The present invention relates to memory, and more particularly to command scheduling constraints of memory circuits.
Traditionally, memory circuit speeds have remained relatively constant, while the required data transfer speeds and bandwidth of memory systems have steadily increased. Thus, it has been necessary for more commands be scheduled, issued, and pipelined in a memory system in order to increase bandwidth. However, command scheduling constraints have customarily existed in memory systems which limit the command issue rates, and thus limit various attempts to further increase bandwidth, etc. There is thus a need for addressing these and/or other issues associated with the prior art.
A memory circuit system and method are provided. An interface circuit is capable of communication with a plurality of memory circuits and a system. In use, the interface circuit is operable to translate an address associated with a command communicated between the system and the memory circuits.
For example, in various embodiments, at least one of the memory circuits 102 may include a monolithic memory circuit, a semiconductor die, a chip, a packaged memory circuit, or any other type of tangible memory circuit. In one embodiment, the memory circuits 102 may take the form of dynamic random access memory (DRAM) circuits. Such DRAM may take any form including, but not limited to, synchronous DRAM (SDRAM), double data rate synchronous DRAM (DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM, etc.), graphics double data rate DRAM (GDDR, GDDR2, GDDR3, etc.), quad data rate DRAM (QDR DRAM), RAMBUS XDR DRAM (XDR DRAM), fast page mode DRAM (FPM DRAM), video DRAM (VDRAM), extended data out DRAM (EDO DRAM), burst EDO RAM (BEDO DRAM), multibank DRAM (MDRAM), synchronous graphics RAM (SGRAM), and/or any other type of DRAM.
In another embodiment, at least one of the memory circuits 102 may include magnetic random access memory (MRAM), intelligent random access memory (IRAM) distributed network architecture (DNA) memory, window random access memory (WRAM), flash memory (e.g. NAND, NOR, etc.), pseudostatic random access memory (PSRAM), wetware memory, memory based on semiconductor, atomic, molecular, optical, organic, biological, chemical, or nanoscale technology, and/or any other type of volatile or nonvolatile, random or non-random access, serial or parallel access memory circuit.
Strictly as an option, the memory circuits 102 may or may not be positioned on at least one dual in-line memory module (DIMM) (not shown). In various embodiments, the DIMM may include a registered DIMM (R-DIMM), a small outline-DIMM (SO-DIMM), a fully buffered DIMM (FB-DIMM), an unbuffered DIMM (UDIMM), single inline memory module (SIMM), a MiniDIMM, a very low profile (VLP) R-DIMM, etc. In other embodiments, the circuits 102 may or may not be positioned on any type of material forming a substrate, card, module, sheet, fabric, board, carrier or any other type of solid or flexible entity, form, or object. Of course, in yet other embodiments, the memory circuits 102 may or may not be positioned in or on any desired entity, form, or object for packaging purposes. Still yet, the memory circuits 102 may or may not be organized into ranks. Such ranks may refer to any arrangement of such memory circuits 102 on any of the foregoing entities, forms, objects, etc.
Further, in the context of the present description, the system 106 may include any system capable of requesting and/or initiating a process that results in an access of the memory circuits 102. As an option, the system 106 may accomplish this utilizing a memory controller (not shown), or any other desired mechanism. In one embodiment, such system 106 may include a system in the form of a desktop computer, a lap-top computer, a server, a storage system, a networking system, a workstation, a personal digital assistant (PDA), a mobile phone, a television, a computer peripheral (e.g. printer, etc.), a consumer electronics system, a communication system, and/or any other software and/or hardware, for that matter.
The interface circuit 104 may, in the context of the present description, refer to any circuit capable of interfacing (e.g. communicating, buffering, etc.) with the memory circuits 102 and the system 106. For example, the interface circuit 104 may, in the context of different embodiments, include a circuit capable of directly (e.g. via wire, bus, connector, and/or any other direct communication medium, etc.) and/or indirectly (e.g. via wireless optical, capacitive, electric field, magnetic field, electromagnetic field, and/or any other indirect communication medium, etc.) communicating with the memory circuits 102 and the system 106. In additional different embodiments, the communication may use a direct connection (e.g. point-to-point, single-drop bus, multi-drop bus, serial bus, parallel bus, link, and/or any other direct connection, etc.) or may use an indirect connection (e.g. through intermediate circuits, intermediate logic, an intermediate bus or busses, and/or any other indirect connection, etc.).
In additional optional embodiments, the interface circuit 104 may include one or more circuits, such as a buffer (e.g. buffer chip, etc.,) a register (e.g. register chip, etc.), and advanced memory buffer (AMB) (e.g. AMB chip, etc.), a component positioned on at least one DIMM, a memory controller, etc. Moreover, the register may, in various embodiments, include a JEDEC Solid State Technology Association (known as JEDEC) standard register (a JEDEC register), a register with forwarding, storing, and/or buffering capabilities, etc. In various embodiments, the register chips, buffer chips, and/or any other interface circuit 104 may be intelligent, that is, include logic that is capable of one or more functions such as gathering and/or storing information; inferring, predicting, and/or storing state and/or status; performing logical decisions; and/or performing operations on input signals, etc. In still other embodiments, the interface circuit 104 may optionally be manufactured in monolithic form, packaged form, printed form, and/or any other manufactured form of circuit, for that manner. Furthermore, in another embodiment, the interface circuit 104 may be positioned on a DIMM.
In still yet another embodiment, a plurality of the aforementioned interface circuit 104 may serve, in combination, to interface the memory circuits 102 and the system 106. Thus, in various embodiments, one, two, three, four, or more interface circuits 104 may be utilized for such interfacing purposes. In addition, multiple interface circuits 104 may be relatively configured or connected in any desired manner. For example, the interface circuits 104 may be configured or connected in parallel, serially, or in various combinations thereof. The multiple interface circuits 104 may use direct connections to each other, indirect connections to each other, or even a combination thereof. Furthermore, any number of the interface circuits 104 may be allocated to any number of the memory circuits 102. In various other embodiments, each of the plurality of interface circuits 104 may be the same or different. Even still, the interface circuits 104 may share the same or similar interface tasks and/or perform different interface tasks.
While the memory circuits 102, interface circuit 104, and system 106 are shown to be separate parts, it is contemplated that any of such parts (or portion(s) thereof) may be integrated in any desired manner. In various embodiments, such optional integration may involve simply packaging such parts together (e.g. stacking the parts to form a stack of DRAM circuits, a DRAM stack, a plurality of DRAM stacks, a hardware stack, where a stack may refer to any bundle, collection, or grouping of parts and/or circuits, etc.) and/or integrating them monolithically. Just by way of example, in one optional embodiment, at least one interface circuit 104 (or portion(s) thereof) may be packaged with at least one of the memory circuits 102. In this way, the interface circuit 104 and the memory circuits 102 may take the form of a stack, in one embodiment.
For example, a DRAM stack may or may not include at least one interface circuit 104 (or portion(s) thereof). In other embodiments, different numbers of the interface circuit 104 (or portion(s) thereof) may be packaged together. Such different packaging arrangements, when employed, may optionally improve the utilization of a monolithic silicon implementation, for example.
The interface circuit 104 may be capable of various functionality, in the context of different optional embodiments. Just by way of example, the interface circuit 104 may or may not be operable to interface a first number of memory circuits 102 and the system 106 for simulating a second number of memory circuits 105 to the system 106. In the illustrated figure, the second number of memory circuits 105 is shown with a dashed border to indicate that its memory circuits are simulated. The first number of memory circuits 102 shall hereafter be referred to, where appropriate for clarification purposes, as the “physical” memory circuits 102 or memory circuits, but are not limited to be so. Just by way of example, the physical memory circuits 102 may include a single physical memory circuit. Further, the at least one simulated memory circuit seen by the system 106 shall hereafter be referred to, where appropriate for clarification purposes, as the at least one “virtual” memory circuit.
In still additional aspects of the present embodiment, the second number of virtual memory circuits may be more than, equal to, or less than the first number of physical memory circuits 102. Just by way of example, the second number of virtual memory circuits may include a single memory circuit. Of course, however, any number of memory circuits may be simulated.
In the context of the present description, the term simulated may refer to any simulating, emulating, disguising, transforming, modifying, changing, altering, shaping, converting, etc., which results in at least one aspect of the memory circuits 102 appearing different to the system 106. In different embodiments, such aspect may include, for example, a number, a signal, a memory capacity, a timing, a latency, a design parameter, a logical interface, a control system, a property, a behavior, and/or any other aspect, for that matter.
In different embodiments, the simulation may be electrical in nature, logical in nature, protocol in nature, and/or performed in any other desired manner. For instance, in the context of electrical simulation, a number of pins, wires, signals, etc. may be simulated. In the context of logical simulation, a particular function or behavior may be simulated. In the context of protocol, a particular protocol (e.g. DDR3, etc.) may be simulated. Further, in the context of protocol, the simulation may effect conversion between different protocols (e.g. DDR2 and DDR3) or may effect conversion between different versions of protocol (e.g. conversion of 4-4-4 DDR2 to 6-6-6 DDR2).
More illustrative information will now be set forth regarding various optional architectures and uses in which the foregoing system may or may not be implemented, per the desires of the user. It should be strongly noted that the following information is set forth for illustrative purposes and should not be construed as limiting in any manner. Any of the following features may be optionally incorporated with or without the exclusion of other features described.
As shown in operation 202, a plurality of memory circuits and a system are interfaced. In one embodiment, the memory circuits and system may be interfaced utilizing an interface circuit. The interface circuit may include, for example, the interface circuit described above with respect to
Further, command scheduling constraints of the memory circuits are reduced, as shown in operation 204. In the context of the present description, the command scheduling constraints include any limitations associated with scheduling (and/or issuing) commands with respect to the memory circuits. Optionally, the command scheduling constraints may be defined by manufacturers in their memory device data sheets, by standards organizations such as the JEDEC, etc.
In one embodiment, the command scheduling constraints may include intra-device command scheduling constraints. Such intra-device command scheduling constraints may include scheduling constraints within a device. For example, the intra-device command scheduling constraints may include a column-to-column delay time (tCCD), row-to-row activation delay time (tRRD), four-bank activation window time (tFAW), write-to-read turn-around time (tWTR), etc. As an option, the intra-device command-scheduling constraints may be associated with parts (e.g. column, row, bank, etc.) of a device (e.g. memory circuit) that share a resource within the memory circuit. One example of such intra-device command scheduling constraints will be described in more detail below with respect to
In another embodiment, the command scheduling constraints may include inter-device command scheduling constraints. Such inter-device scheduling constraints may include scheduling constraints between memory circuits. Just by way of example, the inter-device command scheduling constraints may include rank-to-rank data bus turnaround times, on-die-termination (ODT) control switching times, etc. Optionally, the inter-device command scheduling constraints may be associated with memory circuits that share a resource (e.g. a data bus, etc.) which provides a connection therebetween (e.g. for communicating, etc.). One example of such inter-device command scheduling constraints will be described in more detail below with respect to
Further, reduction of the command scheduling restraints may include complete elimination and/or any decrease thereof. Still yet, in one optional embodiment, the command scheduling constraints may be reduced by controlling the manner in which commands are issued to the memory circuits. Such commands may include, for example, row-access commands, column-access commands, etc. Moreover, in additional embodiments, the commands may optionally be issued to the memory circuits utilizing separate busses associated therewith. One example of memory circuits associated with separate busses will be described in more detail with respect to
In one possible embodiment, the command scheduling constraints may be reduced by issuing commands to the memory circuits based on simulation of a virtual memory circuit. For example, the plurality of physical memory circuits and the system may be interfaced such that that the memory circuits appear to the system as a virtual memory circuit. Such simulated virtual memory circuit may optionally include the virtual memory circuit described above with respect to
In addition, the virtual memory circuit may have less command scheduling constraints than the physical memory circuits. For example, in one exemplary embodiment, the physical memory circuits may appear as a group of one or more virtual memory circuits that are free from command scheduling constraints. Thus, as an option, the command scheduling constraints may be reduced by issuing commands directed to a single virtual memory circuit, to a plurality of different physical memory circuits. In this way, idle data-bus cycles may optionally be eliminated and memory system bandwidth may be increased.
Of course, it should be noted that the command scheduling constraints may be reduced in any desired manner. Accordingly, in one embodiment, the interface circuit may be utilized to eliminate, at least in part, inter-device and/or intra-device command scheduling constraints of memory circuits. Furthermore, reduction of the command scheduling constraints of the memory circuits may result in increased command issue rates. For example, a greater amount of commands may be issued to the memory circuits by reducing limitations associated with the command scheduling constraints. More information regarding increasing command issue rates by reducing command scheduling constraints will be described with respect to
As shown in operation 302, a plurality of memory circuits and a system are interfaced. In one embodiment, the memory circuits and system may be interfaced utilizing an interface circuit, such as that described above with respect to
Additionally, an address associated with a command communicated between the system and the memory circuits is translated, as shown in operation 304. Such command may include, for example, a row-access command, a column-access command, and/or any other command capable of being communicated between the system and the memory circuits. As an option, the translation may be transparent to the system. In this way, the system may issue a command to the memory circuits, and such command may be translated without knowledge and/or input by the system. Of course, embodiments are contemplated where such transparency is non-existent, at least in part.
Further, the address may be translated in any desired manner. In one embodiment, the translation of the address may include shifting the address. In another embodiment, the address may be translated by mapping the address. Optionally, as described above with respect to
Thus, in one possible embodiment, the translation may be performed as a function of the difference in the number of row addresses. For example, the translation may translate the address to reflect the number of row addresses of the virtual memory circuit. In still yet another embodiment, the translation may optionally translate the address as a function of a column address and a row address.
Thus, in one exemplary embodiment where the command includes a row-access command, the translation may be performed as a function of an expected arrival time of a column-access command. In another exemplary embodiment, where the command includes a row-access command, the translation may ensure that a column-access command addresses an open bank. Optionally, the interface circuit may be operable to delay the command communicated between the system and the memory circuits. To this end, the translation may result in sub-row activation of the memory circuits. Various examples of address translation will be described in more detail below with respect to
Accordingly, in one embodiment, address mapping may use shifting of an address from one command to another to allow the use of memory circuits with smaller rows to emulate a larger memory circuit with larger rows. Thus, sub-row activation may be provided. Such sub-row activation may also reduce power consumption and may optionally further improve performance, in various embodiments.
