to the plane of adhesion between the adhesion barriers and the tissue. The maximum force measured on the Chatillon gauge for each sample was collected. 15 uncoated fatty acid-based films were measured for reference. The uncoated films had a mean force of detachment of 0.08 lbf. In contrast, the coated films forming adhesion barriers in accordance with embodiments of the present invention had a mean force detachment of 0.54 lbf.


Example 2: In-Vivo Results of a Fatty Acid-CMC Film in Minimizing Tissue to Tissue Adhesions

Test samples of an adhesion barrier in accordance with exemplary embodiments of the present invention were produced using the methods described above in Example 1. The CMC was not modified to enhance crosslinking and no crosslinking facilitators were employed. The test samples were implanted in a rabbit sidewall model of adhesion prevention. Samples were sterilized using an electron beam at a dose of 22.5 kGy. The cecum was fully abraded to produce punctate bleeding and a 3×5 cm section of the peritoneum was excised. This model yields dense adhesions in untreated animals. A 4×6 cm O3FA film coated with CMC was placed on the peritoneal defect with the coated side in direct contact with the sidewall. At 28 days post implant, the rabbits were sacrificed and the area of adhesions was graded.


Four rabbits were maintained as a control group with no treatment. Five rabbits were treated with the adhesion barriers. In the four control subjects, the mean area of adhesion was 100%. In the experimental subjects having the adhesion barriers, the mean area of adhesion was 8%.


As noted, no crosslinking facilitators were employed in this example. Electron beams are known to degrade previous solid CMC films which will result in faster absorption in-vivo. However, despite the use of e-beam sterilization, the results from Example 2 show that the adhesion barriers remained tissue coherent for at least 28 days.


Example 3

Crosslinking via radiation exposure is a method that can be used to increase the in-vivo residence time of aqueous CMC compositions. To evaluate the effect of radiation exposure on dry CMC films, a solution composed of 2% (w/v) Na-CMC with a degree of substitution of 0.7 (Hercules) in SWFI was diluted with SWFI in a solution:SWFI ratio of 5:2. The dilute solution was poured into a Teflon coated well plate and allowed to dry at room temperature for 24 hours, resulting in a thin solid film of CMC. The film was cut into several square pieces that were packaged separately. Several pieces were irradiated using a 10 MeV electron beam source at a dose of 22.5 kGy. Irradiated and non-irradiated samples were submerged in separate aluminum pans of deionized water and evaluated for solubility and maintenance/loss of structure. If the CMC films were crosslinked by the exposure to radiation, hydration of the films should result is some swelling with maintenance of the original square geometry. In contrast, both irradiated and non-irradiated films swelled and lost structure within about 10 minutes and were no longer detectable as solids or gels by 30 minutes, indicating that the CMC was fully mobile (not crosslinked or otherwise immobilized via chemical bonding) in both samples. The CMC solutions in the pans were allowed to evaporate over 48 hours at ambient room temperature, yielding uniformly thin solid films of CMC that conformed to the circular pan geometry at the bottom of the pan. Full and equal solubility of exposed and non-exposed CMC films is evidence that the electron beam exposure did not constructively limit the mobility of (i.e. crosslink) the CMC material.


To further evaluate the effect of radiation crosslinking on CMC in the presence of O3FA, two test samples of an adhesion barrier in accordance with exemplary embodiments of the present invention were produced using the methods described above in Example 1. Adhesion Barrier 1 was exposed to a 10 MeV electron beam source with a dose of 22.5 kGy. Adhesion Barrier 2 was not exposed to electron beam radiation. The adhesion barriers were weighed and exposed to 200 mL of deionized water, with visual evaluation at 2, 5, and 69 hours. The adhesion barriers were then vacuum dried for 2 hours at 25 mTorr. Measurements and observations are provided below in Table 1.

















TABLE 1













Mass/




Film
Initial
Observation
Observation
Observation
Final
Area



E-beam
Area
Mass
after 2 h in
after 5 h in
after 69 h in
Mass
Lost


Sample
Exposure
[cm2]
[mg]
DI water
DI water
DI water
[mg]
[mg/cm2]







1
Yes
27.72
499.1
Gel layer
Gel layer
No gel layer
438.9
2.17






thickness of
thickness of






3 mm
1 mm


2
No
23.18
367.3
Gel layer
Gel layer
No gel layer
317.6
2.14






thickness of
thickness of






3 mm
1 mm









The authors had previously determined that the coating method employed yields a coating mass density of 2.28+/−0.11 mg/cm2 (mean+/−1σ, n=12). Both adhesion barriers have mass losses (2.17 and 2.14 mg/cm2, respectively) that support the conclusion that the coating is fully soluble in DI water, and therefore not crosslinked or otherwise immobilized. Visual observations support this conclusion.


CMC in the presence of O3FA took between 5 and 69 hours to fully dissolve in DI water, whereas CMC only films were fully dissolved in 30 minutes. The presence of O3FA appears to slow the dissolution of CMC in DI water. This is independent of irradiation with electron beam.


Example 4

A coating solution composed of 2% (w/v) Na-CMC with a degree of substitution of 0.7 (Hercules) and 1% glycerin in SWFI was prepared. The coating solution was applied to several fatty acid-based films and was allowed to dry to form adhesion barriers. The adhesion barriers exhibited excellent handling, as the coating was well plasticized. The adhesion barriers were sterilized using an electron beam at a dose of 22.5 kGy and implanted in a rabbit sidewall model of adhesions. The cecum was fully abraded to produce punctate bleeding and a 3×5 cm section of the peritoneum as excised. A 4×6 cm film coated with CMC was placed on the peritoneal defect with the coated side in direct contact with the sidewall. At 28 days post implant, the rabbits were sacrificed and the area of adhesions was graded.


Four rabbits were maintained as a control group with no treatment. Five rabbits were treated with the adhesion barriers. In the four control subjects, the mean area of adhesion was 100%. In the experimental subjects having the adhesion barriers, the mean area of adhesion was 8%.


The results show that, in this study, the addition of a plasticizing agent had no effect on the efficacy of the adhesion barriers comprising an O3FA-CMC film, as the adhesion barrier did not migrate from the site of treatment. The results of this study show that the plasticized adhesion barrier was tissue fixating for at least 28 days.


Example 5: O3FA Film with Tissue Fixating Chitosan Coating

A coating solution composed of 4% (w/v) ChitoPharm S (MW=50,000-1,000,000, Cognis) in a 1% acetic acid solution was dialyzed using a Fisherbrand regenerated cellulose dialysis tubing membrane with a molecular weight cut off of 3,500. The final coating solution pH was 6.27. The coating was applied to several 4×6 cm O3FA films and evaluated in a rabbit sidewall model of adhesion prevention. Samples were sterilized using E-beam at a dose of 22.5 kGy. The cecum was fully abraded to produce punctate bleeding and a 3×5 cm section of the peritoneum was excised. This model yields dense adhesions in untreated animals. The 4×6 cm films coated with chitosan were placed on the peritoneal defect with the coated side in direct contact with the sidewall. At 28 days post implant, the rabbits were sacrificed and the area of adhesions was graded. Results are shown in the table below.


















Mean Area of Adhesions


Group
Description
n
(%)


















1
control, no treatment
4
100


2
Chitosan Coating
5
34









Example 6: Emulsion

An adhesion barrier in the form of an emulsion, as depicted in FIG. 5, was prepared according to the procedure described in FIG. 6. Samples of the emulsion were stored at 4° C. until being tested.


Test samples of the emulsion were examined in a rabbit sidewall model to assess adhesion prevention. The cecum was fully abraded to produce punctate bleeding and a 3×5 cm section of the peritoneum was excised. This model yields dense adhesions in untreated animals. 10 mL of the emulsion was applied to the peritoneal and sidewall injuries. At 28 days post implant, the rabbits were sacrificed and the area of adhesions was graded.


Results showed that three of the six animals tested had no adhesion formation (area=0%). The remaining three that did form adhesions had a tenacity of only 1, indicating that the adhesions were mild and easily dissectible. The average area of adhesion coverage was 28.3% and the average tenacity score was 0.5. These results contrasted that of the control, untreated animal, as detailed in the table below.



















Mean






Area of Adhesions


Group
Description
n
(%)
Tenacity



















1
Control, no treatment
4
100
2.75


2
Emulsion
6
28.3
0.5










Biocompatibility and In-Vivo Performance


The process of making the fatty acid-based biomaterials as described in accordance with the present invention led to some unexpected chemical processes and characteristics in view of traditional scientific reports in the literature about the oxidation of oils (J. Dubois et al. JAOCS. 1996, Vol. 73, No. 6, pgs 787-794. H. Ohkawa et al., Analytical Biochemistry, 1979, Vol. 95, pgs 351-358; H. H. Draper, 2000, Vol. 29, No. 11, pgs 1071-1077). Oil oxidation has traditionally been of concern for oil curing procedures due to the formation of reactive byproducts such as hydroperoxides and alpha-beta unsaturated aldehydes that are not considered to be biocompatible (H. C. Yeo et al. Methods in Enzymology. 1999, Vol. 300, pgs 70-78; S-S. Kim et al. Lipids. 1999, Vol. 34, No. 5, pgs 489-496.). However, the oxidation of fatty acids from oils and fats are normal and important in the control of biochemical processes in-vivo. For example, the regulation of certain biochemical pathways, such as to promote or reduce inflammation, is controlled by different lipid oxidation products (V. N. Bochkov and N. Leitinger. J. Mol. Med. 2003; Vol. 81, pgs 613-626). Additionally, omega-3 fatty acids are known to be important for human health and specifically EPA and DHA have anti-inflammatory properties in-vivo. However, EPA and DHA are not anti-inflammatory themselves, but it is the oxidative byproducts they are biochemically converted into that produce anti-inflammatory effects in-vivo (V. N. Bochkov and N. Leitinger, 2003; L. J. Roberts II et al. The Journal of Biological Chemistry. 1998; Vol. 273, No. 22, pgs 13605-13612.). Thus, although there are certain oil oxidation products that are not biocompatible, there are also several others that have positive biochemical properties in-vivo (V. N. Bochkov and N. Leitinger, 2003; F. M. Sacks and H. Campos. J Clin Endocrinol Metab. 2006; Vol. 91, No. 2, pgs 398-400; A. Mishra et al. Arterioscler Thromb Vasc Biol. 2004; pgs 1621-1627.). Thus, by selecting the appropriate process conditions, an oil-derived cross-linked hydrophobic biomaterial can be created and controlled using oil oxidation chemistry with a final chemical profile that will have a favorable biological performance in-vivo.


The process of making an oil-derived hydrophobic non-polymeric biomaterial in accordance with the present invention leads to a final chemical profile that is biocompatible, minimizes adhesion formation, acts as a tissue separating barrier, and is non-inflammatory with respect to the material chemistry and the products produced upon hydrolysis and absorption by the body in-vivo. These properties are due to several unique characteristics of the fatty acid-derived biomaterials in embodiments of the present invention.


One aspect of the present invention is that no toxic, short-chained cross-linking agents (such as glutaraldehyde) are used to form the oil-derived biomaterials and thus the adhesion barrier of the invention. It has been previously demonstrated in the literature that short chain cross-linking agents can elute during hydrolysis of biodegradable polymers and cause local tissue inflammation. The process of creating oil-derived biomaterials does not involve cross-linking agents because the oil is cured into a coating using oil autoxidation or photo-oxidation chemistry. The oxidation process results in the formation of carboxyl and hydroxyl functional groups that allow for the oil-derived biomaterial to become hydrated very rapidly and become slippery, which allows for frictional injury during and after implantation to be significantly reduced and/or eliminated. The methods of making the oil-derived biomaterials described in embodiments of the present invention allow the alkyl chains of the fatty acid, glyceride and other lipid byproducts present in the coating to be disordered, which creates a coating that is flexible and aids in handling of the material while being implanted.


There are several individual chemical components of the present inventive materials that aid in biocompatibility and the low to non-inflammatory response observed in-vivo. One aspect of exemplary embodiments of the present invention is that the process of creating an oil-derived biomaterial used to form the adhesion barrier as described herein results in low to non-detectable amounts of oxidized lipid byproducts of biocompatibility concern, such as aldehydes. These products are either almost completely reacted or volatilized during the curing process as described in exemplary embodiments of the present invention. The process of creating an oil-derived biomaterial largely preserves the esters of the native oil triglycerides and forms ester and/or lactone cross-links, which are biocompatible (K. Park et al., 1993; J. M. Andersen, 1995).


