TREATING DISEASES AND IMPROVING NUCLEIC ACID DELIVERY

Abstract
This document relates to methods and materials for treating a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a polycystic kidney disease (PKD)). For example, methods and materials that can be used to increase a level of polycystin-1 (PC-1) polypeptides and/or polycystin-2 (PC-2) polypeptides within a mammal having, or at risk of developing, a polycystic disease) are provided. In some cases, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered to a mammal having, or at risk of developing, a polycystic disease to treat the mammal.
Description
SEQUENCE LISTING

This document includes a Sequence Listing that has been submitted electronically as an ASCII text file named 07039-2024WO1_ST25.txt. The ASCII text file, created on Jan. 14, 2022, is 269 kilobytes in size. The material in the ASCII text file is hereby incorporated by reference in its entirety.


BACKGROUND
1. Technical Field

This document relates to methods and materials for treating a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a polycystic kidney disease (PKD)). For example, methods and materials provided herein can be used to increase a level of polycystin-1 (PC-1) polypeptides and/or polycystin-2 (PC-2) polypeptides within a mammal having, or at risk of developing, a polycystic disease. In some cases, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered to a mammal having, or at risk of developing, a polycystic disease to treat the mammal.


2. Background Information

Autosomal dominant polycystic kidney disease (ADPKD) is an inherited progressive disease with a prevalence of approximately one in one thousand live births in which patients develop fluid-filled cysts in their kidneys, losing kidney function, and which can end in kidney failure (see, e.g., Bergmann et al., Nat. Rev. Dis. Primers., 4(1):50 (2018)).


SUMMARY

ADPKD can be caused by one or more mutations in the PKD1 gene (encoding the PC-1 polypeptide) and/or the PKD2 gene (encoding the PC-2 polypeptide). As such, ADPKD can be treated by gene therapy techniques that can deliver nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal. However, while many gene therapy vectors can carry the 2.9 kilobase (kb) PKD2 cDNA, most gene therapy vectors and techniques cannot carry the extremely large 12.9 kb PKD1 cDNA.


This document is based, at least in part, on the development of vectors that can be used to deliver nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal. In some cases, this document provides methods and materials for treating a mammal having, or at risk of developing, a polycystic disease (e.g., PKD). For example, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered to a mammal having, or at risk of developing, a polycystic disease to treat the mammal. As described herein, adeno-associated virus (AAV) vectors can be used to deliver nucleic acid designed to express a PC-2 polypeptide (e.g., a PKD2 cDNA) to increase the level of PC-2 polypeptides in cells, and helper-dependent adenovirus (HDAd) vectors can be used to deliver nucleic acid designed to express a PC-1 polypeptide (e.g., a PKD1 cDNA) and/or nucleic acid designed to express a PC-2 polypeptide (e.g., a PKD2 cDNA) to increase the level of PC-1 polypeptides and/or PC-2 polypeptides in cells. For example, vectors described herein containing nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within the mammal (e.g., to treat the mammal). Also as described herein, one or more AAV vectors can be used to deliver gene therapy components designed for targeted gene activation (e.g., designed for CRISPR-Cas9-based targeted gene activation) of the PKD1 gene and/or the PKD2 gene to upregulate transcription of the PKD1 gene and/or the PKD2 gene to increase the level of PC-1 polypeptides and/or PC-2 polypeptides in cells. For example, one or more nucleic acid molecules designed to express the components of a targeted gene activation system (or the components themselves) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can be administered to a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within the mammal (e.g., to treat the mammal).


This document also provides methods and materials for improving delivery of nucleic acid to a mammal. As described herein, inducing proteinuria in a mammal (e.g., prior to administering a nucleic acid molecule) can improve delivery of nucleic acid (e.g., nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal) to the mammal (e.g., to one or more cells within the mammal). For example, one or more lipopolysaccharides (LPSs) can be administered to a mammal to induce proteinuria in the mammal to improve delivery of nucleic acid (e.g., nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal) to cells (e.g., kidney cells) within the mammal.


Having the ability to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal provides a unique and unrealized opportunity to treat a polycystic disease such as a PKD.


Having the ability to increase the delivery of nucleic acid to cells within a mammal as described herein can allow for more efficient gene therapy approaches.


In general, one aspect of this document features methods for treating a mammal having a PKD. The methods can include, or consist essentially of, administering to a mammal having a PKD nucleic acid encoding a PC-1 polypeptide or a variant of the PC-1 polypeptide, where the PC-1 polypeptide or the variant is expressed by kidney cells within the mammal. The nucleic acid encoding the PC-1 polypeptide or the variant can be administered to the mammal in the form of a viral vector (e.g., a helper-dependent adenovirus (HDAd) vector). The nucleic acid encoding the PC-1 polypeptide or the variant can be operably linked to a promoter sequence. The promoter sequence can be a human elongation factor 1α (EF1α) promoter sequence, a chicken ß-actin hybrid (CBh) promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a cytomegalovirus (CMV) promoter sequence, a Rous sarcoma virus (RSV) promoter sequence, an aquaporin 2 (AQP2) promoter sequence, a gamma-glutamyltransferase 1 (Ggt1) promoter sequence, or a Ksp-cadherin promoter sequence. The method can include identifying the mammal as being in need of a treatment for the PKD. The mammal can be a human. The PKD can be an autosomal dominant PKD (ADPKD). The method also can include, prior to the administering the nucleic acid, administering a lipopolysaccharides (LPS) to the mammal. The LPS can be administered to the mammal at least 18 hours prior to the administering the nucleic acid. The LPS can be effective to deliver large nucleic acid to the kidney cells in the mammal.


In another aspect, this document features methods for treating a mammal having a PKD. The methods can include, or consist essentially of, administering to a mammal having a PKD nucleic acid encoding a PC-2 polypeptide or a variant of the PC-2 polypeptide, where the PC-2 polypeptide or the variant is expressed by kidney cells within the mammal. The nucleic acid encoding the PC-2 polypeptide or the variant can be administered to the mammal in the form of a viral vector (e.g., an adenovirus-associated virus (AAV) vector). The nucleic acid encoding the PC-2 polypeptide or the variant can be operably linked to a promoter sequence. The promoter sequence can be a EF1a promoter sequence, a CBh promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a CMV promoter sequence, a RSV promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, or a Ksp-cadherin promoter sequence. The method can include identifying the mammal as being in need of a treatment for the PKD. The mammal can be a human. The PKD can be an autosomal dominant PKD (ADPKD). The method also can include, prior to the administering the nucleic acid, administering a lipopolysaccharides (LPS) to the mammal. The LPS can be administered to the mammal at least 18 hours prior to the administering the nucleic acid. The LPS can be effective to deliver large nucleic acid to the kidney cells in the mammal.


In another aspect, this document features methods for treating a mammal having a PKD. The methods can include, or consist essentially of, administering to a mammal having a PKD: (a) nucleic acid encoding a PC-1 polypeptide or a variant of the PC-1 polypeptide, where the PC-1 polypeptide or the variant is expressed by kidney cells within the mammal; and (b) nucleic acid encoding a PC-2 polypeptide or a variant of the PC-2 polypeptide, where the PC-2 polypeptide or the variant is expressed by kidney cells within the mammal. The nucleic acid encoding the PC-1 polypeptide or the variant can be administered to the mammal in the form of a viral vector (e.g., a HDAd vector). The nucleic acid encoding the PC-1 polypeptide or the variant can be operably linked to a promoter sequence. The promoter sequence can be a EF1a promoter sequence, a CBh promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a CMV promoter sequence, a RSV promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, or a Ksp-cadherin promoter sequence. The nucleic acid encoding the PC-2 polypeptide or the variant can be administered to said mammal in the form of a viral vector (e.g., an AAV vector). The nucleic acid encoding the PC-2 polypeptide or the variant can be operably linked to a promoter sequence. The promoter sequence can be a a EF1a promoter sequence, a CBh promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a CMV promoter sequence, a RSV promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, or a Ksp-cadherin promoter sequence. The nucleic acid encoding the PC-1 polypeptide or the variant and the nucleic acid encoding the PC-2 polypeptide or the variant are administered to the mammal in the form of a viral vector (e.g., a HDAd vector). The nucleic acid encoding the PC-1 polypeptide or the variant can be operably linked to a first promoter sequence, and the nucleic acid encoding the PC-2 polypeptide or the variant can be operably linked to a second promoter sequence. The first promoter sequence and the second promoter sequence can each be independently selected from the group consisting of a EF1α promoter sequence, a CBh promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a CMV promoter sequence, a RSV promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, and a Ksp-cadherin promoter sequence. The method can include identifying the mammal as being in need of a treatment for the PKD. The mammal can be a human. The PKD can be an autosomal dominant PKD (ADPKD). The method also can include, prior to the administering the nucleic acid, administering a lipopolysaccharides (LPS) to the mammal. The LPS can be administered to the mammal at least 18 hours prior to the administering the nucleic acid. The LPS can be effective to deliver large nucleic acid to the kidney cells in the mammal. The method can include identifying the mammal as being in need of a treatment for the PKD. The mammal can be a human. The PKD can be an autosomal dominant PKD (ADPKD). The method also can include, prior to the administering the nucleic acid, administering a lipopolysaccharides (LPS) to the mammal. The LPS can be administered to the mammal at least 18 hours prior to the administering the nucleic acid. The LPS can be effective to deliver large nucleic acid to the kidney cells in the mammal.


In another aspect, this document features methods for treating a mammal having a PKD. The methods can include, or consist essentially of, administering to a mammal having a PKD: (a) nucleic acid encoding a fusion polypeptide including a deactivated Cas (dCas) polypeptide and a transcriptional activator polypeptide: (b) nucleic acid encoding a helper activator polypeptide; and (c) nucleic acid encoding a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind the helper activator polypeptide. The dCas polypeptide can be a deactivated Cas9 (dCas9) polypeptide or a deactivated Cas phi (dCasΦ) polypeptide. The transcriptional activator polypeptide can be a VP64 polypeptide. The fusion polypeptide can be a dCas9-VP64 fusion polypeptide. The helper activator polypeptide can be a MS2 polypeptide, a p65 polypeptide, a HSF1 polypeptide, or a VP64 polypeptide. The helper activator polypeptide can include a MS2 polypeptide, a p65 polypeptide, and a HSF1 polypeptide. The nucleic acid (a), the nucleic acid (b), and the nucleic acid (c) can be administered to the mammal in the form of a viral vector. The viral vector can be a HDAd, a lentiviral vector, or an AAV vector. The nucleic acid (a) can be administered to the mammal in the form of a first viral vector, and the nucleic acid (b) and the nucleic acid (c) can be administered to the mammal in the form of a second viral vector. The first viral vector can be an AAV vector and the second viral vector can be an AAV vector. The nucleic acid (a) can be operably linked to a first promoter sequence, the nucleic acid (b) can be operably linked to a second promoter sequence, and the nucleic acid (c) can be operably linked to a third promoter sequence. The first promoter sequence, the second promoter sequence, and the third promoter sequence can each independently be selected from the group consisting of a EF1a promoter sequence, a CBh promoter sequence, a CMV promoter sequence, a RSV promoter sequence, a U6 promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, and a Ksp-cadherin promoter sequence. The method also can include identifying the mammal as being in need of a treatment for the PKD. The mammal can be a human. The PKD can be an ADPKD. The also can include, prior to the administering the nucleic acid, administering a LPS to the mammal. The LPS can be administered to the mammal at least 18 hours prior to the administering the nucleic acid. The administering the LPS can be effective to deliver large nucleic acid to the kidney cells in the mammal.


In another aspect, this document features methods for delivering nucleic acid to a cell within a mammal. The methods can include, or consist essentially of, (a) administering a proteinuria-inducing agent to a mammal; and (b) administering nucleic acid to the mammal. The mammal can be a human. The proteinuria-inducing agent can be LPS, puromycin, adriamycin, protamine sulfate, cationic albumin, or polycations. The nucleic acid can be from about 0.15 kb to about 36 kb in size. The nucleic acid can have a mass of from about 10 kilodaltons (kDa) to about 50 kDa. The nucleic acid can have a diameter of from about 10 nm to about 26 nm. The method can include administering from about 7 milligrams per kilogram body weight (mg/kg) to about 9 mg/kg of the proteinuria-inducing agent to the mammal. The cell can be a kidney cell, a spleen cell, a lungs cell, or a brain cell. The proteinuria-inducing agent can be administered to the mammal at least 18 hours prior to the administering the nucleic acid. The administering the proteinuria-inducing agent can include intravenous injection. The administering the nucleic acid can include intravenous injection. The administering the proteinuria-inducing agent can include intravenous injection, and the administering the nucleic acid can include intravenous injection.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1D. Diagrams of exemplary in vivo vectors for delivery of PKD1 and PKD2 cDNAs. FIG. 1A shows a single HDAd vector including a PKD1 cDNA with additional space for cargo, denoted as “stuffer”. FIG. 1B shows an AAV vector including a PKD2 cDNA. FIG. 1C shows an HDAd vector including both a PKD1 cDNA and a PKD2 cDNA. ITR=inverted terminal repeat, EF1α=human elongation factor 1α promoter, CBh=chicken β-actin hybrid promoter. FIG. 1D shows alternative HDAd vectors including a PKD1 cDNA and/or a PKD2 cDNA.



FIG. 2. A schematic of an exemplary process used to generate triple transduced, stable cell lines expressing Cas9-SAM. LV=lentivirus, Bsd=blasticidin, Hyg=hygromycin, Zeo=zeocin.



FIG. 3. A graph showing fold PKD1 gene expression of human 293 cells transduced to express Cas9-SAM. qRT-PCR was performed with one biological replicate and three technical replicates (n=1). RQ=relative quantitation.



FIG. 4. A graph showing fold PKD1 gene expression of human RCTE cells transduced to express Cas9-SAM. qRT-PCR was performed with one biological replicate and three technical replicates (n=1). RQ=relative quantitation.



FIG. 5. A graph showing fold Pkd1 gene expression of mouse IMCD3 cells transduced to express Cas9-SAM. qRT-PCR was performed with one biological replicate and three technical replicates (n=1). RQ=relative quantitation.



FIGS. 6A-6D. Diagrams of exemplary vectors for in vivo delivery of Cas9-SAM. FIG. 6A shows a single HDAd vector delivering the entire Cas9-SAM system with additional space for cargo, denoted as “stuffer”. FIG. 6B shows a single lentiviral vector delivering the entire Cas9-SAM system. FIG. 6C shows a dual AAV vector system for delivering the Cas9-SAM system in two pieces. FIG. 6D shows a single AAV vector system for delivering the SAM system based on a newly discovered and smaller CasΦ protein. ITR=inverted terminal repeat, LTR=long terminal repeat, U6=U6 promoter, CMV=human cytomegalovirus promoter, EF1α=human elongation factor 1α promoter, CBh=chicken β-actin hybrid promoter, P2A=2A self-cleaving peptide.



FIG. 7. A western blot of dCas9VP64 protein from transfected viral vector expression cassettes. All three transfected AAV cassettes and the transfected Ad cassette produced dCas9VP64 protein, which is calculated to have a mass of 168.26 kilodaltons. EF1α=human elongation factor 1α promoter, CMV=human cytomegalovirus promoter, FpA=Ad5 Fiber polyadenylation signal, HGHpA=Human growth hormone polyadenylation signal.



FIG. 8. Ex vivo luminescent imaging of livers and kidneys after intravenous injection with AAV8, with or without induced proteinuria. Mice were administered either PBS or LPS by intraperitoneal (i.p.) injection or intravenous (i.v.) injection with 1.94e12 genome copies of self-complementary (sc) AAV8-Cre a day later (n=1). Six days after AAV injection, the mice were sacrificed and their livers and kidneys were imaged for luminescence ex vivo. While the liver signals remained consistent, the mouse injected with LPS exhibited greater luminescence from its kidneys than the PBS-injected mouse. LK=left kidney, RK=right kidney.



FIG. 9. Fluorescent imaging of liver and kidney sections after intravenous injection with AAV8, with or without induced proteinuria. The same liver and kidney tissues from FIG. 8 were sectioned to view transduced (EGFP+) cells. The livers from both mice appear to be almost entirely transduced after a high dose of the liver tropic AAV8. The kidneys of the LPS-injected mouse shows transduced glomeruli and proximal tubules whereas the kidneys of the PBS-injected mouse show only transduced glomeruli. Arrows point to transduced proximal tubules adjacent to glomeruli.



FIGS. 10A-10D. Ex vivo liver and kidney luminescence and flow cytometry with a lower dose of AAV8, with or without proteinuria. FIG. 10A contains a graph showing no significant difference in liver luminescent between PBS and LPS-injected mice (n=3; p=0.2000). FIG. 10B contains a graph showing that kidneys of LPS-injected mice exhibited significantly more luminescence than those of PBS-injected mice (n=; * p=0.0260). FIGS. 10C and 10D contain graphs showing the percent of GFP+ cells in kidneys from FIG. 10B that were homogenized, stained, and analyzed by flow cytometry. FIG. 10C shows that EpCAM+CD31 (epithelial) cells had a significant increase in transduction (n=6: **p=0.0022). FIG. 10D shows that EpCAMCD31+ (endothelial) cells showed no significant change in transduction between LPS and PBS-injected mice (n=6: p=0.6991).



FIGS. 11A-11C. Investigation of mice injected i.v. with Ad5-Cre, with or without induced proteinuria. FIG. 11A contains exemplary images of bisected kidneys of one PBS/Ad5-Cre mouse and one LPS/Ad5-Cre mouse. Mice were sacrificed and their kidneys were imaged ex vivo (n=3). LPS-injected mouse kidneys exhibiting increased luminescence. FIG. 11B contains a graph showing quantitation of ex vivo kidney luminescence. Luminescence significantly increased in LPS-injected mice from PBS-injected mice (n=6 kidneys: **p=0.0022). FIG. 11C contains exemplary fluorescent images of liver and kidney sections. Liver transduction decreased and kidney transduction increased, specifically in the glomeruli, in the LPS-injected mice. Arrows point to increased transduction in glomeruli.



FIGS. 12A-12B. PC-1 sequences. FIG. 12A is a representative nucleic acid sequence that can encode a human PC-1 polypeptide (SEQ ID NO:1). FIG. 12B is an amino acid sequence of a representative human PC-1 polypeptide (SEQ ID NO: 2).



FIGS. 13A-13B. PC-2 sequences. FIG. 13A is a representative nucleic acid sequence that can encode a human PC-2 polypeptide (SEQ ID NO:3). FIG. 13B is an amino acid sequence of a representative human PC-2 polypeptide (SEQ ID NO:4).



FIGS. 14A-14B. Intravenous delivery of AAV8 in a state of induced proteinuria enhances kidney transduction. FIG. 14A. Diagram of experimental scheme. Two month old male luciferase-mT/mG triple reporter mice were administered LPS intraperitoneally on Day −1 and scAAV intravenously on Day 0. In vivo bioluminescence was assessed daily until peak expression was observed at Day 6. FIG. 14B. In vivo bioluminescence at Day 6 followed by ex vivo luminescence of livers and kidneys. n=1 mouse per group.



FIG. 15. Intravenous delivery of multiple AAV serotypes enhances tubule epithelial cell transduction, but not necessarily proximal tubule cell transduction. The same kidneys from FIG. 14 were sectioned to examine endogenous mT and mG fluorescence. Arrows point to examples of transduced non-glomerular (tubular) cells. While some tubular cell transduction was observed in PBS-injected control mice (left panels), there were increased numbers of these cells in LPS-injected induced proteinuria mice (center panels). No instances of these transduced cells were observed to be counterstained by LTL, a marker of proximal tubule cells (right panels). n=1 mouse per group.



FIGS. 16A-16C. Intravenous delivery of scAAV8 in a state of induced proteinuria significantly increases transduction of renal epithelial cells. FIG. 16A. Three month old male mice were administered an i.p. injection of either PBS or LPS at Day −1 and an i.v. injection of 2.03e11 GC of scAAV8-Cre at Day 0. At Day 6, in vivo luminescence and ex vivo liver luminescence were not significantly different between PBS and LPS-injected groups, although brain luminescence was significantly increased in the LPS-injected group (p=0.0475 by Welch's t test). n=3 mice per group, except for control group where n=1: error bars are represented by mean with SD. FIG. 16B. Kidneys were bisected with a razor blade to reduce obstruction of luminescence and imaged ex vivo, with the LPS-injected group exhibiting increased luminescence compared to the PBS-injected group. FIG. 16C. Ex vivo luminescence from Panel B was quantified and kidneys were subsequently processed for flow cytometry. Overall, kidneys from LPS-injected mice showed significantly higher ex vivo luminescence and percentage of transduced epithelial cells, but not of transduced endothelial cells (p values obtained using Mann-Whitney test). n=6 kidneys per group, except for control group where n=1: error bars are represented by mean with SD.



