The present application relates generally to a signaling system, and particularly to a train signaling system. The present application also relates to a method for detecting the distance-to-go of a train.
Under the current railway traffic condition, a “block system” is basically used in executing the control of train operation, so as to effectively ensure that when a train is the forefront train within its blocked section (interval), no following train would enter such interval at the same time and causes collision. The train signaling system is a common practice in realizing the “blockage.” The block system that is most often applied by traditional railways is “Track Circuit Based Train Control, TBTC.” With the current development of computer and communication technology, “Communication Based Train Control” has now emerged with advancement, allowing the operation of trains to possess higher reliability, flexibility and efficiency.
In reality, TBTC and CBTC exhibit a method or technique in realizing interval blockage. From the perspective of the form and effect of the blockage, fixed block system (FBS) and moving block system (MBS) are classified. The block interval of the fixed block system does not change, and the block interval must be greater than the length of the train. The block interval length of the moving blockage can be changed and be automatically adjusted according to the parameters of the train itself. It will move along with the train in motion and is a distance-to-go based control method. Moving blockage has a higher requirement than the fixed blockage; however, it possesses at the same time better operation efficiency. CBTC-MBS represents a relatively higher quality of modern train control.
While no matter it is TBCT, CBTC or FBS, MBS, the train and the ground are closely related to each other. Effective communication between the train and the ground must be enforced and through inspection of the ground facility or confirmation of the location of the train, effective train control signal can then be provided. Hence, effective “blockage” can be created and collision caused by the train entering into the block interval can be avoided. According to this methodology, TBCT and CBTC realized two different communication methods. The former is based on railway circuit to realize the connection between the train and the ground, the latter CBCT is based on wireless method to realize the communication between the train and the ground. Furthermore, when communicating between the train and the ground, the positioning of the track on the ground is realized. In order to realize the positioning function, track circuit, axle counter, transponder and cross-sensor cable etc. facilities must be paved on the train track to detect the train position and transmit the train position signal to the train control center (such as the CBTC). Lastly, the train control center produces the block interval and instructs or controls the train to operate within the interval. Such process is not only complicated, but is also relatively high in budget. Further, when the control center encounters breakdown, operation of the train must be terminated, or it can only apply manual operation method without signal protection. Under such condition, operational safety of the trains is not ensured, and when the signaling system breaks down and the manual operation causes error, disastrous train collision may happen.
The purpose of the embodiment of the present application is to provide an independent third kind of novel train signaling system without influence from the existing train operation system and train signaling system, which ensures a higher level of safety protection for train operation. At the same time, such system can also fully play the role of a train operator, and provide him explicit and exact position of the train in front, indications of the running train status and train speed, so that mental pressure of the operator can be relieved and “sudden death” train collision accidents can be prevented. At the same time, the embodiment in the present application can also provide safety protection for train operation under conditions such as existing signaling system break down, train positioning failure, track-entering error, and manual operation or instruction errors.
According to one aspect, there is provided a train signaling system including a traffic signaling chain terminus set up unit configured to set a terminus location of a train running on the track and transmit a wireless traffic signal, a plurality of traffic signaling chain relay units installed along the track and configured to forward the wireless traffic signal and allow the wireless traffic signal to form a traffic signaling chain comprising distance-to-go information of the train, and a traffic signaling chain detection unit configured to allow the train to achieve the receipt of the information on the traffic signaling chain and calculate the distance-to-go of the train.
In one embodiment, the traffic signaling chain terminus set up unit may include at least one of the following units: (i) a stationary traffic signaling chain terminus set up unit, installed on a train station or road-side facility; and (ii) a moving traffic signaling chain terminus set up unit, installed on the train running on the track.
In one embodiment, each traffic signaling chain relay unit may include a track speed limiting set up unit configured to set a speed limitation on the train running on the track, and information on the speed limitation is provided within the wireless traffic signal of the traffic signaling chain. Each traffic signaling chain relay unit can be operable to communicate in both directions. Each traffic signaling chain relay unit may have a plurality of levels. The next level relay unit merely receives the wireless traffic signal transmitted by an upper level relay unit.
In one embodiment, each traffic signaling chain relay unit may include a train and obstruction detection unit configured to terminate the forwarding of wireless traffic signal of the traffic signaling chain when a train or an obstruction appearing within a specified area is detected, and a regenerating traffic signaling chain terminus set up unit configured to transmit a regenerated wireless traffic signal when the existence of wireless traffic signal transmitted by an upper level relay unit is not detected.