In addition to general chemical properties of an oil-derived biomaterial that assists in its biocompatibility, there are also specific chemical components that have positive biological properties. Another aspect is that the fatty acid chemistry produced upon creation of an oil-derived biomaterial is similar to the fatty acid chemistry of tissue. Thus, as fatty acids are eluting from the adhesion barrier they are not viewed as being “foreign” by the body and do not cause an inflammatory response. In fact, C14 (myristic) and C16 (palmitic) fatty acids present in the adhesion barrier have been shown in the literature to reduce production of α-TNF, an inflammatory cytokine. The expression of α-TNF has been identified as one of the key cytokines responsible for “turning on” inflammation in the peritoneal cavity after hernia repair, which can then lead to abnormal healing and adhesion formation (Y. C. Cheong et. al., 2001). α-TNF is also an important cytokine in vascular injury and inflammation (D. E. Drachman and D. I. Simon, 2005; S. E. Goldblum, 1989), such as vascular injury caused during a stent deployment. In addition to the fatty acids just specified, there have also been additional oxidized fatty acids identified that have anti-inflammatory properties. Another component identified from the fatty acid-derived biomaterials as described herein are delta-lactones (i.e., 6-membered ring cyclic esters). Delta-lactones have been identified as having anti-tumor properties (H. Tanaka et. al. Life Sciences 2007; Vol. 80, pgs 1851-1855).


The components identified herein are not meant to be limiting in scope to the present invention, as changes in starting oil composition and/or process conditions can invariably alter the fatty acid and/or oxidative byproduct profiles and can be tailored as needed depending on the intended purpose and site of application of the fatty acid-derived biomaterial.


In summary, the biocompatibility and observed in-vivo performance of fatty acid-derived biomaterials that form the adhesion barrier described herein are due to the elution of fatty acids during hydrolysis of the material during implantation and healing and are not only beneficial as to prevent a foreign body response in-vivo due to the similarity of the fatty acid composition of the material to native tissue (i.e., a biological “stealth” coating), but the specific fatty acids and/or other lipid oxidation components eluting from the coating aid in preventing foreign body reactions and reducing or eliminating inflammation, which leads to improved patient outcomes. Additionally, the fatty acid and glyceride components eluted from the fatty acid-derived biomaterial forming the fatty acid-based film of the adhesion barrier are able to be absorbed by local tissue and metabolized by cells, in, for example, the Citric Acid Cycle (M. J. Campell, “Biochemistry: Second Edition.” 1995, pgs 366-389). Hence, the fatty acid-derived biomaterial described in accordance with the present invention is also bioabsorbable.


Methods of Treatment Using the Adhesion Barrier


In general, four types of soft tissue are present in humans: epithelial tissue, e.g., the skin and the lining of the vessels and many organs; connective tissue, e.g., tendons, ligaments, cartilage, fat, blood vessels, and bone; muscle, e.g., skeletal (striated), cardiac, or smooth; and nervous tissue, e.g., brain, spinal cord and nerves. The adhesion barrier in accordance with the present invention can be used to treat injury to these soft tissue areas. Thus, in one embodiment, the adhesion barrier of the present invention can be used for promotion of proliferation of soft tissue for wound healing. Furthermore, following acute trauma, soft tissue can undergo changes and adaptations as a result of healing and the rehabilitative process. Such changes include, but are not limited to, metaplasia, which is conversion of one kind of tissue into a form that is not normal for that tissue; dysplasia, with is the abnormal development of tissue; hyperplasia, which is excessive proliferation of normal cells in the normal tissue arrangement; and atrophy, which is a decrease in the size of tissue due to cell death and resorption or decreased cell proliferation. Accordingly, the fatty acid-derived biomaterial of the present invention can be used for the diminishment or alleviation of at least one symptom associated with or caused by acute trauma in soft tissue.


In accordance with one exemplary embodiment of the present invention, as described below, the adhesion barrier can be used to prevent tissue adhesion. The tissue adhesion can be, for example, a result of blunt dissection. Blunt dissection can be generally described as dissection accomplished by separating tissues along natural cleavage lines without cutting. Blunt dissection is executed using a number of different blunt surgical tools, as is understood by those of ordinary skill in the art. Blunt dissection is often performed in cardiovascular, colo-rectal, urology, gynecology, upper GI, and plastic surgery applications, among others.


After the blunt dissection separates the desired tissues into separate areas, there is often a need to maintain the separation of those tissues. In fact, post surgical adhesions can occur following almost any type of surgery, resulting in serious postoperative complications. The formation of surgical adhesions is a complex inflammatory process in which tissues that normally remain separated in the body come into physical contact with one another and attach to each other as a result of surgical trauma.


It is believed that adhesions are formed when bleeding and leakage of plasma proteins from damaged tissue deposit in the abdominal cavity and form what is called a fibrinous exudate. Fibrin, which restores injured tissues, is sticky, so the fibrinous exudate may attach to adjacent anatomical structures in the abdomen. Post-traumatic or continuous inflammation exaggerates this process, as fibrin deposition is a uniform host response to local inflammation. This attachment seems to be reversible during the first few days after injury because the fibrinous exudates go through enzymatic degradation caused by the release of fibrinolytic factors, most notably tissue-type plasminogen activator (t-PA). There is constant play between t-PA and plasminogen-activator inhibitors. Surgical trauma usually decreases t-PA activity and increases plasminogen-activator inhibitors. When this happens, the fibrin in the fibrinous exudate is replaced by collagen. Blood vessels begin to form, which leads to the development of an adhesion. Once this has occurred, the adhesion is believed to be irreversible. Therefore, the balance between fibrin deposition and degradation during the first few days post-trauma is critical to the development of adhesions (Holmdahl L. Lancet 1999; 353: 1456-57). If normal fibrinolytic activity can be maintained or quickly restored, fibrous deposits are lysed and permanent adhesions can be avoided. Adhesions can appear as thin sheets of tissue or as thick fibrous bands.


Often, the inflammatory response is also triggered by a foreign substance in vivo, such as an implanted medical device. The body sees this implant as a foreign substance, and the inflammatory response is a cellular reaction to wall off the foreign material. This inflammation can lead to adhesion formation to the implanted device; therefore a material that causes little to no inflammatory response is desired.


Thus, adhesion barrier of the present invention may be used as a barrier to keep tissues separated to avoid the formation of adhesions, e.g., surgical adhesions. Application examples for adhesion prevention include abdominal surgeries, spinal repair, orthopedic surgeries, tendon and ligament repairs, gynecological and pelvic surgeries, and nerve repair applications. The adhesion barrier may be applied over the trauma site or wrapped around the tissue or organ to limit adhesion formation. The addition of therapeutic agents to the fatty acid-derived biomaterial used in these adhesion prevention applications can be utilized for additional beneficial effects, such as pain relief or infection minimization. Other surgical applications of adhesion barrier may include using a stand-alone film as a dura patch, buttressing material, internal wound care (such as a graft anastomotic site), and internal drug delivery system. The adhesion barrier may also be used in applications in transdermal, wound healing, and non-surgical fields. The adhesion barrier may be used in external wound care, such as a treatment for burns or skin ulcers. The adhesion barrier may be used without any therapeutic agent as a clean, non-permeable, non-adhesive, non-inflammatory, anti-inflammatory dressing, or the adhesion barrier may be used with one or more therapeutic agents for additional beneficial effects. The adhesion barrier may also be used as a transdermal drug delivery patch when the fatty acid-derived biomaterial is loaded or coated with one or more therapeutic agents.


The process of wound healing involves tissue repair in response to injury and it encompasses many different biologic processes, including epithelial growth and differentiation, fibrous tissue production and function, angiogenesis, and inflammation. Accordingly, the adhesion barrier provides an excellent material suitable for wound healing applications.


Combining fatty acid-based films with tissue fixating materials results in an effective adhesion barrier with fixating and anti-inflammation properties. The resulting adhesion barrier is well-tolerated by the body, reduces adhesions post-surgery, and does not migrate from the target site due to the film's fixating properties. Further, the adhesion barrier is absorbed into the body relatively slowly as compared to conventional CMC-based films, and so facilitates tissue adhesion between the adhesion barrier and the site of treatment for up to 28 days. This provides sufficient residence time to effectively provide post-surgery barrier functionality. Further, combining fatty acid-based films with tissue fixating materials may avoid the need to crosslink the tissue fixating material, reducing the cost and complexity of manufacturing the film.


Numerous modifications and alternative embodiments of the present invention will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode for carrying out the present invention. Details of the structure can vary substantially without departing from the spirit of the invention, and exclusive use of all modifications that come within the scope of the appended claims is reserved. It is intended that the present invention be limited only to the extent required by the appended claims and the applicable rules of law.


All literature and similar material cited in this application, including, patents, patent applications, articles, books, treatises, dissertations and web pages, regardless of the format of such literature and similar materials, are expressly incorporated by reference in their entirety. In the event that one or more of the incorporated literature and similar materials differs from or contradicts this application, including defined terms, term usage, described techniques, or the like, this application controls.


The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described in any way.


While the present inventions have been described in conjunction with various embodiments and examples, it is not intended that the present teachings be limited to such embodiments or examples. On the contrary, the present inventions encompass various alternatives, modifications, and equivalents, as will be appreciated by those of skill in the art.


The claims should not be read as limited to the described order or elements unless stated to that effect. It should be understood that various changes in form and detail can be made without departing from the scope of the appended claims. Therefore, all embodiments that come within the scope and spirit of the following claims and equivalents thereto are claimed.

Claims
  • 1. An adhesion barrier comprising: an anti-adhesion material forming the adhesion barrier, wherein the anti-adhesion material has tissue anti-adhesion characteristics and the anti-adhesion material comprises omega-3 fatty acids cross-linked directly to each other, wherein the cross-links include ester bonds, wherein the anti-adhesion material is the product of cross-linking an oil composition that includes eicosapentaenoic acid, docosahexanoic acid and alpha-linolenic acid, wherein the oil composition is obtained from fish oil and the fish oil is cured to form a material from which cured fish oil particles having a distribution of size about 1-12 μm (v, 0.1), 21-40 μm (v, 0.5), and 41-150 μm (v, 0.9) are obtained, wherein the anti-adhesion material is bioabsorbable, and wherein the anti-adhesion material is formulated as an emulsion that is a dispersion of the cured fish oil particles in fish oil mixed with an emulsion base, wherein the emulsion base comprises carboxymethyl cellulose and water.
  • 2. The adhesion barrier of claim 1, wherein the cured fish oil particles have a mean particle size in the range of about 1 micron to about 50 microns.
  • 3. The adhesion barrier of claim 1, wherein the anti-adhesion material forms a layer.
  • 4. The adhesion barrier of claim 1, wherein the cured fish oil particles are associated with a therapeutic agent.
RELATED APPLICATIONS

The present application is a divisional of U.S. patent application Ser. No. 15/001,585, which was filed on Jan. 20, 2016 (now U.S. Pat. No. 9,844,611), which is a divisional application of U.S. patent application Ser. No. 12/581,582, which was filed on Oct. 19, 2009 (now U.S. Pat. No. 9,278,161), and which is a continuation-in-part of the following: United States patent applications: U.S. patent application Ser. No. 11/237,420 entitled “Barrier Layer,” filed on Sep. 28, 2005 (now U.S. Pat. No. 9,801,913); U.S. patent application Ser. No. 11/237,264 entitled “A Stand-Alone Film and Methods for Making the Same,” filed on Sep. 28, 2005 (now U.S. Pat. No. 8,795,703); U.S. patent application Ser. No. 11/978,840 entitled “Coated Surgical Mesh,” filed on Oct. 30, 2007 (now U.S. Pat. No. 8,574,627); and U.S. patent application Ser. No. 12/401,243 entitled “Fatty-Acid Based Particles,” filed on Mar. 10, 2009 (now U.S. Pat. No. 9,427,423). The contents of the aforementioned patent applications are incorporated herein by reference.