One exemplary embodiment will now be set forth. It should be strongly noted that the following example is set forth for illustrative purposes only and should not be construed as limiting in any manner whatsoever. Specifically, memory storage cells of DRAM devices may be arranged into multiple banks, each bank having multiple rows, and each row having multiple columns. The memory storage capacity of the DRAM device may be equal to the number of banks times the number of rows per bank times the number of column per row times the number of storage bits per column. In commodity DRAM devices (e.g. SDRAM, DDR, DDR2, DDR3, DDR4, GDDR2, GDDR3 and GDDR4 SDRAM, etc.), the number of banks per device, the number of rows per bank, the number of columns per row, and the column sizes may be determined by a standards-forming committee, such as the joint Electron Device Engineering Council (JEDEC).
For example, JEDEC standards require that a 1 gigabyte (Gb) DDR2 or DDR3 SDRAM device with a four-bit wide data bus have eight banks per device, 8192 rows per bank, 2048 columns per row, and four bits per column. Similarly, a 2 Gb device with a four-bit wide data bus has eight banks per device, 16384 rows per bank, 2048 columns per row, and four bits per column. A 4 Gb device with a four-bit wide data bus has eight banks per device, 32768 rows per bank, 2048 columns per row, and four bits per column. In the 1 Gb, 2 Gb and 4 Gb devices, the row size is constant, and the number of rows doubles with each doubling of device capacity. Thus, a 2 Gb or a 4 Gb device may be simulated, as described above, by using multiple 1 Gb and 2 Gb devices, and by directly translating row-activation commands to row-activation commands and column-access commands to column-access commands. In one embodiment, this emulation may be possible because the 1 Gb, 2 Gb, and 4 Gb devices have the same row size.
As shown, the computer platform 400 includes a system 420. The system 420 includes a memory interface 421, logic for retrieval and storage of external memory attribute expectations 422, memory interaction attributes 423, a data processing engine 424, and various mechanisms to facilitate a user interface 425. The computer platform 400 may be comprised of wholly separate components, namely a system 420 (e.g. a motherboard, etc.), and memory circuits 410 (e.g. physical memory circuits, etc.). In addition, the computer platform 400 may optionally include memory circuits 410 connected directly to the system 420 by way of one or more sockets.
In one embodiment, the memory circuits 410 may be designed to the specifics of various standards, including for example, a standard defining the memory circuits 410 to be JEDEC-compliant semiconductor memory (e.g. DRAM, SDRAM, DDR2, DDR3, etc.). The specifics of such standards may address physical interconnection and logical capabilities of the memory circuits 410.
In another embodiment, the system 420 may include a system BIOS program (not shown) capable of interrogating the physical memory circuits 410 (e.g. DIMMs) to retrieve and store memory attributes 422, 423. Further, various types of external memory circuits 410, including for example JEDEC-compliant DIMMS, may include an EEPROM device known as a serial presence detect (SPD) where the DIMM memory attributes are stored. The interaction of the BIOS with the SPD and the interaction of the BIOS with the memory circuit physical attributes may allow the system memory attribute expectations 422 and memory interaction attributes 423 become known to the system 420.
In various embodiments, the computer platform 400 may include one or more interface circuits 470 electrically disposed between the system 420 and the physical memory circuits 410. The interface circuit 470 may include several system-facing interfaces (e.g. a system address signal interface 471, a system control signal interface 472, a system clock signal interface 473, a system data signal interface 474, etc.). Similarly, the interface circuit 470 may include several memory-facing interfaces (e.g. a memory address signal interface 475, a memory control signal interface 476, a memory clock signal interface 477, a memory data signal interface 478, etc.).
Still yet, the interface circuit 470 may include emulation logic 480. The emulation logic 480 may be operable to receive and optionally store electrical signals (e.g. logic levels, commands, signals, protocol sequences, communications, etc.) from or through the system-facing interfaces, and may further be operable to process such electrical signals. The emulation logic 480 may respond to signals from system-facing interfaces by responding back to the system 420 and presenting signals to the system 420, and may also process the signals with other information previously stored. As another option, the emulation logic 480 may present signals to the physical memory circuits 410. Of course, however, the emulation logic 480 may perform any of the aforementioned functions in any order.
Moreover, the emulation logic 480 may be operable to adopt a personality, where such personality is capable of defining the physical memory circuit attributes. In various embodiments, the personality may be effected via any combination of bonding options strapping, programmable strapping, the wiring between the interface circuit 470 and the physical memory circuits 410. Further, the personality may be effected via actual physical attributes (e.g. value of mode register, value of extended mode register) of the physical memory circuits 410 connected to the interface circuit 470 as determined when the interface circuit 470 and physical memory circuits 410 are powered up.
As shown, the timing diagram 500 illustrates command cycles, timing constraints and idle cycles of memory. For example, in an embodiment involving DDR3 SDRAM memory systems, any two row-access commands directed to a single DRAM device may not necessarily be scheduled closer than tRRD. As another example, at most four row-access commands may be scheduled within tFAW to a single DRAM device. Moreover, consecutive column-read access commands and consecutive column-write access commands may not necessarily be scheduled to a given DRAM device any closer than tCCD, where tCCD equals four cycles (eight half-cycles of data) in DDR3 DRAM devices.
In the context of the present embodiment, row-access and/or row-activation commands are shown as ACT. In addition, column-access commands are shown as READ or WRITE. Thus, for example, in memory systems that require a data access in a data burst of four half-cycles, as shown in
In another optional embodiment involving DDR3 SDRAM memory systems, consecutive column-access commands sent to different DRAM devices on the same data bus may not necessarily be scheduled any closer than a period that is the sum of the data burst duration plus additional idle cycles due to rank-to-rank data bus turn-around times. In the case of column-read access commands, two DRAM devices on the same data bus may represent two bus masters. Optionally, at least one idle cycle on the bus may be needed for one bus master to complete delivery of data to the memory controller and release control of the shared data bus, such that another bus master may gain control of the data bus and begin to send data.
As shown, the timing diagram 600 illustrates commands issued to different devices that are free from constraints such as tRRD and tCCD which would otherwise be imposed on commands issue to the same device. However, as also shown, the data bus hand-off from one device to another device requires at least one idle data-bus cycle 610 on the data bus. Thus, the timing diagram 600 illustrates a limitation preventing full use of bandwidth utilization in a DDR3 SDRAM memory system. As a consequence of the command-scheduling constraints, there may be no available command sequence that allows full bandwidth utilization in a DDR3 SDRAM memory system, which also uses bursts shorter than tCCD.
As shown, eight DRAM devices are connected directly to a memory controller through a shared data bus 710. Accordingly, commands from the memory controller that are directed to the DRAM devices may be issued with respect to command scheduling constraints (e.g. tRRD, tCCD, tFAW, tWTR, etc.). Thus, the issuance of commands may be delayed based on such command scheduling constraints.
As shown, an interface circuit 810 provides a DRAM interface to the memory controller 820, and directs commands to independent DRAM devices 830. The memory devices 830 may each be associated with a different data bus 540, thus preventing inter-device constraints. In addition, individual and independent memory devices 830 may be used to emulate part of a virtual memory device (e.g. column, row, bank, etc.). Accordingly, intra-device constraints may also be prevented. To this end, the memory devices 830 connected to the interface circuit 510 may appear to the memory controller 820 as a group of one or more memory devices 530 that are free from command-scheduling constraints.
In one exemplary embodiment, N physical DRAM devices may be used to emulate M logical DRAM devices through the use of the interface circuit. The interface circuit may accept a command stream from a memory controller directed toward the M logical devices. The interface circuit may also translate the commands to the N physical devices that are connected to the interface circuit via P independent data paths. The command translation may include, for example, routing the correct command directed to one of the M logical devices to the correct device (i.e. one of the N physical devices). Collectively, the P data paths connected to the N physical devices may optionally allow the interface circuit to guarantee that commands may be executed in parallel and independently, thus preventing command-scheduling constraints associated with the N physical devices. In this way the interface circuit may eliminate idle data-bus cycles or bubbles that would otherwise be present due to inter-device and intra-device command-scheduling constraints.
As shown, a DDR3 SDRAM interface circuit 910 eliminates idle data-bus cycles due to inter-device and intra-device scheduling constraints. In the context of the present embodiment, the DDR3 SDRAM interface circuit 910 may include a command translation circuit of an interface circuit that connects multiple DDR3 SDRAM devices with multiple independent data buses. For example, the DDR3 SDRAM interface circuit 910 may include command-and-control and address components capable of intercepting signals between the physical memory circuits and the system. Moreover, the command-and-control and address components may allow for burst merging, as described below with respect to
A burst-merging interface circuit 1010 may include a data component of an interface circuit that connects multiple DRAM devices 1030 with multiple independent data buses 1040. In addition, the burst-merging interface circuit 1010 may merge multiple burst commands received within a time period. As shown, eight DRAM devices 1030 may be connected via eight independent data paths to the burst-merging interface circuit 1010. Further, the burst-merging interface circuit 1010 may utilize a single data path to the memory controller 820. It should be noted that while eight DRAM devices 1030 are shown herein, in other embodiments, 16, 24, 32, etc. devices may be connected to the eight independent data paths. In yet another embodiment, there may be two, four, eight, 16 or more independent data paths associated with the DRAM devices 1030.
The burst-merging interface circuit 1010 may provide a single electrical interface to the memory controller 1020, therefore eliminating inter-device constraints (e.g. rank-to-rank turnaround time, etc.). In one embodiment, the memory controller 1020 may be aware that it is indirectly controlling the DRAM devices 1030 through the burst-merging interface circuit 1010, and that no bus turnaround time is needed. In another embodiment, the burst-merging interface circuit 1010 may use the DRAM devices 1030 to emulate M logical devices. The burst-merging interface circuit 1010 may further translate row-activation commands and column-access commands to one of the DRAM devices 1030 in order to ensure that inter-device constraints (e.g. tRRD, tCCD, tFAW and tWTR etc.) are met by each individual DRAM device 1030, while allowing the burst-merging interface circuit 1010 to present itself as M logical devices that are free from inter-device constraints.
As shown, inter-device and intra-device constraints are eliminated, such that the burst-merging interface circuit may permit continuous burst data transfers on the data bus, therefore increasing data bandwidth. For example, an interface circuit associated with the burst-merging interface circuit may present an industry-standard DRAM interface to a memory controller as one or more DRAM devices that are free of command-scheduling constraints. Further, the interface circuits may allow the DRAM devices to be emulated as being free from command-scheduling constraints without necessarily changing the electrical interface or the command set of the DRAM memory system. It should be noted that the interface circuits described herein may include any type of memory system (e.g. DDR2, DDR3, etc.).
As shown, a protocol translation and interface circuit 1210 may perform protocol translation and/or manipulation functions, and may also act as an interface circuit. For example, the protocol translation and interface circuit 1210 may be included within an interface circuit connecting a memory controller with multiple memory devices.
In one embodiment, the protocol translation and interface circuit 1210 may delay row-activation commands and/or column-access commands. The protocol translation and interface circuit 1210 may also transparently perform different kinds of address mapping schemes that depend on the expected arrival time of the column-access command. In one scheme, the column-access command may be sent by the memory controller at the normal time (i.e. late arrival, as compared to a scheme where the column-access command is early).
In a second scheme, the column-access command may be sent by the memory controller before the row-access command is required (i.e. early arrival) at the DRAM device interface. In DDR2 and DDR3 SDRAM memory systems, the early arriving column-access command may be referred to as the Posted-CAS command. Thus, part of a row may be activated as needed, therefore providing sub-row activation. In addition, lower power may also be provided.
It should be noted that the embodiments of the above-described schemes may not necessarily require additional pins or new commands to be sent by the memory controller to the protocol translation and interface circuit. In this way, a high bandwidth DRAM device may be provided.
As shown, the protocol translation and interface circuit 1210 may include eight DRAM devices to be connected thereto via eight independent data paths. For example, the protocol translation and interface circuit 1210 may emulate a single 8 Gb DRAM device with eight 1 Gb DRAM devices. The memory controller may therefore expect to see eight banks, 32768 rows per bank, 4096 columns per row, and four bits per column. When the memory controller issues a row-activation command, it may expect that 4096 columns are ready for a column-access command that follows, whereas the 1 Gb devices may only have 2048 columns per row. Similarly, the same issue of differing row sizes may arise when 2 Gb devices are used to emulate a 16 Gb DRAM device or 4 Gb devices are used to emulate a 32 Gb device, etc.
To accommodate for the difference between the row sizes of the 1 Gb and 8 Gb DRAM devices, 2 Gb and 16 gb DRAM devices, 4 Gb and 32 Gb DRAM devices, etc., the protocol translation and interface circuit 1210 may calculate and issue the appropriate number of row-activation commands to prepare for a subsequent column-access command that may access any portion of the larger row. The protocol translation and interface circuit 1210 may be configured with different behaviors, depending on the specific condition.
In one exemplary embodiment, the memory controller may not issue early column-access commands. The protocol translation and interface circuit 1210 may activate multiple, smaller rows to match the size of the larger row in the higher capacity logical DRAM device.
Furthermore, the protocol translation and interface circuit 1210 may present a single data path to the memory controller, as shown. Thus, the protocol translation and interface circuit 1210 may present itself as a single DRAM device with a single electrical interface to the memory controller. For example, if eight 1 Gb DRAM devices are used by the protocol translation and interface circuit 1210 to emulate a single, standard 8 Gb DRAM device, the memory controller may expect that the logical 8 Gb DRAM device will take over 300 ns to perform a refresh command. The protocol translation and interface circuit 1210 may also intelligently schedule the refresh commands. Thus, for example, the protocol translation and interface circuit 1210 may separately schedule refresh commands to the 1 Gb DRAM devices, with each refresh command taking 100 ns.
To this end, where multiple physical DRAM devices are used by the protocol translation and interface circuit 1210 to emulate a single larger DRAM device, the memory controller may expect that the logical device may take a relatively long period to perform a refresh command. The protocol translation and interface circuit 1210 may separately schedule refresh commands to each of the physical DRAM devices. Thus, the refresh of the larger logical device may take a relatively smaller period of time as compared with a refresh of a physical DRAM device of the same size. DDR3 memory systems may potentially require calibration sequences to ensure that the high speed data I/O circuits are periodically calibrated against thermal-variances induced timing drifts. The staggered refresh commands may also optionally guarantee I/O quiet time required to separately calibrate each of the independent physical DRAM devices.