In one embodiment, each traffic signaling chain relay unit may include an ID set up unit configured to set a present level relay unit ID information and an upper level relay unit ID information; a relay spacing set up unit configured to set a spacing information between the present level relay unit and the upper or next level relay unit; and a signaling chain length accumulation unit configured to accumulate the spacing of each relay unit level by level.
In one embodiment, the traffic signaling chain may include a first wireless traffic signal and a second wireless traffic signal. Each traffic signaling chain relay unit may include a first wireless receiving device and a second wireless receiving device configured to receive the first wireless traffic signal and the second wireless traffic signal respectively, so as to form a first wireless traffic signaling chain and a second wireless traffic signaling chain.
In one embodiment, each traffic signaling chain relay unit may include a signaling chain length comparison unit configured to compare the length of the received first wireless traffic signaling chain and the second wireless traffic signaling chain, and the traffic signaling chain relay unit can select the wireless traffic signal of the signaling chain that is shorter in length for forwarding based on a comparison result.
In one embodiment, the traffic signaling chain detection unit may include a distance-to-go display unit configured to display a location or distance of a train or train station in front, a relative train speed display unit configured to display a relative speed of a train and the train in front, a hazard warning unit configured to provide different warnings according to different hazardous situations, and an automatic brake unit configured to brake the train in motion.
In one embodiment, the traffic signaling chain terminus set up unit can transmit the wireless traffic signal directing towards the track; and each traffic signaling chain relay unit can forward the wireless traffic signal directionally.
In one embodiment, each traffic signaling chain relay unit may include a train position synchronizing device configured to provide a position synchronizing signal for a passing train, allowing the passing train to be positioned at a definite location within the traffic signaling chain, and obtain the distance-to-go information of the passing train.
According to another aspect, there is provided a method for detecting the distance-to-go of a train, which may include the steps of transmitting a wireless traffic signal from a train station or train in front, forwarding the wireless traffic signal through a plurality of traffic signaling chain relay units installed along a track so as to form a traffic signaling chain, receiving the wireless traffic signal by a following train, and calculating the distance-to-go between the following train and the train station or train in front based on the wireless traffic signal received at the following train.
The method may further include the step of adding a spacing information between the traffic signaling chain relay unit and an upper level relay unit to the wireless traffic signal, when the traffic signaling chain relay unit forwards the wireless traffic signal.
The method may further include the step of terminating the forwarding of the wireless traffic signal automatically, when the traffic signaling chain relay unit detects existence of a train or an obstruction at a specified location.
The method may further include the steps of regenerating and transmitting a wireless traffic signal representing the traffic signaling chain with a length of zero, when the traffic signaling chain relay unit does not detect wireless traffic signal transmitted from the signaling chain terminus set up unit or an upper level relay unit. The wireless traffic signal can be used to set up a temporary traffic signaling chain terminus.
The method may further include the step of forwarding the wireless traffic signal with a shortest distance, if the traffic signaling chain relay unit detects two or more recognizable wireless traffic signals simultaneously.
In one embodiment, the step of transmitting the wireless traffic signal from the train station or train in front may include transmitting the wireless traffic signal directing towards the track from the train station or train in front, and the step of forwarding the wireless traffic signal through the traffic signaling chain relay units installed along the track may include forwarding the wireless traffic signal through the traffic signaling chain relay units installed along the track directionally.
The method may further include the steps of obtaining a position synchronizing signal from the traffic signaling chain relay unit, allowing a passing train to be positioned at a definite location within the traffic signaling chain, and obtaining a distance-to-go when the train passes the traffic signaling chain relay unit. The step of calculating the distance-to-go between the following train and the train station or train in front based on the wireless traffic signal received at the following train may include the step of calculating the distance-to-go between the following train and the train station or train in front based on the received train position synchronizing signal and the wireless traffic signal.
Below is a further description of the present application with reference to the drawings. Referring to
Referring to
The train positioning accuracy shown in
The key aspect of the system shown in
Referring to
According to the application function in an embodiment of the present application, the above signaling chain is called “traffic signaling chain”. The length of the signaling chain represents the spacing between two trains. For the following train, it is the “distance-to-go” ahead of the track. In
In actual application, the spacing of the relay units is known. If the spacing is m, and the number of relay units between two trains is n, then the spacing between the two trains is m*n (m multiplies by n), and the gap between 36A and the wireless signal transmitter 33 (gap A) and gap between 36N and wireless signal receiver 38 (gap B). Since gaps A and B change along with the running train, they are difficult to calculate in reality. These two gaps are small relative to the spacing between two trains. Therefore, in reality they can be omitted without calculation and m*n can be taken directly as the spacing between the two trains (or called “distance-to-go” of the train).