US Referenced Citations (524)
Number Name Date Kind
1948959 Croce Feb 1934 A
2368306 Kiefer et al. Jan 1945 A
2403458 Ransom Jul 1946 A
2555976 Keenan Jun 1951 A
2735814 Hodson et al. Feb 1956 A
2986540 Posnansky May 1961 A
3328259 Anderson Jun 1967 A
3464413 Goldfarb et al. Sep 1969 A
3556294 Walck, III Jan 1971 A
3567820 Sperti Mar 1971 A
3803109 Nemoto Apr 1974 A
3967728 Gordon et al. Jul 1976 A
4185637 Mattei Jan 1980 A
4308120 Pennewiss et al. Dec 1981 A
4323547 Knust et al. Apr 1982 A
4345414 Bornat et al. Aug 1982 A
4447418 Maddoux May 1984 A
4557925 Lindahl et al. Dec 1985 A
4655221 Devereux Apr 1987 A
4664114 Ghodsian May 1987 A
4702252 Brooks et al. Oct 1987 A
4711902 Serno Dec 1987 A
4733665 Palmaz Mar 1988 A
4769038 Bendavid et al. Sep 1988 A
4813210 Masuda et al. Mar 1989 A
4814329 Harsanyi et al. Mar 1989 A
4824436 Wolinsky Apr 1989 A
4846844 De Leon et al. Jul 1989 A
4847301 Murray Jul 1989 A
4880455 Blank Nov 1989 A
4883667 Eckenhoff Nov 1989 A
4886787 de Belder et al. Dec 1989 A
4894231 Moreau et al. Jan 1990 A
4895724 Cardinal et al. Jan 1990 A
4911707 Heiber et al. Mar 1990 A
4937254 Sheffield et al. Jun 1990 A
4938763 Dunn et al. Jul 1990 A
4941308 Grabenkort et al. Jul 1990 A
4941877 Montano, Jr. Jul 1990 A
4947840 Yannas et al. Aug 1990 A
4952419 De Leon et al. Aug 1990 A
4968302 Schluter et al. Nov 1990 A
4994033 Shockey et al. Feb 1991 A
5017229 Burns et al. May 1991 A
5041125 Montano, Jr. Aug 1991 A
5049132 Shaffer et al. Sep 1991 A
5061281 Mares et al. Oct 1991 A
5071609 Tu et al. Dec 1991 A
5087244 Wolinsky et al. Feb 1992 A
5087246 Smith Feb 1992 A
5102402 Dror et al. Apr 1992 A
5118493 Kelley et al. Jun 1992 A
5132115 Wolter et al. Jul 1992 A
5147374 Fernandez Sep 1992 A
5151272 Engstrom et al. Sep 1992 A
5171148 Wasserman et al. Dec 1992 A
5176956 Jevne et al. Jan 1993 A
5179174 Elton Jan 1993 A
5199951 Spears Apr 1993 A
5202310 Levy et al. Apr 1993 A
5206077 Cowley et al. Apr 1993 A
5254105 Haaga Oct 1993 A
5267985 Shimada et al. Dec 1993 A
5279565 Klein et al. Jan 1994 A
5282785 Shapland et al. Feb 1994 A
5283257 Gregory et al. Feb 1994 A
5286254 Shapland et al. Feb 1994 A
5295962 Crocker et al. Mar 1994 A
5304121 Sahatjian Apr 1994 A
5336178 Kaplan et al. Aug 1994 A
5356432 Rutkow et al. Oct 1994 A
5368602 de la Torre Nov 1994 A
5371109 Engstrom et al. Dec 1994 A
5380328 Morgan Jan 1995 A
5387658 Schroder et al. Feb 1995 A
5403283 Luther Apr 1995 A
5411951 Mitchell May 1995 A
5411988 Bochow et al. Jun 1995 A
5447940 Harvey et al. Sep 1995 A
5456666 Campbell et al. Oct 1995 A
5456720 Schultz et al. Oct 1995 A
5458568 Racchini et al. Oct 1995 A
5458572 Campbell et al. Oct 1995 A
5464650 Berg et al. Nov 1995 A
5468242 Reisberg Nov 1995 A
5480436 Bakker Jan 1996 A
5480653 Aguadisch Jan 1996 A
5490839 Wang et al. Feb 1996 A
5498238 Shapland et al. Mar 1996 A
5499971 Shapland et al. Mar 1996 A
5509899 Fan et al. Apr 1996 A
5514092 Forman et al. May 1996 A
5547677 Wright Aug 1996 A
5549901 Wright Aug 1996 A
5558071 Ward et al. Sep 1996 A
5569198 Racchini Oct 1996 A
5573781 Brown et al. Nov 1996 A
5579149 Moret et al. Nov 1996 A
5580923 Yeung et al. Dec 1996 A
5589508 Schlotzer et al. Dec 1996 A
5591230 Horn et al. Jan 1997 A
5593441 Lichtenstein et al. Jan 1997 A
5603721 Lau et al. Feb 1997 A
5605696 Eury et al. Feb 1997 A
5612074 Leach Mar 1997 A
5614284 Kranzler et al. Mar 1997 A
5627077 Dyllick-Brenzinger et al. May 1997 A
5628730 Shapland et al. May 1997 A
5629021 Wright May 1997 A
5634899 Shapland et al. Jun 1997 A
5634931 Kugel Jun 1997 A
5637113 Tartaglia et al. Jun 1997 A
5637317 Dietl Jun 1997 A
5641767 Wess et al. Jun 1997 A
5665115 Cragg Sep 1997 A
5693014 Abele et al. Dec 1997 A
5695525 Mulhauser et al. Dec 1997 A
5700286 Tartaglia et al. Dec 1997 A
5700848 Soon-Shiong et al. Dec 1997 A
5705485 Cini Jan 1998 A
5731346 Egberg et al. Mar 1998 A
5736152 Dunn Apr 1998 A
5738869 Fischer et al. Apr 1998 A
5747533 Egberg et al. May 1998 A
5749845 Hildebrand et al. May 1998 A
5753259 Engstrom et al. May 1998 A
5760081 Leaf et al. Jun 1998 A
5766246 Mulhausser et al. Jun 1998 A
5766710 Turnlund et al. Jun 1998 A
5789465 Harvey et al. Aug 1998 A
5800392 Racchini Sep 1998 A
5807306 Shapland et al. Sep 1998 A
5817343 Burke Oct 1998 A
5824082 Brown Oct 1998 A
5827325 Landgrebe et al. Oct 1998 A
5828785 Kitsuki Oct 1998 A
5837313 Ding et al. Nov 1998 A
5843172 Yan Dec 1998 A
5843919 Burger Dec 1998 A
5865787 Shapland et al. Feb 1999 A
5874470 Nehne et al. Feb 1999 A
5879359 Dorigatti et al. Mar 1999 A
5897911 Loeffler Apr 1999 A
5898040 Shalaby et al. Apr 1999 A
5902266 Leone et al. May 1999 A
5906831 Larsson et al. May 1999 A
5931165 Reich et al. Aug 1999 A
5947977 Slepian et al. Sep 1999 A
5954767 Pajotin et al. Sep 1999 A
5955502 Hansen et al. Sep 1999 A
5986043 Hubbell et al. Nov 1999 A
6004549 Reichert et al. Dec 1999 A
6005004 Katz et al. Dec 1999 A
6010480 Abele et al. Jan 2000 A
6010766 Braun et al. Jan 2000 A
6010776 Exsted et al. Jan 2000 A
6013055 Bampos et al. Jan 2000 A
6015844 Harvey et al. Jan 2000 A
6028164 Loomis Feb 2000 A
6033380 Butaric et al. Mar 2000 A
6033436 Steinke et al. Mar 2000 A
6040330 Hausheer et al. Mar 2000 A
6048332 Duffy et al. Apr 2000 A
6048725 Shimada et al. Apr 2000 A
6056970 Greenawalt et al. May 2000 A
6066777 Benchetrit May 2000 A
6075180 Sharber et al. Jun 2000 A
6077698 Swan et al. Jun 2000 A
6080442 Yoshikawa et al. Jun 2000 A
6083950 Anand et al. Jul 2000 A
6090809 Anand et al. Jul 2000 A
6093792 Gross et al. Jul 2000 A
6117911 Grainger et al. Sep 2000 A
6120477 Campbell et al. Sep 2000 A
6120539 Eldridge et al. Sep 2000 A
6120789 Dunn Sep 2000 A
6132765 DiCosmo et al. Oct 2000 A
6146358 Rowe Nov 2000 A
6152944 Holman et al. Nov 2000 A
6176863 Kugel et al. Jan 2001 B1
6193746 Strecker Feb 2001 B1
6197357 Lawton et al. Mar 2001 B1
6200985 Cottens et al. Mar 2001 B1
6203551 Wu Mar 2001 B1
6206916 Furst Mar 2001 B1
6211315 Larock et al. Apr 2001 B1
6224579 Modak et al. May 2001 B1
6224909 Opitz et al. May 2001 B1
6228383 Hansen et al. May 2001 B1
6229032 Jacobs et al. May 2001 B1
6231600 Zhong May 2001 B1
6245366 Popplewell et al. Jun 2001 B1
6245811 Horrobin et al. Jun 2001 B1
6254634 Anderson et al. Jul 2001 B1
6258124 Darois et al. Jul 2001 B1
6262109 Clark et al. Jul 2001 B1
6273913 Wright et al. Aug 2001 B1
6284268 Mishra et al. Sep 2001 B1
6287285 Michal et al. Sep 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6306438 Oshlack et al. Oct 2001 B1
6326072 Ojeda et al. Dec 2001 B1
6326360 Kanazawa et al. Dec 2001 B1
6331568 Horrobin Dec 2001 B1
6342254 Soudant et al. Jan 2002 B1
6346110 Wu Feb 2002 B2
6355063 Calcote Mar 2002 B1
6358556 Ding et al. Mar 2002 B1
6364856 Ding et al. Apr 2002 B1
6364893 Sahatjian et al. Apr 2002 B1
6364903 Tseng et al. Apr 2002 B2
6368541 Pajotin et al. Apr 2002 B1
6368658 Schwarz et al. Apr 2002 B1
6369039 Palasis et al. Apr 2002 B1
6387301 Nakajima et al. May 2002 B1
6387379 Goldberg et al. May 2002 B1
6410587 Grainger et al. Jun 2002 B1
6444318 Guire et al. Sep 2002 B1
6451373 Hossainy et al. Sep 2002 B1
6463323 Conrad-Vlasak et al. Oct 2002 B1
6465525 Guire et al. Oct 2002 B1
6471980 Sirhan et al. Oct 2002 B2
6479683 Abney et al. Nov 2002 B1
6485752 Rein et al. Nov 2002 B1
6491938 Kunz et al. Dec 2002 B2
6500174 Maguire et al. Dec 2002 B1
6500453 Brey et al. Dec 2002 B2
6503556 Harish et al. Jan 2003 B2
6506410 Park Jan 2003 B1
6525145 Gevaert et al. Feb 2003 B2
6527801 Dutta Mar 2003 B1
6534693 Fischell et al. Mar 2003 B2
6541116 Michal et al. Apr 2003 B2
6544223 Kokish Apr 2003 B1
6544224 Steese-Bradley Apr 2003 B1
6548081 Sadozai Apr 2003 B2
6565659 Pacetti et al. May 2003 B1
6569441 Kunz et al. May 2003 B2
6579851 Gocke et al. Jun 2003 B2
6596002 Therin et al. Jul 2003 B2
6599323 Melican et al. Jul 2003 B2
6610006 Amid et al. Aug 2003 B1
6610035 Yang et al. Aug 2003 B2
6610068 Yang Aug 2003 B1
6616650 Rowe Sep 2003 B1
6630151 Tarletsky et al. Oct 2003 B1
6630167 Zhang Oct 2003 B2
6632822 Rickards et al. Oct 2003 B1
6641611 Jayaraman Nov 2003 B2
6645547 Shekalim et al. Nov 2003 B1
6663880 Roorda et al. Dec 2003 B1
6669735 Pelissier Dec 2003 B1
6670355 Azrolan et al. Dec 2003 B2
6677342 Wolff et al. Jan 2004 B2
6677386 Giezen et al. Jan 2004 B1
6685956 Chu et al. Feb 2004 B2
6689388 Kuhrts Feb 2004 B2
6696583 Koncar et al. Feb 2004 B2
6723133 Pajotin Apr 2004 B1
6730016 Cox et al. May 2004 B1
6730064 Ragheb et al. May 2004 B2
6740122 Pajotin May 2004 B1
6753071 Pacetti Jun 2004 B1
6758847 Maguire Jul 2004 B2
6761903 Chen et al. Jul 2004 B2
6764509 Chinn et al. Jul 2004 B2
6776796 Falotico et al. Aug 2004 B2
6794485 Shalaby et al. Sep 2004 B2
6808536 Wright et al. Oct 2004 B2
6833004 Ishii et al. Dec 2004 B2
6852330 Bowman et al. Feb 2005 B2
6875230 Morita et al. Apr 2005 B1
6884428 Binette et al. Apr 2005 B2
6887270 Miller et al. May 2005 B2
6899729 Cox et al. May 2005 B1
6902522 Walsh et al. Jun 2005 B1
6918927 Bates et al. Jul 2005 B2
6996952 Gupta et al. Feb 2006 B2
7070858 Shalaby et al. Jul 2006 B2
7090655 Barry Aug 2006 B2
7101381 Ford et al. Sep 2006 B2
7112209 Ramshaw et al. Sep 2006 B2
7135164 Rojanapanthu et al. Nov 2006 B2
7152611 Brown et al. Dec 2006 B2
7311980 Hossainy et al. Dec 2007 B1
7323178 Zhang et al. Jan 2008 B1
7323189 Pathak Jan 2008 B2
7415811 Gottlieb et al. Aug 2008 B2
7691946 Liu et al. Apr 2010 B2
7854958 Kramer Dec 2010 B2
7947015 Herweck et al. May 2011 B2
8001922 Labrecque et al. Aug 2011 B2
8021331 Herweck et al. Sep 2011 B2
8124127 Faucher et al. Feb 2012 B2
8298290 Pelissier et al. Oct 2012 B2
8308684 Herweck et al. Nov 2012 B2
8312836 Corbeil et al. Nov 2012 B2
8461129 Boldue et al. Jun 2013 B2
8501229 Faucher et al. Aug 2013 B2
8722077 Labrecque et al. May 2014 B2
8888887 Hargrove et al. Nov 2014 B2
9000040 Faucher et al. Apr 2015 B2
9012506 Faucher et al. Apr 2015 B2
9220820 Faucher et al. Dec 2015 B2
9278161 Swanick et al. Mar 2016 B2
9427423 Swanick et al. Aug 2016 B2
9493636 Ah et al. Nov 2016 B2
20010022988 Schwarz et al. Sep 2001 A1
20010025034 Arbiser Sep 2001 A1
20010025196 Chinn et al. Sep 2001 A1
20010026803 Tebbe et al. Oct 2001 A1
20010027299 Yang et al. Oct 2001 A1
20010051595 Lyons et al. Dec 2001 A1
20020002154 Guivarct et al. Jan 2002 A1
20020007209 Scheerder et al. Jan 2002 A1
20020012741 Heinz et al. Jan 2002 A1