Thus, in one embodiment, a protocol translation and interface circuit 1210 may allow for the staggering of refresh times of logical DRAM devices. DDR3 devices may optionally require different levels of zero quotient (ZQ) calibration sequences, and the calibration sequences may require guaranteed system quiet time, but may be power intensive, and may require that other I/O in the system are not also switching at the same time. Thus, refresh commands in a higher capacity logical DRAM device may be emulated by staggering refresh commands to different lower capacity physical DRAM devices. The staggering of the refresh commands may optionally provide a guaranteed I/O quiet time that may be required to separately calibrate each of the independent physical DRAM devices.
As shown, in a memory system where the memory controller issues the column-access command without enough latency to cover both the DRAM device row-access latency and column-access latency, the interface circuit may send multiple row-access commands to multiple DRAM devices to guarantee that the subsequent column access will hit an open bank. In one exemplary embodiment, the physical device may have a 1 kilobyte (kb) row size and the logical device may have a 2 kb row size. In this case, the interface circuit may activate two 1 kb rows in two different physical devices (since two rows may not be activated in the same device within a span of tRRD). In another exemplary embodiment, the physical device may have a 1 kb row size and the logical device may have a 4 kb row size. In this case, four 1 kb rows may be opened to prepare for the arrival of a column-access command that may be targeted to any part of the 4 kb row.
In one embodiment, the memory controller may issue column-access commands early. The interface circuit may do this in any desired manner, including for example, using the additive latency property of DDR2 and DDR3 devices. The interface circuit may also activate one specific row in one specific DRAM device. This may allow sub-row activation for the higher capacity logical DRAM device.
In the context of the present embodiment, a memory controller may issue a column-access command early, i.e. before the row-activation command is to be issued to a DRAM device. Accordingly, an interface circuit may take a portion of the column address, combine it with the row address and form a sub-row address. To this end, the interface circuit may activate the row that is targeted by the column-access command. Just by way of example, if the physical device has a 1 kb row size and the logical device has a 2 kb row size, the early column-access command may allow the interface circuit to activate a single 1 kb row. The interface circuit can thus implement sub-row activation for a logical device with a larger row size than the physical devices without necessarily the use of additional pins or special commands.
In one exemplary embodiment, the hardware environment 1500 may include a computer system. As shown, the hardware environment 1500 includes at least one central processor 1501 which is connected to a communication bus 1502. The hardware environment 1500 also includes main memory 1504. The main memory 1504 may include, for example random access memory (RAM) and/or any other desired type of memory. Further, in various embodiments, the main memory 1504 may include memory circuits, interface circuits, etc.
The hardware environment 1500 also includes a graphics processor 1506 and a display 1508. The hardware environment 1500 may also include a secondary storage 1510. The secondary storage 1510 includes, for example, a hard disk drive and/or a removable storage drive, representing a floppy disk drive, a magnetic tape drive, a compact disk drive, etc. The removable storage drive reads from and/or writes to a removable storage unit in a well known manner.
Computer programs, or computer control logic algorithms, may be stored in the main memory 1504 and/or the secondary storage 1510. Such computer programs, when executed, enable the computer system 1500 to perform various functions. Memory 1504, storage 1510 and/or any other storage are possible examples of computer-readable media.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application is a continuation-in-part of U.S. application Ser. No. 11/461,437 filed Jul. 31, 2006, which is now U.S. Pat. No. 8,077,535, U.S. application Ser. No. 11/702,981 filed Feb. 05, 2007, which is now U.S. Pat. No. 8,089,795 , and U.S. application Ser. No. 11/702,960 filed Feb. 05, 2007 now abandoned; and further claims the benefit of U.S. provisional application Ser. No. 60/772,414 filed Feb. 09, 2006 and U.S. provisional application Ser. No. 60/865,624 filed Nov. 13, 2006, which are each incorporated herein by reference in their entirety for all purposes. The present application is also related to U.S. application Ser. No. 11/672,921 filed Feb. 08, 2007, which names identical inventorship and is incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3800292 | Curley et al. | Mar 1974 | A |
4069452 | Conway et al. | Jan 1978 | A |
4323965 | Johnson et al. | Apr 1982 | A |
4334307 | Bourgeois et al. | Jun 1982 | A |
4345319 | Bernardini et al. | Aug 1982 | A |
4392212 | Miyasaka et al. | Jul 1983 | A |
4500958 | Manton et al. | Feb 1985 | A |
4525921 | Carson et al. | Jul 1985 | A |
4566082 | Anderson | Jan 1986 | A |
4592019 | Huang et al. | May 1986 | A |
4628407 | August et al. | Dec 1986 | A |
4646128 | Carson et al. | Feb 1987 | A |
4698748 | Juzswik et al. | Oct 1987 | A |
4706166 | Go | Nov 1987 | A |
4710903 | Hereth et al. | Dec 1987 | A |
4764846 | Go | Aug 1988 | A |
4780843 | Tietjen | Oct 1988 | A |
4794597 | Ooba et al. | Dec 1988 | A |
4796232 | House | Jan 1989 | A |
4807191 | Flannagan | Feb 1989 | A |
4841440 | Yonezu et al. | Jun 1989 | A |
4862347 | Rudy | Aug 1989 | A |
4884237 | Mueller et al. | Nov 1989 | A |
4887240 | Garverick et al. | Dec 1989 | A |
4888687 | Allison et al. | Dec 1989 | A |
4899107 | Corbett et al. | Feb 1990 | A |
4912678 | Mashiko | Mar 1990 | A |
4916575 | Van Asten | Apr 1990 | A |
4922451 | Lo et al. | May 1990 | A |
4935734 | Austin | Jun 1990 | A |
4937791 | Steele et al. | Jun 1990 | A |
4956694 | Eide | Sep 1990 | A |
4982265 | Watanabe et al. | Jan 1991 | A |
4983533 | Go | Jan 1991 | A |
5025364 | Zellmer | Jun 1991 | A |
5072424 | Brent et al. | Dec 1991 | A |
5083266 | Watanabe | Jan 1992 | A |
5104820 | Go et al. | Apr 1992 | A |
5193072 | Frenkil et al. | Mar 1993 | A |
5212666 | Takeda | May 1993 | A |
5220672 | Nakao et al. | Jun 1993 | A |
5222014 | Lin | Jun 1993 | A |
5241266 | Ahmad et al. | Aug 1993 | A |
5252807 | Chizinsky | Oct 1993 | A |
5257233 | Schaefer | Oct 1993 | A |
5278796 | Tillinghast et al. | Jan 1994 | A |
5282177 | McLaury | Jan 1994 | A |
5332922 | Oguchi et al. | Jul 1994 | A |
5347428 | Carson et al. | Sep 1994 | A |
5369749 | Baker et al. | Nov 1994 | A |
5384745 | Konishi et al. | Jan 1995 | A |
5388265 | Volk | Feb 1995 | A |
5390078 | Taylor | Feb 1995 | A |
5390334 | Harrison | Feb 1995 | A |
5392251 | Manning | Feb 1995 | A |
5408190 | Wood et al. | Apr 1995 | A |
5432729 | Carson et al. | Jul 1995 | A |
5448511 | Paurus et al. | Sep 1995 | A |
5453434 | Albaugh et al. | Sep 1995 | A |
5467455 | Gay et al. | Nov 1995 | A |
5483497 | Mochizuki et al. | Jan 1996 | A |
5498886 | Hsu et al. | Mar 1996 | A |
5502333 | Bertin et al. | Mar 1996 | A |
5502667 | Bertin et al. | Mar 1996 | A |
5513135 | Dell et al. | Apr 1996 | A |
5513339 | Agrawal et al. | Apr 1996 | A |
5519832 | Warchol | May 1996 | A |
5526320 | Zagar et al. | Jun 1996 | A |
5530836 | Busch et al. | Jun 1996 | A |
5550781 | Sugawara et al. | Aug 1996 | A |
5559990 | Cheng et al. | Sep 1996 | A |
5561622 | Bertin et al. | Oct 1996 | A |
5563086 | Bertin et al. | Oct 1996 | A |
5566344 | Hall et al. | Oct 1996 | A |
5581498 | Ludwig et al. | Dec 1996 | A |
5581779 | Hall et al. | Dec 1996 | A |
5590071 | Kolor et al. | Dec 1996 | A |
5598376 | Merritt et al. | Jan 1997 | A |
5604714 | Manning et al. | Feb 1997 | A |
5606710 | Hall et al. | Feb 1997 | A |
5608262 | Degani et al. | Mar 1997 | A |
5610864 | Manning | Mar 1997 | A |
5623686 | Hall et al. | Apr 1997 | A |
5627791 | Wright et al. | May 1997 | A |
5640337 | Huang et al. | Jun 1997 | A |
5640364 | Merritt et al. | Jun 1997 | A |
5652724 | Manning | Jul 1997 | A |
5654204 | Anderson | Aug 1997 | A |
5661677 | Rondeau et al. | Aug 1997 | A |
5661695 | Zagar et al. | Aug 1997 | A |
5668773 | Zagar et al. | Sep 1997 | A |
5675549 | Ong et al. | Oct 1997 | A |
5680342 | Frankeny | Oct 1997 | A |
5682354 | Manning | Oct 1997 | A |
5692121 | Bozso et al. | Nov 1997 | A |
5692202 | Kardach et al. | Nov 1997 | A |
5696732 | Zagar et al. | Dec 1997 | A |
5696929 | Hasbun et al. | Dec 1997 | A |
5702984 | Bertin et al. | Dec 1997 | A |
5703813 | Manning et al. | Dec 1997 | A |
5706247 | Merritt et al. | Jan 1998 | A |
RE35733 | Hernandez et al. | Feb 1998 | E |
5717654 | Manning | Feb 1998 | A |
5721859 | Manning | Feb 1998 | A |
5724288 | Cloud et al. | Mar 1998 | A |
5729503 | Manning | Mar 1998 | A |
5729504 | Cowles | Mar 1998 | A |
5742792 | Yanai et al. | Apr 1998 | A |
5748914 | Barth et al. | May 1998 | A |
5752045 | Chen | May 1998 | A |
5757703 | Merritt et al. | May 1998 | A |
5760478 | Bozso et al. | Jun 1998 | A |
5761703 | Bolyn | Jun 1998 | A |
5765203 | Sangha | Jun 1998 | A |
5781766 | Davis | Jul 1998 | A |
5787457 | Miller et al. | Jul 1998 | A |
5798961 | Heyden et al. | Aug 1998 | A |
5802010 | Zagar et al. | Sep 1998 | A |
5802395 | Connolly et al. | Sep 1998 | A |
5802555 | Shigeeda | Sep 1998 | A |
5812488 | Zagar et al. | Sep 1998 | A |
5818788 | Kimura et al. | Oct 1998 | A |
5819065 | Chilton et al. | Oct 1998 | A |
5831833 | Shirakawa et al. | Nov 1998 | A |
5831931 | Manning | Nov 1998 | A |
5831932 | Merritt et al. | Nov 1998 | A |
5834838 | Anderson | Nov 1998 | A |
5835435 | Bogin et al. | Nov 1998 | A |
5838165 | Chatter | Nov 1998 | A |
5838177 | Keeth | Nov 1998 | A |
5841580 | Farmwald et al. | Nov 1998 | A |
5843799 | Hsu et al. | Dec 1998 | A |
5843807 | Burns | Dec 1998 | A |
5845108 | Yoo et al. | Dec 1998 | A |
5850368 | Ong et al. | Dec 1998 | A |
5859792 | Rondeau et al. | Jan 1999 | A |
5860106 | Domen et al. | Jan 1999 | A |
5870347 | Keeth et al. | Feb 1999 | A |
5870350 | Bertin et al. | Feb 1999 | A |
5872907 | Griess et al. | Feb 1999 | A |
5875142 | Chevallier | Feb 1999 | A |
5878279 | Athenes | Mar 1999 | A |
5884088 | Kardach et al. | Mar 1999 | A |
5901105 | Ong et al. | May 1999 | A |
5903500 | Tsang et al. | May 1999 | A |
5905688 | Park | May 1999 | A |
5907512 | Parkinson et al. | May 1999 | A |
5910010 | Nishizawa et al. | Jun 1999 | A |
5913072 | Wieringa | Jun 1999 | A |
5915105 | Farmwald et al. | Jun 1999 | A |
5915167 | Leedy | Jun 1999 | A |
5917758 | Keeth | Jun 1999 | A |
5923611 | Ryan | Jul 1999 | A |
5924111 | Huang et al. | Jul 1999 | A |
5926435 | Park et al. | Jul 1999 | A |