FIGS. 17A-17B. AAVrh10 does not necessarily increase transduction of tubule epithelial cells during induced proteinuria. FIG. 17A. Eight month old female mice were administered an i.p. injection of either PBS or LPS at Day-1 and an i.v. injection of 1.76e11 GC of scAAVrh10-Cre at Day 0. At Day 5, kidneys were processed for flow cytometry. Although there was no difference in transduced CD45− (non-hematopoietic) kidney cells, kidneys of the LPS-injected group had a significant increase in CD45+ (hematopoietic) cells compared to the PBS-injected group (n=6 kidneys per group). FIG. 17B. Kidney CD45− (non-hematopoietic) cells were separately gated into EpCAM+ CD31− (all epithelial cells), EpCAM CD31+ (endothelial cells), and EpCAM+ LTL+ and EpCAM+ AQP1+ (two different markers of proximal tubule cells). None of the aforementioned gating strategies showed a significant difference in transduced cells between PBS-injected and LPS-injected groups. n=6 kidneys per group, except for control group where n=1: error bars are represented by mean with SD for all panels. p values determined using Mann-Whitney tests for all panels.



FIGS. 18A-18B. Examination of kidney transduction using a vector with low liver tropism. FIG. 18A. Four and a half month old female mice were administered an i.p. injection of PBS or LPS on Day-1 and an i.v. injection of 9.5e10 GC of scAAV1-Cre on Day 0. In vivo bioluminescence was assessed daily until peak expression was observed at Day 6. No significant difference was observed between groups, including a measurement of ex vivo liver luminescence (p values determined using Welch's t test). n=3 mice per group, except for control group where n=1. Error bars are represented by mean with error (top left) or mean with SD (top right). Ex vivo kidney luminescence showed that LPS-injected mice had an increased but insignificant amount of luminescence compared to PBS-injected mice as well as LPS and scAAV8-Cre injected mice (p values determined using Mann-Whitney test). n=6 kidneys per group, lower panels: error bars are represented by mean with SD: scAAV8-Cre data represents the same data shown in FIG. 16. FIG. 18B. The kidneys analyzed in Panel A were sectioned to observe endogenous mT and mG fluorescence. While mice treated with PBS and scAAV1-Cre showed transduction primarily in glomeruli (left), mice treated with LPS and scAAV1-Cre showed increased transduction in non-glomerular (tubular) cells (right). Arrows point to examples of transduced glomerular cells (left) or examples of transduced tubule cells (right).



FIGS. 19A-19C. Induced proteinuria increases adenovirus transduction of the kidney, but strictly in glomeruli. FIG. 19A. Four month old mice were administered an i.p. injection of PBS (male mice) or LPS (female mice) on Day-1 and an i.v. injection of 1e11 vp of Ad5-Cre on Day 0. In vivo bioluminescence was assessed daily until peak expression was observed at Day 5. Luminescence was significantly lower in LPS-injected mice compared to PBS-injected mice (p value determined using Welch's t test: n=3 mice per group: error bars are represented by mean with error, left), however, ex vivo kidney luminescence was significantly higher in LPS-injected mice compared to PBS-injected mice (p value determined using Mann-Whitney test: n=6 kidneys per group, except for control group where n=1: error bars are represented by mean with SD, right). FIG. 19B. Bioluminescent images of the kidneys quantified ex vivo in Panel A. While essentially no luminescence is visible in kidneys from mice injected with PBS, kidneys from mice injected with LPS showed luminescence localized to the renal pelvis region of the kidney. FIG. 19C. Kidneys shown in Panel B were sectioned to examine mT and mG endogenous fluorescence. Yellow arrows point to examples to transduced glomerular cells, which are present sparsely in mice injected with PBS and more frequently in mice injected with LPS. No instances of transduced tubular cells were observed in either group of mice.



FIGS. 20A-20B. Induced proteinuria increases AAV gene delivery to renal epithelial cells in mice with polycystic kidney disease. FIG. 20A. Male Pkd1RC/RC-mT/mG hybrid mice were generated, which have two hypomorphic Pkd1RC alleles and develop autosomal dominant polycystic kidney disease. Nine month old male mice were treated with PBS or LPS via i.p. injection at Day-1 and 1.64e11 GC of scAAV8-Cre via i.v. injection at Day 0. FIG. 20B. Mice were sacrificed at Day 6 and their kidneys were sectioned to examine mT and mG endogenous fluorescence. Arrows point to transduced cells. While transduced glomerular cells were observed in PBS-injected mice, transduced tubular cells were observed only in LPS-injected mice (n=1 mouse for each group).



FIG. 21. Diagram modeling vector pharmacokinetics in a state of induced proteinuria. LPS administration results in degradation of podocyte foot processes, effectively increasing the permselectivity of slit diaphragms to an unknown diameter above the natural 10 nm. This change in physiology allows the smaller AAV (25 nm i.d.) to penetrate into adjacent tubule cells while the larger Ad (90 nm i.d.) has increased penetration into glomerular cells but not tubular cells. It is also possible that AAV moved from the vasculature of the kidney to transduce cells of the macula densa.



FIG. 22. Example of proteinuria dipsticks used to assess induced proteinuria in mice. Mice administered LPS at Day-1 had a higher indicated level of proteinuria at Day 0 while mice administered PBS had a consistent level of proteinuria from Day-1 to Day 0. It was common for mice administered LPS to have a proteinuria level of greater than 2000 mg/dL the following day.



FIGS. 23A-23B. Administration of LPS to mice did not affect liver transduction by AAV but did result in renal medullar transduction across several serotypes of AAV. FIG. 23A. Quantification of in vivo luminescence images shown in FIG. 14. Mice that were administered i.p. injections of either PBS or LPS on Day −1 and i.v. injections of scAAV8-Cre, scAAV9-Cre, or scAAVrh10-Cre on Day 0 had levels of in vivo luminescence that varied by approximately two orders of magnitude on Day 1, but these signals reached approximately the same level by Day 6. FIG. 23B. Images of the medulla of kidneys of scAAV8 and scAAV9 injected mice from FIG. 15. Both images show that there is transduction in medullar cells in addition to the cortical tubular cells shown earlier.



FIGS. 24A-24B. Evidence of toxicity associated with combined LPS and AAV administration. FIG. 24A. Liver sections of mice injected with PBS or LPS followed by high-dose scAAV8-Cre. These sections are from the same mice injected with scAAV8-Cre in FIGS. 14 and 15. While both livers are entirely transduced by scAAV8-Cre, the liver of the LPS-injected mouse exhibited a globular cell phenotype indicative of toxicity. FIG. 24B. From the mice in FIG. 3, mice treated with LPS had significantly increased transduced levels of macrophages in the blood compared to mice treated PBS, indicating an overall increase in macrophage present in the blood after LPS treatment. (p=0.0475 by Welch's t test.)



FIGS. 25A-25D. Representative flow cytometry plots for mice administered scAAV8-Cre. Plots are from Left Kidney of Mouse #01 Left Kidney (treated with PBS followed by PBS, in a group of n=2 kidneys) and Mouse #07 (treated with LPS followed by scAAV8-Cre, in a group of n=6 kidneys).



FIGS. 26A-26C. Representative flow cytometry plots for mice administered scAAVrh10-Cre. Plots are from Left Kidney of Mouse #01 Left Kidney (treated with PBS followed by PBS, in a group of n=2 kidneys) and Mouse #02 (treated with LPS followed by scAAVrh10-Cre, in a group of n=6 kidneys).



FIGS. 27A-27B. Increased kidney transduction after administration of LPS and Ad5-Cre is negatively correlated with liver transduction. FIG. 27A. Example of liver sections of mice injected either with PBS followed by Ad5-Cre or LPS followed by Ad5-Cre. While the liver of the former is fully transduced, the liver of the latter is only partially transduced. FIG. 27.) The mice shown are the same mice from FIG. 19 injected with LPS followed by Ad5-Cre. In vivo imaging (top) is juxtaposed to corresponding liver section (middle) and ex vivo kidney imaging (bottom). Mice with weaker liver transduction exhibited stronger kidney transduction.



FIG. 28. Comparison of liver transduction across various vectors and doses. While scAAV8, scAAV9, and scAAVrh10 fully transduced the liver, scAAV1 only partially transduced the liver. Ad5-Cre fully transduced the liver, which was attenuated when LPS was administered prior to Ad5-Cre.



FIG. 29. Livers of mice with polycystic kidney disease were fully transduced by scAAV8-Cre. Livers of mice shown in FIG. 20. The livers of these mice were fully transduced when injected with scAAV8-Cre.



FIG. 30. A schematic representation of a cre recombinase activated reporter mouse model.



FIGS. 31A-31B. Representative images of mice showing luciferase expression. FIG. 31A. In vivo luminescent imaging. FIG. 31B. Fluorescent imaging of tissue sections.



FIGS. 32A-32E. FIG. 32A. Fluorescent imaging of kidney sections following transduction with different AAV serotypes. FIG. 32B. Immunostaining of smooth muscle and proximal tubules in kidneys of mice treated with AAV1. FIG. 32C. Immunostaining of smooth muscle and proximal tubules in kidneys of mice treated with AAV8. FIG. 32D. Immunostaining of podocytes, smooth muscle, and proximal tubules in kidneys of mice treated with AAV9. FIG. 32E. Immunostaining of endothelium, smooth muscle, and proximal tubules in kidneys of mice treated with AAVrh10.1.



FIG. 33. Immunostaining of endothelium in kidneys of mice treated with AAVrh10.1. mRFP indicates untransduced cells. mGFP indicates Cre-transduced cells. Violet-colored cells are cells detected with anti-CD31 antibody.





DETAILED DESCRIPTION

This document provides methods and materials for treating a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD). For example, methods and materials provided herein can be used to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal having, or at risk of developing, a polycystic disease) to treat the mammal. In some cases, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered to a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) to treat the mammal. For example, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within the mammal (e.g., to treat the mammal). For example, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be administered to a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within the mammal (e.g., to treat the mammal).


As used herein, an “increased” level of PC-1 polypeptides and/or PC-2 polypeptides can be any level that is higher than a level of PC-1 polypeptides and/or PC-2 polypeptides in a mammal (e.g., human) that was observed prior to being treated as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides to the mammal). An increase in a level of PC-1 polypeptides and/or PC-2 polypeptides can be in any appropriate tissue and/or organ of a mammal (e.g., a human). Examples of tissues and/or organs in which a level of PC-1 polypeptides and/or PC-2 polypeptides can be increased as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides to the mammal) include, without limitation, kidneys, liver, spleen, lungs, and brain. In some cases, administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides to a mammal having a polycystic disease (e.g., a PKD) can be effective to increase a level of PC-1 polypeptides and/or PC-2 polypeptides in one or both kidneys in the mammal. For example, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having, or at risk of developing, a polycystic disease such as PKD) as described herein to increase a level of PC-1 polypeptides and/or PC-2 polypeptides in the mammal by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent. In some cases, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having, or at risk of developing, a polycystic disease such as PKD) as described herein to increase a level of PC-1 polypeptides and/or PC-2 polypeptides in the mammal by, for example, 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold, or more. For example, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene and/or a PKD2 gene can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having, or at risk of developing, a polycystic disease such as PKD) as described herein to increase a level of PC-1 polypeptides and/or PC-2 polypeptides in the mammal by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent. In some cases, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene and/or a PKD2 gene can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having, or at risk of developing, a polycystic disease such as PKD) as described herein to increase a level of PC-1 polypeptides and/or PC-2 polypeptides in the mammal by, for example, 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold, or more.


In some cases, a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) can be treated as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal) to reduce or eliminate one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD). Examples of symptoms of a polycystic disease (e.g., a PKD) and complications associated with a polycystic disease (e.g., a PKD) include, without limitation, back pain, side pain, headache, a feeling of fullness (e.g., in the abdomen), increased size of the abdomen (e.g., due to an enlarged kidney), blood in the urine, high blood pressure, loss of kidney function (e.g., kidney failure), heart valve abnormalities (e.g., mitral valve prolapse), colon problems (e.g., diverticulosis), development of an aneurysm (e.g., a brain aneurysm), and endothelial dysfunction (ED). For example, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having, or at risk of developing, a PKD) as described herein to reduce the severity of one or more symptoms of a PDK and/or one or more complications associated with PKD by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent. For example, nucleic acid designed to express one or more gene therapy components (or the gene therapy components themselves) designed to activate transcription of a PKD1 gene and/or a PKD2 gene can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having, or at risk of developing, a PKD) as described herein to reduce the severity of one or more symptoms of a PDK and/or one or more complications associated with PKD by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent.


In some cases, a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) can be treated as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal) to reduce or eliminate one or more cysts (e.g., one or more renal cysts) within the mammal. For example, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having one or more cysts associate with a polycystic disease such as PKD) as described herein to reduce the size (e.g., volume) of a cyst within the mammal by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent. For example, nucleic acid designed to express one or more gene therapy components (or the gene therapy components themselves) designed to activate transcription of a PKD1 gene and/or a PKD2 gene can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having one or more cysts associated with a polycystic disease such as PKD) as described herein to reduce the cystic index (also referred to as a cystic burden; e.g., the percentage of an organ such as a kidney that is occupied by cysts) in the mammal by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent. Any appropriate method can be used to determine the size of a cyst (e.g., a renal cyst) and/or a cystic index within a mammal (e.g., a mammal having, or at risk of developing, a polycystic disease such as PKD). For example, ultrasound, computed tomography (CT) scanning, magnetic resonance imaging (MRI), and/or histological analysis can be used to determine the size of a cyst (e.g., a renal cyst) and/or a cystic index of a mammal (e.g., a mammal having, or at risk of developing, a polycystic disease such as PKD). In some cases, a cystic index can be determined as described elsewhere (see, e.g., Nieto et al., PLOS One, 11(10):e0163063 (2016)).


In some cases, a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) can be treated as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal) to reduce the total kidney volume of one or both kidneys within the mammal and/or to reduce the body weight of the mammal. For example, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having one or more cysts associate with a polycystic disease such as PKD) as described herein to reduce the total kidney volume of a kidney within the mammal and/or to reduce the body weight of the mammal by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent. For example, nucleic acid designed to express one or more gene therapy components (or the gene therapy components themselves) designed to activate transcription of a PKD1 gene and/or a PKD2 gene can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having one or more cysts associate with a polycystic disease such as PKD) as described herein to reduce the total kidney volume of a kidney within the mammal and/or to reduce the body weight of the mammal by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent. Any appropriate method can be used to determine the total kidney volume of a kidney. For example, ultrasound, CT scanning, and/or MRI can be used to determine the weight of a kidney.


Any appropriate mammal having, or at risk of developing, a polycystic disease (e.g., a PKD) can be treated as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal). Examples of mammals having, or at risk of developing, a polycystic disease (e.g., a PKD) that can be treated as described herein include, without limitation, humans, non-human primates (e.g., monkeys), dogs, cats, horses, cows, pigs, sheep, mice, rat, hamsters, camels, and llamas. In some cases, a human having, or at risk of developing, a polycystic disease (e.g., a PKD) can be treated by administering nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide to the human. In some cases, a human having, or at risk of developing, a polycystic disease (e.g., a PKD) can be treated by administering nucleic acid designed to express one or more gene therapy components (or the gene therapy components themselves) designed to activate transcription of a PKD1 gene and/or a PKD2 gene to the human.


Any appropriate polycystic disease can be treated as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal). Examples of polycystic diseases that can be treated as described herein include, without limitation, PKDs such as ADPKD type 1 and ADPKD type 2. In some cases, a mammal (e.g., a human) having, or at risk of developing, PKD (e.g., ADPKD) can be treated by administering nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide to the mammal. In some cases, a mammal (e.g., a human) having, or at risk of developing, PKD (e.g., ADPKD) can be treated by administering nucleic acid designed to express one or more gene therapy components (or the gene therapy components themselves) designed to activate transcription of a PKD1 gene and/or a PKD2 gene to the mammal.


When treating a mammal having, or at risk of developing, a polycystic disease (e.g., a PKD) as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal), the mammal can have one or more cysts present in and/or on any tissue or organ within the mammal. Examples of tissues and organs within a mammal having a polycystic disease (e.g., a PKD) that can have one or more cysts include, without limitation, the kidney, the liver, seminal vesicles, pancreas, and arachnoid membrane. For example, a mammal (e.g., a human) having a polycystic disease (e.g., a PKD) can have one or more renal cysts (e.g., one or more cysts present on or within one or both kidneys).


In some cases, methods for treating a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) also can include identifying a mammal as having, or as being at risk of developing, a polycystic disease (e.g., a PKD). Any appropriate method can be used to identify a mammal as having, or as being at risk of developing, a polycystic disease (e.g., a PKD). For example, imaging techniques (e.g., ultrasound, CT scan, and MRI), laboratory tests (e.g., genetic testing for mutation of one or both copies of the PKD1 gene and/or mutation of one or both copies of the PKD2 gene present in a mammal), and/or generation of family pedigrees can be used to identify a mammal as having, or as being at risk of developing, a polycystic disease (e.g., a PKD).


Once identified as having, or as being at risk of developing, a polycystic disease (e.g., a PKD), the mammal (e.g., the human) can be administered, or instructed to self-administer, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal as described herein.


In some cases, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can include nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide. Nucleic acid designed to express PC-1 polypeptides and/or PC-2 polypeptides within a mammal can express any appropriate PC-1 polypeptide and/or any appropriate PC-2 polypeptide. In some cases, the methods and materials provided herein can include administering to a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) nucleic acid designed to express a PC-1 polypeptide. Examples of PC-1 polypeptides and nucleic acids encoding PC-1 polypeptides include, without limitation, those set forth in the National Center for Biotechnology Information (NCBI) databases at, for example, accession no. NM_001009944 (version NM_001009944.3), and accession no. AAC34211 (version AAC34211.1).


In some cases, a nucleic acid encoding a PC-1 polypeptide can have an nucleotide sequence set forth in SEQ ID NO: 1 (see, e.g., FIG. 12A). In some cases, a PC-1 polypeptide can have an amino acid sequence set forth in SEQ ID NO:2 (see, e.g., FIG. 12B).


In some cases, a variant of a PC-1 polypeptide can be used in place of or in addition to a PC-1 polypeptide. A variant of a PC-1 polypeptide can have the amino acid sequence of a naturally-occurring PC-1 polypeptide with one or more (e.g., e.g., one, two, three, four, five, six, seven, eight, nine, ten, or more) amino acid deletions, additions, substitutions, or combinations thereof, provided that the variant retains the function of a naturally-occurring PC-1 polypeptide.


In some cases, the methods and materials provided herein can include administering to a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) nucleic acid designed to express a PC-2 polypeptide. Examples of PC-2 polypeptides and nucleic acids encoding PC-2 polypeptides include, without limitation, those set forth in the National Center for Biotechnology Information (NCBI) databases at, for example, accession no. NR_156488 (version NR_156488.2), and accession no. Q13563 (version Q13563.3).


In some cases, a nucleic acid encoding a PC-2 polypeptide can have an nucleotide sequence set forth in SEQ ID NO:3 (see, e.g., FIG. 13A). In some cases, a PC-2 polypeptide can have an amino acid sequence set forth in SEQ ID NO:4 (see, e.g., FIG. 13B).


In some cases, a variant of a PC-2 polypeptide can be used in place of or in addition to a PC-2 polypeptide. A variant of a PC-2 polypeptide can have the amino acid sequence of a naturally-occurring PC-1 polypeptide with one or more (e.g., e.g., one, two, three, four, five, six, seven, eight, nine, ten, or more) amino acid deletions, additions, substitutions, or combinations thereof, provided that the variant retains the function of a naturally-occurring PC-2 polypeptide.