20020013590 Therin et al. Jan 2002 A1
20020015970 Murray et al. Feb 2002 A1
20020022052 Dransfield Feb 2002 A1
20020026899 McLaughlin et al. Mar 2002 A1
20020026900 Huang et al. Mar 2002 A1
20020032414 Ragherb et al. Mar 2002 A1
20020055701 Fischell et al. May 2002 A1
20020077652 Kieturakis et al. Jun 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020098278 Bates et al. Jul 2002 A1
20020103494 Pacey Aug 2002 A1
20020116045 Eidenschink Aug 2002 A1
20020120333 Keogh et al. Aug 2002 A1
20020122877 Harish et al. Sep 2002 A1
20020127327 Schwarz et al. Sep 2002 A1
20020142089 Koike et al. Oct 2002 A1
20020183716 Herweck et al. Dec 2002 A1
20020192352 Dar Dec 2002 A1
20020193829 Kennedy et al. Dec 2002 A1
20030003125 Nathan et al. Jan 2003 A1
20030003221 Zhong et al. Jan 2003 A1
20030004564 Elkins et al. Jan 2003 A1
20030009213 Yang Jan 2003 A1
20030033004 Ishii et al. Feb 2003 A1
20030036803 McGhan Feb 2003 A1
20030055403 Nestenborg et al. Mar 2003 A1
20030065292 Darouiche et al. Apr 2003 A1
20030065345 Weadock Apr 2003 A1
20030069632 De Scheerder et al. Apr 2003 A1
20030072784 Williams Apr 2003 A1
20030077272 Pathak Apr 2003 A1
20030077310 Pathak et al. Apr 2003 A1
20030077452 Guire et al. Apr 2003 A1
20030083740 Pathak May 2003 A1
20030086958 Arnold et al. May 2003 A1
20030094728 Tayebi May 2003 A1
20030100955 Greenawalt May 2003 A1
20030108588 Chen et al. Jun 2003 A1
20030124087 Kim et al. Jul 2003 A1
20030130206 Koziak et al. Jul 2003 A1
20030152609 Fischell et al. Aug 2003 A1
20030175408 Timm et al. Sep 2003 A1
20030176915 Wright et al. Sep 2003 A1
20030181975 Ishii et al. Sep 2003 A1
20030181988 Rousseau Sep 2003 A1
20030187516 Amid et al. Oct 2003 A1
20030191179 Joshi-Hangal et al. Oct 2003 A1
20030204168 Bosma et al. Oct 2003 A1
20030204618 Foster et al. Oct 2003 A1
20030207019 Shekalim et al. Nov 2003 A1
20030211230 Pacetti et al. Nov 2003 A1
20030212462 Gryska et al. Nov 2003 A1
20030220297 Berstein et al. Nov 2003 A1
20040006296 Fischell et al. Jan 2004 A1
20040013704 Kabra et al. Jan 2004 A1
20040014810 Horrobin Jan 2004 A1
20040018228 Fischell et al. Jan 2004 A1
20040039441 Rowland et al. Feb 2004 A1
20040058008 Tarcha et al. Mar 2004 A1
20040060260 Gottlieb et al. Apr 2004 A1
20040071756 Fischell et al. Apr 2004 A1
20040072849 Schreiber et al. Apr 2004 A1
20040092969 Kumar May 2004 A1
20040102758 Davila et al. May 2004 A1
20040117007 Whitbourne et al. Jun 2004 A1
20040123877 Brown et al. Jul 2004 A1
20040131755 Zhong et al. Jul 2004 A1
20040133275 Mansmann Jul 2004 A1
20040137066 Jayaraman Jul 2004 A1
20040137179 Matsuda et al. Jul 2004 A1
20040142094 Narayanan Jul 2004 A1
20040146546 Gravett et al. Jul 2004 A1
20040073284 Bates et al. Aug 2004 A1
20040153125 Roby Aug 2004 A1
20040156879 Muratoglu et al. Aug 2004 A1
20040161464 Domb Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040170685 Carpenter et al. Sep 2004 A1
20040192643 Pressato et al. Sep 2004 A1
20040215219 Eldridge et al. Oct 2004 A1
20040224003 Schultz Nov 2004 A1
20040230176 Shananhan et al. Nov 2004 A1
20040234574 Sawhney et al. Nov 2004 A9
20040236278 Herweek et al. Nov 2004 A1
20040241211 Fischell et al. Dec 2004 A9
20040256264 Israelsson et al. Dec 2004 A1
20050010078 Jamiolkowski et al. Jan 2005 A1
20050025804 Heller Feb 2005 A1
20050042251 Zhang et al. Feb 2005 A1
20050084514 Shebuski et al. Apr 2005 A1
20050095267 Campbell et al. May 2005 A1
20050100655 Zhong et al. May 2005 A1
20050101522 Speck et al. May 2005 A1
20050106206 Herweek et al. May 2005 A1
20050106209 Ameri et al. May 2005 A1
20050112170 Hossainy et al. May 2005 A1
20050113687 Herweek et al. May 2005 A1
20050113849 Popadiuk et al. May 2005 A1
20050124062 Subirade Jun 2005 A1
20050129787 Murad Jun 2005 A1
20050154416 Herweek et al. Jul 2005 A1
20050158361 Dhondt et al. Jul 2005 A1
20050159809 Hezi-Yamit et al. Jul 2005 A1
20050165476 Furst et al. Jul 2005 A1
20050165477 Anduiza et al. Jul 2005 A1
20050181061 Ray et al. Aug 2005 A1
20050182485 Falotico et al. Aug 2005 A1
20050186244 Hunter et al. Aug 2005 A1
20050187376 Pacetti Aug 2005 A1
20050203635 Hunter et al. Sep 2005 A1
20050203636 McFetridge Sep 2005 A1
20050223679 Gottlieb et al. Oct 2005 A1
20050232971 Hossainy et al. Oct 2005 A1
20050249775 Falotico et al. Nov 2005 A1
20050283229 Dugan et al. Dec 2005 A1
20060008501 Dhont et al. Jan 2006 A1
20060020031 Berlin Jan 2006 A1
20060036311 Nakayama et al. Feb 2006 A1
20060051544 Goldmann Mar 2006 A1
20060058737 Herweek et al. Mar 2006 A1
20060058881 Trieu Mar 2006 A1
20060064175 Pelissier et al. Mar 2006 A1
20060067974 Labrecque et al. Mar 2006 A1
20060067975 Labrecque et al. Mar 2006 A1
20060067976 Ferraro et al. Mar 2006 A1
20060067977 Labrecque et al. Mar 2006 A1
20060067983 Swanick et al. Mar 2006 A1
20060068674 Dixit et al. Mar 2006 A1
20060078586 Ferraro et al. Apr 2006 A1
20060083768 Labrecque et al. Apr 2006 A1
20060088596 Labrecque et al. Apr 2006 A1
20060093643 Stenzel May 2006 A1
20060110457 Labrecque et al. May 2006 A1
20060112536 Herweek et al. Jun 2006 A1
20060121081 Labrecque et al. Jun 2006 A1
20060124056 Behnisch et al. Jun 2006 A1
20060134209 Labhasetwar et al. Jun 2006 A1
20060158361 Chou Jul 2006 A1
20060188607 Schramm et al. Aug 2006 A1
20060204738 Dubrow et al. Sep 2006 A1
20060210701 Chappa et al. Sep 2006 A1
20060240069 Utas et al. Oct 2006 A1
20060246105 Molz et al. Nov 2006 A1
20060263330 Emeta et al. Nov 2006 A1
20060269485 Friedman et al. Nov 2006 A1
20070003603 Karandikar et al. Jan 2007 A1
20070015893 Hakuta et al. Jan 2007 A1
20070071798 Herweek et al. Mar 2007 A1
20070084144 Labrecque et al. Apr 2007 A1
20070093894 Darouiche Apr 2007 A1
20070141112 Falotico et al. Jun 2007 A1
20070198040 Buevich et al. Aug 2007 A1
20070202149 Faucher et al. Aug 2007 A1
20070212411 Fawzy et al. Sep 2007 A1
20070218182 Schneider et al. Sep 2007 A1
20070238697 Jackson et al. Oct 2007 A1
20070264460 Del Tredici Nov 2007 A1
20070275074 Holm et al. Nov 2007 A1
20070276487 Carleton et al. Nov 2007 A1
20070280986 Gil et al. Dec 2007 A1
20070286891 Kettlewell et al. Dec 2007 A1
20070299538 Roeber Dec 2007 A1
20080016037 Enomoto et al. Jan 2008 A1
20080038307 Hoffmann Feb 2008 A1
20080044481 Harel Feb 2008 A1
20080045557 Grainger et al. Feb 2008 A1
20080071385 Binette et al. Mar 2008 A1
20080086216 Wilson et al. Apr 2008 A1
20080109017 Herweck et al. May 2008 A1
20080113001 Herweck et al. May 2008 A1
20080118550 Martakos et al. May 2008 A1
20080160307 Bauchet Jul 2008 A1
20080206305 Herweck et al. Aug 2008 A1
20080207756 Herweek et al. Aug 2008 A1
20080279929 Devane et al. Nov 2008 A1
20080286440 Scheer Nov 2008 A1
20080289300 Gottlieb et al. Nov 2008 A1
20090011116 Herweck et al. Jan 2009 A1
20090036996 Roeber Feb 2009 A1
20090047414 Corbeil et al. Feb 2009 A1
20090082864 Chen et al. Mar 2009 A1
20090092665 Mitra et al. Apr 2009 A1
20090099651 Hakimi-Mehr et al. Apr 2009 A1
20090181074 Makower Jul 2009 A1
20090181937 Faucher et al. Jul 2009 A1
20090186081 Holm et al. Jul 2009 A1
20090208552 Faucher et al. Aug 2009 A1
20090226601 Zhong et al. Sep 2009 A1
20090240288 Guetty Sep 2009 A1
20090259235 Doucet et al. Oct 2009 A1
20090270999 Brown Oct 2009 A1
20100183697 Swanick et al. Jul 2010 A1
20100209473 Dhont et al. Aug 2010 A1
20100233232 Swanick et al. Sep 2010 A1
20100318108 Datta et al. Dec 2010 A1
20110028412 Cappello et al. Feb 2011 A1
20110045050 Elbayoumi et al. Feb 2011 A1
20110144667 Horton et al. Jun 2011 A1
20110213302 Herweek et al. Sep 2011 A1
20110274823 Labrecque et al. Nov 2011 A1
20120016038 Faucher et al. Jan 2012 A1
20120213839 Faucher et al. Aug 2012 A1
20120259348 Paul Oct 2012 A1
20120315219 Labrecque et al. Dec 2012 A1
20130041004 Drager et al. Feb 2013 A1
20130084243 Goetsch et al. Apr 2013 A1
20130096073 Sidelman Apr 2013 A1
Foreign Referenced Citations (125)
Number Date Country
1360951 Jul 2002 CN
1429559 Jul 2003 CN
101448474 Jun 2009 CN
102256565 Nov 2011 CN
19916086 Oct 1999 DE
10115740 Oct 2002 DE
0471566 Feb 1992 EP
0610731 Aug 1994 EP
0623354 Sep 1994 EP
0655222 Nov 1994 EP
0730864 Nov 1996 EP
0790822 Aug 1997 EP
0873133 Oct 1998 EP
0950386 Apr 1999 EP
0917561 May 1999 EP
1132058 Sep 2001 EP
1140243 Oct 2001 EP
1181943 Feb 2002 EP
1402906 Jun 2002 EP
1219265 Jul 2002 EP
1270024 Jan 2003 EP
1273314 Jan 2003 EP
1364628 Nov 2003 EP
1520795 Apr 2005 EP
1557183 Jul 2005 EP
1576970 Sep 2005 EP
1718347 Sep 2005 EP
2201965 Jun 2010 EP
2083875 Mar 2013 EP
2363572 Jan 2002 GB
49050124 May 1974 JP
S61291520 Dec 1986 JP
H01175864 Jul 1989 JP
H01503296 Nov 1989 JP
H08224297 Sep 1996 JP
200110958 Jan 2001 JP
2006512140 Apr 2006 JP
2008155014 Jul 2008 JP
2012505025 Mar 2012 JP
2012505030 Mar 2012 JP
2013508033 Mar 2013 JP
20080025986 Mar 2008 KR
2125887 Feb 1999 RU
1297865 Mar 1987 SU
198600912 Feb 1986 WO
198706463 Nov 1987 WO
199001969 Mar 1990 WO
90008544 Aug 1990 WO
199321912 Nov 1993 WO
199517901 Jul 1995 WO
199526715 Oct 1995 WO
199618417 Jun 1996 WO
199641588 Dec 1996 WO
199702042 Jan 1997 WO
199709367 Mar 1997 WO
199713528 Apr 1997 WO
199823228 Jun 1998 WO
199830206 Jul 1998 WO
9846287 Oct 1998 WO
199854275 Dec 1998 WO
199908544 Feb 1999 WO
199925336 May 1999 WO
199927989 Jun 1999 WO
199940874 Aug 1999 WO
199956664 Nov 1999 WO
200012147 Mar 2000 WO
200040236 Jul 2000 WO
200040278 Jul 2000 WO
200053212 Sep 2000 WO
200062830 Oct 2000 WO
200115764 Mar 2001 WO
200124866 Apr 2001 WO
200126585 Apr 2001 WO
200137808 May 2001 WO
200145763 Jun 2001 WO
200160586 Aug 2001 WO
200166036 Sep 2001 WO
200176649 Oct 2001 WO
200185060 Nov 2001 WO
200222047 Mar 2002 WO
200222199 Mar 2002 WO
200249535 Jun 2002 WO
2002076509 Oct 2002 WO
2002100455 Dec 2002 WO
2003000308 Jan 2003 WO
2003015748 Feb 2003 WO
2003028622 Apr 2003 WO
2003037397 May 2003 WO
2003037398 May 2003 WO
2003039612 May 2003 WO
2003041756 May 2003 WO
2003070125 Aug 2003 WO
2003073960 Sep 2003 WO
2003092741 Nov 2003 WO
2003092779 Nov 2003 WO
2003094787 Nov 2003 WO
2003105727 Dec 2003 WO
2004004598 Jan 2004 WO
2004006976 Jan 2004 WO
2004006978 Jan 2004 WO
2004028582 Apr 2004 WO
2004028583 Apr 2004 WO
2004028610 Apr 2004 WO
2004091684 Oct 2004 WO
2004101010 Nov 2004 WO
2005000165 Jan 2005 WO
2005016400 Feb 2005 WO
2005053767 Jun 2005 WO
2005073091 Aug 2005 WO
2005082434 Sep 2005 WO
2005116118 Dec 2005 WO
2006024488 Mar 2006 WO