5929650 | Pappert et al. | Jul 1999 | A |
5943254 | Bakeman, Jr. et al. | Aug 1999 | A |
5946265 | Cowles | Aug 1999 | A |
5949254 | Keeth | Sep 1999 | A |
5953215 | Karabatsos | Sep 1999 | A |
5953263 | Farmwald et al. | Sep 1999 | A |
5954804 | Farmwald et al. | Sep 1999 | A |
5956233 | Yew et al. | Sep 1999 | A |
5960468 | Paluch | Sep 1999 | A |
5962435 | Mao et al. | Oct 1999 | A |
5963429 | Chen | Oct 1999 | A |
5963463 | Rondeau et al. | Oct 1999 | A |
5963464 | Dell et al. | Oct 1999 | A |
5963504 | Manning | Oct 1999 | A |
5966724 | Ryan | Oct 1999 | A |
5966727 | Nishino | Oct 1999 | A |
5969996 | Muranaka et al. | Oct 1999 | A |
5973392 | Senba et al. | Oct 1999 | A |
5978304 | Crafts | Nov 1999 | A |
5995424 | Lawrence et al. | Nov 1999 | A |
5995443 | Farmwald et al. | Nov 1999 | A |
6001671 | Fjelstad | Dec 1999 | A |
6002613 | Cloud et al. | Dec 1999 | A |
6002627 | Chevallier | Dec 1999 | A |
6014339 | Kobayashi et al. | Jan 2000 | A |
6016282 | Keeth | Jan 2000 | A |
6026027 | Terrell, II et al. | Feb 2000 | A |
6026050 | Baker et al. | Feb 2000 | A |
6029250 | Keeth | Feb 2000 | A |
6032214 | Farmwald et al. | Feb 2000 | A |
6032215 | Farmwald et al. | Feb 2000 | A |
6034916 | Lee | Mar 2000 | A |
6034918 | Farmwald et al. | Mar 2000 | A |
6035365 | Farmwald et al. | Mar 2000 | A |
6038195 | Farmwald et al. | Mar 2000 | A |
6038673 | Benn et al. | Mar 2000 | A |
6044028 | Kumagai et al. | Mar 2000 | A |
6044032 | Li | Mar 2000 | A |
6047073 | Norris et al. | Apr 2000 | A |
6047344 | Kawasumi et al. | Apr 2000 | A |
6047361 | Ingenio et al. | Apr 2000 | A |
6053948 | Vaidyanathan et al. | Apr 2000 | A |
6058451 | Bermingham et al. | May 2000 | A |
6065092 | Roy | May 2000 | A |
6069504 | Keeth | May 2000 | A |
6070217 | Connolly et al. | May 2000 | A |
6073223 | McAllister et al. | Jun 2000 | A |
6075730 | Barth et al. | Jun 2000 | A |
6075744 | Tsern et al. | Jun 2000 | A |
6078546 | Lee | Jun 2000 | A |
6079025 | Fung | Jun 2000 | A |
6084434 | Keeth | Jul 2000 | A |
6088290 | Ohtake et al. | Jul 2000 | A |
6091251 | Wood et al. | Jul 2000 | A |
RE36839 | Simmons et al. | Aug 2000 | E |
6101152 | Farmwald et al. | Aug 2000 | A |
6101564 | Athenes et al. | Aug 2000 | A |
6101612 | Jeddeloh | Aug 2000 | A |
6108795 | Jeddeloh | Aug 2000 | A |
6111812 | Gans et al. | Aug 2000 | A |
6125072 | Wu | Sep 2000 | A |
6134638 | Olarig et al. | Oct 2000 | A |
6154370 | Degani et al. | Nov 2000 | A |
6166991 | Phelan | Dec 2000 | A |
6181640 | Kang | Jan 2001 | B1 |
6182184 | Farmwald et al. | Jan 2001 | B1 |
6199151 | Williams et al. | Mar 2001 | B1 |
6208168 | Rhee | Mar 2001 | B1 |
6216246 | Shau | Apr 2001 | B1 |
6222739 | Bhakta et al. | Apr 2001 | B1 |
6226709 | Goodwin et al. | May 2001 | B1 |
6226730 | Murdoch et al. | May 2001 | B1 |
6233192 | Tanaka | May 2001 | B1 |
6233650 | Johnson et al. | May 2001 | B1 |
6240048 | Matsubara | May 2001 | B1 |
6243282 | Rondeau et al. | Jun 2001 | B1 |
6252807 | Suzuki et al. | Jun 2001 | B1 |
6253278 | Ryan | Jun 2001 | B1 |
6260097 | Farmwald et al. | Jul 2001 | B1 |
6260154 | Jeddeloh | Jul 2001 | B1 |
6262938 | Lee et al. | Jul 2001 | B1 |
6266285 | Farmwald et al. | Jul 2001 | B1 |
6266292 | Tsern et al. | Jul 2001 | B1 |
6274395 | Weber | Aug 2001 | B1 |
6279069 | Robinson et al. | Aug 2001 | B1 |
6295572 | Wu | Sep 2001 | B1 |
6297966 | Lee et al. | Oct 2001 | B1 |
6298426 | Ajanovic | Oct 2001 | B1 |
6304511 | Gans et al. | Oct 2001 | B1 |
6307769 | Nuxoll et al. | Oct 2001 | B1 |
6314051 | Farmwald et al. | Nov 2001 | B1 |
6317352 | Halbert et al. | Nov 2001 | B1 |
6317381 | Gans et al. | Nov 2001 | B1 |
6324120 | Farmwald et al. | Nov 2001 | B2 |
6326810 | Keeth | Dec 2001 | B1 |
6327664 | Dell et al. | Dec 2001 | B1 |
6336174 | Li et al. | Jan 2002 | B1 |
6338108 | Motomura | Jan 2002 | B1 |
6338113 | Kubo et al. | Jan 2002 | B1 |
6341347 | Joy et al. | Jan 2002 | B1 |
6343019 | Jiang et al. | Jan 2002 | B1 |
6343042 | Tsern et al. | Jan 2002 | B1 |
6353561 | Funyu et al. | Mar 2002 | B1 |
6356105 | Volk | Mar 2002 | B1 |
6356500 | Cloud et al. | Mar 2002 | B1 |
6362656 | Rhee | Mar 2002 | B2 |
6363031 | Phelan | Mar 2002 | B2 |
6378020 | Farmwald et al. | Apr 2002 | B2 |
6381188 | Choi et al. | Apr 2002 | B1 |
6381668 | Lunteren | Apr 2002 | B1 |
6389514 | Rokicki | May 2002 | B1 |
6392304 | Butler | May 2002 | B1 |
6414868 | Wong et al. | Jul 2002 | B1 |
6418034 | Weber et al. | Jul 2002 | B1 |
6421754 | Kau et al. | Jul 2002 | B1 |
6424532 | Kawamura | Jul 2002 | B2 |
6426916 | Farmwald et al. | Jul 2002 | B2 |
6429029 | Eldridge et al. | Aug 2002 | B1 |
6430103 | Nakayama et al. | Aug 2002 | B2 |
6434660 | Lambert et al. | Aug 2002 | B1 |
6437600 | Keeth | Aug 2002 | B1 |
6438057 | Ruckerbauer | Aug 2002 | B1 |
6442698 | Nizar | Aug 2002 | B2 |
6445591 | Kwong | Sep 2002 | B1 |
6452826 | Kim et al. | Sep 2002 | B1 |
6452863 | Farmwald et al. | Sep 2002 | B2 |
6453400 | Maesako et al. | Sep 2002 | B1 |
6453402 | Jeddeloh | Sep 2002 | B1 |
6453434 | Delp et al. | Sep 2002 | B2 |
6455348 | Yamaguchi | Sep 2002 | B1 |
6457095 | Volk | Sep 2002 | B1 |
6459651 | Lee et al. | Oct 2002 | B1 |
6473831 | Schade | Oct 2002 | B1 |
6476476 | Glenn | Nov 2002 | B1 |
6480929 | Gauthier et al. | Nov 2002 | B1 |
6487102 | Halbert et al. | Nov 2002 | B1 |
6489669 | Shimada et al. | Dec 2002 | B2 |
6490161 | Johnson | Dec 2002 | B1 |
6492726 | Quek et al. | Dec 2002 | B1 |
6493789 | Ware et al. | Dec 2002 | B2 |
6496440 | Manning | Dec 2002 | B2 |
6496897 | Ware et al. | Dec 2002 | B2 |
6498766 | Lee et al. | Dec 2002 | B2 |
6510097 | Fukuyama | Jan 2003 | B2 |
6510503 | Gillingham et al. | Jan 2003 | B2 |
6512392 | Fleury et al. | Jan 2003 | B2 |
6521984 | Matsuura | Feb 2003 | B2 |
6526471 | Shimomura et al. | Feb 2003 | B1 |
6526473 | Kim | Feb 2003 | B1 |
6526484 | Stacovsky et al. | Feb 2003 | B1 |
6545895 | Li et al. | Apr 2003 | B1 |
6546446 | Farmwald et al. | Apr 2003 | B2 |
6553450 | Dodd et al. | Apr 2003 | B1 |
6560158 | Choi et al. | May 2003 | B2 |
6563337 | Dour | May 2003 | B2 |
6563759 | Yahata et al. | May 2003 | B2 |
6564281 | Farmwald et al. | May 2003 | B2 |
6564285 | Mills et al. | May 2003 | B1 |
6574150 | Suyama et al. | Jun 2003 | B2 |
6584037 | Farmwald et al. | Jun 2003 | B2 |
6587912 | Leddige et al. | Jul 2003 | B2 |
6590822 | Hwang et al. | Jul 2003 | B2 |
6594770 | Sato et al. | Jul 2003 | B1 |
6597616 | Tsern et al. | Jul 2003 | B2 |
6597617 | Ooishi et al. | Jul 2003 | B2 |
6614700 | Dietrich et al. | Sep 2003 | B2 |
6618267 | Dalal et al. | Sep 2003 | B1 |
6618791 | Dodd et al. | Sep 2003 | B1 |
6621760 | Ahmad et al. | Sep 2003 | B1 |
6628538 | Funaba et al. | Sep 2003 | B2 |
6629282 | Sugamori et al. | Sep 2003 | B1 |
6630729 | Huang | Oct 2003 | B2 |
6631086 | Bill et al. | Oct 2003 | B1 |
6639820 | Khandekar et al. | Oct 2003 | B1 |
6646939 | Kwak | Nov 2003 | B2 |
6650588 | Yamagata | Nov 2003 | B2 |
6650594 | Lee et al. | Nov 2003 | B1 |
6657634 | Sinclair et al. | Dec 2003 | B1 |
6657918 | Foss et al. | Dec 2003 | B2 |
6657919 | Foss et al. | Dec 2003 | B2 |
6658016 | Dai et al. | Dec 2003 | B1 |
6658530 | Robertson et al. | Dec 2003 | B1 |
6659512 | Harper et al. | Dec 2003 | B1 |
6664625 | Hiruma | Dec 2003 | B2 |
6665224 | Lehmann et al. | Dec 2003 | B1 |
6665227 | Fetzer | Dec 2003 | B2 |
6668242 | Reynov et al. | Dec 2003 | B1 |
6674154 | Minamio et al. | Jan 2004 | B2 |
6683372 | Wong et al. | Jan 2004 | B1 |
6684292 | Piccirillo et al. | Jan 2004 | B2 |
6690191 | Wu et al. | Feb 2004 | B2 |
6697295 | Farmwald et al. | Feb 2004 | B2 |
6701446 | Tsern et al. | Mar 2004 | B2 |
6705877 | Li et al. | Mar 2004 | B1 |
6708144 | Merryman et al. | Mar 2004 | B1 |
6710430 | Minamio et al. | Mar 2004 | B2 |
6711043 | Friedman et al. | Mar 2004 | B2 |
6713856 | Tsai et al. | Mar 2004 | B2 |
6714433 | Doblar et al. | Mar 2004 | B2 |
6714891 | Dendinger | Mar 2004 | B2 |
6724684 | Kim | Apr 2004 | B2 |
6730540 | Siniaguine | May 2004 | B2 |
6731009 | Jones et al. | May 2004 | B1 |
6731527 | Brown | May 2004 | B2 |
6742098 | Halbert et al. | May 2004 | B1 |
6744687 | Koo et al. | Jun 2004 | B2 |
6747887 | Halbert et al. | Jun 2004 | B2 |
6751113 | Bhakta et al. | Jun 2004 | B2 |
6751696 | Farmwald et al. | Jun 2004 | B2 |
6754129 | Khatri et al. | Jun 2004 | B2 |
6754132 | Kyung | Jun 2004 | B2 |
6757751 | Gene | Jun 2004 | B1 |
6762948 | Kyun et al. | Jul 2004 | B2 |
6765812 | Anderson | Jul 2004 | B2 |
6766469 | Larson et al. | Jul 2004 | B2 |
6771526 | LaBerge | Aug 2004 | B2 |
6772359 | Kwak et al. | Aug 2004 | B2 |
6779097 | Gillingham et al. | Aug 2004 | B2 |
6785767 | Coulson | Aug 2004 | B2 |
6791877 | Miura et al. | Sep 2004 | B2 |
6795899 | Dodd et al. | Sep 2004 | B2 |
6799241 | Kahn et al. | Sep 2004 | B2 |
6801989 | Johnson et al. | Oct 2004 | B2 |
6807598 | Farmwald et al. | Oct 2004 | B2 |
6807650 | Lamb et al. | Oct 2004 | B2 |
6807655 | Rehani et al. | Oct 2004 | B1 |
6810475 | Tardieux | Oct 2004 | B1 |
6816991 | Sanghani | Nov 2004 | B2 |
6819602 | Seo et al. | Nov 2004 | B2 |
6819617 | Hwang et al. | Nov 2004 | B2 |
6820163 | McCall et al. | Nov 2004 | B1 |
6820169 | Wilcox et al. | Nov 2004 | B2 |
6826104 | Kawaguchi et al. | Nov 2004 | B2 |
6839290 | Ahmad et al. | Jan 2005 | B2 |
6844754 | Yamagata | Jan 2005 | B2 |
6845027 | Mayer et al. | Jan 2005 | B2 |
6845055 | Koga et al. | Jan 2005 | B1 |
6847582 | Pan | Jan 2005 | B2 |
6850449 | Takahashi | Feb 2005 | B2 |
6854043 | Hargis et al. | Feb 2005 | B2 |
6862202 | Schaefer | Mar 2005 | B2 |
6862249 | Kyung | Mar 2005 | B2 |
6862653 | Dodd et al. | Mar 2005 | B1 |
6873534 | Bhakta et al. | Mar 2005 | B2 |
6878570 | Lyu et al. | Apr 2005 | B2 |
6894933 | Kuzmenka et al. | May 2005 | B2 |
6898683 | Nakamura | May 2005 | B2 |
6908314 | Brown | Jun 2005 | B2 |
6912778 | Ahn et al. | Jul 2005 | B2 |
6914786 | Paulsen et al. | Jul 2005 | B1 |
6917219 | New | Jul 2005 | B2 |
6922371 | Takahashi et al. | Jul 2005 | B2 |
6930900 | Bhakta et al. | Aug 2005 | B2 |
6930903 | Bhakta et al. | Aug 2005 | B2 |
6938119 | Kohn et al. | Aug 2005 | B2 |
6943450 | Fee et al. | Sep 2005 | B2 |
6944748 | Sanches et al. | Sep 2005 | B2 |
6947341 | Stubbs et al. | Sep 2005 | B2 |
6951982 | Chye et al. | Oct 2005 | B2 |
6952794 | Lu | Oct 2005 | B2 |
6961281 | Wong et al. | Nov 2005 | B2 |
6968416 | Moy | Nov 2005 | B2 |
6968419 | Holman | Nov 2005 | B1 |
6970968 | Holman | Nov 2005 | B1 |
6980021 | Srivastava et al. | Dec 2005 | B1 |
6986118 | Dickman | Jan 2006 | B2 |
6992501 | Rapport | Jan 2006 | B2 |
6992950 | Foss et al. | Jan 2006 | B2 |
7000062 | Perego et al. | Feb 2006 | B2 |
7003618 | Perego et al. | Feb 2006 | B2 |
7003639 | Tsern et al. | Feb 2006 | B2 |
7007095 | Chen et al. | Feb 2006 | B2 |
7007175 | Chang et al. | Feb 2006 | B2 |
7010642 | Perego et al. | Mar 2006 | B2 |
7010736 | Teh et al. | Mar 2006 | B1 |
7024518 | Halbert et al. | Apr 2006 | B2 |
7026708 | Cady et al. | Apr 2006 | B2 |
7028215 | Depew et al. | Apr 2006 | B2 |
7028234 | Huckaby et al. | Apr 2006 | B2 |