Any appropriate amino acid residue set forth in SEQ ID NO:2 and/or any appropriate amino acid residue set forth in SEQ ID NO:3 can be deleted, and any appropriate amino acid residue (e.g., any of the 20 conventional amino acid residues or any other type of amino acid such as ornithine or citrulline) can be added to or substituted within the sequence set forth in SEQ ID NO:2 and/or SEQ ID NO:4. The majority of naturally occurring amino acids are L-amino acids, and naturally occurring polypeptides are largely comprised of L-amino acids. D-amino acids are the enantiomers of L-amino acids. In some cases, a polypeptide provided herein can contain one or more D-amino acids. In some embodiments, a polypeptide can contain chemical structures such as ε-aminohexanoic acid: hydroxylated amino acids such as 3-hydroxyproline, 4-hydroxyproline, (5R)-5-hydroxy-L-lysine, allo-hydroxylysine, and 5-hydroxy-L-norvaline: or glycosylated amino acids such as amino acids containing monosaccharides (e.g., D-glucose, D-galactose, D-mannose, D-glucosamine, and D-galactosamine) or combinations of monosaccharides.


Amino acid substitutions can be made, in some cases, by selecting substitutions that do not differ significantly in their effect on maintaining (a) the structure of the peptide backbone in the area of the substitution, (b) the charge or hydrophobicity of the molecule at particular sites, or (c) the bulk of the side chain. For example, naturally occurring residues can be divided into groups based on side-chain properties: (1) hydrophobic amino acids (norleucine, methionine, alanine, valine, leucine, and isoleucine): (2) neutral hydrophilic amino acids (cysteine, serine, and threonine): (3) acidic amino acids (aspartic acid and glutamic acid): (4) basic amino acids (asparagine, glutamine, histidine, lysine, and arginine): (5) amino acids that influence chain orientation (glycine and proline); and (6) aromatic amino acids (tryptophan, tyrosine, and phenylalanine). Substitutions made within these groups can be considered conservative substitutions. Non-limiting examples of substitutions that can be used herein for SEQ ID NO:2 and/or SEQ ID NO:4 include, without limitation, substitution of valine for alanine, lysine for arginine, glutamine for asparagine, glutamic acid for aspartic acid, serine for cysteine, asparagine for glutamine, aspartic acid for glutamic acid, proline for glycine, arginine for histidine, leucine for isoleucine, isoleucine for leucine, arginine for lysine, leucine for methionine, leucine for phenyalanine, glycine for proline, threonine for serine, serine for threonine, tyrosine for tryptophan, phenylalanine for tyrosine, and/or leucine for valine. Further examples of conservative substitutions that can be made at any appropriate position within SEQ ID NO:2 and/or SEQ ID NO:4 are set forth in Table 1 below.









TABLE 1







Examples of conservative amino acid substitutions.











Original

Preferred



Residue
Exemplary substitutions
substitutions







Ala
Val, Leu, Ile
Val



Arg
Lys, Gln, Asn
Lys



Asn
Gln, His, Lys, Arg
Gln



Asp
Glu
Glu



Cys
Ser
Ser



Gln
Asn
Asn



Glu
Asp
Asp



Gly
Pro
Pro



His
Asn, Gln, Lys, Arg
Arg



Ile
Leu, Val, Met, Ala, Phe, Norleucine
Leu



Leu
Norleucine, Ile, Val, Met, Ala, Phe
Ile



Lys
Arg, Gln, Asn
Arg



Met
Leu, Phe, Ile
Leu



Phe
Leu, Val, Ile, Ala
Leu



Pro
Gly
Gly



Ser
Thr
Thr



Thr
Ser
Ser



Trp
Tyr
Tyr



Tyr
Trp, Phe, Thr, Ser
Phe



Val
Ile, Leu, Met, Phe, Ala, Norleucine
Leu










In some cases, a variant of a PC-1 polypeptide can be designed to include the amino acid sequence set forth in SEQ ID NO:2 with the proviso that it includes one or more non-conservative substitutions. Non-conservative substitutions typically entail exchanging a member of one of the classes described above for a member of another class. Whether an amino acid change results in a functional polypeptide can be determined by assaying the specific activity of the polypeptide using, for example, the methods described herein.


In some cases, a variant of a PC-1 polypeptide having an amino acid sequence with at least 85% (e.g., 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99.0%) sequence identity to the amino acid sequence set forth in SEQ ID NO:2, provided that it includes at least one difference (e.g., at least one amino acid addition, deletion, or substitution) with respect to SEQ ID NO:2, can be used.


In some cases, a variant of a PC-2 polypeptide can be designed to include the amino acid sequence set forth in SEQ ID NO:4 with the proviso that it includes one or more non-conservative substitutions. Non-conservative substitutions typically entail exchanging a member of one of the classes described above for a member of another class. Whether an amino acid change results in a functional polypeptide can be determined by assaying the specific activity of the polypeptide using, for example, the methods described herein.


In some cases, a variant of a PC-2 polypeptide having an amino acid sequence with at least 85% (e.g., 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99.0%) sequence identity to the amino acid sequence set forth in SEQ ID NO:4, provided that it includes at least one difference (e.g., at least one amino acid addition, deletion, or substitution) with respect to SEQ ID NO:4, can be used.


The percent sequence identity between a particular nucleic acid or amino acid sequence and a sequence referenced by a particular sequence identification number (e.g., SEQ ID NO:2 and/or SEQ ID NO:4) is determined as follows. First, a nucleic acid or amino acid sequence is compared to the sequence set forth in a particular sequence identification number using the BLAST 2 Sequences (Bl2seq) program from the stand-alone version of BLASTZ containing BLASTN version 2.0.14 and BLASTP version 2.0.14. This stand-alone version of BLASTZ can be obtained online at fr.com/blast or at ncbi.nlm.nih.gov. Instructions explaining how to use the Bl2seq program can be found in the readme file accompanying BLASTZ. Bl2seq performs a comparison between two sequences using either the BLASTN or BLASTP algorithm. BLASTN is used to compare nucleic acid sequences, while BLASTP is used to compare amino acid sequences. To compare two nucleic acid sequences, the options are set as follows: -i is set to a file containing the first nucleic acid sequence to be compared (e.g., C:\seq1.txt): -j is set to a file containing the second nucleic acid sequence to be compared (e.g., C:\seq2.txt): -p is set to blastn: -o is set to any desired file name (e.g., C:\output.txt): -q is set to -l: -r is set to 2; and all other options are left at their default setting. For example, the following command can be used to generate an output file containing a comparison between two sequences: C:\Bl2seq -i c:\seq1.txt -j c:\seq2.txt -p blastn -o c:\output.txt -q -l -r 2. To compare two amino acid sequences, the options of Bl2seq are set as follows: -i is set to a file containing the first amino acid sequence to be compared (e.g., C:\seq1.txt); -j is set to a file containing the second amino acid sequence to be compared (e.g., C:\seq2.txt); -p is set to blastp; -o is set to any desired file name (e.g., C:\output.txt); and all other options are left at their default setting. For example, the following command can be used to generate an output file containing a comparison between two amino acid sequences: C:\Bl2seq -i c:\seq1.txt -j c:\seq2.txt -p blastp -o c:\output.txt. If the two compared sequences share homology; then the designated output file will present those regions of homology as aligned sequences. If the two compared sequences do not share homology, then the designated output file will not present aligned sequences.


Once aligned, the number of matches is determined by counting the number of positions where an identical nucleotide or amino acid residue is presented in both sequences. The percent sequence identity is determined by dividing the number of matches by the length of the sequence set forth in the identified sequence (e.g., SEQ ID NO:2 and/or SEQ ID NO:4), followed by multiplying the resulting value by 100. It is noted that the percent sequence identity value is rounded to the nearest tenth. For example, 75.11, 75.12, 75.13, and 75.14 is rounded down to 75.1, while 75.15, 75.16, 75.17, 75.18, and 75.19 is rounded up to 75.2. It also is noted that the length value will always be an integer.


In some cases, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be the form of a vector (e.g., a viral vector or a non-viral vector). In cases where the methods and materials provided herein include nucleic acid designed to express a PC-1 polypeptide and nucleic acid designed to express a PC-2 polypeptide, the nucleic acid designed to express a PC-1 polypeptide and the nucleic acid designed to express a PC-2 polypeptide can be present in the same vector or in separate vectors.


In some cases, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be used for transient expression of a PC-1 polypeptide and/or a PC-2 polypeptide. In some cases, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be used for stable expression of a PC-1 polypeptide and/or a PC-2 polypeptide. In cases where nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide is used for stable expression of a PC-1 polypeptide and/or a PC-2 polypeptide, the nucleic acid encoding a PC-1 polypeptide and/or the nucleic acid encoding a PC-2 polypeptide can be engineered to integrate into the genome of a cell. Nucleic acid can be engineered to integrate into the genome of a cell using any appropriate method. For example, gene editing techniques (e.g., CRISPR or TALEN gene editing) can be used to integrate nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide into the genome of a cell.


When a vector used to deliver nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide to a mammal is a viral vector, any appropriate viral vector can be used. A viral vector can be derived from a positive-strand virus or a negative-strand virus. A viral vector can be derived from a virus with a DNA genome or a RNA genome. In some cases, a viral vector can be a chimeric viral vector. In some cases, a viral vector can infect dividing cells. In some cases, a viral vector can infect non-dividing cells. In some cases, a viral vector can be a helper dependent (HD) viral vector. Examples of virus-based vectors that can be used to deliver nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide to a mammal include, without limitation, virus-based vectors based on Ads (e.g., HDAds), AAVs, lentiviruses (LVs), measles viruses, Sendai viruses, herpes viruses, or vesicular stomatitis viruses (VSVs). In some cases, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be delivered to a mammal using a HDAd vector. In some cases, nucleic acid designed to express a PC-2 polypeptide can be delivered to a mammal using an AAV vector. In some cases, a viral vector including nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can have low seroprevalence in a mammal to be treated as described herein.


When a vector used to deliver nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide to a mammal (e.g., a human) is a non-viral vector, any appropriate non-viral vector can be used. In some cases, a non-viral vector can be an expression plasmid (e.g., a cDNA expression vector).


In some cases, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal complexed with lipids, polymers, nanoparticles (e.g., nanospheres), and/or lipid nanoparticles (LNPs). For example, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be complexed to one or more LNPs.


In addition to nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can contain one or more regulatory elements operably linked to the nucleic acid encoding a PC-1 polypeptide and/or the nucleic acid encoding a PC-2 polypeptide. Such regulatory elements can include promoter sequences, enhancer sequences, response elements, signal peptides, internal ribosome entry sequences, polyadenylation signals, terminators, and inducible elements that modulate expression (e.g., transcription or translation) of a nucleic acid. The choice of regulatory element(s) that can be included in a vector depends on several factors, including, without limitation, inducibility, targeting, and the level of expression desired. For example, a promoter can be included in a vector to facilitate transcription of a nucleic acid encoding a PC-1 polypeptide and/or nucleic acid encoding a PC-2 polypeptide. A promoter can be a naturally occurring promoter or a recombinant promoter. A promoter can be ubiquitous or inducible (e.g., in the presence of tetracycline), and can affect the expression of a nucleic acid encoding a polypeptide in a general or tissue-specific manner (e.g., a cadherin 16 (Cdh16 or Ksp-cadherin) promoter sequence such as a mouse Cdh16 promoter sequence). Examples of promoters that can be used to drive expression of a PC-1 polypeptide and/or PC-2 polypeptide include, without limitation, EF1α promoter sequences, CBh promoter sequences, PKD1 promoter sequences, PKD2 promoter sequences, cytomegalovirus (CMV) promoter sequences (e.g., human CMV promoter sequences), Rous sarcoma virus (RSV) promoter sequences, aquaporin 2 (AQP2) promoter sequences, gamma-glutamyltransferase 1 (Ggt1) promoter sequences, and Ksp-cadherin promoter sequences. As used herein, “operably linked” refers to positioning of a regulatory element in a vector relative to a nucleic acid encoding a polypeptide in such a way as to permit or facilitate expression of the encoded polypeptide. For example, a vector can contain a promoter and nucleic acid encoding a PC-1 polypeptide. In this case, the promoter is operably linked to a nucleic acid encoding a PC-1 polypeptide such that it drives expression of the PC-1 polypeptide in cells. In cases where a vector contains both nucleic acid designed to express a PC-1 polypeptide and nucleic acid designed to express a PC-2 polypeptide, the nucleic acid designed to express a PC-1 polypeptide and the nucleic acid designed to express a PC-2 polypeptide can be operably linked to the same promoter or different promoters.


In some cases, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can contain nucleic acid encoding a detectable label. For example, a vector can include nucleic acid designed to express a PC-1 polypeptide and nucleic acid encoding a detectable label positioned such that the encoded polypeptide is a fusion polypeptide that includes a PC-1 polypeptide fused to a detectable polypeptide. In some cases, a detectable label can be a peptide tag. Examples of detectable labels that can be used as described herein include, without limitation, HA tags, Myc-tags, FLAG-tags, fluorescent polypeptides (e.g., green fluorescent polypeptides (GFPs), and mCherry polypeptides), luciferase polypeptides, and sodium iodide symporter (NIS) polypeptides.


Nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be produced by techniques including, without limitation, common molecular cloning, polymerase chain reaction (PCR), chemical nucleic acid synthesis techniques, and combinations of such techniques. For example, PCR or RT-PCR can be used with oligonucleotide primers designed to amplify nucleic acid (e.g., genomic DNA or RNA) encoding a PC-1 polypeptide or a PC-2 polypeptide.


In some cases, a vector including nucleic acid designed to express a PC-1 polypeptide can be a HDAd vector including nucleic acid designed to express a PC-1 polypeptide that is operably linked to a CBh promoter sequence. An exemplary HDAd vector including nucleic acid encoding a PC-1 polypeptide that is operably linked to a CBh promoter sequence can include the nucleic acid sequence set forth in SEQ ID NO:5.


In some cases, a vector including nucleic acid designed to express a PC-2 polypeptide can be a AAV vector including nucleic acid designed to express a PC-2 polypeptide that is operably linked to a EF1a promoter sequence. An exemplary AAV vector including nucleic acid encoding a PC-2 polypeptide that is operably linked to a EF1α promoter sequence can include the nucleic acid sequence set forth in SEQ ID NO:6.


In some cases, a vector including nucleic acid designed to express a PC-1 polypeptide can be a HDAd vector including nucleic acid designed to express a PC-1 polypeptide that is operably linked to a CBh promoter sequence and include nucleic acid designed to express a PC-2 polypeptide that is operably linked to a EF1a promoter sequence. An exemplary HDAd vector including nucleic acid encoding a PC-1 polypeptide that is operably linked to a CBh promoter sequence and including nucleic acid encoding a PC-2 polypeptide that is operably linked to a EF1a promoter sequence can include the nucleic acid sequence set forth in SEQ ID NO:7.


In some cases, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can include one or more nucleic acid molecules designed to express gene therapy components designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides). For example, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can include one or more nucleic acid molecules designed to express the components of a targeted gene activation system (e.g., designed for CRISPR-Cas9-based targeted gene activation system) designed to upregulate transcription of the PKD1 gene and/or the PKD2 gene to increase the level of PC-1 polypeptides and/or PC-2 polypeptides in cells. Any appropriate targeted gene activation system can be used (e.g., a synergistic activation mediators (SAM) system). In some cases, a targeted gene activation system can include (a) a fusion polypeptide including a deactivated Cas (dCas) polypeptide and a transcriptional activator polypeptide, (b) one or more helper activator polypeptides, and (c) a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides. For example, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can include (a) nucleic acid that can express a fusion polypeptide including a deactivated Cas (dCas) polypeptide and a transcriptional activator polypeptide, (b) nucleic acid that can express one or more helper activator polypeptides, and (c) nucleic acid that can express a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides.


A fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can include any appropriate dCas polypeptide. Examples of dCas polypeptides that can be included in a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide that can be used as a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can include, without limitation, deactivated Cas9 (dCas9) polypeptides (e.g., deactivated Streptococcus pyogenes Cas9 (dSpCas9), deactivated Staphylococcus aureus Cas9 (dSaCas9), and deactivated Campylobacter jejuni Cas9 (dCjCas9)), and deactivated Cas phi (dCasΦ) polypeptides. In some cases, a dCas polypeptide that can be included in a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide that can be used as a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can be as described elsewhere (see, e.g., Konermann et al., Nature, January 29:517(7536):583-8 (2015) at, for example, the Supplementary Materials; Sajwan et al., Sci Rep., 9:18104 (2019) at, for example, Supplementary Materials; Jiang et al., Biosci. Rep., 39(8):BSR20191496 (2019) at, for example, Table 1). A dCas polypeptide in a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be encoded by any appropriate nucleic acid sequence.


A fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can include any appropriate transcriptional activator polypeptide. In some cases, a transcriptional activator polypeptide can recruit an RNA polymerase. In some cases, a transcriptional activator polypeptide can recruit one or more transcription factors and/or transcription co-factors (e.g., RNA polymerase co-factors). Examples of transcriptional activator polypeptides that can be included in a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can include, without limitation, polypeptides having four copies of viral protein 16 (VP64 polypeptides). In some cases, a transcriptional activator polypeptide that can be included in a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can be as described elsewhere (see, e.g., Konermann et al., Nature, January 29:517(7536):583-8 (2015) at, for example, the Supplementary Materials; Sajwan et al., Sci Rep., 9:18104 (2019) at, for example, Supplementary Materials; Jiang et al., Biosci. Rep., 39(8):BSR20191496 (2019) at, for example, Table 1). A transcriptional activator polypeptide in a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be encoded by any appropriate nucleic acid sequence.


A fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can include the dCas polypeptide and the transcriptional activator polypeptide in any orientation. In some cases, a transcriptional activator polypeptide can be fused to the N-terminus of a dCas polypeptide. In some cases, a transcriptional activator polypeptide can be fused to the C-terminus of a dCas polypeptide.


In some cases, a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can include a dSpCas9 polypeptide and a VP64 polypeptide. For example, a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be a dCas9-VP64 fusion polypeptide.


A fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be encoded by any appropriate nucleic acid sequence.


A targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can include any appropriate helper activator polypeptide. Examples of helper activator polypeptides that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can include, without limitation, Escherichia virus MS2 coat protein (MS2) polypeptides, nuclear factor NF-kappa-B p65 subunit (p65) polypeptides, heat shock factor protein 1 (HSF1) polypeptides, VP64 polypeptides. In some cases, a helper activator polypeptide can include two or more (e.g., two, three, or more) helper activator polypeptides. For example, a helper activator polypeptide can be a fusion polypeptide including two or more helper activator polypeptides. For example, a helper activator polypeptide can be a complex including two or more helper activator polypeptide. In some cases, a helper activator polypeptide can include a MS2 polypeptide, a p65 polypeptide, and a HSF1 polypeptide (a MS2-P65-HSF1 (MPH) polypeptide). In some cases, a helper activator polypeptide that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can be as described elsewhere (see, e.g., Konermann et al., Nature, January 29:517(7536):583-8 (2015) at, for example, the Supplementary Materials; Sajwan et al., Sci Rep., 9:18104 (2019) at, for example, Supplementary Materials; Jiang et al., Biosci. Rep., 39(8):BSR20191496 (2019) at, for example, Table 1). A helper activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be encoded by any appropriate nucleic acid sequence.


A targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can include any appropriate nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the helper activator polypeptide. A nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene can be any appropriate length. In some cases, a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene can include from 19 nucleotides to 21 nucleotides.


In some cases, a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the helper activator polypeptide that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can include a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene. A nucleic acid sequence that is complementary to a target sequence within a PKD1 gene can include any appropriate nucleic acid sequence. A nucleic acid sequence that is complementary to a target sequence within a PKD1 gene can be complementary to (e.g., can be designed to target) any target sequence within a PKD1 gene (e.g., can target any location within a PKD1 gene). In some cases, a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene can be a single stranded nucleic acid sequence. In some cases, a target sequence within a PKD1 gene can be in a promoter sequence of the PKD1 gene. In some cases, a target sequence within a PKD1 gene can be from about 1 nucleotide to about 200 nucleotides away from a promoter sequence of the PKD1 gene. Examples of nucleic acid sequences that are complementary to a target sequence within a PKD1 gene include, without limitation, nucleic acid sequences that can be encoded by a nucleic acid sequence including the sequence TCGCGCTGTGGCGAAGGGGG (SEQ ID NO:13), a nucleic acid sequence including the sequence CCAGTCCCTCATCGCTGGCC (SEQ ID NO:14), and a nucleic acid sequence including the sequence GGAGCGGAGGGTGAAGCCTC (SEQ ID NO:15).