2006032812 Mar 2006 WO
2006036967 Apr 2006 WO
2006102374 Sep 2006 WO
2007047781 Apr 2007 WO
2007047028 May 2007 WO
2008010788 Jan 2008 WO
2008016664 Feb 2008 WO
2008039308 Apr 2008 WO
2008057328 May 2008 WO
2009091900 Jul 2009 WO
2010042134 Apr 2010 WO
2010042241 Apr 2010 WO
2012009707 Jan 2012 WO
Non-Patent Literature Citations (349)
Entry
Garg et al. Lipids 1988 23:847-852 (Year: 1988).
Benchabane et al. Colloid and Polymer Science 2008 286:1173-1180 (Year: 2008).
Examination Report issued in counterpart Indian Application No. 3605/DELNP/2012, dated Mar. 23, 2018.
Final Office Action dated Mar. 30, 2017 for related U.S. Appl. No. 11/237,420, 20 pages.
Henderson, R. James et al., “Hydrolysis of Fish Oils Containing Polymers of Triacylglycerols by Pancreatic Lipase in vitro”, LIPIDS, vol. 28, No. 4, 1993, pp. 313-319.
Oxford Reference, A Dictionary of Chemistry, 6th edition, John Daintith, 2008, 3 pages.
H. Fineberg et al., Industrial Use of Fish Oils, pp. 222-238, http://spo.nmfs.noaa.gov/Circulars/CIRC278.pdf, downloaded Aug. 3, 2015.
Lewis, Richard J., Sr., Hawley's Condensed Chemical Dictionary, 2001, pp. 308, 309 and 896-898, 14th edision, John Wiley & Sons, Inc., New York.
Webster's II New College Dictionary (1995), 1075, Houghton Mifflin Company, New York, US.
Polymers made from multiple monomers, A Natural Approach to Chemistry, Chapter 8, 241, http://lab-aids.com/assets/uploads/NAC/NAC_student_book/Texas%20Student%20Edition%20253.pdf (downloaded Dec. 3, 2015).
Polymer, Encyclopedia Britannica. Encyclopedia Britannica Online, Encyclopedia Britannica Inc., 105, Web. Dec. 2, 2015, http://www.britannica.com/print/article/468696 (downloaded Dec. 2, 2015).
SepraFilm Adhesion Barrier package insert (Genzyme Biosurgery 2008).
Sannino, Alessandro, et al., Biodegradeable Cellulose-based Hydrogels: Design and Applications, 2 Materials, pp. 353-373, 2009.
Heinz, Thomas, Carboxymethyl Ethers of Cellulose and Starch—A Review, Center of Excellence for Polysaccharide Research, Friedrich Schiller University of Jena (Germany), pp. 13-29, 2005.
Omidian, H. et al., Swelling Agents and Devices in Oral Drug Delivery, J. Drug. Del. Sci. Tech., No. 18, vol. 2, 2008, pp. 83-93.
Kamel, S. et al., Pharmaceutical Significance of Cellulose: A Review, Express Polymer Letters vol. 2, No. 11, 2008, pp. 758-778.
Adel, A. M. et al., Carboxymethylated Cellulose Hydrogel: Sorption Behavior and Characterization, Nature and Science, No. 8, vol. 8, 2010, pp. 244-256.
Bacteria in Water, The USGS Water Science School, http://water.usgs.goviedu/bacteria.html (downloaded Nov. 9, 2015).
Novotny, L. et al., Fish: a potential source of bacterial pathogens for human beings, Vet. Med.—Czech, 49, 2004, vol. 9, pp. 343-358.
Allergies, Asthma and Allergy Foundation of America (2011), http://www.aafa.org/page/types-of-allergies,aspx (downloaded Oct. 5, 2015).
Sicherer, Scott H., Food Allergies: A Complete Guide for Eating When Your Life Depends on it, 2013, 15, Johns Hopkins University Press, Baltimore, MD, USA.
Dmega-3 DHA—The Problem May Be the Quality of Your Fish Oil, Not Your Allergy to Fish, Fatty Acids Hub, http://www.fattyacidshub.com/fatty-acids/omega-3-dha/ (downloaded Nov. 10, 2015).
Soy Allergy, Asthma and Allergy Foundation of America (2005), http://www.aafa.org/display.cfm? id=9&sub=20&cont=522 (downloaded Nov. 10, 2015).
Refined soybean oil not an allergen, say food scientists, FOOD navigator-usa.com (2005), http://www.foodnavigator-usa.com/content/view/print/127438 (downloaded Nov. 10, 2015).
Yahyaee, R. et al., Waste fish oil biodiesel as a source of renewable fuel in Iran, Renewable and Sustainable Energy Reviews, 2013, pp. 312-319, 17, Elsevier Ltd.
Biological evaluation of medical devices—Part 1: Evaluation and testing, International Standard ISO 109931-1, Aug. 1, 2003, Third Edition, Switzerland.
Mayo Clinic (http://www.mayoclinic.org/drugs-supplements/omega-3-fatty-acids-fish-oil-alpha-linolenic-acids/safety/nrb-20059372?p=1 (downloaded Sep. 28, 2015).
Milk allergy, at http://www.mayoclinic.org/diseases-conditions/milk-allergy/basics/definition/con-20032147?p=1 (downloaded Jul. 29, 2015).
Soy allergy, at http://www.mayoclinicorg/diseases-conditions/soy-allergy/basics/definition/con-20031370?p=1 (downloaded Jul. 29, 2015).
F.D. Gunstone, Fatty Acid and Lipid Chemistry 72 (1999).
Hawley's Condensed Chemical Dictionary 315, 316, 332, 333, 334, 825 and 826 (2001).
Hutlin, Herbert O. et al., Chemical Composition and Stability of Fish Oil (International Association of Fish Meal Manufacturers Apr. 10, 1991).
F.V.K Young, The Chemical & Physical Properties of Crude Fish Oils for Refiners and Hydrogenators, 18 Fish Oil Bulletin 1-18 (1986).
Karrick, Neva L., Nutritional Value of Fish Oils as Animal Feed, Circular 281 (Fish and Wildlife Service Bureau of Commercial Fisheries 1967), reprinted from M.E. Stansby (ed.), Fish Oils 362-382 (Avi Publishing Company 1967).
Luley et al., Fatty acid composition and degree of peroxidation in fish oil and cod liver oil preparations, Arzneimittelforschung. Dec. 1998, vol. 38, No. 12, pp. 1783-1786.
Drying Oil, http://en.wikipedia.org/wiki/drying_oil (downloaded Jun. 28, 2013).
Szebeni et al., “Complement Activation by Cremophor EL as a Possible Contributor to Hypersensitivity to Paclitaxel: an in Vitro Study”, Journal of the National Cancer Institute, 1998, vol. 90, No. 4, pp. 300-306.
Birsan, et al., “The novel calcineurin inhibitor ISA247: a more potent immunosuppressant than cyclosporine in vitro”, Transpl. Int., 2005, vol. 17, pp. 767-771.
About.com, “Orthopedics, Synvisc injections,” retrieved online at http://orthopedics.about.com/cs/treatment/a/synvisc_2.htm (2005).
Cath Lab Digest, “Olive Oil Emulsion Helps With Problem Heart Arteries”, retrieved online at http://www.cathlabdigest.com/displaynews.cfm?newsid=0103073 (2007).
Doctor's Guide to Medical and Other News, “AAOS Meeting: Synvisc Delays Total Knee Replacement in Osteoarthritis Patients”, retrieved online at http://www.docguide.com/dg.nsf/PrintPrint/4585EC355198EEF08525670E006B10FF (1999).
Methodist, “Evaluation of Biocompatibility and Antirestenotic Potential of Drug Eluting Stents Employing Polymer-free Highly-Hydrogenated Lipid-Based Stent Coatings in Porcine Coronary Arteries”, Transcatheter Cardiovascular Therapeutics (TCT), sponsored by the Cardiovascular Research Foundation®, Oct. 22-27, 2006, Washington Convention Center, Washington, D.C.
Novavax, retrieved online at http://www.novavax.com/go.cfm?do=Page.View&pid=3 (2006).
Orthovisc, “New Treatment Option is Potential Alternative to OTC Pain Medications for Osteoarthritis of the Knee” retrieved online at http://www.jnj.com/innovations/new_features/ORTHOVISC.htm:lessionid=33N2RBQDV0DZKCQPCCEGU3AKB2IIWTT1 (2006).
Orthovisc, “What is ORTHOVISC®?” retrieved online at http://www.orthovisc.com/xhtmlbgdisplay.jhtml? temname=about_orthovisc (2005).
Orthovisc, “Your Knees and Osteoarthritis”, retrieved online at http://www.orthovisc.com/xhtmlbgdisplay.jhtml? temname=understanding_knee_oa (2003).
Orthovisc, “What to expect from your treatment,” retrieved online at http://www.orthovisc.com/xhtmlbgdisplay.jhtml? temname=what_to_expect (2007).
Orthovisc, “Tools and Resources for Managing Your Osteoarthritis”, retrieved online at http://www.orthovisc.com/xhtmlbgdisplay.jhtml?itemname=patient_resources (2007).
Pohibinska, A., et al., “Time to reconsider saline as the ideal rinsing solution during abdominal surgery”, The American Journal of Surgery, vol. 192, pp. 281-222 (2007).
Singh, Alok, et al., “Facilitated Stent Delivery Using Applied Topical Lubrication”, Catherization and Cardiovascular Interventions, vol. 69, pp. 218-222 (2007).
Urakaze, Masaharu et al., “Infusion of fish oil emulsion: effects on platelet aggregation and fatty acid composition in phospholipids of plasma, platelets and red blood cell membranes in rabbits”, Am. J. Clin. Nutr., vol. 46, pp. 936-940 (!387).
Hortolam, Juliane G., et al., “Connective tissue diseases following silicone breast implantation: where do we stand?”, Clinics, 2013, vol. 3, p. 281.
Lidar, M. et al., “Silicone and sclerodema revisited”, Lupus, 2012, vol. 21, pp. 121-127.
Swanson, Danielle, et al., Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life, 3 Advances in Nutrition 1-7 (American Society for Nutrition 2012).
Triglycerides, https://www.lipid.org/sites/default/files/triglycerides.pdf (downloaded Sep. 24, 2015).
Fish Oil Triglycerides vs. Ethyl Esters: A Comparative Review of Absorption, Stability and Safety Concerns (Ascenta Health Ltd. 2010 at http://www.ascentaprofessional.com/science/articles/fish-oil-triglycerides-vs-ethyl-esters (downloaded Sep. 24, 2015).
Fats & Oils (2008) at http://scifun.chem.wisc.edu/chemweek/pdf/fats&oils.pdf (downloaded Sep. 24, 2015).
“Lead”, Article by Centers for Disease Control and Prevention (CDC), Nov. 2009, 2 pages.
Erhan et al., Vegetable-oil-based printing ink formulation and degradation, Industrial Crops and Products, 1995, 237-246, 3.
Non-Final Office Action issued in U.S. Appl. No. 15/710,514, dated Sep. 17, 2018.
Non-Final Office Action dated Oct. 5, 2018 for related case U.S. Appl. No. 15/819,304, filed Nov. 21, 2017, 8 pages.
Office Action issued in European Application No. 10825447.5 dated Jul. 25, 2019, 6 pages.
Oliveira, Fernanda L.C., et al., Triglyceride Hydrolysis of Soy Oil vs Fish Oil Emulsions, Journal of Parenteral and Enteral Nutrition, Jul./Aug. 1997, 224-229, vol. 21, No. 4.
Wagner, Karl-Heinz, et al., Effects of tocopherols and their mixtures on the oxidative stability of olive oil and linseed oil under heating, Eur. J. Lipid Sci. Technol., 2000, 624-629, 102.
Non-Final Office Action issued in U.S. Appl. No. 16/165,628, dated Oct. 28, 2019.
Notice of Allowance issued in U.S. Appl. No. 15/841,993, dated Oct. 30, 2019.
Hogg, Ronald J., et al., Clinical Trial to Evaluate Omega-3 Fatty Acids and Alternate Day Prednisone in Patients with IgA Nephropathy: Report from the Southwest Pediatric Nephrology Study Group, Clin J Am Soc Nephrol 1, Apr. 12, 2006, 467-474.
Bruno, Gene, Omega-3 Fatty Acids, Literature Education Series on Dietary Supplements, 2009, 1-4, Huntington College of Health Sciences, Knoxville, TN, US.