7033861 | Partridge et al. | Apr 2006 | B1 |
7035150 | Streif et al. | Apr 2006 | B2 |
7043599 | Ware et al. | May 2006 | B1 |
7043611 | McClannahan et al. | May 2006 | B2 |
7045396 | Crowley et al. | May 2006 | B2 |
7045901 | Lin et al. | May 2006 | B2 |
7046538 | Kinsley et al. | May 2006 | B2 |
7053470 | Sellers et al. | May 2006 | B1 |
7053478 | Roper et al. | May 2006 | B2 |
7058776 | Lee | Jun 2006 | B2 |
7058863 | Kouchi et al. | Jun 2006 | B2 |
7061784 | Jakobs et al. | Jun 2006 | B2 |
7061823 | Faue et al. | Jun 2006 | B2 |
7066741 | Burns et al. | Jun 2006 | B2 |
7075175 | Kazi et al. | Jul 2006 | B2 |
7079396 | Gates et al. | Jul 2006 | B2 |
7079441 | Partsch et al. | Jul 2006 | B1 |
7079446 | Murtagh et al. | Jul 2006 | B2 |
7085152 | Ellis et al. | Aug 2006 | B2 |
7085941 | Li | Aug 2006 | B2 |
7089438 | Raad | Aug 2006 | B2 |
7093101 | Aasheim et al. | Aug 2006 | B2 |
7103730 | Saxena et al. | Sep 2006 | B2 |
7110322 | Farmwald et al. | Sep 2006 | B2 |
7111143 | Walker | Sep 2006 | B2 |
7117309 | Bearden | Oct 2006 | B2 |
7119428 | Tanie et al. | Oct 2006 | B2 |
7120727 | Lee et al. | Oct 2006 | B2 |
7126399 | Lee | Oct 2006 | B1 |
7127567 | Ramakrishnan et al. | Oct 2006 | B2 |
7133960 | Thompson et al. | Nov 2006 | B1 |
7136978 | Miura et al. | Nov 2006 | B2 |
7138823 | Janzen et al. | Nov 2006 | B2 |
7149145 | Kim et al. | Dec 2006 | B2 |
7149824 | Johnson | Dec 2006 | B2 |
7173863 | Conley et al. | Feb 2007 | B2 |
7200021 | Raghuram | Apr 2007 | B2 |
7205789 | Karabatsos | Apr 2007 | B1 |
7210059 | Jeddeloh | Apr 2007 | B2 |
7215561 | Park et al. | May 2007 | B2 |
7218566 | Totolos, Jr. et al. | May 2007 | B1 |
7224595 | Dreps et al. | May 2007 | B2 |
7228264 | Barrenscheen et al. | Jun 2007 | B2 |
7231562 | Ohlhoff et al. | Jun 2007 | B2 |
7233541 | Yamamoto et al. | Jun 2007 | B2 |
7234081 | Nguyen et al. | Jun 2007 | B2 |
7243185 | See et al. | Jul 2007 | B2 |
7245541 | Janzen | Jul 2007 | B2 |
7254036 | Pauley et al. | Aug 2007 | B2 |
7266639 | Raghuram | Sep 2007 | B2 |
7269042 | Kinsley et al. | Sep 2007 | B2 |
7269708 | Ware | Sep 2007 | B2 |
7274583 | Park et al. | Sep 2007 | B2 |
7277333 | Schaefer | Oct 2007 | B2 |
7286436 | Bhakta et al. | Oct 2007 | B2 |
7289386 | Bhakta et al. | Oct 2007 | B2 |
7296754 | Nishizawa et al. | Nov 2007 | B2 |
7299330 | Gillingham et al. | Nov 2007 | B2 |
7302598 | Suzuki et al. | Nov 2007 | B2 |
7307863 | Yen et al. | Dec 2007 | B2 |
7317250 | Koh et al. | Jan 2008 | B2 |
7327613 | Lee | Feb 2008 | B2 |
7336490 | Harris et al. | Feb 2008 | B2 |
7337293 | Brittain et al. | Feb 2008 | B2 |
7363422 | Perego et al. | Apr 2008 | B2 |
7366947 | Gower et al. | Apr 2008 | B2 |
7379316 | Rajan | May 2008 | B2 |
7386656 | Rajan et al. | Jun 2008 | B2 |
7392338 | Rajan et al. | Jun 2008 | B2 |
7408393 | Jain et al. | Aug 2008 | B1 |
7409492 | Tanaka et al. | Aug 2008 | B2 |
7414917 | Ruckerbauer et al. | Aug 2008 | B2 |
7428644 | Jeddeloh et al. | Sep 2008 | B2 |
7437579 | Jeddeloh et al. | Oct 2008 | B2 |
7441064 | Gaskins | Oct 2008 | B2 |
7457122 | Lai et al. | Nov 2008 | B2 |
7464225 | Tsern | Dec 2008 | B2 |
7472220 | Rajan et al. | Dec 2008 | B2 |
7474576 | Co et al. | Jan 2009 | B2 |
7480147 | Hoss et al. | Jan 2009 | B2 |
7480774 | Ellis et al. | Jan 2009 | B2 |
7496777 | Kapil | Feb 2009 | B2 |
7499281 | Harris et al. | Mar 2009 | B2 |
7515453 | Rajan | Apr 2009 | B2 |
7532537 | Solomon et al. | May 2009 | B2 |
7539800 | Dell et al. | May 2009 | B2 |
7573136 | Jiang et al. | Aug 2009 | B2 |
7580312 | Rajan et al. | Aug 2009 | B2 |
7581121 | Barth et al. | Aug 2009 | B2 |
7581127 | Rajan et al. | Aug 2009 | B2 |
7590796 | Rajan et al. | Sep 2009 | B2 |
7599205 | Rajan | Oct 2009 | B2 |
7606245 | Ma et al. | Oct 2009 | B2 |
7609567 | Rajan et al. | Oct 2009 | B2 |
7613880 | Miura et al. | Nov 2009 | B2 |
7619912 | Bhakta et al. | Nov 2009 | B2 |
7724589 | Rajan et al. | May 2010 | B2 |
7730338 | Rajan et al. | Jun 2010 | B2 |
7738252 | Schuette et al. | Jun 2010 | B2 |
7761724 | Rajan et al. | Jul 2010 | B2 |
7791889 | Belady et al. | Sep 2010 | B2 |
7911798 | Chang et al. | Mar 2011 | B2 |
7934070 | Brittain et al. | Apr 2011 | B2 |
7990797 | Moshayedi et al. | Aug 2011 | B2 |
8116144 | Shaw et al. | Feb 2012 | B2 |
20010000822 | Dell et al. | May 2001 | A1 |
20010003198 | Wu | Jun 2001 | A1 |
20010011322 | Stolt et al. | Aug 2001 | A1 |
20010019509 | Aho et al. | Sep 2001 | A1 |
20010021106 | Weber et al. | Sep 2001 | A1 |
20010021137 | Kai et al. | Sep 2001 | A1 |
20010046129 | Broglia et al. | Nov 2001 | A1 |
20010046163 | Yanagawa | Nov 2001 | A1 |
20010052062 | Lipovski | Dec 2001 | A1 |
20020002662 | Olarig et al. | Jan 2002 | A1 |
20020004897 | Kao et al. | Jan 2002 | A1 |
20020015340 | Batinovich | Feb 2002 | A1 |
20020019961 | Blodgett | Feb 2002 | A1 |
20020034068 | Weber et al. | Mar 2002 | A1 |
20020038405 | Leddige et al. | Mar 2002 | A1 |
20020040416 | Tsern et al. | Apr 2002 | A1 |
20020041507 | Woo et al. | Apr 2002 | A1 |
20020051398 | Mizugaki | May 2002 | A1 |
20020060945 | Ikeda | May 2002 | A1 |
20020060948 | Chang et al. | May 2002 | A1 |
20020064073 | Chien | May 2002 | A1 |
20020064083 | Ryu et al. | May 2002 | A1 |
20020089831 | Forthun | Jul 2002 | A1 |
20020089970 | Asada et al. | Jul 2002 | A1 |
20020094671 | Distefano et al. | Jul 2002 | A1 |
20020121650 | Minamio et al. | Sep 2002 | A1 |
20020121670 | Minamio et al. | Sep 2002 | A1 |
20020124195 | Nizar | Sep 2002 | A1 |
20020129204 | Leighnor et al. | Sep 2002 | A1 |
20020145900 | Schaefer | Oct 2002 | A1 |
20020165706 | Raynham | Nov 2002 | A1 |
20020167092 | Fee et al. | Nov 2002 | A1 |
20020172024 | Hui et al. | Nov 2002 | A1 |
20020174274 | Wu et al. | Nov 2002 | A1 |
20020184438 | Usui | Dec 2002 | A1 |
20030002262 | Benisek et al. | Jan 2003 | A1 |
20030011993 | Summers et al. | Jan 2003 | A1 |
20030016550 | Yoo et al. | Jan 2003 | A1 |
20030021175 | Tae Kwak | Jan 2003 | A1 |
20030026155 | Yamagata | Feb 2003 | A1 |
20030026159 | Frankowsky et al. | Feb 2003 | A1 |
20030035312 | Halbert et al. | Feb 2003 | A1 |
20030039158 | Horiguchi et al. | Feb 2003 | A1 |
20030041295 | Hou et al. | Feb 2003 | A1 |
20030061458 | Wilcox et al. | Mar 2003 | A1 |
20030061459 | Aboulenein et al. | Mar 2003 | A1 |
20030083855 | Fukuyama | May 2003 | A1 |
20030088743 | Rader | May 2003 | A1 |
20030093614 | Kohn et al. | May 2003 | A1 |
20030101392 | Lee | May 2003 | A1 |
20030105932 | David et al. | Jun 2003 | A1 |
20030110339 | Calvignac et al. | Jun 2003 | A1 |
20030117875 | Lee et al. | Jun 2003 | A1 |
20030123389 | Russell et al. | Jul 2003 | A1 |
20030126338 | Dodd et al. | Jul 2003 | A1 |
20030127737 | Takahashi | Jul 2003 | A1 |
20030131160 | Hampel et al. | Jul 2003 | A1 |
20030145163 | Seo et al. | Jul 2003 | A1 |
20030158995 | Lee et al. | Aug 2003 | A1 |
20030164539 | Yau | Sep 2003 | A1 |
20030164543 | Kheng Lee | Sep 2003 | A1 |
20030174569 | Amidi | Sep 2003 | A1 |
20030182513 | Dodd et al. | Sep 2003 | A1 |
20030183934 | Barrett | Oct 2003 | A1 |
20030189868 | Riesenman et al. | Oct 2003 | A1 |
20030189870 | Wilcox | Oct 2003 | A1 |
20030191888 | Klein | Oct 2003 | A1 |
20030191915 | Saxena et al. | Oct 2003 | A1 |
20030200382 | Wells et al. | Oct 2003 | A1 |
20030200474 | Li | Oct 2003 | A1 |
20030205802 | Segaram et al. | Nov 2003 | A1 |
20030206476 | Joo | Nov 2003 | A1 |
20030217303 | Chua-Eoan et al. | Nov 2003 | A1 |
20030223290 | Park et al. | Dec 2003 | A1 |
20030227798 | Pax | Dec 2003 | A1 |
20030229821 | Ma | Dec 2003 | A1 |
20030230801 | Jiang et al. | Dec 2003 | A1 |
20030231540 | Lazar et al. | Dec 2003 | A1 |
20030231542 | Zaharinova-Papazova et al. | Dec 2003 | A1 |
20030234664 | Yamagata | Dec 2003 | A1 |
20040016994 | Huang | Jan 2004 | A1 |
20040027902 | Ooishi et al. | Feb 2004 | A1 |
20040034732 | Valin et al. | Feb 2004 | A1 |
20040034755 | LaBerge et al. | Feb 2004 | A1 |
20040037133 | Park et al. | Feb 2004 | A1 |
20040042503 | Shaeffer et al. | Mar 2004 | A1 |
20040044808 | Salmon et al. | Mar 2004 | A1 |
20040047228 | Chen | Mar 2004 | A1 |
20040049624 | Salmonsen | Mar 2004 | A1 |
20040057317 | Schaefer | Mar 2004 | A1 |
20040064647 | DeWhitt et al. | Apr 2004 | A1 |
20040064767 | Huckaby et al. | Apr 2004 | A1 |
20040083324 | Rabinovitz et al. | Apr 2004 | A1 |
20040088475 | Streif et al. | May 2004 | A1 |
20040100837 | Lee | May 2004 | A1 |
20040117723 | Foss | Jun 2004 | A1 |
20040123173 | Emberling et al. | Jun 2004 | A1 |
20040125635 | Kuzmenka | Jul 2004 | A1 |
20040133374 | Kattan | Jul 2004 | A1 |
20040133736 | Kyung | Jul 2004 | A1 |
20040139359 | Samson et al. | Jul 2004 | A1 |
20040145963 | Byon | Jul 2004 | A1 |
20040151038 | Ruckerbauer et al. | Aug 2004 | A1 |
20040174765 | Seo et al. | Sep 2004 | A1 |
20040177079 | Gluhovsky et al. | Sep 2004 | A1 |
20040178824 | Pan | Sep 2004 | A1 |
20040184324 | Pax | Sep 2004 | A1 |
20040186956 | Perego et al. | Sep 2004 | A1 |
20040188704 | Halbert et al. | Sep 2004 | A1 |
20040195682 | Kimura | Oct 2004 | A1 |
20040196732 | Lee | Oct 2004 | A1 |
20040205433 | Gower et al. | Oct 2004 | A1 |
20040208173 | Di Gregorio | Oct 2004 | A1 |
20040225858 | Brueggen | Nov 2004 | A1 |
20040228166 | Braun et al. | Nov 2004 | A1 |
20040228196 | Kwak et al. | Nov 2004 | A1 |
20040228203 | Koo | Nov 2004 | A1 |
20040230932 | Dickmann | Nov 2004 | A1 |
20040236877 | Burton | Nov 2004 | A1 |
20040250989 | Im et al. | Dec 2004 | A1 |
20040256638 | Perego et al. | Dec 2004 | A1 |
20040257847 | Matsui et al. | Dec 2004 | A1 |
20040257857 | Yamamoto et al. | Dec 2004 | A1 |
20040260957 | Jeddeloh et al. | Dec 2004 | A1 |
20040264255 | Royer | Dec 2004 | A1 |
20040268161 | Ross | Dec 2004 | A1 |
20050018495 | Bhakta et al. | Jan 2005 | A1 |
20050021874 | Georgiou et al. | Jan 2005 | A1 |
20050024963 | Jakobs et al. | Feb 2005 | A1 |
20050027928 | Avraham et al. | Feb 2005 | A1 |
20050028038 | Pomaranski et al. | Feb 2005 | A1 |
20050034004 | Bunker et al. | Feb 2005 | A1 |
20050036350 | So et al. | Feb 2005 | A1 |
20050041504 | Perego et al. | Feb 2005 | A1 |
20050044302 | Pauley et al. | Feb 2005 | A1 |
20050044303 | Perego et al. | Feb 2005 | A1 |
20050044305 | Jakobs et al. | Feb 2005 | A1 |
20050047192 | Matsui et al. | Mar 2005 | A1 |
20050071543 | Ellis et al. | Mar 2005 | A1 |
20050078532 | Ruckerbauer et al. | Apr 2005 | A1 |
20050081085 | Ellis et al. | Apr 2005 | A1 |
20050086548 | Haid et al. | Apr 2005 | A1 |
20050099834 | Funaba et al. | May 2005 | A1 |
20050102590 | Norris et al. | May 2005 | A1 |
20050105318 | Funaba et al. | May 2005 | A1 |
20050108460 | David | May 2005 | A1 |
20050127531 | Tay et al. | Jun 2005 | A1 |
20050132158 | Hampel et al. | Jun 2005 | A1 |
20050135176 | Ramakrishnan et al. | Jun 2005 | A1 |
20050138267 | Bains et al. | Jun 2005 | A1 |
20050138304 | Ramakrishnan et al. | Jun 2005 | A1 |
20050139977 | Nishio et al. | Jun 2005 | A1 |
20050141199 | Chiou et al. | Jun 2005 | A1 |
20050149662 | Perego | Jul 2005 | A1 |
20050152212 | Yang et al. | Jul 2005 | A1 |