In order to ensure that the transmission of the traffic signal can be proceeded in a step by step orderly manner, each relay unit will be assigned a unique ID (identity code), and can also be provided with an ID of the upper level relay unit and a spacing information of two relay units. This can effectively differentiate the signal of the upper level relay unit, and can add a self ID and the spacing information of two relay units when forwarding the wireless signal, so as to allow the next level relay unit to be able to receive, differentiate and calculate the signal chain length. For example, the repeater 36A can only receive the wireless signal 35 sent by the wireless signal transmitter 33, while the repeater 36B can only receive the wireless signal 37 sent by the repeater 36A. This can ensure the wireless signal sent by the wireless signal transmitter 33 can go through the N relay units orderly and be finally received by the wireless signal receiver 38. This can allow the entire length information of the traffic signaling chain to be obtained from the signal, while the length information represents the distance between the two trains (omitting the spacing A and spacing B).
Referring to
In actual application, the signaling chain relay unit can encounter the situation of receiving two traffic signals simultaneously. For example, a relay unit 46A in
When the relay unit 46A receives signals 43 and 44 simultaneously, the signaling chain length information in signals 43 and 44 will be compared and selected to forward the signal with a relatively shorter signaling chain. In
The trains 31 and 32 both run on the track which covered by the traffic signaling chain. The traffic signaling chain detection units 38A and 38B installed at the front end of the train can both receive/detect the wireless signal of the traffic signaling chain, and can obtain the information of the distance-to-go ahead according to the condition of the detected signaling chain. The train 31 can travel up to location 46A and train 32 can travel up to location 36A and stop behind train 31. In reality, only if train 31 runs in a forward direction on the track, the wireless signal 35A representing the signaling chain terminus position will move continually in a forward direction. This can also allow the distance-to-go of train 32 ahead to continually extend in a forward direction. It will finally stop at the location of the relay unit 46A corresponding to the red light signal 41. Specifically, train 31 will first enter into station and stop before location 46A. After the train stopping time expires, a red light signal 41 will switch to a green light signal and the wireless signal 43 will disappear. Under such situation, the relay unit 46A will forward the traffic signal 44 from the upper level relay unit 42. This will cause the train 31 to start running and pass through the red light location 41, so as to reserve a space for train stopping in order to expect the arrival of train 32. This time, red light location 41 will again show a red light instructing train 32 to stop at the location of 46A, so as to realize the relevant control function of the train signaling system.
For the relay unit 36A in the Figure, similar situation as that of 46A will exist. It will at the same time receive wireless signal 48 from the upper level relay unit 47, and wireless signal of the moving signaling chain terminus set up unit 33A from the rear end of train 31. Under the condition in the Figure, signal 48 includes a signaling chain length which is much longer than that of the signal 35A (in the Figure, the signaling chain length of 35A can be taken as zero). This way, relay unit 36A will select to send signal 35A, representing 36A as the forthcoming terminus location for the running train 32 and preventing the train 32 to collide with the rear end of the train 31 in front.
Referring to
Another significance of the relay unit to stop the traffic signal forwarding function under the existence of train or obstruction is to prevent the following train to receive the erroneous signal because of breaking down of the moving signaling chain terminus set up unit. In
Referring to
Referring to
The traffic signaling chain detection unit 74 may also include a distance-to-go display unit, which can be installed inside the operation compartment to display for the train operator the location or distance of the train or stopping station in front. The traffic signaling chain detection unit 74 may also include a relative train speed display unit, which can display the speed of the train relative to that of the train in front. If there is no train in front and only has a stopping station, the displayed speed signal represents the running speed of the train. The traffic signaling chain detection unit 74 may also include a hazard warning unit and an automatic brake unit. The hazard warning unit will issue different kinds of warnings according to different hazardous situations. The hazardous situation can be assessed based on the speed of the train, the relative speed between the two trains, the distance between the two trains and the parameters of the braking of the train. If the hazard level further rises, the traffic signaling chain detection unit 74 can initiate the automatic brake unit, so as to prevent train collision from occurring due to human negligence. The train 73 may also include a moving traffic signaling chain terminus set up unit 75 installed at the rear end of the train. The moving traffic signaling chain terminus set up unit 75 may include a wireless signal transmitting device, which can transmit wireless traffic signal of the traffic signaling chain with length as zero, for providing the terminus location for the following train. The wireless signal can be received by another traffic signaling chain relay unit 76 on the track, and the relevant traffic signal can be further forwarded to the following one, so as to form a traffic signaling chain encompassing the whole running interval.