In some cases, a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the helper activator polypeptide that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can include a nucleic acid sequence that is complementary to a target sequence within a PKD2 gene. A nucleic acid sequence that is complementary to a target sequence within a PKD2 gene can include any appropriate nucleic acid sequence. A nucleic acid sequence that is complementary to a target sequence within a PKD2 gene can be complementary to (e.g., can be designed to target) any target sequence within a PKD2 gene (e.g., can target any location within a PKD2 gene). In some cases, a nucleic acid sequence that is complementary to a target sequence within a PKD2 gene can be a single stranded nucleic acid sequence. In some cases, a target sequence within a PKD2 gene can be in a promoter sequence of the PKD2 gene. In some cases, a target sequence within a PKD2 gene can be from about 1 nucleotide to about 200 nucleotides away from a promoter sequence of the PKD2 gene. Examples of nucleic acid sequences that are complementary to a target sequence within a PKD2 gene include, without limitation, nucleic acid sequences that can be encoded by a nucleic acid sequence including the sequence ACGCGGACTCGGGAGCCGCC (SEQ ID NO:23), a nucleic acid sequence including the sequence ATCCGCCGCGGCGCGCTGAG (SEQ ID NO:24), and a nucleic acid sequence including the sequence GTGCGAGGGAGCCGCCCCCG (SEQ ID NO:25).


A nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene that can be included in a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the helper activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be encoded by any appropriate nucleic acid sequence. In some cases, nucleic acid sequences that encode a nucleic acid that is complementary to a target sequence within a PKD1 gene can be encoded by a nucleic acid sequence shown in Table 2 or Table 3.


In some cases, a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the helper activator polypeptide that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can include any appropriate nucleic acid sequence that can bind the helper activator polypeptide. In some cases, a nucleic acid sequence that can bind the helper activator polypeptide can bind a MS2 polypeptide. Examples of nucleic acid sequences that can bind the helper activator polypeptide (e.g., a MS2 polypeptide) can include, without limitation, nucleic acid sequences that can be encoded by a nucleic acid sequence including the sequence ACATGAGGATCACCCATGT (SEQ ID NO:26). A nucleic acid sequence that can bind the helper activator polypeptide that can be included in a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the helper activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be encoded by any appropriate nucleic acid sequence.


In addition to nucleic acid designed to express one or more gene therapy components designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides), nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can contain one or more regulatory elements operably linked to nucleic acid that can express (a) a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide, (b) nucleic acid that can express one or more helper activator polypeptides, and/or (c) nucleic acid that can express a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides. Such regulatory elements can include promoter sequences, enhancer sequences, response elements, signal peptides, internal ribosome entry sequences, polyadenylation signals, terminators, and inducible elements that modulate expression (e.g., transcription or translation) of a nucleic acid. The choice of regulatory element(s) that can be included in a vector depends on several factors, including, without limitation, inducibility, targeting, and the level of expression desired. For example, a promoter can be included in a vector to facilitate transcription of a nucleic acid that can express (a) a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide, (b) a nucleic acid that can express one or more helper activator polypeptides, and/or (c) a nucleic acid that can express a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides. A promoter can be a naturally occurring promoter or a recombinant promoter. A promoter can be ubiquitous or inducible (e.g., in the presence of tetracycline), and can affect the expression of a nucleic acid encoding a polypeptide in a general or tissue-specific manner (e.g., AQP2 promoter sequences, Ggt1 promoter sequences, and Ksp-cadherin promoter sequences). Examples of promoters that can be used to drive expression of (a) a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide, (b) one or more helper activator polypeptides. and/or (c) a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides include, without limitation, EF1a promoter sequences, CBh promoter sequences, CMV promoter sequences (e.g., human CMV promoter sequences), RSV promoter sequences, U6 promoter sequences, AQP2 promoter sequences, Ggt1 promoter sequences, and Ksp-cadherin promoter sequences. As used herein, “operably linked” refers to positioning of a regulatory element in a vector relative to a nucleic acid encoding a polypeptide or a nucleic acid (e.g., an RNA) in such a way as to permit or facilitate expression of the encoded polypeptide or the transcribed nucleic acid. For example, a vector can contain a promoter and nucleic acid encoding a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide. In this case, the promoter is operably linked to a nucleic acid encoding a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide such that it drives expression of the fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in cells. In cases where a vector contains both a nucleic acid that can express one or more helper activator polypeptides and a nucleic acid that can express a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides, the nucleic acid that can express one or more helper activator polypeptides and the nucleic acid that can express a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides can be operably linked to the same promoter or different promoters. In cases where a vector contains each of a nucleic acid that can express (a) a fusion polypeptide including dCas polypeptide and a transcriptional activator polypeptide, (b) a nucleic acid that can express one or more helper activator polypeptides, and (c) a nucleic acid that can express a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides, the nucleic acid that can express the fusion polypeptide including dCas polypeptide and a transcriptional activator polypeptide, the nucleic acid that can express the nucleic acid that can express one or more helper activator polypeptides, and the nucleic acid that can express a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides can be operably linked to the same promoter or different promoters. In cases where two or more nucleic acid sequences are operably linked to a single promoter, the coding sequences of each nucleic acid sequence can be separated by a sequence encoding a cleavage signal (e.g., P2A cleavage signal).


In some cases, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be the form of one or more vectors (e.g., viral vectors and/or non-viral vectors). In some cases, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can be present in the same vector or in separate vectors.


When a vector used to deliver one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene to a mammal is a viral vector, any appropriate viral vector can be used. A viral vector can be derived from a positive-strand virus or a negative-strand virus. A viral vector can be derived from a virus with a DNA genome or a RNA genome. In some cases, a viral vector can be a chimeric viral vector. In some cases, a viral vector can infect dividing cells. In some cases, a viral vector can infect non-dividing cells. Examples virus-based vectors that can be used to deliver nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide to a mammal include, without limitation, virus-based vectors based on Ads (e.g., HDAds), AAVs, LVs, measles viruses, Sendai viruses, herpes viruses, or VSVs.


When a vector used to deliver one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene to a mammal (e.g., a human) is a non-viral vector, any appropriate non-viral vector can be used. In some cases, a non-viral vector can be an expression plasmid (e.g., a cDNA expression vector).


In some cases, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can be administered to a mammal by direct injection of nucleic acid molecules complexed with lipids, polymers, nanoparticles (e.g., nanospheres), and/or LNPs. For example, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be complexed to one or more LNPs.


In some cases, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be in a HDAd vector (e.g., in a single HDAd vector) including (a) nucleic acid encoding a dCas9VP64 fusion polypeptide that is operably linked to a CMV promoter sequence, (b) nucleic acid encoding a MPH polypeptide that is operably linked to a EF1a promoter sequence, and (c) nucleic acid encoding a nucleic acid molecule (e.g., gRNA) including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind a MS2 polypeptide that is operably linked to a U6 promoter sequence. Exemplary HDAd vectors including (a) nucleic acid encoding a dCas9VP64 fusion polypeptide that is operably linked to a CMV promoter sequence, (b) nucleic acid encoding a MPH polypeptide that is operably linked to a EF1a promoter sequence, and (c) nucleic acid encoding a nucleic acid molecule (e.g., gRNA) including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind a MS2 polypeptide that is operably linked to a U6 promoter sequence can include, without limitation, the nucleic acid sequence set forth in SEQ ID NO:8, and the nucleic acid sequence set forth in SEQ ID NO:9.


In some cases, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be in the form of two or more AAV vectors including (a) nucleic acid encoding a dCas9VP64 fusion polypeptide that is operably linked to a EF1a promoter sequence, (b) nucleic acid encoding a MPH polypeptide that is operably linked to a CMV promoter sequence, and (c) nucleic acid encoding a nucleic acid molecule (e.g., gRNA) including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind a MS2 polypeptide that is operably linked to a U6 promoter sequence. For example, a first AAV vector can include (a) nucleic acid encoding a dCas9VP64 fusion polypeptide that is operably linked to a EF1a promoter sequence, and a second AAV vector can include (b) nucleic acid encoding a MPH polypeptide that is operably linked to a CMV promoter sequence, and (c) nucleic acid encoding a nucleic acid molecule (e.g., gRNA) including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind a MS2 polypeptide that is operably linked to a U6 promoter sequence. An exemplary AAV vector including (a) nucleic acid encoding a dCas9VP64 fusion polypeptide that is operably linked to a EF1a promoter sequence can include the nucleic acid sequence set forth in SEQ ID NO: 10. An exemplary AAV vector including (b) nucleic acid encoding a MPH polypeptide that is operably linked to a CMV promoter sequence, and (c) nucleic acid encoding a nucleic acid molecule (e.g., gRNA) including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind a MS2 polypeptide that is operably linked to a U6 promoter sequence can include the nucleic acid sequence set forth in SEQ ID NO:11.


In some cases, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be in the form of an AAV vector (e.g., a single AAV vector) including (a) nucleic acid encoding a dCasΦ1 polypeptide that is operably linked to a CBh promoter sequence, (b) nucleic acid encoding a MPH polypeptide that is operably linked to the CBh promoter sequence, and (c) nucleic acid encoding a nucleic acid molecule (e.g., gRNA) including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind a MS2 polypeptide that is operably linked to a U6 promoter sequence. An exemplary AAV vector including (a) nucleic acid encoding a dCasΦ1 polypeptide that is operably linked to a CBh promoter sequence. (b) nucleic acid encoding a MPH polypeptide that is operably linked to the CBh promoter sequence, and (c) nucleic acid encoding a nucleic acid molecule (e.g., gRNA) including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind a MS2 polypeptide that is operably linked to a U6 promoter sequence can include the nucleic acid sequence set forth in SEQ ID NO:12.


Any appropriate method can be used to deliver nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal to a mammal (e.g., a human). For example, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered locally or systemically. For example, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered locally by retro-ureter injection and/or subcapsular injection to a mammal (e.g., a human). For example, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered systemically by i.p. injection and/or i.v. injection to a mammal (e.g., a human).


Also provided herein are methods for improving delivery of nucleic acid (e.g., vectors such as viral vectors) to a mammal (e.g., to one or more cells within a mammal). For example, inducing proteinuria in a mammal prior to administering nucleic acid can be effective to improve delivery of nucleic acid to one or more cells (e.g., from blood within a mammal into one or more cells) within a mammal. In some cases, a mammal can first be administered one or more LPSs (e.g., to induce proteinuria in the mammal), and can subsequently be administered nucleic acid. For example, a mammal having, or at risk of developing, a polycystic disease (e.g., PKD) can first be administered one or more LPSs, and can subsequently be administered nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within the mammal (e.g., to improve delivery of nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides to one or more cells within a mammal).


Any appropriate LPS having the ability to induce proteinuria in a mammal (e.g., a human) can be used to improve delivery of nucleic acid to cells within the mammal as described herein. In some cases, another agent (e.g., an agent that is not an LPS) that can induce proteinuria in a mammal (e.g., a human) can be used in place of or in addition to one or more LPSs to improve delivery of nucleic acid to a mammal (e.g., to one or more cells within a mammal). An agent that can induce proteinuria in a mammal can be any type of molecule (e.g., a polypeptide, and a small molecule). In some cases, an agent that can induce proteinuria in a mammal can be a cell-opening agent. Examples of agents that can induce proteinuria and be used as described herein include, without limitation, puromycin, adriamycin, protamine sulfate, cationic albumin, and polycations.


In some cases, administering one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) prior to administering nucleic acid can be effective to improve delivery of the nucleic acid to the mammal (e.g., to one or more cells within a mammal) by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent (e.g., as compared to the amount of nucleic acid delivered to a mammal that has not been administered one or more LPSs and/or other agent(s) that can induce proteinuria in a mammal).


In some cases, administering one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) prior to administering nucleic acid can be effective to deliver large nucleic acid to the mammal (e.g., to one or more cells within a mammal). For example, administering one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) prior to administering nucleic acid can be effective to deliver nucleic acid having a size of from about 0.15 kb to about 36 kb (e.g., from about 0.15 kb to about 33 kb, from about 0.15 kb to about 30 kb, from about 0.15 kb to about 28 kb, from about 0.15 kb to about 25 kb, from about 0.15 kb to about 20 kb, from about 0.15 kb to about 17 kb, from about 0.15 kb to about 15 kb, from about 0.15 kb to about 12 kb, from about 0.15 kb to about 10 kb, from about 0.15 kb to about 8 kb, from about 0.15 kb to about 5 kb, from about 0.15 kb to about 3 kb, from about 0.15 kb to about 1 kb, from about 0.15 kb to about 0.5 kb, from about 0.5 kb to about 36 kb, from about 1 kb to about 36 kb, from about 5 kb to about 36 kb, from about 8 kb to about 36 kb, from about 10 kb to about 36 kb, from about 15 kb to about 36 kb, from about 20 kb to about 36 kb, from about 25 kb to about 36 kb, from about 30 kb to about 36 kb, from about 0.5 kb to about 30 kb, from about 1 kb to about 25 kb, from about 5 kb to about 20 kb, from about 10 kb to about 15 kb, from about 1 kb to about 5 kb, from about 5 kb to about 10 kb, from about 15 kb to about 20 kb, from about 20 kb to about 25 kb, from about 25 kb to about 30 kb, or from about 30 kb to about 35 kb) to the mammal (e.g., to one or more cells within a mammal). For example, administering one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) prior to administering nucleic acid can be effective to deliver nucleic acid having a mass of from about 10 kilodaltons (kDa) to about 50 kDa (e.g., from about 10 kDa to about 50 kDa, from about 10 kDa to about 40 kDa, from about 10 kDa to about 30 kDa, from about 10 kDa to about 20 kDa, from about 20 kDa to about 40 kDa, from about 25 kDa to about 35 kDa, from about 15 kDa to about 20 kDa, from about 20 kDa to about 25 kDa, from about 25 kDa to about 30 kDa, from about 30 kDa to about 35 kDa, from about 35 kDa to about 40 kDa, from about 40 kDa to about 45 kDa, or from about 45 kDa to about 50 kDa) to the mammal (e.g., to one or more cells within a mammal). For example, administering one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) prior to administering nucleic acid can be effective to deliver nucleic acid having a diameter of from about 10 nm to about 26 nm (e.g., from about 10 nm to about 25 nm, from about 10 nm to about 20 nm, from about 10 nm to about 17 nm, from about 10 nm to about 15 nm, from about 10 nm to about 12 nm, from about 12 nm to about 26 nm, from about 15 nm to about 26 nm, from about 18 nm to about 26 nm, from about 20 nm to about 26 nm, from about 22 nm to about 26 nm, from about 12 nm to about 20 nm, from about 15 nm to about 18 nm, from about 12 nm to about 15 nm, from about 18 nm to about 20 nm, or from about 20 nm to about 22 nm) to the mammal (e.g., to one or more cells within a mammal).


Any appropriate amount of one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered to a mammal (e.g., a human) to improve delivery of nucleic acid to any type of cell within the mammal. For example, from about 7 milligrams per kilogram body weight (mg/kg) to about 9 mg/kg of one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered to a mammal (e.g., a human) to improve delivery of nucleic acid to any type of cell within the mammal.


One or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can improve delivery of nucleic acid to any type of cell within a mammal. Examples of types of cells that an agent that can induce proteinuria in a mammal can improve delivery of nucleic acid to include, without limitation, kidney cells (e.g., renal tubule epithelial cells and/or proximal tubule cells such as proximal tubule cells adjacent to glomeruli), spleen cells, lungs cells, and brain cells.


One or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered to a mammal (e.g., a human) at any appropriate time before nucleic acid is administered to the mammal. In some cases, one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered to a mammal (e.g., a human) at least 18 hours prior to administering nucleic acid to the mammal. For example, one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered to a mammal (e.g., a human) from about 18 hours to about 24 hours prior to administering nucleic acid to the mammal.


Any appropriate method can be used to deliver one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) to a mammal (e.g., a human). For example, one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered locally or systemically. For example, one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered locally by retro-ureter injection and/or subcapsular injection to a mammal (e.g., a human). For example, one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered systemically by i.p. injection and/or i.v. injection to a mammal (e.g., a human).


In some cases, methods for treating a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) can include administering to the mammal nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal as the sole active ingredient to treat the mammal.


In some cases, methods for treating a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal) also can include administering to the mammal one or more (e.g., one, two, three, four, five or more) additional active agents (e.g., therapeutic agents) that are effective to treat one or more symptoms of a PKD and/or one or more complications associated with a polycystic disease (e.g., a PKD) to treat the mammal. Examples of additional active agents that can be used as described herein to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) include, without limitation, an inhibitor of a vasopressin receptor (e.g., tolvaptan), angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs), pain relievers (e.g., acetaminophen), antibiotics, pasireotide, and anti-miR-17 oligonucleotide RGLS4326. In some cases, the one or more additional active agents can be administered together with the administration of the nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal. For example, a composition containing nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal also can include one or more additional active agents that are effective to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD). In some cases, the one or more additional active agents that are effective to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) can be administered independent of the administration of the nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal. When the one or more additional active agents that are effective to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) are administered independent of the administration of the nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal, the nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered first, and the one or more additional active agents that are effective to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) performed second, or vice versa.


In some cases, methods for treating a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal) also can include subjecting the mammal one or more (e.g., one, two, three, four, five or more) additional treatments (e.g., therapeutic interventions) that are effective to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) to treat the mammal. Examples of additional treatments that can be used as described herein to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) include, without limitation, consuming a restricted diet (e.g., a diet low in methionine, high in choline, and/or high in betaine content), maintaining a healthy body weight, exercising regularly, undergoing dialysis, undergoing a kidney transplant, and dietary ketosis. In some cases, the one or more additional treatments that are effective to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) can be performed at the same time as the administration of the nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal. In some cases, the one or more additional treatments that are effective to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) can be performed before and/or after the administration of the nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal.


The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.


EXAMPLES
Example 1: Expression of PC-1 Polypeptides and or PC-2 Polypeptides to Treat ADPKD

This Example describes vectors that can be used as genetic therapies for treating ADPKD by delivering the cDNA of the PKD1 gene, the cDNA of the PKD2 gene, or both (e.g., simultaneously). Both viral and non-viral delivery methods are described.


Results

A Helper-Dependent Adenoviral Vector that Expresses PKD1, PKD2, or Both


HDAds with all the Ad genome viral open reading frames removed has space for genetic cargo up to 35 kb. AAVs can deliver the 2.9 kb PKD2 cDNA while HDAds can deliver the 12.9 kb PKD1 cDNA or a combination of the PKD1 and PKD2 cDNAs.


Materials and Methods
HDAd Vectors

HD-Ad PKD1 vectors were generated that contained a PKD1 cDNA. GFP-Luciferase HDAd vectors were also generated for transduction testing.


A helper virus was used to provide the missing Ad genes and proteins for HDAd vectors. If a normal Ad was used as the helper virus, both the helper and the HDAd virus was packaged, producing a preparation that was contaminated by the helper virus. To avoid this contamination problem, the Ad helper virus has its packaging signal flanked by two LoxP sites.


When the HDAd vector and LoxP-modified helper virus are delivered into 116 cells that overexpress the Cre recombinase, Cre excises the helper virus' packaging signal, blocking its packaging, and significantly reducing helper virus contamination. This system routinely produces yields of HDAd of 1013 virus particles (vp) with helper virus contamination below 0.02%.


HDAd was passaged up to 6 times and then purified on 2 CsCl gradients. Once purified, each virus preparation was sequenced to verify identity, and the amount of vector and helper virus was measured by qPCR.