20050156934 | Perego et al. | Jul 2005 | A1 |
20050166026 | Ware et al. | Jul 2005 | A1 |
20050193163 | Perego | Sep 2005 | A1 |
20050193183 | Barth et al. | Sep 2005 | A1 |
20050194676 | Fukuda et al. | Sep 2005 | A1 |
20050194991 | Dour et al. | Sep 2005 | A1 |
20050195629 | Leddige et al. | Sep 2005 | A1 |
20050201063 | Lee et al. | Sep 2005 | A1 |
20050204111 | Natarajan | Sep 2005 | A1 |
20050207255 | Perego et al. | Sep 2005 | A1 |
20050210196 | Perego et al. | Sep 2005 | A1 |
20050223179 | Perego et al. | Oct 2005 | A1 |
20050224948 | Lee et al. | Oct 2005 | A1 |
20050232049 | Park | Oct 2005 | A1 |
20050235119 | Sechrest et al. | Oct 2005 | A1 |
20050235131 | Ware | Oct 2005 | A1 |
20050237838 | Kwak et al. | Oct 2005 | A1 |
20050243635 | Schaefer | Nov 2005 | A1 |
20050246558 | Ku | Nov 2005 | A1 |
20050249011 | Maeda | Nov 2005 | A1 |
20050259504 | Murtugh et al. | Nov 2005 | A1 |
20050263312 | Bolken et al. | Dec 2005 | A1 |
20050265506 | Foss et al. | Dec 2005 | A1 |
20050269715 | Yoo | Dec 2005 | A1 |
20050278474 | Perersen et al. | Dec 2005 | A1 |
20050281096 | Bhakta et al. | Dec 2005 | A1 |
20050281123 | Bell et al. | Dec 2005 | A1 |
20050283572 | Ishihara | Dec 2005 | A1 |
20050285174 | Saito et al. | Dec 2005 | A1 |
20050286334 | Saito et al. | Dec 2005 | A1 |
20050289292 | Morrow et al. | Dec 2005 | A1 |
20050289317 | Liou et al. | Dec 2005 | A1 |
20060002201 | Janzen | Jan 2006 | A1 |
20060010339 | Klein | Jan 2006 | A1 |
20060026484 | Hollums | Feb 2006 | A1 |
20060038597 | Becker et al. | Feb 2006 | A1 |
20060039204 | Cornelius | Feb 2006 | A1 |
20060039205 | Cornelius | Feb 2006 | A1 |
20060041711 | Miura et al. | Feb 2006 | A1 |
20060041730 | Larson | Feb 2006 | A1 |
20060044909 | Kinsley et al. | Mar 2006 | A1 |
20060044913 | Klein et al. | Mar 2006 | A1 |
20060049502 | Goodwin et al. | Mar 2006 | A1 |
20060050574 | Streif et al. | Mar 2006 | A1 |
20060056244 | Ware | Mar 2006 | A1 |
20060062047 | Bhakta et al. | Mar 2006 | A1 |
20060067141 | Perego et al. | Mar 2006 | A1 |
20060085616 | Zeighami et al. | Apr 2006 | A1 |
20060087900 | Bucksch et al. | Apr 2006 | A1 |
20060090031 | Kirshenbaum et al. | Apr 2006 | A1 |
20060090054 | Choi et al. | Apr 2006 | A1 |
20060106951 | Bains | May 2006 | A1 |
20060112214 | Yeh | May 2006 | A1 |
20060112219 | Chawla et al. | May 2006 | A1 |
20060117152 | Amidi et al. | Jun 2006 | A1 |
20060117160 | Jackson et al. | Jun 2006 | A1 |
20060118933 | Haba | Jun 2006 | A1 |
20060120193 | Casper | Jun 2006 | A1 |
20060123265 | Ruckerbauer et al. | Jun 2006 | A1 |
20060126369 | Raghuram | Jun 2006 | A1 |
20060129712 | Raghuram | Jun 2006 | A1 |
20060129740 | Ruckerbauer et al. | Jun 2006 | A1 |
20060129755 | Raghuram | Jun 2006 | A1 |
20060133173 | Jain et al. | Jun 2006 | A1 |
20060136791 | Nierle | Jun 2006 | A1 |
20060149857 | Holman | Jul 2006 | A1 |
20060149982 | Vogt | Jul 2006 | A1 |
20060174082 | Bellows et al. | Aug 2006 | A1 |
20060176744 | Stave | Aug 2006 | A1 |
20060179262 | Brittain et al. | Aug 2006 | A1 |
20060179333 | Brittain et al. | Aug 2006 | A1 |
20060179334 | Brittain et al. | Aug 2006 | A1 |
20060180926 | Mullen et al. | Aug 2006 | A1 |
20060181953 | Rotenberg et al. | Aug 2006 | A1 |
20060195631 | Rajamani | Aug 2006 | A1 |
20060198178 | Kinsley et al. | Sep 2006 | A1 |
20060203590 | Mori et al. | Sep 2006 | A1 |
20060206738 | Jeddeloh et al. | Sep 2006 | A1 |
20060233012 | Sekiguchi et al. | Oct 2006 | A1 |
20060236165 | Cepulis et al. | Oct 2006 | A1 |
20060236201 | Gower et al. | Oct 2006 | A1 |
20060248261 | Jacob et al. | Nov 2006 | A1 |
20060248387 | Nicholson et al. | Nov 2006 | A1 |
20060262586 | Solomon et al. | Nov 2006 | A1 |
20060262587 | Matsui et al. | Nov 2006 | A1 |
20060277355 | Ellsberry et al. | Dec 2006 | A1 |
20060294295 | Fukuzo | Dec 2006 | A1 |
20070005998 | Jain et al. | Jan 2007 | A1 |
20070050530 | Rajan | Mar 2007 | A1 |
20070058471 | Rajan et al. | Mar 2007 | A1 |
20070070669 | Tsern | Mar 2007 | A1 |
20070088995 | Tsern et al. | Apr 2007 | A1 |
20070091696 | Niggemeier et al. | Apr 2007 | A1 |
20070106860 | Foster, Sr. et al. | May 2007 | A1 |
20070136537 | Doblar et al. | Jun 2007 | A1 |
20070152313 | Periaman et al. | Jul 2007 | A1 |
20070162700 | Fortin et al. | Jul 2007 | A1 |
20070188997 | Hockanson et al. | Aug 2007 | A1 |
20070192563 | Rajan et al. | Aug 2007 | A1 |
20070195613 | Rajan et al. | Aug 2007 | A1 |
20070204075 | Rajan et al. | Aug 2007 | A1 |
20070216445 | Raghavan et al. | Sep 2007 | A1 |
20070247194 | Jain | Oct 2007 | A1 |
20070279084 | Oh et al. | Dec 2007 | A1 |
20070285895 | Gruendler et al. | Dec 2007 | A1 |
20070288683 | Panabaker et al. | Dec 2007 | A1 |
20070288686 | Arcedera et al. | Dec 2007 | A1 |
20070288687 | Panabaker et al. | Dec 2007 | A1 |
20070290333 | Saini et al. | Dec 2007 | A1 |
20080002447 | Gulachenski et al. | Jan 2008 | A1 |
20080010435 | Smith et al. | Jan 2008 | A1 |
20080025108 | Rajan et al. | Jan 2008 | A1 |
20080025122 | Schakel et al. | Jan 2008 | A1 |
20080025136 | Rajan et al. | Jan 2008 | A1 |
20080025137 | Rajan et al. | Jan 2008 | A1 |
20080027697 | Rajan et al. | Jan 2008 | A1 |
20080027702 | Rajan et al. | Jan 2008 | A1 |
20080027703 | Rajan et al. | Jan 2008 | A1 |
20080028135 | Rajan et al. | Jan 2008 | A1 |
20080028136 | Schakel et al. | Jan 2008 | A1 |
20080028137 | Schakel et al. | Jan 2008 | A1 |
20080031030 | Rajan et al. | Feb 2008 | A1 |
20080031072 | Rajan et al. | Feb 2008 | A1 |
20080034130 | Perego et al. | Feb 2008 | A1 |
20080037353 | Rajan et al. | Feb 2008 | A1 |
20080056014 | Rajan et al. | Mar 2008 | A1 |
20080062773 | Rajan et al. | Mar 2008 | A1 |
20080065820 | Gillingham et al. | Mar 2008 | A1 |
20080082763 | Rajan et al. | Apr 2008 | A1 |
20080086588 | Danilak et al. | Apr 2008 | A1 |
20080089034 | Hoss et al. | Apr 2008 | A1 |
20080098277 | Hazelzet | Apr 2008 | A1 |
20080103753 | Rajan et al. | May 2008 | A1 |
20080104314 | Rajan et al. | May 2008 | A1 |
20080109206 | Rajan et al. | May 2008 | A1 |
20080109595 | Rajan et al. | May 2008 | A1 |
20080109597 | Schakel et al. | May 2008 | A1 |
20080109598 | Schakel et al. | May 2008 | A1 |
20080115006 | Smith et al. | May 2008 | A1 |
20080120443 | Rajan et al. | May 2008 | A1 |
20080120458 | Gillingham et al. | May 2008 | A1 |
20080123459 | Rajan et al. | May 2008 | A1 |
20080126624 | Prete et al. | May 2008 | A1 |
20080126687 | Rajan et al. | May 2008 | A1 |
20080126688 | Rajan et al. | May 2008 | A1 |
20080126689 | Rajan et al. | May 2008 | A1 |
20080126690 | Rajan et al. | May 2008 | A1 |
20080126692 | Rajan et al. | May 2008 | A1 |
20080130364 | Guterman et al. | Jun 2008 | A1 |
20080133825 | Rajan et al. | Jun 2008 | A1 |
20080155136 | Hishino | Jun 2008 | A1 |
20080159027 | Kim | Jul 2008 | A1 |
20080170425 | Rajan | Jul 2008 | A1 |
20080195894 | Schreck et al. | Aug 2008 | A1 |
20080215832 | Allen et al. | Sep 2008 | A1 |
20080239857 | Rajan et al. | Oct 2008 | A1 |
20080239858 | Rajan et al. | Oct 2008 | A1 |
20080256282 | Guo et al. | Oct 2008 | A1 |
20080282084 | Hatakeyama | Nov 2008 | A1 |
20080282341 | Hatakeyama | Nov 2008 | A1 |
20090024789 | Rajan et al. | Jan 2009 | A1 |
20090024790 | Rajan et al. | Jan 2009 | A1 |
20090049266 | Kuhne | Feb 2009 | A1 |
20090063865 | Berenbaum et al. | Mar 2009 | A1 |
20090063896 | Lastras-Montano et al. | Mar 2009 | A1 |
20090070520 | Mizushima | Mar 2009 | A1 |
20090089480 | Wah et al. | Apr 2009 | A1 |
20090109613 | Legen et al. | Apr 2009 | A1 |
20090180926 | Petruno et al. | Jul 2009 | A1 |
20090216939 | Smith et al. | Aug 2009 | A1 |
20090285031 | Rajan et al. | Nov 2009 | A1 |
20090290442 | Rajan | Nov 2009 | A1 |
20100005218 | Gower et al. | Jan 2010 | A1 |
20100020585 | Rajan | Jan 2010 | A1 |
20100257304 | Rajan et al. | Oct 2010 | A1 |
20100271888 | Rajan | Oct 2010 | A1 |
20100281280 | Rajan et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
102004051345 | May 2006 | DE |
102004053316 | May 2006 | DE |
102005036528 | Feb 2007 | DE |
0132129 | Jan 1985 | EP |
0644547 | Mar 1995 | EP |
62121978 | Jun 1987 | JP |
01171047 | Jul 1989 | JP |
03-029357 | Feb 1991 | JP |
03029357 | Feb 1991 | JP |
03276487 | Dec 1991 | JP |
03286234 | Dec 1991 | JP |
05-298192 | Nov 1993 | JP |
07-141870 | Jun 1995 | JP |
08077097 | Mar 1996 | JP |
08077097 | Mar 1996 | JP |
10233091 | Oct 1998 | JP |
11-149775 | Jun 1999 | JP |
2002025255 | Jan 2002 | JP |
3304893 | May 2002 | JP |
2002288037 | Oct 2002 | JP |
04-327474 | Nov 2004 | JP |
2005062914 | Mar 2005 | JP |
2006236388 | Sep 2006 | JP |
1999-0076659 | Oct 1999 | KR |
1020040062717 | Jul 2004 | KR |
WO 9505676 | Feb 1995 | WO |
WO9725674 | Jul 1997 | WO |
WO9900734 | Jan 1999 | WO |
WO0190900 | Nov 2001 | WO |
WO0197160 | Dec 2001 | WO |
WO2004044754 | May 2004 | WO |
WO2006072040 | Jul 2006 | WO |
WO2007002324 | Jan 2007 | WO |
WO2007028109 | Mar 2007 | WO |
WO 2007038225 | Apr 2007 | WO |
WO2007095080 | Aug 2007 | WO |
WO2008063251 | May 2008 | WO |
Entry |
---|
US 6,330,663, 12/2001, Jeddeloh (withdrawn) |
Non-final Office Action from U.S. Appl. No. 11/461,430 mailed on Feb. 19, 2009. |
Final Office Action from U.S. Appl. No. 11/461,435 mailed on Jan. 28, 2009. |
Non-final Office Action from U.S. Appl. No. 11/461,437 mailed on Jan. 26, 2009. |
Non-final Office Action from U.S. Appl. No. 11/939,432 mailed on Feb. 6, 2009. |
Wu et al., “eNVy: A Non-Volatile, Main Memory Storage System,” ASPLOS-VI Proceedings—Sixth International Conference on Architectural Support for Programming Languages and Operating Systems, San Jose, California, Oct. 4-7, 1994. SIGARCH Computer Architecture News 22(Special Issue Oct. 1994). |
German Office Action From German Patent Application No. 11 2006 002 300.4-55 Mailed Jun. 5, 2009 (With Translation). |
Non-Final Office Action From U.S. Appl. No. 11/461,430 Mailed Feb. 19, 2009. |
Final Office Action From U.S. Appl. No. 11/461,435 Mailed Jan. 28, 2009. |
Non-Final Office Action From U.S. Appl. No. 11/461,437 Mailed Jan. 26, 2009. |
Non-Final Office Action From U.S. Appl. No. 11/461,441 Mailed Apr. 2, 2009. |
Non-Final Office Action From U.S. Appl. No. 11/611,374 Mailed Mar. 23, 2009. |
Non-Final Office Action From U.S. Appl. No. 11/762,010 Mailed Mar. 20, 2009. |
Non-Final Office Action From U.S. Appl. No. 11/939,432 Mailed Feb. 6, 2009. |
Non-Final Office Action From U.S. Appl. No. 12/111,819 Mailed Apr. 27, 2009. |
Non-Final Office Action From U.S. Appl. No. 12/111,828 Mailed Apr. 17, 2009. |
“BIOS and Kernel Developer's Guide (BKDG) for AMD Family 10h Processors,” AMD, 31116 Rev 3.00, Sep. 7, 2007. |
Written Opinion from PCT Application No. PCT/US06/24360 mailed on Jan. 8, 2007. |
Preliminary Report on Patentability from PCT Application No. PCT/US06/24360 mailed on Jan. 10, 2008. |
Written Opinion from International PCT Application No. PCT/US06/34390 mailed on Nov. 21, 2007. |
International Search Report from PCT Application No. PCT/US06/34390 mailed on Nov. 21, 2007. |
Office Action from U.S. Appl. No. 11/461,427 mailed on Sep. 5, 2008. |