Referring to
The signal processing unit 88 may include a signaling chain length comparison unit, which can compare the length of the first traffic signaling chain and the second traffic signaling chain from the first wireless receiving device and the second wireless receiving device, respectively, and select the signal with a relatively shorter signaling chain for forwarding. In
Assuming the signal transmitted from the traffic signaling chain terminus set up unit 82 disappears (such as the stopping station signal changes from red to green), at this moment the relay unit 83 receives the first wireless traffic signal transmitted from relay unit 81 only through the first wireless receiving device. This signal may include the traffic signaling chain length information and ID information of the relay unit 81 which are accumulated from the upper level relay unit. When the ID information of the relay unit 81 is confirmed by the relay unit 83, the relay unit 83 will, through the signal chain length accumulation unit of the signal processing unit 88, add the spacing information of the relay units 83 and 81 included in the relay spacing set up unit to the traffic signaling chain length information received, and convert the ID formation of the relay unit 81 in the traffic signal into the ID information of the relay unit 83. Then, the relay unit located at the next level of the relay unit 83 will receive such wireless signal, and undergo signal processing similar to the preceding relay unit 83, rendering the length of the signaling chain to be accumulated until it meets the next traffic signaling chain terminus set up unit.
The relay unit 83 may also include a train/obstruction detection unit, which can detect train/obstruction at the upper, upfront and rear end direction of the relay unit. When train/obstruction exists, the signal processing unit 88 will automatically terminate the forwarding function of the wireless traffic signal. This is described with reference to
Further, the relay unit 83 also has a track speed limiting set up unit, which can set a speed limitation of the train that runs on the track. The speed limiting information may be included in the wireless traffic signal of the traffic signaling chain. When the train receives the wireless traffic signal, it can obtain relevant information on speed limiting from the signal and provide a real-time speed indication or over speeding warning for safe operation of the train so as to further ensure the safety of the train that is running on the track. Furthermore, the relay unit 83 can also include other relevant information of the track, such as information on the slope of the track. These parameters have a large effect on the braking of the train. Accurate information about the slope can assist in the analysis of the hazard level with regard to the train, so that the most suitable safety distance of the running train relative to the train in front can be maintained.
Referring to
Step S901 transmits a wireless traffic signal directing towards the track by the train station or train in front, for setting the terminus location of the traffic signaling chain before entering into step S902.
Step S902 detects whether a train or obstruction exists within a specified area by the traffic signaling chain relay unit. If so, then the signal forwarding function of the relay unit will be terminated and the step S902 will be repeated until no train or obstruction exists, then will enter into step S903.
Step S903 detects whether any wireless traffic signal of the signaling chain terminus set up unit exists by the traffic signaling chain relay unit. If so, then enter into step S905. If not, then enter into step S904.
Step S904 detects whether any wireless traffic signal transmitted by the upper level relay unit exists. If so, then enter into step S906. If not, then enter into step S905.
Step S905 transmits wireless traffic signal of the traffic signaling chain with length as zero by the traffic signaling chain relay unit, for setting the terminus location of the traffic signaling chain, and then enter into step S907.
Step S906 adds the spacing information of the relay unit to the traffic signaling chain length information by the traffic signaling chain relay unit, then forwards the amended traffic signal before entering into step S907.
Step S907 detects whether any wireless traffic signal representing the traffic signaling chain exists by the following train. If so, then enter into step S909. If not, then enter into step S908.
Step S908 issues break down signal indication by the system, or causes the following train to execute emergency braking before returning to step S907.
Step S909 receives the wireless traffic signal by the following train, and calculate the distance-to-go between the following train and the train station or train in front based on the signal.
The above steps S901-S909 are continuously ongoing so as to ensure the following train can obtain real-time distance-to-go data on a continuous ongoing basis. These data serves to provide indications for the train operator, so as to allow the operator to know the status of the train station or train in front in a timely manner. Furthermore, through continuous detection of the distance-to-go, the relative speed of the two trains can be calculated and the minimum safety distance that must be maintained between the two trains can be calculated. If the safety distance is found to be insufficient, then safety warning or emergency alarming can be executed. Under emergency situation, the train can be directly stopped so as to ensure the safety in the operation of the train.