Testing HDAd Vectors

Once produced, vectors are tested in vitro in 293 and RCTE human cells and IMCD mouse cells. The cells are infected at varied multiplicities of infection (MOI) of each vector. GFP fluorescence are analyzed by fluorescence microscopy and cell lysates will be prepared at the peak time of expression (usually day 2). Once GFPLuc expression is validated for each of the vectors, the vectors proceed to in vivo testing in RC mice. Groups of 5 male and 5 female mice are injected with each of the vectors by the retro-ureter route and sub-capsular routes. One group of male and female mice is injected with PBS as negative controls. Luciferase imaging is performed under isoflurane anesthesia on day 1 and 7. After luciferase imaging, all of the mice are euthanized using CO2. Both kidneys are sectioned to identify the cells that are expressing GFP using antibodies against GFP and EpCAM as well as staining with biotinylated lotus tetragonolobus lectin (LTL) to label mature proximal tubules and papillary collecting ducts. The percent transgene protein positive tubule cells are quantified using ImageJ based on pixel counts. The level of gene delivery in the renal pelvis, distal and proximal tubule, and in the glomerulus are determined. ANOVA comparisons are used to compare injection methods and promoters.


Each vector is used to transduce PKD1 and PKD2 null mutant cells and PC-1 and PC-2 expression by the vectors is verified by western blot.


Shorter Term In Vivo Therapeutic Testing

The vectors are injected into 1 month old RC/RC mice that are early in the PKD disease process. Each virus for injection is blinded. Mice are injected in the right kidney by the retro-ureter route in groups of 10 male and 10 female mice with PBS, HDAd-GFPLuc, HDAd-PKD1, or HDAd-PKD1 and PKD2. Cyst status for mice is established by MRI. The kidneys of the mice are monitored by MRI imaging bi-weekly to assess if vector injection into the right kidney delays cystogenesis progression relative to the uninjected kidneys. Serum creatinine and BUN are measured at varied times to assess kidney function.


Five animals from each group are sacrificed at one week and five animals from each group are sacrificed at one month. Luciferase imaging is performed in the GFP-Luciferase groups just prior to sacrifice to document the persistence of expression mediated by the HDAd vectors. The injected right kidney and the uninjected left kidney are weighed to determine kidney mass to body mass ratios. One half of each kidney is used for western blot and qPCR to determine whether PKD1 expression and PC-1 protein levels are increased. The remaining half is sectioned to identify the cells that are expressing exogenous human PC-1 and for histological examination to examine effects on cyst index, number and growth. Sections are stained by H&E to monitor changes in cyst sizes and infiltration of immune cells into the tissue.


HDAd-PKD1 or HDAd-PKD1 and PKD2 therapies can mediate changes in kidney size and cystic phenotypes relative to control vector and to PBS-injected controls. It is also examined if combined PKD1 and PKD2 provides better balanced expression than PKD1 alone.


Longer Term In Vivo Therapeutic Testing

The Shorter Term testing described above is repeated, but over longer times with larger group sizes. Five animals from each group are sacrificed at one month, five animals from each group are sacrificed 3 months, five animals from each group are sacrificed 6 months, and five animals from each group are sacrificed at 9 months. Luciferase imaging is performed and gene expression, kidney size, creatinine, BUN, kidney mass, and cyst formation is evaluated to determine if HDAd-PKD1 therapy mediates changes in kidney size and cystic phenotypes relative to control vector and to PBS-injected controls and uninjected kidneys.


Example 2: Targeted Gene Activation to Treat ADPKD

This Example describes gene activation machinery capable of increasing expression of the wild type PKD1 gene.


Results
Targeted Gene Activation of the PKD1 Allele in Human 293 (Adrenal-Derived) Cells

Three separate lentiviral vectors were produced, each of which expressed one of the three components of the Cas9-SAM system and a different selectable marker. Human 293 cells were transduced with the first lentivirus to express dCas9VP64 and selected for with blasticidin. Subsequently, cells were transduced with the second lentivirus to express MPH and selected for with hygromycin. Lastly, cells were transduced with the third lentivirus to express an sgRNA targeting the human PKD1 promoter and selected for with zeocin (FIG. 2).


After this process produced a stable bulk population of modified 293 cells, RNA was purified from the cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to quantify the relative levels of PKD1 mRNA in the transduced cells versus untransduced cells (FIG. 3). Expression of human sgRNA1 brought PKD1 mRNA to a relative level of 7.9, human sgRNA2 brought it to 13.8, and human sgRNA3 brought it to 3.1. Therefore, each of these sgRNA's were effective at increasing the level of PKD1 mRNA, and also at different levels.


Targeted Gene Activation of the PKD1 Allele in Human Renal Cortical Tubule Epithelial (RCTE) Cells

Human RCTE cells were subjected to the same process described above through the qRT-PCR step (FIG. 4). Expression of human sgRNA1 brought PKD1 mRNA to a relative level of 2.9, human sgRNA2 brought it to 9.7, and human sgRNA3 brought it to 1.7. The order of activation strength of these sgRNA's was conserved between 293 and RCTE cells, indicating that targeting particular promoter sequences may hold more inherent activation strength regardless of cell type.


Targeted Gene Activation of the Pkd1 Allele in Mouse Inner Medullary Collecting Duct (IMCD3) Cells

Mouse IMCD3 cells were subjected to the same process described above through the qRT-PCR step, with the exception that expressed sgRNA's were targeted to sequences in the mouse Pkd1 promoter rather than the human PKD1 promoter (FIG. 5). Expression of mouse sgRNA1 brought Pkd1 mRNA to a relative level of 2.8, mouse sgRNA2 brought it to 51.5, mouse sgRNA3 brought it to 8.4, and mouse sgRNA5 brought it to 5.1. In this case, a control sgRNA targeted to the promoter of the mouse Il1b gene was used as a control, which elevated the Pkd1 transcript to a level of 2.8, possibly due to dysregulation of cellular transcriptional networks.


Molecular Cloning of Dual AAV Vector SAM Plasmids and Verification of Protein Expression and sgRNA Sequences


After sgRNAs compatible with activation of the human PKD1 and mouse Pkd1 genes were identified, construction of vectors for in vivo delivery of Cas9-SAM components began. One of these vectors is a HDAd capable of carrying all three components of the SAM system (FIG. 6A). Although less commonly used in vivo, a second option is a lentiviral vector carrying all components of the same system (FIG. 6B). The three components of the SAM system are too large to be packaged into a single AAV vector, so a third option is a dual AAV vector system, where the first AAV delivers MPH and the sgRNA and the second AAV delivers dCas9VP64 (FIG. 6C). While the Cas9-SAM system described thus far is too large to be packaged into a single AAV vector, the newly discovered CasΦ protein is small enough to make single AAV vector amenable to delivering CasΦ1, MPH, and an sgRNA (FIG. 6D).


The first component of the SAM system, dCas9VP64, is 4.4 kb in length, which is already large for AAV. To ensure successful packaging, the transgene was flanked by relatively small expression elements in the AAV construct (FIG. 6C). To ensure robust dCas9VP64 expression from these expression cassettes, the vector production plasmids were transfected into 293 cells and dCas9VP64 protein was assayed three days later via western blot (FIG. 7). dCas9VP64 was detected in three different AAV expression cassettes with different combinations of promoters and polyadenylation signals as well as an adenoviral expression cassette. The lentiviral expression cassette transfected did not produce detectable dCas9VP64 protein. This assay confirmed that the first of two AAV's necessary for the dual vector system is expressing dCas9VP64. The second AAV, which must express MPH and an sgRNA, has been cloned to express one of three human PKD1 sgRNAs or one of seven mouse Pkd1 sgRNA's and sequence verified (Tables 2 and 3).









TABLE 2







sgRNA sequences used to target the human 


PKD1 promoter.


















Nucleic 









acid









encoding






Trans-

TSS
the
SEQ
Se-
SEQ


Gene
cript
sgRNA
Dis-
Guide
ID
quencing 
ID


Name
ID
ID
tance
Sequence
NO
result
NO





PKD1
NM_
Gen-
 84
TCGCGCTG
13
TCGCGCTGTG
13



000296
script3

TGGCGAAG

GCGAAGGGGG







GGGG








PKD1
NM_
Gen-
107
CCAGTCCC
14
CCAGTCCCTC
14



000296
script1

TCATCGCT

ATCGCTGGCC







GGCC








PKD1
NM_
Gen-
133
GGAGCGGA
15
GGAGCGGAGG
15



000296
script2

GGGTGAAG

GTGAAGCCTC







CCTC
















TABLE 3







sgRNA sequences used to target the mouse 


Pkd1 promoter.


















Nucleic









acid









encoding






Trans-

TSS
the
SEQ
Se-
SEQ


Gene
cript
sgRNA 
Dis-
Guide
ID
quencing
ID


Name
ID
ID
tance
Sequence
NO
result
NO





Pkd1
NM_
mouse 
 13
GAAGAGGG
16
GAAGAGGG
16



013630
Pkd1

CGGAGCCT

CGGAGCCT





SAM 

GTGA

GTGA





sgRNA1










Pkd1
NM_
mouse 
 34
TTGCAGAT
17
TTGCAGAT
17



013630
Pkd1

CCTGCAGT

CCTGCAGT





SAM

AGGC

AGGC





sgRNA2










Pkd1
NM_
mouse 
 60
TGAAGGAA
18
TGAAGGAA
18



013630
Pkd1

GGGCGCCC

GGGCGCCC





SAM

TCAG

TCAG





sgRNA3










Pkd1
NM_
mouse 
 86
CGCCCAGT
19
CGCCCAGT
19



013630
Pkd1

GAGCGTGA

GAGCGTGA





SAM

GCCT

GCCT





sgRNA4










Pkd1
NM_
mouse 
107
GGTGGGCG
20
GGTGGGCG
20



013630
Pkd1

GGGTCTCA

GGGTCTCA





SAM

CGGG

CGGG





sgRNA5










Pkd1
NM_
mouse 
138
GCAGAAGG
21
GCAGAAGG
21



013630
Pkd1

CGGGGCCT

CGGGGCCT





SAM

CCGG

CCGG





sgRNA6










Pkd1
NM_
mouse 
160
CGCTGGGT
22
CGCTGGGT
22



013630
Pkd1

CTGCTGCA

CTGCTGCA





SAM

GACC

GACC





sgRNA7









Non-Viral Delivery of Genetic Therapies for ADPKD

The same plasmids used for production of the viral vectors described above are complexed with lipid nanoparticles (LNPs) as a lower biosafety risk alternative to viral vectors. This plasmid DNA-LNP complexes is administered intravenously to transfect cells in vivo.


Materials and Methods
Generate and Test AAV, Lentiviral, and HDAd Vectors for TGA

A HDAd, a lentiviral vector, and two AAV vectors have been designed to carry the SAM system. Briefly, each expression cassette of dCas9-VP65; MS2-P65-HSF1; and the sgRNA cassette is amplified with oligonucleotides bearing large I-SceI or I-CeuI restriction sites. These products are inserted into unique I-SceI and I-CeuI restriction sites in the HDAd vector pDelta18, pAAV-SceCeu, and pLenti-SceCeu. dCas9-VP64 is amplified with I-SceI and I-CeuI sites, MS2-P65-HSF1 with I-SceI, and the mouse sgRNA cassettes with ICeuI. One AAV-dCas9-VP64 is used with three different AAVs expressing MS2-P65-HSF1 and one the one of three mouse sgRNAs. Similarly, there are three HDAds and three different lentiviruses carrying three mouse sgRNAs.


In Vivo Transduction and Therapeutic Testing of Pkd1-TGA Vectors

Groups of 10 male and 10 female RC/RC mice are injected with PBS, HDAd-SAM (as a single vector), Lenti-SAM (as a single vector), or AAV-SAM (as a dual vector system). Retro-ureter or sub-capsular injection are used. 1011 of HDAd-TGA gRNA vector is injected. 106 transducing units (TU) of VSVg-pseudotyped lentivector with the entire SAM system is injected. AAV-Pkd1-TGA vectors can mediate therapy, even when they require co-infection of the cell by 2 vectors. AAVrh10 is used robustness and ability to transduce cells with high multiplicity. To maximize co-infection of the same renal cells with 2 AAVs, 1012 vg of both AAVrh10-Pkd1-TGA vectors are delivered to the mice.


RC/RC mice are injected as described above. Each virus sample is blinded. MRI imaging, serum creatinine, and BUN are measured to assess kidney function. Five animals from each group are sacrificed at one week and five animals from each group are sacrificed at one month for western blot, qPCR, and histochemistry to determine whether Pkd1 expression and PC-1 protein levels are increased in the injected kidney and if there are positive or negative effects on cyst index, number and growth. Sections are stained by H&E to monitor changes in cyst sizes and immune infiltrates. Gene expression, kidney size, creatinine, BUN, kidney mass, and cyst formation are evaluated to determine if the HDAd, AAV, or lentivirus vectors mediate changes in kidney size and cystic phenotypes relative to controls.


Example 3: Increasing Vector Penetration into Tissues from the Blood

Viral or non-viral gene therapy and cancer therapies use vectors that are many megaDaltons in size. These agents have a hard time entering into certain tissues like the kidney and brain after intravenous (i.v.) injections.


This Example describes methods that can loosen intracellular attachments to allow i.v. injected large vectors to penetrate into tissues such as the brain, lungs, spleen, liver, and kidney. For example, lipopolysaccharide (LPS) can be used to promote proteinurea and to increase leak of large vectors from the blood into tissues.


Results
Induced Proteinuria Increases Gene Delivery to Renal Tubule Epithelial Cells

Following intravenous administration of Ad or AAV, the vector appears to rarely penetrate past the glomerulus and further into the tubule of the nephron. The filtration properties of the glomerular barrier typically excludes solute in the blood that is greater than 10 kilodaltons (kDa) in mass or 10 nm in diameter. Ad and AAV are both significantly above these thresholds in size and thus are not generally expected to transduce renal tubule epithelial cells after intravenous injection. To overcome this limitation, proteinuria was induced in mice via effacement of podocyte foot processes in the glomerulus, which has been shown to structurally disrupt the glomerular filter and allow larger solute from the blood into the tubule of the nephron.


Luciferase/red-green hybrid reporter mice were intraperitoneally (i.p.) injected with 200 μg of lipopolysaccharides (LPS) to induce proteinuria. The next day, mice were given an intravenous injection of PBS, AAV8, AAV9, or AAVrh10 (n=1). In the case of AAV8, the mouse that had been administered LPS showed increase luminescence in its kidneys versus the PBS control (FIG. 8). When sectioning the kidneys of these mice, the LPS-injected mouse had consistently transduced (EGFP+) proximal tubules cell adjacent to glomeruli, while the PBS-injected mouse only had transduced cells in its glomeruli (FIG. 9).


To quantify the extent to which tubule epithelial cells were being transduced during proteinuria, a larger scale experiment was performed using a lower dose of AAV (2e11 genome copies per mouse). Mice were injected with either PBS or LPS i.p., and were then injected with AAV8 the following day (n=3 mice for each group) or PBS as control (n=1 mouse for each group). Mice were sacrificed six days after AAV administration and tissues were imaged for luminescence ex vivo. Livers did not show a significant difference in luminescence between PBS and LPS-treated mice (FIG. 10A). However, ex vivo kidney luminescence showed a significance increase in LPS-treated mice versus PBS-treated mice (FIG. 10B). These kidneys were then homogenized and analyzed by flow cytometry. The cells were first gated into a CD45 population, as to remove hematopoietic cells from the query. The EpCAM CD31 population, where EpCAM is a marker of epithelial cells and CD31 is a marker of endothelial cells, was then examined. In this population, the percentage of EGFP+ cells in LPS-treated mice was significantly increased from PBS-treated mice, indicating that induced proteinuria was transducing more epithelial cells (FIG. 10C). Transduced endothelial cells were also examined by analyzing the EpCAMCD31+ population of cells and it was found that there was no significant difference between PBS and LPS-treated mice, indicating that induced proteinuria increased transduction of epithelial but not endothelial cells in the kidney (FIG. 10D). The ability to consistently target proximal tubule cells for transduction is useful for being able to treat ADPKD as well as other genetic kidney diseases.


Since AAV showed promising results in renal tubule transduction when combined with induced proteinuria, it was investigated if the same effect could be achieved with a larger Ad vector. Mice were administered PBS or LPS followed by 111 viral particles of Ad5. Kidneys were imaged for luminescence ex vivo and some evidence of increased transduction in the LPS-treated mouse kidneys was observed (FIG. 11A). When the signals from these kidneys were quantified, it was found that the kidney luminescence had significantly increased in LPS-treated from PBS-treated (FIG. 11B). When livers and kidneys from these mice were sectioned for fluorescent histology, increased transduction was seen in the kidneys of LPS-injected mice, but only in the glomeruli (FIG. 11C). The LPS-treated mouse had reduced transduction in the liver compared to PBS-treated mice, possibly due to LPS interaction with the Kupffer cells in the liver.


Materials and Methods
Animals

Mice used in these experiments were F1 hybrids of loxP-STOP-loxP-Luciferase (LSL-Luc) mice (The Jackson Laboratory Stock No: 005125) and membrane-tomato/membrane-green (mT/mG) mice (The Jackson Laboratory Stock No: 007676). Thus, each mouse endogenously expressed tdTomato, and upon Cre-recombinase expression in a particular cell, has activated luciferase and EGFP genes.


Proteinuria Induction in Mice

Urine was collected from mice of various ages and a baseline level of proteinuria was determined using Beyer Albustix. Mice were then injected with 200 μg of LPS (dissolved at 1 mg/mL in otherwise sterile PBS) intraperitoneally. Approximately 24 hours later, urine was collected and proteinuria levels were again determined. In most cases, administration of LPS versus a PBS control clearly caused an increased level of proteinuria in mice.


Viral Vector Delivery

After induction of proteinuria via administration of LPS or a PBS control, mice were injected with adeno-associated virus serotype 8 (AAV8) expressing Cre recombinase or replication-defective adenovirus serotype 5 (RDAd5) expressing Cre recombinase intravenously via tail vein injection. Injection volumes were 100 μL. The dose of AAV8-Cre administered ranged from 2e11 to 1.94e12 genome copies while the dose of RDAd5-Cre administered was 1e11 viral particles.


Luminescent Imaging

After viral vector injection, luminescent signals were monitored and quantified in vivo in mice until the signal peaked (observed to be six days) using Perkin Elmer IVIS Lumina and Living Image software. To do this, mice were anesthetized with isoflurane and injected intraperitoneally with luciferin, and imaged 10 minutes later. At the six day time point, mice were sacrificed and their tissues were dissected and placed in a six well plate to be imaged ex vivo and these signals were quantified. In some cases, the kidneys were laterally bisected to enhance the luminescent signal being emitted from within the tissue.


Fluorescent Histology

The same tissues used for luminescent imaging were processed for fluorescent histology. Kidneys and liver were fixed in 4% paraformaldehyde overnight and then soaked in 15% sucrose/PBS followed by 30% sucrose/PBS until the tissues sank. Tissues were frozen in blocks in Optimal Cutting Temperature (OCT) medium. A Leica cryostat was used to section tissues at a thickness of 18 UM and mount them on glass slides. Mounting Medium with DAPI (Vector Labs) was then dropped on the sections and a glass coverslip was placed on top of the slide. Confocal microscopy was performed using a Zeiss LSM780 microscope with optimized settings to image tdTomato, EGFP, and DAPI.


Flow Cytometry

Kidney samples were chopped into small pieces using scissors and put in Miltenyi tubes. 2.35 mL of DMEM was added. 100 μL of enzyme D, 50 μL of enzyme R, and 12.5 μL of enzyme A from the Miltenyi “Tumor Dissociation Kit” into were added to each sample. Program 37C_mTDK_1 or soft tissue dissociation was used on the OctoMACS machine. C-Tube was washed well by pouring DMEM, inverting, and passing through a 70 μM filter (15 mL volume). Cells were then spun at 400×g for 10 minutes. Samples were resuspended into 3.1 mL of cold DPBS and 900 μL of Miltenyi Debris removal solution was added and resuspended well. 4 mL of ice cold DPBS was carefully overlayed onto the samples. Samples were spun at 3000 g for 10 minutes with brakes on. 1 mL of ACK Lysis buffer was added for 1 minute and subsequently quenched by filling the tube to top (15 mL rol) with cold RPMI. All samples were processed and passed through filters and transferred to 5 mL flow tubes. Tubes were filled with PBS and spun at 400 g for 5 minutes. 500 μL of MasterMix was added to each sample to stain for flow cytometry, as follows: EpCAM PECy7 (1:250) (BioLegend, Cat #118216), CD31 AF647 32 (1:500) (BioLegend, Cat #102516), CD45 perCP (1:1000) (BioLegend, Cat #103130), Viability-ghost dye red 780 (1:2000) (Tonbo Biosciences, Cat #13-0865-T100), FC block (1:500) (BD Pharmingen, Cat #553141). Results were analyzed using FlowJo software.