Final Office Action from U.S. Appl. No. 11/461,430 mailed on Sep. 8, 2008. |
Notice of Allowance from U.S. Appl. No. 11/474,075 mailed on Nov. 26, 2008. |
Office Action from U.S. Appl. No. 11/474,076 mailed on Nov. 3, 2008. |
Office Action from U.S. Appl. No. 11/524,811 mailed on Sep. 17, 2008. |
Michael Wu et al., “eNVy: A Non-Volatile, Main Memory Storage”, Nov. 1994, Architectural Support for Programming Languages and Operating Systems, Proceedings of the sixth international conference on Architectural support for programming languages and operating systems, pp. 86-97. |
Fang et al., W. Power Complexity Analysis of Adiabatic SRAM, 6th Int. Conference on ASIC, vol. 1, Oct. 2005, pp. 334-337. |
Pavan et al., P. A Complete Model of E2PROM Memory Cells for Circuit Simulations, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, No. 8, Aug. 2003, pp. 1072-1079. |
German Office Action From German Patent Application No. 11 2006 001 810.8-55 Mailed Apr. 20, 2009 (With Translation). |
Final Rejection From U.S. Appl. No. 11/461,437 Mailed Nov. 10, 2009. |
Final Rejection from U.S. Appl. No. 11/762,010 Mailed Dec. 4, 2009. |
Non-Final Rejection from U.S. Appl. No. 11/672,921 Mailed Dec. 8, 2009. |
Non-Final Rejection from U.S. Appl. No. 11/929,225 Mailed Dec. 14, 2009. |
Non-Final Rejection from U.S. Appl. No. 11/929,261 Mailed Dec. 14, 2009. |
Notice of Allowance From U.S. Appl. No. 11/611,374 Mailed Nov. 30, 2009. |
Notice of Allowance From U.S. Appl. No. 11/939,432 Mailed Dec. 1, 2009. |
Notice of Allowance From U.S. Appl. No. 12/111,819 Mailed Nov. 20, 2009. |
Notice of Allowance From U.S. Appl. No. 12/111,828 Mailed Dec. 15, 2009. |
Great Britain Office Action from GB Patent Application No. GB0800734.6 Mailed Mar. 1, 2010. |
Final Office Action from U.S. Appl. No. 11/461,420 Mailed Apr. 28, 2010. |
Notice of Allowance from U.S. Appl. No. 11/553,372 Mailed Mar. 12, 2010. |
Notice of Allowance from U.S. Appl. No. 11/553,399 Mailed Mar. 22, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/588,739 Mailed Dec. 29, 2009. |
Notice of Allowance from U.S. Appl. No. 11/611,374 Mailed Apr. 5, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/828,181 Mailed Mar. 2, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/828,182 Mailed Mar. 29, 2010. |
Final Office Action from U.S. Appl. No. 11/858,518 Mailed Apr. 21, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/929,432 Mailed Jan. 14, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/929,571 Mailed Mar. 3, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/929,631 Mailed Mar. 3, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/929,636 Mailed Mar. 9, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/929,655 Mailed Mar. 3, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/939,432 Mailed Apr. 12, 2010. |
Notice of Allowance from U.S. Appl. No. 12/111,819 Mailed Mar. 10, 2010. |
Non-Final Office Action from U.S. Appl. No. 12/507,682 Mailed Mar. 8, 2010. |
Notice of Allowance from U.S. Appl. No. 11/762,013 Dated Feb. 23, 2011. |
Notice of Allowance from U.S. Appl. No. 11/929,500 Dated Feb. 24, 2011. |
Notice of Allowance from U.S. Appl. No. 11/763,365 Dated Mar. 1, 2011. |
Final Office Action from U.S. Appl. No. 12/574,628 Dated Mar. 3, 2011. |
Final Office Action from U.S. Appl. No. 11/929,571 Dated Mar. 3, 2011. |
Notice of Allowance from U.S. Appl. No. 11/611,374 Dated Mar. 4, 2011. |
Notice of Allowance from U.S. Appl. No. 11/929,483 Dated Mar. 4, 2011. |
Notice of Allowance from U.S. Appl. No. 11/553,399 Dated Mar. 18, 2011. |
Final Office Action from U.S. Appl. No. 12/507,682 Dated Mar. 29, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/929,403 Dated Mar. 31, 2011. |
Notice of Allowance from U.S. Appl. No. 12/838,896 Dated Apr. 19, 2011. |
Notice of Allowance from U.S. Appl. No. 11/702,981 Dated Apr. 25, 2011. |
Notice of Allowance from U.S. Appl. No. 11/929,320 Dated May 5, 2011. |
Final Office Action from U.S. Appl. No. 11/939,440 Dated May 19, 2011. |
Final Office Action from U.S. Appl. No. 11/855,805, Dated May 26, 2011. |
Supplemental European Search Report and Search Opinion issued Sep. 21, 2009 in European Application No. 07870726.2, 8 pp. |
Wu et al., ‘eNVy: A Non-Volatile, Main Memory Storage System’, ASPLOS-VI Proceedings, Oct. 4-7, 1994, pp. 86-97. |
German Office Action from German Patent Application No. 11 2006 002 300.4-55 Dated May 11, 2009 (With Translation). |
Great Britain Office Action from GB Patent Application No. GB0803913.3 Dated Mar. 1, 2010. |
International Preliminary Examination Report From PCT Application No. PCT/US07/016385 Dated Feb. 3, 2009. |
Search Report and Written Opinion From PCT Application No. PCT/US07/03460 Dated on Feb. 14, 2008. |
Search Report From PCT Application No. PCT/US10/038041 Dated Aug. 23, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/461,420 Dated Jul. 23, 2009. |
Notice of Allowance from U.S. Appl. No. 11/461,430 Dated Sep. 9, 2009. |
Non-Final Office Action from U.S. Appl. No. 11/461,435 Dated Aug. 5, 2009. |
Final Office Action from U.S. Appl. No. 11/461,435 Dated May 13, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/461,437 Dated Jan. 4, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/515,167 Dated Sep. 25, 2009. |
Final Office Action from U.S. Appl. No. 11/515,167 Dated Jun. 3, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/515,223 Dated Sep. 22, 2009. |
Notice of Allowance from U.S. Appl. No. 11/515,223 Dated Jul. 30, 2010. |
Notice of Allowance from U.S. Appl. No. 11/515,223 Dated Feb. 4, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/538,041 Dated Jun. 10, 2009. |
Non-Final Office Action from U.S. Appl. No. 11/553,372 Dated Jun. 25, 2009. |
Notice of Allowance from U.S. Appl. No. 11/553,372 Dated Sep. 30, 2009. |
Notice of Allowance from U.S. Appl. No. 11/553,372 Dated Aug. 4, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/553,372 Dated Jan. 5, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/553,390 Dated Sep. 9, 2009. |
Final Office Action from U.S. Appl. No. 11/553,390 Dated Jun. 24, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/553,399 Dated Jul. 7, 2009. |
Notice of Allowance from U.S. Appl. No. 11/553,399 Dated Oct. 13, 2009. |
Notice of Allowance from U.S. Appl. No. 11/553,399 Dated Dec. 3, 2010. |
Final Office Action from U.S. Appl. No. 11/588,739 Dated Dec. 15, 2010. |
Notice of Allowance from U.S. Appl. No. 11/611,374 Dated Sep. 15, 2009. |
Notice of Allowance from U.S. Appl. No. 11/611,374 Dated Jul. 19, 2010. |
Notice of Allowance from U.S. Appl. No. 11/611,374 Dated Oct. 29, 2010. |
Final Office Action from U.S. Appl. No. 11/672,921 Dated Jul. 23, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/702,960 Dated Sep. 25, 2009. |
Final Office Action from U.S. Appl. No. 11/702,960 Dated Jun. 21, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/702,981 Dated Mar. 11, 2009. |
Non-Final Office Action from U.S. Appl. No. 11/702,981 Dated Aug. 19, 2009. |
Notice of Allowance from U.S. Appl. No. 11/762,010 Dated Jul. 2, 2010. |
Notice of Allowance from U.S. Appl. No. 11/762,010 Dated Oct. 22, 2010. |
Notice of Allowance from U.S. Appl. No. 11/762,010 Dated Feb. 18, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/762,013 Dated Jun. 5, 2009. |
Notice of Allowance from U.S. Appl. No. 11/762,013 Dated Aug. 17, 2010. |
Notice of Allowance from U.S. Appl. No. 11/762,013 Dated Dec. 7, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/763,365 Dated Oct. 28, 2009. |
Notice of Allowance from U.S. Appl. No. 11/763,365 Dated Jun. 29, 2010. |
Notice of Allowance from U.S. Appl. No. 11/763,365 Dated Oct. 20, 2010. |
Final Office Action from U.S. Appl. No. 11/828,182 Dated Dec. 22, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/855,805 Dated Sep. 21, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/855,826 Dated Jan. 13, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/858,518 Dated Aug. 14, 2009. |
Non-Final Office Action from U.S. Appl. No. 11/858,518 Dated Sep. 8, 2010. |
Non-Final Rejection From U.S. Appl. No. 11/929,225 Dated Dec. 14, 2009. |
Final Office Action from U.S. Appl. No. 11/929,225 Dated Aug. 27, 2010. |
Final Office Action from U.S. Appl. No. 11/929,261 Dated Sep. 7, 2010. |
Final Office Action from U.S. Appl. No. 11/929,286 Dated Aug. 20, 2010. |
Notice of Allowance from U.S. Appl. No. 11/929,320 Dated Sep. 29, 2010. |
Final Office Action from U.S. Appl. No. 11/929,403 Dated Aug. 31, 2010. |
Final Office Action from U.S. Appl. No. 11/929,417 Dated Aug. 31, 2010. |
Final Office Action from U.S. Appl. No. 11/929,432 Dated Aug. 20, 2010. |
Final Office Action from U.S. Appl. No. 11/929,450 Dated Aug. 20, 2010. |
Notice of Allowance from U.S. Appl. No. 11/929,483 Dated Oct. 7, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/929,500 Dated Oct. 13, 2009. |
Final Office Action from U.S. Appl. No. 11/929,500 Dated Jun. 24, 2010. |
Final Office Action from U.S. Appl. No. 11/929,631 Dated Nov. 18, 2010. |
Final Office Action from U.S. Appl. No. 11/929,655 Dated Nov. 22, 2010. |
Notice of Allowance from U.S. Appl. No. 11/939,432 Dated Sep. 24, 2009. |
Notice of Allowance from U.S. Appl. No. 11/939,432 Dated Feb. 18, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/939,440 Dated Sep. 17, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/941,589 Dated Oct. 1, 2009. |
Notice of Allowance from U.S. Appl. No. 11/941,589 Dated Oct. 25, 2010. |
Non-Final Office Action from U.S. Appl. No. 12/057,306 Dated Oct. 8, 2010. |
Notice of Allowance from U.S. Appl. No. 12/144,396 Dated Feb. 1, 2011. |
Non-Final Office Action from U.S. Appl. No. 12/203,100 Dated Dec. 1, 2010. |
Non-Final Office Action from U.S. Appl. No. 12/574,628 Dated Jun. 10, 2010. |
Non-Final Office Action from U.S. Appl. No. 12/769,428 Dated Nov. 8, 2010. |
Non-Final Office Action from U.S. Appl. No. 12/816,756 Dated Feb. 7, 2011. |
Non-Final Office Action from U.S. Appl. No. 12/838,896 Dated Sep. 3, 2010. |
Non-Final Office Action from U.S. Appl. No. 11/672,921 Dated May 27, 2011. |
Notice of Allowance from U.S. Appl. No. 11/762,010 Dated Jun. 8, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/672,924 Dated Jun. 8, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/929,225 Dated Jun. 8, 2011. |
Notice of Allowance from U.S. Appl. No. 11/929,500 Dated Jun. 13, 2011. |
Notice of Allowance from U.S. Appl. No. 11/941,589 Dated Jun. 15, 2011. |
Final Office Action from U.S. Appl. No. 12/057,306 Dated Jun. 15, 2011. |
Final Office Action from U.S. Appl. No. 12/769,428 Dated Jun. 16, 2011. |
Notice of Allowance from U.S. Appl. No. 12/203,100 Dated Jun. 17, 2011. |
Notice of Allowance from U.S. Appl. No. 11/762,013 Dated Jun. 20, 2011. |
Non-Final Office Action from U.S. Appl. No. 12/797,557 Dated Jun. 21, 2011. |
Notice of Allowance from U.S. Appl. No. 11/929,483 Dated Jun. 23, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/702,960 Dated Jun. 23, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/929,655 Dated Jun. 24, 2011. |