In
In order to fulfill the technical demand for actual application at different situations, the embodiment of the present application can also apply direction-absent signals (such as the common wireless RF signal) as the traffic signals. Referring to
Since the wireless traffic signal of the system in
For the relay unit, since it includes its ID information and the upper level relay unit ID information (see
The train position synchronizing device and the train position detection device can have many realization solutions, such as the train position synchronizing device can be a wireless transmitting device that is short distance or directional such as infrared, microwave, DSRC, ultrasound wave transmitting device etc, and can transmit wireless signal including its ID signal. Further, they can also apply RFID technology to realize the information exchange/position synchronization of the train and the relay unit. For the train position synchronizing, it can be unidirectional (can use the unidirectional wireless transmitter to transmit the ID signal of the relay unit to the train), and can also be bidirectional (such as using DSRC, RFID as such technique to perform information exchange). A beneficial aspect of a bidirectional information exchange is that the relay unit can find out the existence of a train through information exchange. Accordingly signal regarding train track in usage can be sent out, or the transmitting of wireless traffic signal can be terminated, which can allow the next level relay unit to automatically transmit regenerating wireless traffic signal that represents traffic signaling chain with length as zero. This can realize the automatic track blocking function. Such function has been described in the description of
According to the
Wireless traffic signal is transmitted from the train station or train in front (through traffic signaling chain terminus set up unit), or wireless traffic signal is transmitted directionally towards the track;
Wireless traffic signal can be forwarded (or wireless traffic signal is directionally forwarded) by the traffic signaling chain relay units configured along the track, so as to form a traffic signaling chain. The wireless traffic signal is received by the following train;
When the following train passes by the traffic signaling chain relay unit, train position synchronizing is undergone (for the direction-absent wireless traffic signaling chain system);
Based on the wireless traffic signal (or aggregate train positioning synchronizing signal) as received by the following train to calculate the distance-to-go between the following train and the train station or train in front;
When the traffic signaling chain relay unit forwards the wireless traffic signal, a spacing information of the upper level relay unit is added to the wireless traffic signal;
The traffic signaling chain relay unit terminates the forwarding of wireless traffic signal when train or obstruction is detected to exist within a specified area;
When the traffic signaling chain relay unit cannot detect the wireless traffic signal sent by the signaling chain terminus set up unit or the upper level relay unit, it will regenerate and send out a new wireless traffic signal that represents traffic signaling chain with length as zero. The signal can be used to set up a temporary traffic signaling chain terminus; and
If the traffic signaling chain relay unit detects at the same time two or more recognizable wireless traffic signals, the wireless traffic signal with the shortest distance will only be forwarded.
The beneficial result that the present application possesses lies in that it is a brand new dynamic train signaling system and the method for detecting the distance-to-go of a train based on the length of traffic signaling chain, whose operation does not rely on track circuit, axle counter, transponder, cross-sensor cable as such tracking or road-side facilities, and also does not rely on signals of the existing train signaling system and train control center. There are beneficial fulfillment and secured coverage towards the existing train operating system.
The above device and method mentioned are merely partial preferred embodiments of the present application. For those skilled in the art, it should be noted, and without departing from the original concepts of the present application, further amendment and refinement can be made and would be treated as belonging within the scope of protection of the present application.
Number | Date | Country | Kind |
---|---|---|---|
2011 1 0273999 | Sep 2011 | CN | national |
The present application is a Continuation Application of PCT application No. PCT/CN2012/081193 filed on Sep. 10, 2012, which claims the benefit of Chinese Patent Application No. 201110273999.3 filed on Sep. 15, 2011; the contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2133627 | McCann et al. | Oct 1938 | A |
3250914 | Reich | May 1966 | A |
5029294 | Kim | Jul 1991 | A |
7027901 | Oguma et al. | Apr 2006 | B2 |
7200470 | Oguma et al. | Apr 2007 | B2 |
7495579 | Sirota et al. | Feb 2009 | B2 |
8073581 | Morris et al. | Dec 2011 | B2 |
8244456 | Morris | Aug 2012 | B2 |
20060119489 | Shinada et al. | Jun 2006 | A1 |
20060155433 | Oguma et al. | Jul 2006 | A1 |
20120217350 | Ghaly | Aug 2012 | A1 |
20140054424 | Xu et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
101393686 | Mar 2009 | CN |
Entry |
---|
International Search Report of PCT Application No. PCT/CN2012/081193. |
Number | Date | Country | |
---|---|---|---|
20140054424 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2012/081193 | Sep 2012 | US |
Child | 14073867 | US |