Example 4: Induced Proteinuria Enhances Adeno-Associated Virus Transduction of Renal Tubule Epithelial Cells after Intravenous Administration

There are a variety of genetic diseases of the kidney tubule that might be amenable to correction via gene therapy. However, gene delivery to renal tubule epithelial cells mediated by viral vectors via the blood is historically inefficient due to the permselectivity of the glomerular barrier, which typically will not allow molecules larger than 50 kilodaltons in mass or 10 nanometers in diameter to pass into the tubule of the nephron.


This Example demonstrates that AAV vectors can penetrate into the nephron and transduce tubule epithelial cells in a state of proteinuria.


Results
AAV8 Gene Delivery to the Kidney is Distinctly Enhanced in a State of Induced Proteinuria

To begin to investigate the effects of induced proteinuria on viral vector gene delivery to the kidney, mice were administered an i.p. injection of 200 μg of LPS. The mode of delivery and dose were as described elsewhere (Reiser et al., J. Clin. Invest., 113:1390-1397 (2004)). The following morning, urine was collected from mice injected with either LPS or PBS as a control and assayed using a proteinuria dipstick to ascertain whether proteinuria had effectively been induced (example portrayed in FIG. 22). Subsequently, mice were administered i.v. injections of self-complementary AAV8-Cre (scAAV8-Cre), scAAV9-Cre, scAAVrh10-Cre, or PBS as control (n=1 for each combination of PBS or LPS and each vector). The mice used in this experiment are known as LSL-Luc-mT/mG F1 hybrid mice: each mouse has one LoxP-STOP-LoxP-Luciferase allele and one membrane-targeted tdTomato/membrane-targeted EGFP allele at the ROSA locus. Thus, each mouse has luciferase and mG genes activatable by Cre-expressing vectors, allowing for tracking of vector pharmacodynamics on both a cellular and tissue-specific level (FIG. 14A).


Luciferase activity in the mice was tracked daily via bioluminescent imaging until the signals reached an approximate plateau at day 6 (FIG. 23A). The signals measured in vivo almost were almost certainly emitted from luciferase activity in the livers of these, due to the high liver tropism of the three AAV serotypes used (FIG. 14B). To directly assess liver and kidney transduction of the injected mice, the mice were sacrificed and these organs were imaged ex vivo. While kidneys of the AAV9 and AAVrh10 injected mice with or without induced proteinuria exhibited minimal luminescence which was localized to the renal pelvis region of the kidney, the kidneys of the mouse with induced proteinuria injected with AAV8 had pervasive luciferase expression throughout the entire kidney (FIG. 14B). This observation of increased luciferase expression through the whole of the kidney tissue while in a state of proteinuria, as opposed to the luciferase activity seen exclusively on the edges of the kidney capsule of the control mouse, indicates a clear difference in vector pharmacodynamics between mice in states of induced proteinuria and not.


To assess kidney transduction on a cell-by-cell basis, the kidney and liver tissues were sectioned to view direct fluorescence via confocal microscopy. In the current reporter mouse model system, untransduced cells will endogenously express membrane-targeted tdTomato (mT), while Cre-expressing transduced cells will stop expressing tdTomato and begin to express membrane-targeted EGFP (mG). For each of the three AAV serotypes, it was observed that treating mice with LPS prior to AAV injection resulted in many instances of transduced cells with tubular morphology adjacent to glomeruli, as compared to control kidneys (FIG. 15). To determine if viral vectors might bypass the glomerulus and penetrate the most proximal part of the nephron, the proximal tubule, and to verify which additional cells AAV is transducing in an induced proteinuria state, kidney sections were counterstained with lotus tetragonolobus lectin (LTL), a marker of proximal tubule cells. No instances of EGFP+ transduced cells seemed to be double positive for the LTL stain. This indicates that although induced proteinuria seems to allow AAV to penetrate further into kidney tissue from the blood and transduce more tubule cells, these cells are not necessarily proximal tubule cells.


AAV8 Significantly Increases Renal Epithelial Cell Transduction During Proteinuria

Data indicate that AAV serotypes 8, 9, and rh10 each potentially increase transduction of renal tubule epithelial cells when mice are in an induced state of proteinuria. In particular, AAV8 had the most striking effect in terms of increased transduction during induced proteinuria (FIG. 14B). To quantify this effect, and to determine if this effect could be achieved at a lower dose, new groups of mice were given an i.p. administration of either PBS or LPS at Day-1 and an i.v. administration of scAAV8-Cre at Day 0 at a dose of 2e11 genome copies (GC). Proteinuria dipsticks from these groups of mice at Day-1 (baseline) and Day 0 (post PBS or LPS) are shown as an example (FIG. 22).


These mice were imaged for in vivo luminescence at Day 6 at which point the mice were sacrificed and their tissues imaged ex vivo. There was no significant difference observed between PBS and LPS-injected groups in vivo (indicative of liver transduction), liver ex vivo, or brain ex vivo (FIG. 16A). Although insignificant, brain luminescence was increased in all samples, indicating that LPS administration may induce some blood brain barrier disruption and increase transduction of cells in the brain. In contrast to the livers and brains, ex vivo kidney transduction visibly increased in LPS-injected mice versus PBS-injected mice (FIG. 16B). Upon quantitation of luminescence in these kidneys, the kidneys of the LPS-injected mice exhibited significantly higher luminescence than those of the PBS-injected mice (FIG. 16C). These kidneys were then processed for flow cytometry and labeled to detect epithelial cell adhesion molecule (EpCAM), a marker of epithelial cells, CD31, a marker of endothelial cells, and various other immune cell markers. Upon examination of the % EGFP+ (transduced) cells in EpCAM+ CD31 and EpCAM-CD31+ populations, it was found that epithelial cells, but not endothelial cells, had a significant increase in transduction, indicating that the injected AAV8 did in fact have more access to epithelial cells during a state of induced proteinuria (FIG. 16C). In addition, an increased, albeit insignificant, % EGFP+ macrophages were found in the blood of LPS-injected mice as compared to PBS-injected mice, indicating that an increased presence of macrophages may have been induced by LPS administration and subsequently transduced by scAAV8-Cre (FIG. 24B). Representative flow plots and gating strategies are shown in FIG. 25.


AAVrh10 Significantly Increases Hematopoietic Cell, but not Epithelial Cell Transduction, During LPS-Induced Proteinuria

It was next sought to determine if a particular serotype of AAV could in fact result in a significantly increased number of epithelial cells in the kidney after i.v. injection in a state of induced proteinuria. In the initial experiment, AAV8 had stronger results than AAV9 or AAVrh10. To ascertain whether particular serotypes of AAV other than AAV8 might be able transduce significantly more renal epithelial cells in a state of induced proteinuria, the prior flow cytometry experiment was repeated using scAA Vrh10-Cre rather than scAAV8-Cre. The % EGFP+ (transduced) present among CD45 (non-hematopoietic) and CD45+ (hematopoietic) cells in the kidneys was examined (FIG. 17A). There was no difference in transduced CD45 cells between PBS and LPS-injected groups. However, there was a significant increase in transduced CD45 cells. This effect may be due to an increased number of hematopoietic cells that infiltrated the kidney after LPS injection and were more susceptible to transduction the day after.


The transduction of epithelial cells in the kidney was examined. As with the previous experiment using scAAV8, the % EGFP+ cells amongst CD45 EpCAM+ and CD45 CD31+ populations, which represent transduced epithelial cells and transduced endothelial cells, respectively, was examined. When this experiment was performed using scAAV8 (FIG. 16), there was a significant increase in transduced epithelial cells, but not endothelial cells, between the LPS and PBS-injected mice. However, when this experiment was repeated using scAAVrh10, there was no significant difference between the LPS and PBS-injected groups of mice (FIG. 17B). To further drill down on proximal tubule cells, a specific subset of kidney tubule epithelial cells, samples were also labeled with LTL and aquaporin-1 (AQP1). In both cases, no significant difference was observed between transduced cells in LPS or PBS-injected mice. Overall, mice with or without induced proteinuria did not seem to have a change in transduced renal epithelial cells after intravenous injection of scAAVrh10-Cre. Representative flow plots and gating strategies are shown in Supplemental FIG. 18.


A Naturally Liver-Detargeted Vector Enhances Kidney Transduction During Induced Proteinuria

Although increasing transduction in tubule cells in the kidney is an important goal for efficacy of gene therapy, detargeting vectors from off-target tissues is an important facet of gene therapy safety. While AAV8 showed efficacy in terms of increasing kidney transduction during a state of induced proteinuria, it also fully transduces the liver (FIG. 24A). To attempt to resolve the off-target tissue transduction, AAV1, a serotype known to have lower liver tropism than other serotypes, was tested in conjunction with induced proteinuria.


Mice were administered an i.p. injection of either PBS or LPS at Day-1 and an i.v. injection of scAAV1-Cre at Day 0 at a dose of 9.95e10 GC. Similar to previous experiments, in vivo luminescence signals peaked at Day 6, at which point mice were sacrificed and ex vivo liver luminescence was comparable between both groups of mice (FIG. 18A, top). Although mean kidney ex vivo luminescence was increased in LPS-injected mice versus PBS-injected mice, the difference was not significant. When comparing this data side-by-side with the ex vivo kidney luminescence data of the scAAV8-Cre injected mice from FIG. 16, both PBS-injected and LPS-injected groups of scAAV1-injected mice had higher signals than the LPS and scAAV8-injected mice, and at approximately half of the dose of scAAV8, indicating that scAAV1 may have a higher native kidney tropism both with and without induced proteinuria (FIG. 18A, lower). Upon sectioning of the kidneys of these mice to examine endogenous mT and mG fluorescence, mice injected with PBS followed by scAAV1 had many instances of transduced glomerular cells while mice injected with LPS followed by scAAV1 had increased instances of transduced tubular cells (FIG. 18B). Importantly, the livers of the mice injected with scAAV1 were only partially transduced, while the livers of the mice injected with scAAV8 were fully transduced (FIG. 28). These data indicate that scAAV1 may be an ideal vector for targeting renal tubule epithelial cells while avoiding unnecessary transduction of hepatocytes.


Induced Proteinuria Enhances Ad5 Transduction of Glomerular, but not Epithelial Cells

Thus far, four different serotypes of AAV were tested in tandem with the LPS-induced proteinuria method. Between these serotypes, notable differences in the transduction profiles of kidney and liver cells were observed. The variation in transduction profiles is likely due to differences in receptor usage as well as capsid surface electromagnetic charges. To test other applications and potential limitations of the induced proteinuria method with respect to kidney transduction, physically larger gene delivery vector, replication-defective adenovirus serotype 5 expressing Cre recombinase (Ad5-Cre), was used.


Mice were administered i.p. injections of either PBS or LPS on Day-1 and i.v. injections of Ad5-Cre on Day 0. In vivo luminescent signals (indicative of level of liver transduction) were monitored up to Day 5 until they peaked. In contrast to previous experiments using AAV, mice injected with LPS prior to Ad5-Cre had significantly reduced in vivo luminescence compared to PBS-injected mice (FIG. 19A, left). The mice were then sacrificed and their kidneys were imaged for ex vivo luminescence. As with the previous experiments performed with AAV, kidneys from mice administered LPS prior to Ad5-Cre had a significantly higher signal than those from mice administered PBS prior to Ad5-Cre (FIG. 19A, right). In the images of the kidneys of PBS and Ad5-Cre injected mice, little to no luminescence is visible, whereas in the kidneys of the LPS and Ad5-Cre injected mice, two out of three of the kidneys showed enhanced luminescence localized near the renal pelvis (FIG. 19B). This is in contrast to kidney images of mice injected with LPS and scAAV8, which showed more diffuse luminescence throughout the kidney (FIG. 16).


Kidneys from the Ad5-Cre injected mice were then sectioned to examine endogenous mT and mG fluorescence. Notably, in contrast to previous experiments using AAV, no instances of transduced tubule cells were observed in kidneys of PBS or LPS and Ad5-Cre injected mice. However, there were observed to be an increased number of glomerular cells transduced in the LPS and Ad5-Cre injected mice versus the PBS-injected mice, indicating that induced proteinuria did not enhance penetration of Ad5-Cre into renal epithelial tubular cells but may have aided penetration further into the glomerulus itself (FIG. 19C). In accordance with the in vivo luminescence signals from these mice, liver sectioning showed that mice injected with PBS followed by Ad5-Cre had fully transduced livers while mice injected with LPS followed by Ad5-Cre had only partially transduced livers, possibly as a result of LPS interactions with Kupffer cells (FIG. 27A). These data indicate that while the induced proteinuria method used in tandem with Ad may not necessarily be effective in treating genetic diseases of the tubule, such as polycystic kidney disease, it may be helpful in increasing gene delivery to the glomerulus.


Induced Proteinuria Increases Epithelial Cell Transduction in a Mouse Model of ADPKD

Thus far, out of a handful of gene therapy vectors tested, only particular vectors tended to increase transduction of renal tubule epithelial cells while mice were in a state of induced proteinuria: namely, AAV1 and AAV8. To test if the induced proteinuria method is amenable to enhancing renal tubule epithelial cell transduction in a mouse model of relevant human disease, this technique was employed on mice with ADPKD. Pkd1RC/RC mice, which are homozygous for the hypomorphic Pkd1 allele p.R3277C and develop progressive ADPKD similar to human disease, were backcrossed to mT/mG mice until pups had exactly two Pkd1RC alleles and at least one mT/mG allele. In essence, the newly generated mice are identical (give or take differences in genetic background due to a partial backcross) to the original mT/mG mice except they now develop ADPKD (FIG. 20A).


The Pkd1RC/RC-mT/mG hybrid mice were administered i.p. injections of PBS or LPS on Day −1 and an i.v. injection of scAAV8-Cre at Day 0 at a dose of 2e11 GC. Under the assumption that vector pharmacodynamics would recapitulate those of the prior AAV experiments, mice were sacrificed at Day 6 and their tissues were sectioned. While evidence of glomerular transduction was apparent in the mouse injected with PBS followed by scAAV8-Cre, evidence of tubular cell transduction was observed only in the mouse injected with LPS followed by scAAV8-Cre (FIG. 20B). The livers of these mice were fully transduced by scAAV8-Cre, as expected (FIG. 29). Overall, these data support mice with ADPKD being amenable to increased tubule cell transduction and thereby enhanced potential for gene therapy by the induced proteinuria method.


Materials and Methods
Animal Studies

All experiments were carried out according to the provisions of the Animal Welfare Act, PHS Animal Welfare Policy, the principles of the NIH Guide for the Care and Use of Laboratory Animals.


AAV Vectors

AAV vectors were produced using a standard triple transfection and iodixanol gradient purification method. Briefly, a vector plasmid (pTRS-CBh-Cre), a rep and cap plasmid (pRC), and a pHelper plasmid were transfected into 293T cells using polyethylenimine. Three days later, cells were harvested and lysed by successive freeze/thaw cycles. Cell lysate was overlayed onto an iodixanol gradient and ultracentrifuged for two hours. The banded AAV was extracted via needle and syringe and titrated via qPCR using SYBR™ Green. All AAV vectors used in this study were self-complementary (scAAV) with a cytomegalovirus chicken β-actin hybrid promoter (CBh) driving expression of the Cre recombinase gene.


Ad Vectors

Replication-defective Ad vectors were produced in 293 cells and were purified by double banding on CsCl gradients. Cre expression is driven by the CMV promoter.


Flow Cytometry

Kidney samples were chopped into small pieces using scissors and put in Miltenyi© tubes. 2.35 mL of Gibco DMEM (cat #11054001), 100 μL of enzyme D, 50 μL of enzyme R, and 12.5 μL of enzyme A from the Miltenyi “Tumor Dissociation Kit” were added into each sample. Samples were homogenized using soft tissue dissociation program on Miltenyi OctoMACS™ Separator. Samples were passed through 70 μM filters and spun at 400×g for 10 minutes. Pellets were resuspended in 3.1 mL of cold DPBS, treated with 900 μL of Miltenyi Debris removal solution, overlayed with 4 mL of ice cold DPBS, and spun at 3000×g for 10 minutes. The samples were washed with DPBS and red blood cells were lysed with 1 mL of ACK Lysis buffer for 1 minute. The samples were resuspended in 900 μL of RPMI and filtered using 35 μM flow tube filters.


Fluorescent staining occurred as follows: After all samples were processed and passed through filters, they were washed twice with PBS. Samples were stained with a master mix composed of EpCAM PECy7 (1:250) (BioLegend, Cat #118216), CD31 AF647 (1:500) (BioLegend, Cat #102516), CD45 perCP (1:1000) (BioLegend, Cat #103130), TCRβ BV421 (1:1000), CD4 BV510 32 μL (1:500), CD8 BV570 (1:500), CD11b BV650 (1:1000), Ghost Dye Red 780 (1:2000) (Tonbo Biosciences, Cat #13-0865-T100), and FC block (1:500) (BD Pharmingen, Cat #553141). Three minutes prior to experimental mice being sacrificed, 3 μg of CD45 BV711 was injected intravenously to be able to distinguish between circulating and tissue resident CD45+ cells. Samples were stained for 30 minutes at 4 C in the dark, washed twice with PBS and ran on Cytek™ Aurora spectral flow cytometer.


For the experiments also staining against α-Fucose, Lotus Tetragonolobus Lectin (LTL), Biotinylated (1:100) (Vector Laboratories, Cat #B-1325-2) was the primary stain and BV786 Streptavidin (1:2000) (BD Horizon, Cat #563858) was the secondary stain. For the experiments also staining against Aquaporin-1, Anti-Aquaporin-1 (1:100) (Boster Biological Technology, Cat #PB9473) was the primary stain and anti-rabbit AF647 (1:2000) (Invitrogen, Cat #A-21245) was the secondary stain. In these experiments, CD31 was stained using anti-CD31 BV510 (1:150) (BD Biosciences, Cat #740124).


In Vivo Bioluminescent Imaging

Mice were anesthetized with isoflurane and injected intraperitoneally with 150 μL of D-Luciferin (20 mg/mL; RR Labs Inc., San Diego, CA). Images were taken using PerkinElmer IVIS® Lumina S5 Imaging System ten minutes after D-Luciferin administration and luminescence was quantified using Living Image software. During ex vivo tissue imaging, tissues were placed in either 6-well or 12-well tissue culture vessels and imaged. In all cases except for FIG. 14, kidneys were laterally bisected before imaging to prevent squelching of luminescence by the kidney capsule.


Statistical Analyses

All statistical analyses were performed using GraphPad Prism 9. p-values were generated using Mann-Whitney tests unless otherwise noted.


Tissue Sectioning and Confocal Microscopy

Tissues from mice with membrane-bound fluorescent proteins were fixed by overnight immersion in 4% paraformaldehyde (PFA)-PBS at 4° C., then cryoprotected overnight in 15% sucrose-PBS and 30% sucrose-PBS, successively, at 4° C. Trimmed tissues were then flash frozen by dry ice-cooled isopentane in optimal cutting temperature (O.C.T.) medium (Sakura Finetek). Cryosections (18 μm thickness) were prepared with a Leica CM1860 UV cryostat (Leica Biosystems) and mounted on slides (Superfrost Plus; Thermo Fisher Scientific, Waltham, MA) with VECTASHIELD with 4′,6-diamidino-2-phenylindole (DAPI) (Vector Laboratories, Burlingame, CA), and CytoSeal-60 coverslip sealant (Thermo Fisher Scientific). Confocal imaging was performed using a Zeiss LSM780 laser confocal microscope (Carl Zeiss Jena, Jena, Germany).


For tissue sections stained with lotus tetragonolobus lectin (LTL), the slides containing tissue sections were washed with PBS, treated with 5% normal goat serum (Abcam Catalog #ab7481) and 0.5% IGEPAL® CA-630 (Sigma 18896) dissolved in PBS blocking buffer for 1 hour at room temperature. The slides were then incubated with a 1:100 dilution of biotinylated LTL (Vector Laboratories Cat. No: B-1325) overnight at 4° C. The slides were washed and then incubated with a 1:200 dilution of streptavidin-Alexa Fluor 647 (Invitrogen Catalog #S21374) at room temperature for one hour. The slides were washed and coverslips were mounted using Vectashield (without DAPI).