Notice of Allowance from U.S. Appl. No. 11/763,365 Dated Jun. 24, 2011. |
Notice of Allowance from U.S. Appl. No. 11/611,374 Dated Jun. 24, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/828,182 Dated Jun. 27, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/828,181 Dated Jun. 27, 2011. |
Non-Final Office Action from U.S. Appl. No. 12/378,328 Dated Jul. 15, 2011. |
Final Office Action from U.S. Appl. No. 11/461,420 Dated Jul. 20, 2011. |
Notice of Allowance from U.S. Appl. No. 11/461,437 Dated Jul. 25, 2011. |
Notice of Allowance from U.S. Appl. No. 11/702,981 Dated Aug. 5, 2011. |
Notice of Allowability from U.S. Appl. No. 11/855,826 Dated Aug. 15, 2011. |
Non-Final Office Action from U.S. Appl. No. 12/574,628 Dated Sep. 20, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/858,518 Dated Sep. 27, 2011. |
Notice of Allowance from U.S. Appl. No. 11/929,571 Dated Sep. 27, 2011. |
Notice of Allowance from U.S. Appl. No. 11/929,500 Dated Sep. 27, 2011. |
Notice of Allowance from U.S. Appl. No. 11/941,589 Dated Sep. 30, 2011. |
Notice of Allowance from U.S. Appl. No. 12/816,756 Dated Oct. 3, 2011. |
Non-Final Office Action from U.S. Appl. No. 12/508,496 Dated Oct. 11, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/588,739 Dated Oct. 13, 2011. |
Notice of Allowance from U.S. Appl. No. 11/939,432 Dated Oct. 24, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/929,631 Dated Nov. 1, 2011. |
Notice of Allowance from U.S. Appl. No. 11/515,223 Dated Nov. 29, 2011. |
Notice of Allowance from U.S. Appl. No. 12/769,428 Dated Nov. 29, 2011. |
Non-Final Office Action from U.S. Appl. No. 11/553,372 Dated Nov. 14, 2011. |
Final Office Action from U.S. Appl. No. 11/939,440 Dated Dec. 12, 2011. |
Notice of Allowance from U.S. Appl. No. 12/797,557 Dated Dec. 28, 2011. |
Office Action, including English translation, from related Japanese application No. 2008-529353, Dated Jan. 10, 2012. |
Copy of Notice of Allowance from U.S. Appl. No. 12/838,896 Dated Jan. 18, 2012. |
Final Office Action from U.S. Appl. No. 11/929,655 Dated Jan. 19, 2012. |
Final Office Action from U.S. Appl. No. 12/378,328 Dated Feb. 3, 2012. |
Final Office Action from U.S. Appl. No. 11/672,921 Dated Feb. 16, 2012. |
Final Office Action from U.S. Appl. No. 11/929,225 Dated Feb. 16, 2012. |
Final Office Action from U.S. Appl. No. 11/828,181 Dated Feb. 23, 2012. |
Non-Final Office Action from U.S. Appl. No. 11/461,520 Dated Feb. 29, 2012. |
Notice of Allowance from U.S. Appl. No. 12/574,628 Dated Mar. 6, 2012. |
Non-Final Office Action from U.S. Appl. No. 13/276,212 Dated Mar. 15, 2012. |
Non-Final Office Action from U.S. Appl. No. 13/343,612 Dated Mar. 29, 2012. |
Notice of Allowance from U.S. Appl. No. 11/939,440 Dated Mar. 30, 2012. |
European Search Report from co-pending European application No. 11194862.6-2212/2450800, Dated Apr. 12, 2012. |
Notice of Allowance from U.S. Appl. No. 11/929,636, Dated Apr. 17, 2012. |
Final Office Action from U.S. Appl. No. 11/858,518, Dated Apr. 17, 2012. |
European Search Report from co-pending European application No. 11194883.2-2212, Dated Apr. 27, 2012. |
Non-Final Office Action from U.S. Appl. No. 11/553,372, Dated May 3, 2012. |
Notice of Allowance from U.S. Appl. No. 11/929,631, Dated May 3, 2012. |
Non-Final Office Action from U.S. Appl. No. 13/165,713, Dated May 22, 2012. |
Non-Final Office Action from U.S. Appl. No. 12/144,396, Dated May 29, 2012. |
Non-Final Office Action from U.S. Appl. No. 13/165,713, Dated May 31, 2012. |
Non-Final Office Action from U.S. Appl. No. 13/280,251, Dated Jun. 12, 2012. |
Final Office Action from U.S. Appl. No. 11/855,805, Dated Jun. 14, 2012. |
Office Action, including English translation, from co-pending Japanese application No. 2008-529353, Dated Jul. 31, 2012. |
Final Office Action from U.S. Appl. No. 13/315,933, Dated Aug. 24, 2012. |
Final Office Action from U.S. Appl. No. 13/276,212, Dated Aug. 30, 2012. |
Non-Final Office Action from U.S. Appl. No. 13/367,182, Dated Aug. 31, 2012. |
Notice of Allowance from U.S. Appl. No. 11/461,420, Dated Sep. 5, 2012. |
Final Office Action from U.S. Appl. No. 13/280,251, Dated Sep. 12, 2012. |
Non-Final Office Action from U.S. Appl. No. 11/929,225, Dated Sep. 17, 2012. |
Notice of Allowance from U.S. Appl. No. 12/508,496, Dated Sep. 17, 2012. |
Non-Final Office Action from U.S. Appl. No. 11/672,921, Dated Oct. 1, 2012. |
Notice of Allowance from U.S. Appl. No. 12/057,306, Dated Oct. 10, 2012. |
Notice Allowance from U.S. Appl. No. 12/144,396, Dated Oct. 11, 2012. |
Non-Final Office Action from U.S. Appl. No. 13/411,489, Dated Oct. 17, 2012. |
Non-Final Office Action from U.S. Appl. No. 13/471,283, Dated Dec. 7, 2012. |
Office Action, including English translation, from co-pending Japanese application No. 2008-529353, Dated Dec. 27, 2012. |
Office Action from co-pending European patent application No. EP12150798, Dated Jan. 3, 2013. |
Non-Final Office Action from U.S. Appl. No. 13/260,650, Dated Feb. 1, 2013. |
Notice of Allowance from U.S. Appl. No. 13/141,844, Dated Feb. 5, 2013. |
Notice of Allowance from U.S. Appl. No. 13/473,827, Dated Feb. 15, 2013. |
Notice of Allowance from U.S. Appl. No. 12/378,328, Dated Feb. 27, 2013. |
Non-Final Office Action from U.S. Appl. No. 13/536,093, Dated Mar. 1, 2013. |
Office Action from co-pending Japanese patent application No. 2012-132119, Dated Mar. 6, 2013. |
Notice of Allowance from U.S. Appl. No. 11/461,435, Dated Mar. 6, 2013. |
Notice of Allowance from U.S. Appl. No. 11/515,223, Dated Mar. 18, 2013. |
Notice of Allowance from U.S. Appl. No. 13/471,283, Dated Mar. 21, 2013. |
Extended European Search Report for co-pending European patent application No. EP12150807.1, dated Feb. 1, 2013, mailed Mar. 22, 2013. |
Notice of Allowance from U.S. Appl. No. 13/181,716, Dated Apr. 3, 2013. |
English translation of Office Action from co-pending Korean patent application No. KR1020087019582, Dated Mar. 13, 2013. |
Notice of Allowance from U.S. Appl. No. 13/618,246, Dated Apr. 23, 2013. |
Notice of Allowance from U.S. Appl. No. 13/182,234, Dated May 1, 2013. |
Final Office Action from U.S. Appl. No. 13/315,933, Dated May 3, 2013. |
English Translation of Office Action from co-pending Korean patent application No. 10-2013-7004006, Dated Apr. 12, 2013. |
EPO Communication for Co-pending European patent application No. EP11194862.6, dated May 5, 2013. |
Non-Final Office Action from U.S. Appl. No. 13/620,793, Dated May 6, 2013. |
Non-Final Office Action from U.S. Appl. No. 13/620,565, Dated May 24, 2013. |
Final Office Action from U.S. Appl. No. 11/929,225, Dated May 24, 2013. |
Final Office Action from U.S. Appl. No. 11/672,921, Dated May 24, 2013. |
Notice of Allowance from U.S. Appl. No. 11/929,631, Dated May 28, 2013. |
Notice of Allowance from U.S. Appl. No. 13/620,424, Dated May 29, 2013. |
Notice of Allowance from U.S. Appl. No. 13/341,844, Dated May 30, 2013. |
Non-Final Office Action from U.S. Appl. No. 13/620,199, Dated Jun. 17, 2013. |
Non-Final Office Action from U.S. Appl. No. 13/620,207, Dated Jun. 20, 2013. |
Non-Final Office Action from U.S. Appl. No. 11/828,182, Dated Jun. 20, 2013. |
Final Office Action from U.S. Appl. No. 11/828,181, Dated Jun. 20, 2013. |
Non-Final Office Action from U.S. Appl. No. 11/929,655, Dated Jun. 21, 2013. |
Notice of Allowance from U.S. Appl. No. 13/597,895, Dated Jun. 25, 2013. |
Non-Final Office Action from U.S. Appl. No. 13/620,645, Dated Jun. 26, 2013. |
Notice of Allowance from U.S. Appl. No. 13/471,283, Dated Jun. 28, 2013. |
Notice of Allowance from U.S. Appl. No. 13/181,747, Dated Jul. 9, 2013. |
Notice of Allowance from U.S. Appl. No. 11/515,223, Dated Jul. 18, 2013. |
Notice of Allowance from U.S. Appl. No. 13/182,234, Dated Jul. 22, 2013. |
Notice of Allowance from U.S. Appl. No. 13/181,716, Dated Jul. 22, 2013. |
Non-Final Office Action from U.S. Appl. No. 13/620,233, Dated Aug. 2, 2013. |
Final Office Action from U.S. Appl. No. 13/367,182, Dated Aug. 8, 2013. |
Notice of Allowance from U.S. Appl. No. 13/615,008, Dated Aug. 15, 2013. |
Notice of Allowance from U.S. Appl. No. 13/620,425, Dated Aug. 20, 2013. |
Non-Final Office Action from U.S. Appl. No. 13/620,601, Dated Aug. 23, 2013. |
Non-Final Office Action from U.S. Appl. No. 12/507,683, Dated Aug. 27, 2013. |
Non-Final Office Action from U.S. Appl. No. 13/315,933, Dated Aug. 27, 2013. |
Final Office Action from U.S. Appl. No. 13/620,650, Dated Aug. 30, 2013. |
Notice of Allowance from U.S. Appl. No. 13/620,424, Dated Sep. 11, 2013. |
Non-Final Office Action from U.S. Appl. No. 13/620,291, Dated Sep. 12, 2013. |
Notice of Allowance from U.S. Appl. No. 13/341,844, Dated Sep. 17, 2013. |
Notice of Allowance from U.S. Appl. No. 13/620,412, dated Sep. 25, 2013. |
Non-Final Office Action from U.S. Appl. No. 13/343,852, dated Sep. 27, 2013. |
English Translation of Office Action from co-pending Korean patent application No. 10-2008-7019582, dated Sep. 16, 2013. |
Notice of Allowance from U.S. Appl. No. 13/620,565, dated Sep. 27, 2013. |
Non-Final Office Action from U.S. Appl. No. 13/279,068, dated Sep. 30, 2013. |
Notice of Allowance from U.S. Appl. No. 13/620,207, dated Oct. 9, 2013. |
Non-Final Office Action from U.S. Appl. No. 13/898,002, dated Oct. 10, 2013. |
Notice of Allowance from U.S. Appl. No. 13/471,283, dated Oct. 15, 2013. |
Notice of Allowance from U.S. Appl. No. 11/515,223, dated Oct. 24, 2013. |
Notice of Allowance from U.S. Appl. No. 13/181,747, dated Oct. 28, 2013. |
Notice of Allowance from U.S. Appl. No. 13/597,895, dated Oct. 29, 2013. |
Notice of Allowance from U.S. Appl. No. 13/620,199, dated Nov. 13, 2013. |
Final Office Action from U.S. Appl. No. 13/620,793, dated Nov. 13, 2013. |
Notice of Allowance from U.S. Appl. No. 13/618,246, dated Nov. 14, 2013. |
Notice of Allowance from U.S. Appl. No. 13/473,827, dated Nov. 20, 2013. |
Notice of Allowance from U.S. Appl. No. 13/615,008, dated Dec. 3, 2013. |
Notice of Allowance from U.S. Appl. No. 13/620,425, dated Dec. 11, 2013. |
English Translation of Office Action from co-pending Japanese patent application No. P2012-197675, Dec. 3, 2013. |
English Translation of Office Action from co-pending Japanese patent application No. P2012-197678, Dec. 3, 2013. |
Notice of Allowance from U.S. Appl. No. 13/455,691, dated Dec. 31, 2013. |
Non-Final Office Action from U.S. Appl. No. 11/553,390, dated Dec. 31, 2013. |
English Translation of Office Action from co-pending Korean patent application No. 10-2013-7004006, dated Dec. 26, 2013. |
Search Report from co-pending European Patent Application No. 13191794, dated Dec. 12, 2013. |
Notice of Allowance from U.S. Appl. No. 13/620,425, dated Jan. 13, 2014. |
Number | Date | Country | |
---|---|---|---|
20070192563 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60772414 | Feb 2006 | US | |
60865624 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11461437 | Jul 2006 | US |
Child | 11672924 | US | |
Parent | 11702981 | Feb 2007 | US |
Child | 11461437 | US | |
Parent | 11702960 | Feb 2007 | US |
Child | 11702981 | US |