Mateo, R. D., et al., Effect of dietary supplementation of n-3 fatty acids and elevated concentrations of dietary protein on the performance of sows, J. Anim. Sci., 2009, 948-959, 87.
Genzyme Corporation, 510(k) Notification, Section 10: 510(k) Summary, Dec. 21, 1999, 11 pages.
Deeken, Corey R., et al., A review of the composition, characteristics, and effectiveness of barrier mesh prostheses utilized for laparoscopic ventral hernia repair, Surg Endosc, 2011, 10 pages.
Timar-Balzsy et al., Chemical Principles of Textile Conservation, Oxford: Elsevier Science Ltd., 1998, pp. 117-119.
CECW-EE, “Ch. 4: Coating Types and Characteristics”, Engineering and Design—Painting: New Construction and Maintenance, 1995, pp. 4-1 to 4-24.
Wikipedia, “Sirolimus”, pp. 1-13, available online at http://en.wikipedia.org/wiki/sirolimus, accessed May 11, 2011.
Binder et al., “Chromatographic Analysis of Seed Oils_ Fatty Acid Composition of Castor Oil”, The Journal of American Oil Chemists' Society, 1962, vol. 39, pp. 513-517.
Supplementary ESR in EP05804291, dated Jul. 26, 2011.
Supplementary ESR in EP05802894 dated Jul. 27, 2011.
Supplementary ESR in EP05800844 dated Aug. 19, 2011.
Crivello et al., “Epoxidized triglycerides as renewable monomers in photoinitiated cationic polymerization”, Chem. Mater. 1992, pp. 692-699.
Supplementary ESR in EP05858430 dated Aug. 18, 2011.
Encyclopedia Britannica Online, “Surface Coating”, available online at http://www.britannica.com/Ebchecked/topic/575029/surface-coating>, accessed Jun. 17, 2011.
Supplementary European Search Report for Application No. EP 08877338.7 dated Aug. 16, 2012.
Supplementary European Search Report for Application No. EP09819594.4, dated Aug. 14, 2012.
International Search Report for PCT/US2011/44292, dated Dec. 6, 2011.
Ahuja et al., “Prevention of Postoperative Intraperitoneal Adhesions—An Experimental Study in Rats”, Journal of Indian Pediatric Surgery 2002 7:15-20.
Jonasson, Lena et al., “Cyclosporon A inhibits smooth muscle proliferation in the vascular response to injury,” Proc. Natl. Acad. Sci. USA, vol. 85: 2303-2306 (1988).
Ogunniyi, D.S., “Castor oil: A vital industrial raw material,” Biosource Technology, vol. 97: 1086-1091 (2006).
Redman, L.V. et al., “The drying rate of raw paint oils—a comparison,” The Journal of Industrial and Engineering Chemistry, vol. 5: 630-636 (1913).
Rutkow, Ira M. et al., “‘Tension-free’ inguinal herniorrhaphy: A preliminary report on the ‘mesh plug’ technique,” Surgery, vol. 114:3-8 (1993).
Websters Dictionary Online, Accessed on Feb. 13, 2009, entry for “polymer”.
International Search Report for International Application PCT/US05/034941, dated May 4, 2006.
Ackman, R.G., “Fish Oils”, Bailey's Industrial Oil and Fat Products, 6th Edition, 279-317 (2005).
Andres, et al. “Antiproliferative Strategies for the Treatment of Vascular Proliferative Disease”, Current Vascular Pharmacology, 1)1): 85-98 (2003).
Winter, et al., “Physical and Chemical Gelation” Encyclopedia of Materials—Science and Technology, vols. 1-11: 6691-6999 (2001).
Supplementary European Search Report for EP12004057 dated Apr. 10, 2013.
Lipids, Chapter 19, pp. 1-12 (2002).
Jorge, et al. Influence of fatty acid composition on the formation of polar glycerides and polar fatty acids in sunflower pils heated at frying temperatures, Grasas y Aceites, 48(1): 17-24, (1997).
International Search Report for International Application PCT/US2013/044653, dated Sep. 4, 2013.
Mallegol, “Long-Term Behavior of Oil-Based Varnishes and Paints Photo-and Thermooxidation of Cured Linseed Oil”, Journal of the American Oil Chemists' Society, 77:257-263 (2000).
Supplementary European Search Report for Application No. EP 10825447, dated Mar. 31, 2014.
Uchida, et al., “Swelling Process and Order-Disorder Transition of Hydrogel Containing Hydrophobic Ionizable Groups”, Macromolecules, 28, 4583-4586 (1995).
Gutfinger, et al., “Polyphenols in Olive Oils”, Journal of the American Oil Chemists Society, 58(11): 966-968 (1981).
De la Portilla, et al., “Prevention of Peritoneal Adhesions by Intraperitoneal Administration of Vitamin E: An Experimental Study in Rats”, Diseases of the Colon and Rectum, 47; 2157-2161 (2005).
Sano, et al., “A controlled Trial of Selegiline, Alpha-Tocopherol, or Both as Treatment for Alzheimer's Disease”, The New England Journal of Medicine, 336; 1216-1222 (1997).
Wikipedia, Sunflower oil, accessed Jul. 23, 2015, pp. 1-7.
Esoteric Oils, Peppermint essential oil information, accessed Jul. 23, 2015, pp. 1-7.
Orthomolecular, Fish Oil, Jun. 29, 2004, http://orthomolecular.org/nutrients/fishoil.html, accessed Jul. 22, 2015, p. 1.
Wicks et al. Organic Coatings:Science and Technology 1999 New York:Wiley Interscience p. 258-267.
Mills et al. Oils and Fats. “The Organic Chemistry of Museum Objects” London:Buttersworth and Co. 1987, p. 26-40.
Erhardt, “Paints Based on Drying Oil Media”. Painted Wood: History & Conservation. Ed. Berland Singapore: The J. Paul Getty Trust, 1998. p. 17-32.
Wexler et al. Chemical Reviews 1964 64(6):591-611.
Polymer—The Chambers 21st Century Dictionary M. Robinson and G. Davidson (Eds.), London, United Kingdom: Chambers Harrap. Retrieved from http://search.credoreference.com/content/entry/chambdict!polymer/O; 2001.
Polymer—Academic Press Dictionary of Science and TechnologyC. Morris (Ed.), Academic Press Dictionary of Science and Technology. Oxford, United Kingdom: Elsevier Science & Technology. Retrieved from http://search.credoreference.com/content/entry/apdst!polymer/O; 1992.
Falagas et al. European Society of Clinical Microbiology and Infection Diseases 2005 11:3-8.
Bimbo “International Fishmeal & Oil Manufactures Association, Guidelines for Characterising Food Grade Fish Oil”, (INFORM 1998 9(5):473-483.
Mallegol et al. Drier influence on the curing of linseed oil, Progress in Organic Coatings, Nov. 2000, vol. 39, No. 2, pp. 107-113.
Morse, Molecular distillation of polymerized drying oils, Ind. Eng. Chem., 1941, No. 33, pp. 1039-1043.
Shengqiao, “Evaluation of the Biocompatibility and Drug Delivery Capabilities of Biological Oil Based Stent Coatings”, Katholieke Universiteit Leuven, 63 pages.
Autosuture, “Parietex TM Composite OS SERIES MESH”, retrieved online at http://www.autosuture.com/AutoSuture/pagebuilder.aspx?topicID=135734&breadcrumbs=135601:0 (2007).
Camurus, “In our endeavors to create the unique, we start with the best. Your product”.
De Scheerder, Ivan K. et al., “Biocompatibility of polymer-coated oversized metallic stents implanted in normal porcine coronary arteries”, Atherosclerosis, vol. 114, pp. 105-114; 1995.
Office Action issued in Chinese Application No. 201610998395.8 dated Apr. 28, 2020, 14 pages.
Office Action issued in Chinese Application No. 201610997993.3 dated May 11, 2020, 7 pages.
Final Office Action issued in U.S. Appl. No. 16/165,628 dated Apr. 13, 2020, 9 pages.
Final Office Action for U.S. Appl. No. 11/238,554, dated May 1, 2009.
Non-final Office Action for U.S. Appl. No. 11/238,554, dated Jul. 25, 2008.
Non-final Office Action for U.S. Appl. No. 11/238,564 dated Apr. 16, 2008.
Final Office Action for U.S. Appl. No. 11/238,564 dated Aug. 6, 2009.
Non-final Office Action for U.S. Appl. No. 11/239,555 dated Mar. 30, 2009.
Non-final Office Action for U.S. Appl. No. 11/525,328 dated Apr. 30, 2007.
Non-final Office Action for U.S. Appl. No. 11/525,390 dated Jul. 14, 2010.
Final Office Action for U.S. Appl. No. 11/525,390 dated Apr. 21, 2011.
Final Office Action for U.S. Appl. No. 11/582,135 (listed on SB/08 as US 2007/0202149, dated May 12, 2011.
Non-final Office Action for U.S. Appl. No. 11/582,135 dated Nov. 9, 2010.
Non-final Office Action for U.S. Appl. No. 11/582,135, dated Jan. 6, 2010.
Non-final Office Action for U.S. Appl. No. 11/582,135 dated May 12, 2009.
Non-final Office Action for U.S. Appl. No. 11/701,799 dated Apr. 12, 2010.
Non-final Office Action for U.S. Appl. No. 11/978,840 dated Dec. 3, 2010.
Non-final Office Action for U.S. Appl. No. 11/980,155 dated Mar. 24, 2011.
Non-final Office Action for U.S. Appl. No. 12/075,223 dated Dec. 8, 2010.
Non-final Office Action for U.S. Appl. No. 12/325,546 dated Feb. 25, 2010.
Final Office Action for U.S. Appl. No. 12/325,546 dated Aug. 31, 2010.
Non-final Office Action for U.S. Appl. No. 12/364,763 dated Dec. 11, 2009.
Final Office Action for U.S. Appl. No. 12/364,763, dated Sep. 21, 2010.
Interview summary for U.S. Appl. No. 11/236,908 dated May 5, 2009.
Interview summary for U.S. Appl. No. 11/236,908 dated Dec. 2, 2010.
Interview summary for U.S. Appl. No. 11/582,135 dated Dec. 7, 2010.
Interview summary for U.S. Appl. No. 12/325,546 dated Dec. 2, 2010.
Interview summary for U.S. Appl. No. 12/364,763 dated Dec. 2, 2010.
Final Office Action for U.S. Appl. No. 11/978,840, dated Jun. 22, 2011.
Non-final Office Action for U.S. Appl. No. 11/525,390 dated Jul. 11, 2011.
Non-Final Office Action for U.S. Appl. No. 11/701,799 dated Aug. 17, 2011.
Final Office Action for U.S. Appl. No. 11/980,155 dated Oct. 21, 2011.
Non-Final Office Action for U.S. Appl. No. 12/182,261 dated Dec. 21, 2011.
Non-Final Office Action for U.S. Appl. No. 11/236,908 dated Dec. 2, 2011.
Non-Final Office Action for U.S. Appl. No. 11/582,135 dated Oct. 14, 2011.
Non-Final Office Action for U.S. Appl. No. 12/182,165 dated Jan. 5, 2012.
Non-Final Office Action for U.S. Appl. No. 12/401,243, dated Jan. 5, 2012.
Notice of Allowance for U.S. Appl. No. 11/582,135 dated Jan. 9, 2012.
Final Office Action for U.S. Appl. No. 12/075,223 dated Aug. 11, 2011.
Multanen, M., et al., Bacterial adherence to silver nitrate coated poly-L-lactic acid urological stents in vitro, Urol Res., Oct. 2000, 327-31, 5. (Abstract).
Douglas, Kyle, et al., Zero-Order Controlled-Release Kinetics Through Polymer Matrices, available at http://www.drew.edu/wp-content/uploads/sites/99/Team5.pdf (downloaded Dec. 21, 2016).
Kaczynski, Jason, “Natural Omega3 Fish Oil Supplements—How to Avoid Synthetic Fish Oils,” accessed online at http://ezinearticles.com/?Natural-Omega3-Fish-Oil-Supplements—How-to-Avoid-Synthetic-Fish-Oils&id=2460278, Jun. 10, 2009.
Luostarinen et al., “Vitamin E supplementation counteracts the fish oil induced increase of blood glucose in humans,” Nutrition Research, vol. 15, No. 7, pp. 953-968, 1995.