Transgenic Mice

LSL-Luc mice (Stock No: 005125) and mT/mG mice (Stock No: 007576) were originally purchased from The Jackson Laboratory. Pkd1RC/RC mice of 129S6 genetic background, which develop polycystic kidney disease, were backcrossed with mT/mG mice until pups were acquired that had exactly two copies of the Pkd1RC allele and at least one copy of the mT/mG allele, which was confirmed via PCR genotyping.


Example 5: AAV Serotypes and Transduction of Renal Tubule Epithelial Cells after Intravenous Administration
Results

To examine the ability of AAV vectors to deliver genes into different tissues and the kidney, different AAV serotypes were used to package the Cre recombinase gene. These vectors were then used to infect cre-reporter luciferase and membrane-bound GFP (mGFP) mice by intravenous injection (FIG. 30). Luciferase imaging of living animals demonstrated the ability of different AAV-Cre serotypes to activate luciferase in the liver and other tissues (FIG. 31A).


Tissues were collected from these animals and tissue- and cell-specific gene delivery was assessed by observing the conversion of membrane-targeted red fluorescent protein (mRFP)-positive cells that were converted to mGFP-positive cells by Cre by confocal microscopy of tissue sections (FIGS. 31B to 33). These data indicate that all AAVs have some level of transduction in multiple tissues, but with biases (FIG. 31B). When kidney sections were examined, the pattern of gene delivery as evidenced by mGFP localization was different by different serotypes (FIG. 32A). Globular patterns of mRFP-positive cells in the sections identify the glomerulus within these kidney sections (FIG. 32A-E). Observation of GFP-positive cells within these mRFP glomeruli demonstrates successful delivery of Cre recombinase to either endothelial cells or to podocytes within the glomerulus. GFP-positive cells outside of the mRFP-positive glomeruli indicate delivery to other renal cells.


When tissue sections were counterstained with cell-specific markers, AAV1 delivery localized with alpha-actin-positive smooth muscle cells in blood vessels rather than in glomerular cells. AAV1 also did not activate mGFP in Lotus Toxin Agglutin (LTA)-positive renal tubules cells (FIG. 32B).


AAV8 mediated Cre delivery to glomerular cells as well as macula densa cells, but not to alpha-actin positive smooth muscle cells and not to LTA-positive tubule cells (FIG. 32C).


AAV9 mediated Cre delivery to glomerular and macula densa cells, but not to alpha-actin positive smooth muscle cells, nor to alpha-synaptopodin (aSynapt)-positive podocytes, nor to LTA-positive tubule cells, but there was some delivery to EpCAM-positive proximal tubule cells (FIG. 32D).


AAVrh10 mediated Cre delivery to glomerular and macula densa cells including CD31-positive glomerular endothelial cells, but not to alpha-actin positive smooth muscle cells, nor to LTA-positive tubule cells (FIG. 32E). When CD31-stained glomeruli were examined at higher resolution, it was apparent that AAVrh10 was mediating equal transduction to CD31-positive endothelial cells and to CD31-negative podocytes within the glomerulus.


Together these results demonstrate that multiple serotypes of AAV can be used to deliver nucleic acid to cells within the kidneys. These results also demonstrate that different serotypes and different AAV capsids mediate delivery into different subsets of kidney cells.


Methods

pAAV-Cre vectors were packaged an adenovirus helper plasmid with the indicated AAV Rep2/Cap1, 8, 9, or rh10 plasmids by triple transfection and AAV particles were purified. These were injected intravenously into Cre reporter mice by tail vein injection. Mice were anesthetized, injected with luciferin, and imaged for luciferase activity. Animals were sacrificed and frozen tissue sections were examined by confocal microscopy with and without counterstaining for cell-specific proteins using fluorescent antibodies.