The Lipid Handbook, 2nd edision, 1994, Tocopherols, pp. 129-131.
Non-Final OA for U.S. Appl. No. 121767,289 mailed Mar. 15, 2012.
ISR for PCT/BE02/00166, dated Apr. 3, 2003.
ESR for EP Application 05012112, dated Jul. 5, 2005.
ESR for EP Application 10157210, dated May 20, 2010.
Non-Final OA for U.S. Appl. No. 11/140,811 mailed Sep. 15, 2008.
Final OA for U.S. Appl. No. 11/140,811 mailed Nov. 25, 2009.
Non-Final OA for U.S. Appl. No. 121767,289 mailed Aug. 19, 2011.
De Scheerder et al., “Local Angiopeptin Delivery Using Coated Stents Reduces Neointimal Proliferation in overstretched Porcine Coronary Arteries,” J. Invasive Cardiol., 1995, vol. 8, pp. 215-222.
De Scheerder et al., “Experimental Study of Thrombogenicity and Foreign Body Reaction Induced by Heparin-Coated Coronary Stents,” Circulation, 1997, vol. 95, pp. 1549-1553.
Nakatsuji et al. “Antimicrobial Property of Lauric Acid Against Propionibacterium acnes: Its Thereapeutic Potential for Inflammatory Acne Vulgarisu” Journal of Investigative Dermatology 2009 129(10): 2480-2488.
Gervajio “Fatty Acids and Derivatives from Coconut Oil.” Baileys Industrial Oil and Fat Products, Sixth Edition. Ed. Sahandi. Hoboken: John Wiley & Sons, Inc. 2005 1-3.
Pandey et al. “Solid lipid particle-based inhalable sustained drug delivery system against experiemental tuberculosis” Tuberculosis 2005 85:227-234.
Web article from http://www.buchi.com, “Slip Melting Point Determination of Palm Stearin”, 1 page.
Notice of Allowance for U.S. Appl. No. 11/525,390, dated Nov. 30, 2012.
Interview summary for U.S. Appl. No. 11/237,420 dated May 5, 2009.
American heritage desk dictionary, 1981. p. 799, 2 pages.
John McMurray, Organic Chemistry, third edition, 1992, pp. 45-48.
9.1 Terminology for Vegetable Oils and Animal Fats, at http://www.e-education.psu.edu/egee439/node/683 (downloaded Sep. 13, 2017), pp. 1-8.
Sunflower Oil, at https//en.wikipedia.org/wiki/Sunflower_oil (downloaded Sep. 19, 2017, pp. 1-8.
Fatty Acid Composition of Marine Oils by GLC, AOCS Official Method Ce 1b-89 (2009), pp. 1-7.
Preparation of Methyl Esters of Fatty Acids, AOCS Official Method Ce 2-66 (2009), pp. 1-2.
European Extended Search Report dated Jan. 18, 2016, issued for corresponding EP Patent Application No. 11807612.4, 7 pages.
International Preliminary Report on Patentability for Application No. PCT/US08/85386, dated Apr. 12, 2011.
International Search Report for Application No. PCT/US10/048167, dated Oct. 20, 2010.
Non-Final Office Action for U.S. Appl. No. 12/401,228, dated Nov. 12, 2010.
Non-Final Office Action for U.S. Appl. No. 11/711,389, dated Dec. 17, 2010.
Final Office Action for U.S. Appl. No. 11/250,768, dated Nov. 9, 2010.
Drummond, Calum J. et al., “Surfactant self-assembly objects as novel drug delivery vehicles”, Current Opinion in Colloid & Interface Science, 2000, vol. 4, pp. 449-456.
Engstrom, Sven, “Drug Delivery from Cubic and Other Lipid-water Phases”, Lipid Technology, 1990, vol. 2, No. 2, pp. 42-45.
Guler et al., “Some empirical equations for oxopolymerization of linseed oil”, Progress in Organic Coatings, 2004, vol. 51, pp. 365-371.
Hwang, Chao-Wei et al., “Physiological Transport Forces Govern Drug Distribution for Stent-Based Delivery”, Circulation, 2001, vol. 104, pp. 600-605.
Oberhoff, Martin et al., “Local and Systemic Delivery of Low Molecular Weight Heparin Following PTCA: Acute Results and 6-Month Follow-Up of the Initial Clinical Experience With the Porous Balloon (PILOT—Study),” Catheterization and Cardiovascular Diagnosis, 1998, vol. 44, pp. 267-274.
Polymerization, Merriam-Webster Online Dictionary, retrieved from www.merriam-webster.com on Dec. 13, 2009.
Salu, Koen J. et al., “Addition of cytochalasin D to a biocompatible oil stent coating inhibits intimal hyperplasia in a porcine coronary model”, Coronary Artery Disease, 2003, vol. 14, No. 8, pp. 545-555.
Scheller, Bruno et al., “Addition of Paclitaxel to Contrast Media Prevents Restenosis After Coronary Stent Implantation”, Journal of the American College of Cardiology, 2003, vol. 42, No. 8, pp. 1415-1420.
Shahidi, Fereidoon ed.; “Bailey's Industrial Oil and Fats Products” 2005: John Wiley and Sons; vol. 5, Edible Oil and Fat Products, Processing Technologies, pp. 1-15.
Van Der Giessen, Willem J. et al., “Marked inflammatory Sequelae to Implantation of Biodegradable and Nonbiodegradable Polymers in Porcine Coronary Arteries”, Circulation, 1996, vol. 94, pp. 1690-1697.
Cure; in Academic Press Dictionary of Science and Technology, 1992.
Erhan, Sevim, et al., “Vegetable-oil-based printing ink formulation and degradation”, Industrial Crops and Products 3, 1995, pp. 237-246.
Evans, D.F., et al., Measurement of gastrointestinal pH profiles in normal ambulant human subjects, GUT, 1988, 1035-1041, 29.
Final Office Action issued in U.S. Appl. No. 12/581,582, dated Jan. 8, 2015.
Non-Final Office Action for U.S. Appl. No. 12/581,582, dated May 29, 2014.
Office Action issued in EP Application No. 10825447.5, dated Jul. 25, 2019.
Petrovic, Z. S., Polymers from biological oils, Contemporary Materials, 1-1, 2010, 39-50.
Sahni, “A Review on Spider Silk Adhesion”, The Journal of Adhesion, 2011, 595-614, 87.
“What are Omega-9 Fats?”, Paleo Leap, LLC, printed from http://paleoleap.com/omega-9-fats on Sep. 14, 2016, 5 pages.
Kumar, Ashavani, et al., “Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil”, Nature Materials, vol. 7, Mar. 2008, pp. 236-241.
Shriner et al., “The Systematic Identification of Organic Compounds—a laboratory manual”, pp. 284 and 285, 6th ed. (John Wiley & Sons—1980).
Olive Oil Reference Book (PerkinElmer, Inc. 2012), pp. 1-4.
Standard for Olive Oils and Olive Pomace Oils, Codex Stan 33-1981 (World Health Organization 2013), pp. 1-9.
Wei Wang et al., “Directing Oleate Stabilized Nanosized Silver Colloids into Organic Phases”, Langmuir, vol. 14, No. 3, (1998), pp. 602-610.
Bechert et al., “A New Method for Screening Anti-Infective Biomaterials”, Nature Medicine. 6(8):1053-1056(2000).
Cheong et al., “Peritoneal healing and adhesion formation/reformation”, Human Reproduction Update. 7(6):556-566 (2001).
Carbonell et al., “The susceptibility of prosthetic biomaterials to infection”, Surgical Endoscopy. 19:430-435(2005) (abstract).
Kuijer et al., “Assessing infection risk in implanted tissue-engineered devices”, Biomaterials. 28:5148-5154(2007).
Arciola et al., “Strong biofilm production, antibiotic multi-resistance and high geIE expression in epidemic clones of Enterococcus faecalis from orthopaedic implant infections”, Biomaterials. 29:580-586(2008) (abstract).
Zheng et al., “Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids”, FEBS Letters, Elsevier, Amsterdam, NL, vol. 579, No. 23, Sep. 26, 2005, pp. 5157-5162.
Lee, Ji-Young et al., “Antimicrobial Synergistic Effect of Linolenic Acid and Monoglyceride against Bacillus cereus and Staphylococcus aureus”, Journal of Agricultural and Food Chemistry, vol. 50, No. 7, Mar. 1, 2002, pp. 2193-2199.
Larsen, D. et al.., “Effect of cooking method on the fatty acid profile of New Zealand King Salmon (Oncorhynchus tshawytscha)” Food Chemistry 119 (2010) 785-790 (Year: 2010).
Steiner, M. et al. “Effect of Local Processing Methods (Cooking, Frying and Smoking) on Three Fish Species from Ghana: Part I. Proximate Composition, Fatty Acids, Minerals, Trace Elements and Vitamins” Food Chemistry 40 (1991) 309-321 (Year: 1991).
Gruger, Jr. E.H. Fatty Acid Composition. NMFS Scientific Publications by BOFC Fisheries. (http://spo.nmfs.noaa.gov/Circulars/CIRC276.pdf) 1967, pp. 1-30 (Year: 1967).
“Scientific Opinion on Fish Oil for Human consumption. Food Hygiene, including Rancidity”, EFSA Journal—pp. 1-48, vol. 8, (2010).
“Gas Chromatography Theory”—updated Apr. 1, 2016—http://www.chem.ucia.edu/%7Ebacher/Genera1/30BL/gc/theory.html.
Steven J. Lehotay et al., “Application of Gas Chromatography in Food Analysis”, Trends in Analytical Chemistry—pp. 686-697, vol. 21, (2002).
Edible Oils. (http://www.chempro.in/fattyacid.htm) accessed Apr. 14, 2014.
Malayoglu et al. “Dietary vitamin E (α-tocopheryl acetate) and organic selenium supplementation: performance and antioxidant status of broilers fed n-3 PUFA-enriched feeds” South African Joumal of Animal Science 2009, 39 (4), pp. 274-285 (Year: 2009).
Therapeutic definition (http://www.thefreedictionary.com/therapeutic) accessed Apr. 29, 2016.
Viscosity (http://www.vp-scientific.com/pdfs/www.liquidcontrol.com_eToolbox_viscosity.pdf) accessed 6 Jan. 2017, p. 1-4.
Babaev, Vladimir R., et al., Macrophage Lipoprotein Lipase Promotes Foam Cell Formation and Atherosclerosis in Vivo, 103 The Journal of Clinical Investigation, 1999, 1697-1705.
Non-Final Office Action for U.S. Appl. No. 11/237,264 dated Jul. 3, 2013.
Non-Final Office Action for U.S. Appl. No. 13/593,656 dated Jul. 15, 2013.
Notice of Allowance for U.S. Appl. No. 11/525,390, dated Oct. 4, 2012.
Advisory Action for U.S. Appl. No. 12/581,582, dated Nov. 14, 2012.
Notice of Allowance for U.S. Appl. No. 11/525,390, dated Nov. 20, 2012.
Non-Final Office Action for U.S. Appl. No. 13/404,487, dated Dec. 20, 2012.
Non-Final Office Action for U.S. Appl. No. 13/184,512, dated Jan. 31, 2013.
Non-Final Office Action for U.S. Appl. No. 11/978,840, dated Feb. 19, 2013.
Non-Final Office Action for U.S. Appl. No. 13/682,991, dated Mar. 18, 2013.
Notice of Allowance for U.S. Appl. No. 13/404,487, dated Apr. 2, 2013.
Non-Final Office Action for U.S. Appl. No. 11/236,943, dated Apr. 22, 2013.
Final Office Action for U.S. Appl. No. 12/182,261, dated Apr. 30, 2012.
Final Office Action for U.S. Appl. No. 12/401,243, dated Jun. 11, 2012.
Notice of Allowance for U.S. Appl. No. 12/182,261, dated Jul. 23, 2012.
Notice of Allowance for U.S. Appl. No. 11/236,908, dated May 11, 2012.
Advisory Action for U.S. Appl. No. 12/401,243, dated Aug. 27, 2012.
Final Office Action for U.S. Appl. No. 12/581,582 dated Aug. 29, 2012.
Non-Final Office Action for U.S. Appl. No. 12/581,582 dated Mar. 14, 2012.
Final Office Action for U.S. Appl. No. 12/182,165 dated Apr. 6, 2012.
Final Office Action for U.S. Appl. No. 11/701,799 dated Feb. 13, 2012.
International Search Report for International Application PCT/US05/034601, dated Apr. 10, 2006.
International Search Report for International Application PCT/US05/034610, dated Mar. 16, 2006.
International Search Report for International Application PCT/US05/034614, dated Aug. 29, 2006.
International Search Report for International Application PCT/US05/034615, dated May 16, 2006.
International Search Report for International Application PCT/US05/034678, dated Aug. 28, 2006.
International Search Report for International Application PCT/US05/034681, dated Jul. 26, 2006.
International Search Report for International Application PCT/US05/034682, dated Jul. 20, 2006.
International Search Report for International Application PCT/US05/034836, dated Jul. 6, 2006.
International Search Report for International Application PCT/US06/037184, dated Feb. 22, 2007.
International Preliminary Report on Patentability for International Application PCT/US06/040753, dated Oct. 3, 2008.
International Search Report for International Application PCT/US06/040753, dated Sep. 24, 2007.
International Search Report for International Application PCT/US07/019978, dated May 7, 2009.
International Search Report for International Application PCT/US07/022860, dated Apr. 22, 2009.
International Search Report for International Application PCT/US07/022944, dated Apr. 8, 2009.
International Search Report for International Application PCT/US08/000565, dated May 4, 2009.
International Preliminary Examination Report for International Application PCT/US08/071547 ,dated Aug. 26, 2010.
International Search Report for International Application PCT/US08/071547, dated Oct. 22, 2008.
International Preliminary Report on Patentability for International Application PCT/US08/071565, dated Aug. 27, 2009.
International Search Report for International Application PCT/US08/071565, dated Nov. 10, 2008.
International Search Report for International Application PCT/US08/085386, dated Feb. 4, 2009.
International Search Report for International Application PCT/US09/037364, dated Aug. 27, 2009.
International Search Report for International Application PCT/US10/026521, dated Jun. 23, 2010.
International Search Report for International Application PCT/US10/052899, dated Jan. 10, 2011.
Non-final Office Action for U.S. Appl. No. 11/236,908 dated Mar. 25, 2009.
Non-final Office Action for U.S. Appl. No. 11/236,908 dated May 17, 2011.
Final Office Action for U.S. Appl. No. 11/236,908 dated Aug. 24, 2009.
Final Office Action for U.S. Appl. No. 11/236,943 dated Dec. 23, 2009.
Non-Final Office Action for U.S. Appl. No. 11/236,943 dated Mar. 5, 2009.
Non-final Office Action for U.S. Appl. No. 11/236,977 dated Aug. 3, 2009.
Final Office Action for U.S. Appl. No. 11/237,263 dated Jul. 7, 2010.
Non-final Office Action for U.S. Appl. No. 11/237,263 dated Oct. 7, 2009.
Final Office Action for U.S. Appl. No. 11/237,264 dated Jun. 2, 2010.
Non-final Office Action for U.S. Appl. No. 11/237,264 dated Oct. 5, 2009.
Final Office Action for U.S. Appl. No. 11/701,799 dated Nov. 23, 2010.
Non-final Office Action for U.S. Appl. No. 11/238,532, dated Mar. 30, 2009.
Final Office Action for U.S. Appl. No. 11/238,532 dated Sep. 9, 2009.
Final Office Action for U.S. Appl. No. 11/238,554 dated May 12, 2010.
Non-final Office Action for U.S. Appl. No. 11/238,554 dated Oct. 9, 2009.
Schwartz et al., “Restenosis and the Proportional Neointimal Response to Coronary Artery Injury: Results in a Porcine Model,” J. Am. Coll. Cardiol., 1992, vol. 19, pp. 267-274.
PILZ and MARZ 2008, Free fatty acids as a cardiovascular risk factor. Clin Chem Lab Med, vol. 46, No. 4, pp. 429-434.
Sigma-Aldrich, Polyhydroxy compounds webpage, captured May 28, 2009.
Wanasundara et al., “Effect of processing on constituents and oxidative stability of marine oils,” Journal of Food Lipids, 1998, vol. 5, pp. 29-41.
Supplementary European Search Report for Application No. 05 80 2894, dated Jul. 27, 2011.
Supplementary European Search Report for Application No. 05 800 844, dated Aug. 19, 2011.
International Preliminary Report on Patentability for Application No. PCT/US08/71565, dated Apr. 5, 2010.
Supplementary European Search Report for EP Application No. 08782511, dated Apr. 23, 2013.
Advisory Action of U.S. Appl. No. 11/238,554, dated Jul. 10, 2009.
Notice of Allowance of U.S. Appl. No. 11/238,554, dated Apr. 28, 2011.
Non-Final Office Action of U.S. Appl. No. 13/185,135, dated Jan. 25, 2011.
Non-Final Office Action of U.S. Appl. No. 12/182,165, dated Jun. 24, 2013.
Sweetman, Sean C., “Martindale: The complete drug reference,” 33rd ed., 2002, Pharmaceutical Press, pp. 1-90.
Drugs.com “Drug Index a to Z,” retrieved on Apr. 1, 2013, pp. 1-4.
Garner, Brian A., “A Dictionary of Modern Legal Usage,” 2nd ed., 1987, pp. 389-390 and 713-717.
Pearlman, Daniel D. & Paul R., “Guide to Rapid Revision,” 3rd ed., 1982, Bobbs-Merrill Educational Publishing, pp. 25-27.
Canter, Sheryl, “Chemistry of Cast Iron Seasoning: A Science-Based How-To,” retrieved from sherylcanter.com on Apr. 5, 2013, pp. 1-5.
O'Neil, Maryadelle J. et al., The Merck Index—An Encyclopedia of Chemicals, Drugs, and Biologicals, 14th ed., 2006, entries for “Calcium Carbonate”, “Cyclosporins”, “Prussian Blue”, and “Rapamycin”, pp. 1-12.
EP Office Action for EP Application No. 07838216.5, dated Feb. 11, 2010.
Kugel, et al., “Minimally invasive, Nonlaparoscopic, Preperitoneal, and Sutureless, Inguinal Herniorraphy,” The American Journal of Surgery, 1999, vol. 178, pp. 298-302.
Lichtenstein, et al., “Repair of Recurrent Ventral Hernias by an Internal Binder,” The American Journal of Surgery, 1976, vol. 132, pp. 121-125.
Moreno-Egea, “Laparoscopic repair of Ventral and Incisional Hernias Using a new Composite Mesh (Parletex),” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2001, vol. 11, No. 2, pp. 103-106.
“Sharper Curve, Stronger Egg”, Inside Science, printed Jan. 21, 2016, http://www.insidescience.org/content/sharper-curve-stronger-egg/779, 6 pages.
Moreno et al., J. Agric. Food Chem., 2003, vol. 51, pp. 2216-2221.
CRC Handbook of Chemistry and Physics, 89th Edition, 2008-2009, Composition and Properties of Common Oils and Fats, pp. 7-9 to 7-13.
Ali, Handbook of Industrial Chemistry: Organic Chemicals, Chapter 4, Edible Fats, Oils and Waxes, 1994, pp. 85-121.
Rietjens et al., “The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids, and flavonids,” Environmental Toxicology and Pharmacology, 2002, vol. 11, pp. 321-333.
European Communication for Application No. 07112611.4-2107, dated Nov. 30, 2007.
Clauss, Wolfram et al., “No Difference Among Modern Contrast Media's Effect on Neointimal Proliferation and Restenosis After Coronary Stenting in Pigs,” Investigative Reporting; 2004.
Nagao et al., “Conjugated Fatty Acids in Food and Their Health Benefits,” 2005, The Society for Biotechnology, Japan, Journal of Bioscience and Bioengineering, vol. 100, No. 2, pp. 152-157.
Goodnight et al., “Polyunsaturated Fatty Acids, Hyperlipidemia, and Thrombosis,” 1982, American Heart Association, Journal of the American Heart Association, vol. 2, No. 2, pp. 87-113.
Bard FDA 510K Approval (Jan. 2001).
Bard Internet Publication (Apr. 2001).
Bard FDA 510K Approval (Jul. 2002).
Bellon et al., “Evaluation of a New Composite Prosthesis (PL-PU99) for the Repair of Abdominal Wall Defects in Terms of Behavior at the Peritoneal Interface,” World Journal of Surgery, 26: 661-666 (2002).
Bendavid et al., “A Femoral ‘Umbrella’ for Femoral Hernial Repair Surgery,” Gynecology and Obstetrics, 165: 153-156 (1987).
Bendavid et al., “New Techniques in Hernia Repair,” World Journal of Surgery, 13: 522-531 (1989).
Greenawalt et al., “Evaluation of Sepramesh Biosurgical Composite in a Rabbit Hernia Repair Model,” Journal of Surgical Research, 94: 92-98 (2000).
Helfrich et al., “Abdominal Wall Hernia Repair: Use of the Gianturco-Helfrich-Eberhach Hernia Mesh,” Journal of Laparoendoscopic Surgery, 5(2): 91-96 (1995).
Hydrogenated Castor Oil, at http://www.acme-hardesty.com/product/hydrogenated-castor-oil/ (downloaded Jun. 2, 2017), which corresponds to “Exhibit B1.”
Hawley's Condensed Chemical Dictionary—pp. 425 and 426 (2001), which corresponds to “Exhibit A1.”
Hoefler, Andrew C., “Sodium Carboxymethyl Cellulose: Chemistry, Functionality, and Applications”, Hercules Incorporated, http://www.herc.com/foodgums/index.htm, 15 pages.
Hercules Inc./Aqualon Div. CMC Quality Specifiction, Oct. 19, 2001 (Revised Sep. 2, 2008), 1 page.
Aqualon: Sodium Carboxymethylcellulose: Physical and Chemical Properties, Hercules Incorporated, 1999, 30 pages.
Fei, Bin, et al., “Hydrogel of Biodegradable Cellulose Derivatives. I. Radiation-Induced Crosslinking of CMC”, Journal of Applied Polymer Science, 2000, vol. 78, pp. 278-283.
Shakhashiri, Chemical of the week Fats and Oils, at www.scifun.org (last revised Jan. 30, 2008) 2 pages.
“What are hydrogenated fats?” at http://www.whfoods.com/genpage.php?tname=george&dbid=10 (downloaded Dec. 19, 2017), 3 pages.
Sigma reference 2007.
Savolainen et al. “Evaluation of controlled-release polar lipid microparticles” International Journal of Pharmaceutics 2002 244:151-161.
Nair et al. “Antibacterial Effect of Caprylic Acid and Monocaprylin on Major Bacterial Mastitis Pathogens” Journal of Dairy Science 2005 88:3488-3495.
Office Action issued in CN Application No. 201610998395.8 dated Oct. 22, 2020, 13 pages.
Office Action issued in EP Application No. 10825447.5 dated Feb. 20, 2020, 4 pages.
Office Action issued in U.S. Appl. No. 16/165,628 dated Dec. 1, 2020, 15 pages.
Extended European Search Report issued in EP Application No. 18000936.7 dated Jan. 7, 2020, 9 pages.
Non-Final Office Action issued in U.S. Appl. No. 16/213,823 dated Feb. 14, 2020, 14 pages.
Van Den Berg et al., Chemical changes in curing and ageing oil paints, ICOM Committee for Conservation, 1999, 248-253, vol. 1.
Office Action issued in CN Application No. 201610998395.8 dated Mar. 22, 2021, 15 pages.
Related Publications (1)
Number Date Country
20180133376 A1 May 2018 US
Divisions (2)
Number Date Country
Parent 15001585 Jan 2016 US
Child 15817018 US
Parent 12581582 Oct 2009 US
Child 15001585 US
Continuations (1)
Number Date Country
Parent 12401243 Mar 2009 US
Child 12581582 US
Continuation in Parts (3)
Number Date Country
Parent 11978840 Oct 2007 US
Child 12401243 US
Parent 11237420 Sep 2005 US
Child 11978840 US
Parent 11237264 Sep 2005 US
Child 11237420 US