SEQUENCES















PKD1 cDNA


SEQ ID NO: 1


ATGCCGCCCGCCGCGCCCGCCCGCCTGGCGCTGGCCCTGGGCCTGGGCCTGTGGCTCGGGGCGCTGGCGGGGGG





CCCCGGGGGCGCGCCGGGGGGCCCCGGGCGCGGCTGCGGGCCCTGCGAGCCCCCCTGCCTCTGCGGCCCAGCGC





CCGGCGCCGCCTGCCGCGTCAACTGCTCGGGCCGCGGGCTGCGGACGCTCGGTCCCGCGCTGCGCATCCCCGCG





GACGCCACAGCGCTAGACGTCTCCCACAACCTGCTCCGGGCGCTGGACGTTGGGCTCCTGGCGAACCTCTCGGC





GCTGGCAGAGCTGGATATAAGCAACAACAAGATTTCTACGTTAGAAGAAGGAATATTTGCTAATTTATTTAATT





TAAGTGAAATAAACCTGAGTGGGAACCCGTTTGAGTGTGACTGTGGCCTGGCGTGGCTGCCGCGATGGGCGGAG





GAGCAGCAGGTGCGGGTGGTGCAGCCCGAGGCAGCCACGTGTGCTGGGCCTGGCTCCCTGGCTGGCCAGCCTCT





GCTTGGCATCCCCTTGCTGGACAGTGGCTGTGGTGAGGAGTATGTCGCCTGCCTCCCTGACAACAGCTCAGGCA





CCGTGGCAGCAGTGTCCTTTTCAGCTGCCCACGAAGGCCTGCTTCAGCCAGAGGCCTGCAGCGCCTTCTGCTTC





TCCACCGGCCAGGGCCTCGCAGCCCTCTCGGAGCAGGGCTGGTGCCTGTGTGGGGCGGCCCAGCCCTCCAGTGC





CTCCTTTGCCTGCCTGTCCCTCTGCTCCGGCCCCCCGCCACCTCCTGCCCCCACCTGTAGGGGCCCCACCCTCC





TCCAGCACGTCTTCCCTGCCTCCCCAGGGGCCACCCTGGTGGGGCCCCACGGACCTCTGGCCTCTGGCCAGCTA





GCAGCCTTCCACATCGCTGCCCCGCTCCCTGTCACTGCCACACGCTGGGACTTCGGAGACGGCTCCGCCGAGGT





GGATGCCGCTGGGCCGGCTGCCTCGCATCGCTATGTGCTGCCTGGGCGCTATCACGTGACGGCCGTGCTGGCCC





TGGGGGCCGGCTCAGCCCTGCTGGGGACAGACGTGCAGGTGGAAGCGGCACCTGCCGCCCTGGAGCTCGTGTGC





CCGTCCTCGGTGCAGAGTGACGAGAGCCTTGACCTCAGCATCCAGAACCGCGGTGGTTCAGGCCTGGAGGCCGC





CTACAGCATCGTGGCCCTGGGCGAGGAGCCGGCCCGAGCGGTGCACCCGCTCTGCCCCTCGGACACGGAGATCT





TCCCTGGCAACGGGCACTGCTACCGCCTGGTGGTGGAGAAGGCGGCCTGGCTGCAGGCGCAGGAGCAGTGTCAG





GCCTGGGCCGGGGCCGCCCTGGCAATGGTGGACAGTCCCGCCGTGCAGCGCTTCCTGGTCTCCCGGGTCACCAG





GAGCCTAGACGTGTGGATCGGCTTCTCGACTGTGCAGGGGGTGGAGGTGGGCCCAGCGCCGCAGGGCGAGGCCT





TCAGCCTGGAGAGCTGCCAGAACTGGCTGCCCGGGGAGCCACACCCAGCCACAGCCGAGCACTGCGTCCGGCTC





GGGCCCACCGGGTGGTGTAACACCGACCTGTGCTCAGCGCCGCACAGCTACGTCTGCGAGCTGCAGCCCGGAGG





CCCAGTGCAGGATGCCGAGAACCTCCTCGTGGGAGCGCCCAGTGGGGACCTGCAGGGACCCCTGACGCCTCTGG





CACAGCAGGACGGCCTCTCAGCCCCGCACGAGCCCGTGGAGGTCATGGTATTCCCGGGCCTGCGTCTGAGCCGT





GAAGCCTTCCTCACCACGGCCGAATTTGGGACCCAGGAGCTCCGGCGGCCCGCCCAGCTGCGGCTGCAGGTGTA





CCGGCTCCTCAGCACAGCAGGGACCCCGGAGAACGGCAGCGAGCCTGAGAGCAGGTCCCCGGACAACAGGACCC





AGCTGGCCCCCGCGTGCATGCCAGGGGGACGCTGGTGCCCTGGAGCCAACATCTGCTTGCCGCTGGACGCCTCC





TGCCACCCCCAGGCCTGCGCCAATGGCTGCACGTCAGGGCCAGGGCTACCCGGGGCCCCCTATGCGCTATGGAG





AGAGTTCCTCTTCTCCGTTCCCGCGGGGCCCCCCGCGCAGTACTCGGTCACCCTCCACGGCCAGGATGTCCTCA





TGCTCCCTGGTGACCTCGTTGGCTTGCAGCACGACGCTGGCCCTGGCGCCCTCCTGCACTGCTCGCCGGCTCCC





GGCCACCCTGGTCCCCAGGCCCCGTACCTCTCCGCCAACGCCTCGTCATGGCTGCCCCACTTGCCAGCCCAGCT





GGAGGGCACTTGGGCCTGCCCTGCCTGTGCCCTGCGGCTGCTTGCAGCCACGGAACAGCTCACCGTGCTGCTGG





GCTTGAGGCCCAACCCTGGACTGCGGCTGCCTGGGCGCTATGAGGTCCGGGCAGAGGTGGGCAATGGCGTGTCC





AGGCACAACCTCTCCTGCAGCTTTGACGTGGTCTCCCCAGTGGCTGGGCTGCGGGTCATCTACCCTGCCCCCCG





CGACGGCCGCCTCTACGTGCCCACCAACGGCTCAGCCTTGGTGCTCCAGGTGGACTCTGGTGCCAACGCCACGG





CCACGGCTCGCTGGCCTGGGGGCAGTGTCAGCGCCCGCTTTGAGAATGTCTGCCCTGCCCTGGTGGCCACCTTC





GTGCCCGGCTGCCCCTGGGAGACCAACGATACCCTGTTCTCAGTGGTAGCACTGCCGTGGCTCAGTGAGGGGGA





GCACGTGGTGGACGTGGTGGTGGAAAACAGCGCCAGCCGGGCCAACCTCAGCCTGCGGGTGACGGCGGAGGAGC





CCATCTGTGGCCTCCGCGCCACGCCCAGCCCCGAGGCCCGTGTACTGCAGGGAGTCCTAGTGAGGTACAGCCCC





GTGGTGGAGGCCGGCTCGGACATGGTCTTCCGGTGGACCATCAACGACAAGCAGTCCCTGACCTTCCAGAACGT





GGTCTTCAATGTCATTTATCAGAGCGCGGCGGTCTTCAAGCTCTCACTGACGGCCTCCAACCACGTGAGCAACG





TCACCGTGAACTACAACGTAACCGTGGAGCGGATGAACAGGATGCAGGGTCTGCAGGTCTCCACAGTGCCGGCC





GTGGACCTTTGGGGATGGGGAGCAGGCCCTCCACCAGTTCCAGCCTCCGTACAACGAGTCCTTCCCGGTTCCAG





ACCCCTCGGTGGCCCAGGTGCTGGTGGAGCACAATGTCATGCACACCTACGCTGCCCCAGGTGAGTACCTCCTG





ACCGTGCTGGCATCTAATGCCTTCGAGAACCTGACGCAGCAGGTGCCTGTGAGCGTGCGCGCCTCCCTGCCCTC





CGTGGCTGTGGGTGTGAGTGACGGCGTCCTGGTGGCCGGCCGGCCCGTCACCTTCTACCCGCACCCGCTGCCCT





CGCCTGGGGGTGTTCTTTACACGTGGGACTTCGGGGACGGCTCCCCTGTCCTGACCCAGAGCCAGCCGGCTGCC





AACCACACCTATGCCTCGAGGGGCACCTACCACGTGCGCCTGGAGGTCAACAACACGGTGAGCGGTGCGGCGGC





CCAGGCGGATGTGCGCGTCTTTGAGGAGCTCCGCGGACTCAGCGTGGACATGAGCCTGGCCGTGGAGCAGGGCG





CCCCCGTGGTGGTCAGCGCCGCGGTGCAGACGGGCGACAACATCACGTGGACCTTCGACATGGGGGACGGCACC





GTGCTGTCGGGCCCGGAGGCAACAGTGGAGCATGTGTACCTGCGGGCACAGAACTGCACAGTGACCGTGGGTGC





GGCCAGCCCCGCCGGCCACCTGGCCCGGAGCCTGCACGTGCTGGTCTTCGTCCTGGAGGTGCTGCGCGTTGAAC





CCGCCGCCTGCATCCCCACGCAGCCTGACGCGCGGCTCACGGCCTACGTCACCGGGAACCCGGCCCACTACCTC





TTCGACTGGACCTTCGGGGATGGCTCCTCCAACACGACCGTGCGGGGGTGCCCGACGGTGACACACAACTTCAC





GCGGAGCGGCACGTTCCCCCTGGCGCTGGTGCTGTCCAGCCGCGTGAACAGGGCGCATTACTTCACCAGCATCT





GCGTGGAGCCAGAGGTGGGCAACGTCACCCTGCAGCCAGAGAGGCAGTTTGTGCAGCTCGGGGACGAGGCCTGG





CTGGTGGCATGTGCCTGGCCCCCGTTCCCCTACCGCTACACCTGGGACTTTGGCACCGAGGAAGCCGCCCCCAC





CCGTGCCAGGGGCCCTGAGGTGACGTTCATCTACCGAGACCCAGGCTCCTATCTTGTGACAGTCACCGCGTCCA





ACAACATCTCTGCTGCCAATGACTCAGCCCTGGTGGAGGTGCAGGAGCCCGTGCTGGTCACCAGCATCAAGGTC





AATGGCTCCCTTGGGCTGGAGCTGCAGCAGCCGTACCTGTTCTCTGCTGTGGGCCGTGGGCGCCCCGCCAGCTA





CCTGTGGGATCTGGGGGACGGTGGGTGGCTCGAGGGTCCGGAGGTCACCCACGCTTACAACAGCACAGGTGACT





TCACCGTTAGGGTGGCCGGCTGGAATGAGGTGAGCCGCAGCGAGGCCTGGCTCAATGTGACGGTGAAGCGGCGC





GTGCGGGGGCTCGTCGTCAATGCAAGCCGCACGGTGGTGCCCCTGAATGGGAGCGTGAGCTTCAGCACGTCGCT





GGAGGCCGGCAGTGATGTGCGCTATTCCTGGGTGCTCTGTGACCGCTGCACGCCCATCCCTGGGGGTCCTACCA





TCTCTTACACCTTCCGCTCCGTGGGCACCTTCAATATCATCGTCACGGCTGAGAACGAGGTGGGCTCCGCCCAG





GACAGCATCTTCGTCTATGTCCTGCAGCTCATAGAGGGGCTGCAGGTGGTGGGCGGTGGCCGCTACTTCCCCAC





CAACCACACGGTACAGCTGCAGGCCGTGGTTAGGGATGGCACCAACGTCTCCTACAGCTGGACTGCCTGGAGGG





ACAGGGGCCCGGCCCTGGCCGGCAGCGGCAAAGGCTTCTCGCTCACCGTGCTCGAGGCCGGCACCTACCATGTG





CAGCTGCGGGCCACCAACATGCTGGGCAGCGCCTGGGCCGACTGCACCATGGACTTCGTGGAGCCTGTGGGGTG





GCTGATGGTGGCCGCCTCCCCGAACCCAGCTGCCGTCAACACAAGCGTCACCCTCAGTGCCGAGCTGGCTGGTG





GCAGTGGTGTCGTATACACTTGGTCCTTGGAGGAGGGGCTGAGCTGGGAGACCTCCGAGCCATTTACCACCCAT





AGCTTCCCCACACCCGGCCTGCACTTGGTCACCATGACGGCAGGGAACCCGCTGGGCTCAGCCAACGCCACCGT





GGAAGTGGATGTGCAGGTGCCTGTGAGTGGCCTCAGCATCAGGGCCAGCGAGCCCGGAGGCAGCTTCGTGGCGG





CCGGGTCCTCTGTGCCCTTTTGGGGGCAGCTGGCCACGGGCACCAATGTGAGCTGGTGCTGGGCTGTGCCCGGC





GGCAGCAGCAAGCGTGGCCCTCATGTCACCATGGTCTTCCCGGATGCTGGCACCTTCTCCATCCGGCTCAATGC





CTCCAACGCAGTCAGCTGGGTCTCAGCCACGTACAACCTCACGGCGGAGGAGCCCATCGTGGGCCTGGTGCTGT





GGGCCAGCAGCAAGGTGGTGGCGCCCGGGCAGCTGGTCCATTTTCAGATCCTGCTGGCTGCCGGCTCAGCTGTC





ACCTTCCGCCTGCAGGTCGGCGGGGCCAACCCCGAGGTGCTCCCCGGGCCCCGTTTCTCCCACAGCTTCCCCCG





CGTCGGAGACCACGTGGTGAGCGTGCGGGGCAAAAACCACGTGAGCTGGGCCCAGGCGCAGGTGCGCATCGTGG





TGCTGGAGGCCGTGAGTGGGCTGCAGGTGCCCAACTGCTGCGAGCCTGGCATCGCCACGGGCACTGAGAGGAAC





TTCACAGCCCGCGTGCAGCGCGGCTCTCGGGTCGCCTACGCCTGGTACTTCTCGCTGCAGAAGGTCCAGGGCGA





CTCGCTGGTCATCCTGTCGGGCCGCGACGTCACCTACACGCCCGTGGCCGCGGGGCTGTTGGAGATCCAGGTGC





GCGCCTTCAACGCCCTGGGCAGTGAGAACCGCACGCTGGTGCTGGAGGTTCAGGACGCCGTCCAGTATGTGGCC





CTGCAGAGCGGCCCCTGCTTCACCAACCGCTCGGCGCAGTTTGAGGCCGCCACCAGCCCCAGCCCCCGGCGTGT





GGCCTACCACTGGGACTTTGGGGATGGGTCGCCAGGGCAGGACACAGATGAGCCCAGGGCCGAGCACTCCTACC





TGAGGCCTGGGGACTACCGCGTGCAGGTGAACGCCTCCAACCTGGTGAGCTTCTTCGTGGCGCAGGCCACGGTG





ACCGTCCAGGTGCTGGCCTGCCGGGAGCCGGAGGTGGACGTGGTCCTGCCCCTGCAGGTGCTGATGCGGCGATC





ACAGCGCAACTACTTGGAGGCCCACGTTGACCTGCGCGACTGCGTCACCTACCAGACTGAGTACCGCTGGGAGG





TGTATCGCACCGCCAGCTGCCAGCGGCCGGGGCGCCCAGCGCGTGTGGCCCTGCCCGGCGTGGACGTGAGCCGG





CCTCGGCTGGTGCTGCCGCGGCTGGCGCTGCCTGTGGGGCACTACTGCTTTGTGTTTGTCGTGTCATTTGGGGA





CACGCCACTGACACAGAGCATCCAGGCCAATGTGACGGTGGCCCCCGAGCGCCTGGTGCCCATCATTGAGGGTG





GCTCATACCGCGTGTGGTCAGACACACGGGACCTGGTGCTGGATGGGAGCGAGTCCTACGACCCCAACCTGGAG





GACGGCGACCAGACGCCGCTCAGTTTCCACTGGGCCTGTGTGGCTTCGACACAGAGGGAGGCTGGCGGGTGTGC





GCTGAACTTTGGGCCCCGCGGGAGCAGCACGGTCACCATTCCACGGGAGCGGCTGGCGGCTGGCGTGGAGTACA





CCTTCAGCCTGACCGTGTGGAAGGCCGGCCGCAAGGAGGAGGCCACCAACCAGACGGTGCTGATCCGGAGTGGC





CGGGTGCCCATTGTGTCCTTGGAGTGTGTGTCCTGCAAGGCACAGGCCGTGTACGAAGTGAGCCGCAGCTCCTA





CGTGTACTTGGAGGGCCGCTGCCTCAATTGCAGCAGCGGCTCCAAGCGAGGGCGGTGGGCTGCACGTACGTTCA





GCAACAAGACGCTGGTGCTGGATGAGACCACCACATCCACGGGCAGTGCAGGCATGCGACTGGTGCTGCGGCGG





GGCGTGCTGCGGGACGGCGAGGGATACACCTTCACGCTCACGGTGCTGGGCCGCTCTGGCGAGGAGGAGGGCTG





CGCCTCCATCCGCCTGTCCCCCAACCGCCCGCCGCTGGGGGGCTCTTGCCGCCTCTTCCCACTGGGCGCTGTGC





ACGCCCTCACCACCAAGGTGCACTTCGAATGCACGGGCTGGCATGACGCGGAGGATGCTGGCGCCCCGCTGGTG





TACGCCCTGCTGCTGCGGCGCTGTCGCCAGGGCCACTGCGAGGAGTTCTGTGTCTACAAGGGCAGCCTCTCCAG





CTACGGAGCCGTGCTGCCCCCGGGTTTCAGGCCACACTTCGAGGTGGGCCTGGCCGTGGTGGTGCAGGACCAGC





TGGGAGCCGCTGTGGTCGCCCTCAACAGGTCTTTGGCCATCACCCTCCCAGAGCCCAACGGCAGCGCAACGGGG





CTCACAGTCTGGCTGCACGGGCTCACCGCTAGTGTGCTCCCAGGGCTGCTGCGGCAGGCCGATCCCCAGCACGT





CATCGAGTACTCGTTGGCCCTGGTCACCGTGCTGAACGAGTACGAGCGGGCCCTGGACGTGGCGGCAGAGCCCA





AGCACGAGCGGCAGCACCGAGCCCAGATACGCAAGAACATCACGGAGACTCTGGTGTCCCTGAGGGTCCACACT





GTGGATGACATCCAGCAGATCGCTGCTGCGCTGGCCCAGTGCATGGGGCCCAGCAGGGAGCTCGTATGCCGCTC





GTGCCTGAAGCAGACGCTGCACAAGCTGGAGGCCATGATGCTCATCCTGCAGGCAGAGACCACCGCGGGCACCG





TGACGCCCACCGCCATCGGAGACAGCATCCTCAACATCACAGGAGACCTCATCCACCTGGCCAGCTCGGACGTG





CGGGCACCACAGCCCTCAGAGCTGGGAGCCGAGTCACCATCTCGGATGGTGGCGTCCCAGGCCTACAACCTGAC





CTCTGCCCTCATGCGCATCCTCATGCGCTCCCGCGTGCTCAACGAGGAGCCCCTGACGCTGGCGGGCGAGGAGA





TCGTGGCCCAGGGCAAGCGCTCGGACCCGCGGAGCCTGCTGTGCTATGGCGGCGCCCCAGGGCCTGGCTGCCAC





TTCTCCATCCCCGAGGCTTTCAGCGGGGCCCTGGCCAACCTCAGTGACGTGGTGCAGCTCATCTTTCTGGTGGA





CTCCAATCCCTTTCCCTTTGGCTATATCAGCAACTACACCGTCTCCACCAAGGTGGCCTCGATGGCATTCCAGA





CACAGGCCGGCGCCCAGATCCCCATCGAGCGGCTGGCCTCAGAGCGCGCCATCACCGTGAAGGTGCCCAACAAC





TCGGACTGGGCTGCCCGGGGCCACCGCAGCTCCGCCAACTCCGCCAACTCCGTTGTGGTCCAGCCCCAGGCCTC





CGTCGGTGCTGTGGTCACCCTGGACAGCAGCAACCCTGCGGCCGGGCTGCATCTGCAGCTCAACTATACGCTGC





TGGACGGCCACTACCTGTCTGAGGAACCTGAGCCCTACCTGGCAGTCTACCTACACTCGGAGCCCCGGCCCAAT





GAGCACAACTGCTCGGCTAGCAGGAGGATCCGCCCAGAGTCACTCCAGGGTGCTGACCACCGGCCCTACACCTT





CTTCATTTCCCCGGGGAGCAGAGACCCAGCGGGGAGTTACCATCTGAACCTCTCCAGCCACTTCCGCTGGTCGG





CGCTGCAGGTGTCCGTGGGCCTGTACACGTCCCTGTGCCAGTACTTCAGCGAGGAGGACATGGTGTGGCGGACA





GAGGGGCTGCTGCCCCTGGAGGAGACCTCGCCCCGCCAGGCCGTCTGCCTCACCCGCCACCTCACCGCCTTCGG





CGCCAGCCTCTTCGTGCCCCCAAGCCATGTCCGCTTTGTGTTTCCTGAGCCGACAGCGGATGTAAACTACATCG





TCATGCTGACATGTGCTGTGTGCCTGGTGACCTACATGGTCATGGCCGCCATCCTGCACAAGCTGGACCAGTTG





GATGCCAGCCGGGGCCGCGCCATCCCTTTCTGTGGGCAGCGGGGCCGCTTCAAGTACGAGATCCTCGTCAAGAC





AGGCTGGGGCCGGGGCTCAGGTACCACGGCCCACGTGGGCATCATGCTGTATGGGGTGGACAGCCGGAGCGGCC





ACCGGCACCTGGACGGCGACAGAGCCTTCCACCGCAACAGCCTGGACATCTTCCGGATCGCCACCCCGCACAGC





CTGGGTAGCGTGTGGAAGATCCGAGTGTGGCACGACAACAAAGGGCTCAGCCCTGCCTGGTTCCTGCAGCACGT





CATCGTCAGGGACCTGCAGACGGCACGCAGCGCCTTCTTCCTGGTCAATGACTGGCTTTCGGTGGAGACGGAGG





CCAACGGGGGCCTGGTGGAGAAGGAGGTGCTGGCCGCGAGCGACGCAGCCCTTTTGCGCTTCCGGCGCCTGCTG





GTGGCTGAGCTGCAGCGTGGCTTCTTTGACAAGCACATCTGGCTCTCCATATGGGACCGGCCGCCTCGTAGCCG





TTTCACTCGCATCCAGAGGGCCACCTGCTGCGTTCTCCTCATCTGCCTCTTCCTGGGCGCCAACGCCGTGTGGT





ACGGGGCTGTTGGCGACTCTGCCTACAGCACGGGGCATGTGTCCAGGCTGAGCCCGCTGAGCGTCGACACAGTC





GCTGTTGGCCTGGTGTCCAGCGTGGTTGTCTATCCCGTCTACCTGGCCATCCTTTTTCTCTTCCGGATGTCCCG





GAGCAAGGTGGCTGGGAGCCCGAGCCCCACACCTGCCGGGCAGCAGGTGCTGGACATCGACAGCTGCCTGGACT





CGTCCGTGCTGGACAGCTCCTTCCTCACGTTCTCAGGCCTCCACGCTGAGCAGGCCTTTGTTGGACAGATGAAG





AGTGACTTGTTTCTGGATGATTCTAAGAGTCTGGTGTGCTGGCCCTCCGGCGAGGGAACGCTCAGTTGGCCGGA





CCTGCTCAGTGACCCGTCCATTGTGGGTAGCAATCTGCGGCAGCTGGCACGGGGCCAGGCGGGCCATGGGCTGG





GCCCAGAGGAGGACGGCTTCTCCCTGGCCAGCCCCTACTCGCCTGCCAAATCCTTCTCAGCATCAGATGAAGAC





CTGATCCAGCAGGTCCTTGCCGAGGGGGTCAGCAGCCCAGCCCCTACCCAAGACACCCACATGGAAACGGACCT





GCTCAGCAGCCTGTCCAGCACTCCTGGGGAGAAGACAGAGACGCTGGCGCTGCAGAGGCTGGGGGAGCTGGGGC





CACCCAGCCCAGGCCTGAACTGGGAACAGCCCCAGGCAGCGAGGCTGTCCAGGACAGGACTGGTGGAGGGTCTG





CGGAAGCGCCTGCTGCCGGCCTGGTGTGCCTCCCTGGCCCACGGGCTCAGCCTGCTCCTGGTGGCTGTGGCTGT





GGCTGTCTCAGGGTGGGTGGGTGCGAGCTTCCCCCCGGGCGTGAGTGTTGCGTGGCTCCTGTCCAGCAGCGCCA





GCTTCCTGGCCTCATTCCTCGGCTGGGAGCCACTGAAGGTCTTGCTGGAAGCCCTGTACTTCTCACTGGTGGCC





AAGCGGCTGCACCCGGATGAAGATGACACCCTGGTAGAGAGCCCGGCTGTGACGCCTGTGAGCGCACGTGTGCC





CCGCGTACGGCCACCCCACGGCTTTGCACTCTTCCTGGCCAAGGAAGAAGCCCGCAAGGTCAAGAGGCTACATG





GCATGCTGCGGAGCCTCCTGGTGTACATGCTTTTTCTGCTGGTGACCCTGCTGGCCAGCTATGGGGATGCCTCA





TGCCATGGGCACGCCTACCGTCTGCAAAGCGCCATCAAGCAGGAGCTGCACAGCCGGGCCTTCCTGGCCATCAC





GCGGTCTGAGGAGCTCTGGCCATGGATGGCCCACGTGCTGCTGCCCTACGTCCACGGGAACCAGTCCAGCCCAG





AGCTGGGGCCCCCACGGCTGCGGCAGGTGCGGCTGCAGGAAGCACTCTACCCAGACCCTCCCGGCCCCAGGGTC





CACACGTGCTCGGCCGCAGGAGGCTTCAGCACCAGCGATTACGACGTTGGCTGGGAGAGTCCTCACAATGGCTC





GGGGACGTGGGCCTATTCAGCGCCGGATCTGCTGGGGGCATGGTCCTGGGGCTCCTGTGCCGTGTATGACAGCG





GGGGCTACGTGCAGGAGCTGGGCCTGAGCCTGGAGGAGAGCCGCGACCGGCTGCGCTTCCTGCAGCTGCACAAC





TGGCTGGACAACAGGAGCCGCGCTGTGTTCCTGGAGCTCACGCGCTACAGCCCGGCCGTGGGGCTGCACGCCGC





CGTCACGCTGCGCCTCGAGTTCCCGGCGGCCGGCCGCGCCCTGGCCGCCCTCAGCGTCCGCCCCTTTGCGCTGC





GCCGCCTCAGCGCGGGCCTCTCGCTGCCTCTGCTCACCTCGGTGTGCCTGCTGCTGTTCGCCGTGCACTTCGCC





GTGGCCGAGGCCCGTACTTGGCACAGGGAAGGGCGCTGGCGCGTGCTGCGGCTCGGAGCCTGGGCGCGGTGGCT





GCTGGTGGCGCTGACGGCGGCCACGGCACTGGTACGCCTCGCCCAGCTGGGTGCCGCTGACCGCCAGTGGACCC





GTTTCGTGCGCGGCCGCCCGCGCCGCTTCACTAGCTTCGACCAGGTGGCGCAGCTGAGCTCCGCAGCCCGTGGC





CTGGCGGCCTCGCTGCTCTTCCTGCTTTTGGTCAAGGCTGCCCAGCAGCTACGCTTCGTGCGCCAGTGGTCCGT





CTTTGGCAAGACATTATGCCGAGCTCTGCCAGAGCTCCTGGGGGTCACCTTGGGCCTGGTGGTGCTCGGGGTAG





CCTACGCCCAGCTGGCCATCCTGCTCGTGTCTTCCTGTGTGGACTCCCTCTGGAGCGTGGCCCAGGCCCTGTTG





GTGCTGTGCCCTGGGACTGGGCTCTCTACCCTGTGTCCTGCCGAGTCCTGGCACCTGTCACCCCTGCTGTGTGT





GGGGCTCTGGGCACTGCGGCTGTGGGGCGCCCTACGGCTGGGGGCTGTTATTCTCCGCTGGCGCTACCACGCCT





TGCGTGGAGAGCTGTACCGGCCGGCCTGGGAGCCCCAGGACTACGAGATGGTGGAGTTGTTCCTGCGCAGGCTG





CGCCTCTGGATGGGCCTCAGCAAGGTCAAGGAGTTCCGCCACAAAGTCCGCTTTGAAGGGATGGAGCCGCTGCC





CTCTCGCTCCTCCAGGGGCTCCAAGGTATCCCCGGATGTGCCCCCACCCAGCGCTGGCTCCGATGCCTCGCACC





CCTCCACCTCCTCCAGCCAGCTGGATGGGCTGAGCGTGAGCCTGGGCCGGCTGGGGACAAGGTGTGAGCCTGAG





CCCTCCCGCCTCCAAGCCGTGTTCGAGGCCCTGCTCACCCAGTTTGACCGACTCAACCAGGCCACAGAGGACGT





CTACCAGCTGGAGCAGCAGCTGCACAGCCTGCAAGGCCGCAGGAGCAGCCGGGCGCCCGCCGGATCTTCCCGTG





GCCCATCCCCGGGCCTGCGGCCAGCACTGCCCAGCCGCCTTGCCCGGGCCAGTCGGGGTGTGGACCTGGCCACT





GGCCCCAGCAGGACACCCCTTCGGGCCAAGAACAAGGTCCACCCCAGCAGCACTTAG





PC-1 polypeptide


SEQ ID NO: 2


MPPAAPARLALALGLGLWLGALAGGPGGAPGGPGRGCGPCEPPCLCGPAPGAACRVNCSGRGLRTLGPALRIPA





DATALDVSHNLLRALDVGLLANLSALAELDISNNKISTLEEGIFANLENLSEINLSGNPFECDCGLAWLPRWAE





EQQVRVVQPEAATCAGPGSLAGQPLLGIPLLDSGCGEEYVACLPDNSSGTVAAVSFSAAHEGLLQPEACSAFCF





STGQGLAALSEQGWCLCGAAQPSSASFACLSLCSGPPPPPAPTCRGPTLLQHVFPASPGATLVGPHGPLASGOL





AAFHIAAPLPVTATRWDFGDGSAEVDAAGPAASHRYVLPGRYHVTAVLALGAGSALLGTDVOVEAAPAALELVC





PSSVOSDESLDLSIQNRGGSGLEAAYSIVALGEEPARAVHPLCPSDTEIFPGNGHCYRLVVEKAAWLQAQEQCQ





AWAGAALAMVDSPAVQRFLVSRVTRSLDVWIGFSTVQGVEVGPAPQGEAFSLESCONWLPGEPHPATAEHCVRL





GPTGWCNTDLCSAPHSYVCELQPGGPVQDAENLLVGAPSGDLQGPLTPLAQQDGLSAPHEPVEVMVFPGIRLSR





EAFLTTAEFGTQELRRPAQLRLQVYRLLSTAGTPENGSEPESRSPDNRTQLAPACMPGGRWCPGANICLPLDAS





CHPQACANGCTSGPGLPGAPYALWREFLFSVPAGPPAQYSVTLHGQDVLMLPGDLVGLQHDAGPGALLHCSPAP





GHPGPQAPYLSANASSWLPHLPAQLEGTWACPACALRLLAATEQLTVLLGLRPNPGLRLPGRYEVRAEVGNGVS





RHNLSCSFDVVSPVAGLRVIYPAPRDGRLYVPTNGSALVLQVDSGANATATARWPGGSVSARFENVCPALVATF





VPGCPWETNDTLFSVVALPWLSEGEHVVDVVVENSASRANLSLRVTAEEPICGLRATPSPEARVLOGVLVRYSP





VVEAGSDMVFRWTINDKQSLTFQNVVENVIYQSAAVEKLSLTASNHVSNVTVNYNVTVERMNRMQGLQVSTVPA





VLSPNATLALTAGVLVDSAVEVAFLWTFGDGEQALHQFQPPYNESFPVPDPSVAQVLVEHNVMHTYAAPGEYLL





TVLASNAFENLTQQVPVSVRASLPSVAVGVSDGVLVAGRPVTFYPHPLPSPGGVLYTWDFGDGSPVLTQSQPAA





NHTYASRGTYHVRLEVNNTVSGAAAQADVRVFEELRGLSVDMSLAVEQGAPVVVSAAVQTGDNITWTFDMGDGT





VLSGPEATVEHVYLRAQNCTVTVGAASPAGHLARSLHVLVFVLEVLRVEPAACIPTQPDARLTAYVTGNPAHYL





FDWTFGDGSSNTTVRGCPTVTHNFTRSGTFPLALVLSSRVNRAHYFTSICVEPEVGNVTLQPERQFVOLGDEAW





LVACAWPPFPYRYTWDFGTEEAAPTRARGPEVTFIYRDPGSYLVTVTASNNISAANDSALVEVQEPVLVTSIKV





NGSLGLELQQPYLFSAVGRGRPASYLWDLGDGGWLEGPEVTHAYNSTGDFTVRVAGWNEVSRSEAWLNVTVKRR





VRGLVVNASRTVVPLNGSVSFSTSLEAGSDVRYSWVLCDRCTPIPGGPTISYTFRSVGTENIIVTAENEVGSAQ





DSIFVYVLQLIEGLQVVGGGRYFPTNHTVQLQAVVRDGTNVSYSWTAWRDRGPALAGSGKGFSLTVLEAGTYHV





QLRATNMLGSAWADCTMDFVEPVGWLMVAASPNPAAVNTSVTLSAELAGGSGVVYTWSLEEGLSWETSEPFTTH





SFPTPGLHLVTMTAGNPLGSANATVEVDVQVPVSGLSIRASEPGGSFVAAGSSVPFWGQLATGTNVSWCWAVPG





GSSKRGPHVTMVFPDAGTFSIRLNASNAVSWVSATYNLTAEEPIVGLVLWASSKVVAPGQLVHFQILLAAGSAV





TFRLQVGGANPEVLPGPRFSHSFPRVGDHVVSVRGKNHVSWAQAQVRIVVLEAVSGLQVPNCCEPGIATGTERN





FTARVQRGSRVAYAWYFSLQKVQGDSLVILSGRDVTYTPVAAGLLEIQVRAFNALGSENRTLVLEVODAVQYVA





LQSGPCFTNRSAQFEAATSPSPRRVAYHWDFGDGSPGODTDEPRAEHSYLRPGDYRVQVNASNLVSFFVAQATV





TVQVLACREPEVDVVLPLQVLMRRSQRNYLEAHVDLRDCVTYQTEYRWEVYRTASCQRPGRPARVALPGVDVSR





PRLVLPRLALPVGHYCFVFVVSFGDTPLTQSIQANVTVAPERLVPIIEGGSYRVWSDTRDLVLDGSESYDPNLE





DGDQTPLSFHWACVASTQREAGGCALNFGPRGSSTVTIPRERLAAGVEYTFSLTVWKAGRKEEATNOTVLIRSG





RVPIVSLECVSCKAQAVYEVSRSSYVYLEGRCLNCSSGSKRGRWAARTFSNKTLVLDETTTSTGSAGMRLVLRR





GVLRDGEGYTFTLTVLGRSGEEEGCASIRLSPNRPPLGGSCRLFPLGAVHALTTKVHFECTGWHDAEDAGAPLV





YALLLRRCROGHCEEFCVYKGSLSSYGAVLPPGFRPHFEVGLAVVVQDOLGAAVVALNRSLAITLPEPNGSATG





LTVWLHGLTASVLPGLLROADPQHVIEYSLALVTVLNEYERALDVAAEPKHERQHRAQIRKNITETLVSLRVHT





VDDIQQIAAALAQCMGPSRELVCRSCLKQTLHKLEAMMLILQAETTAGTVTPTAIGDSILNITGDLIHLASSDV





RAPQPSELGAESPSRMVASQAYNLTSALMRILMRSRVLNEEPLTLAGEEIVAQGKRSDPRSLLCYGGAPGPGCH





FSIPEAFSGALANLSDVVQLIFLVDSNPFPFGYISNYTVSTKVASMAFQTQAGAQIPIERLASERAITVKVPNN





SDWAARGHRSSANSANSVVVQPQASVGAVVTLDSSNPAAGLHLOLNYTLLDGHYLSEEPEPYLAVYLHSEPRPN





EHNCSASRRIRPESLOGADHRPYTFFISPGSRDPAGSYHLNLSSHFRWSALQVSVGLYTSLCQYFSEEDMVWRT





EGLLPLEETSPRQAVCLTRHLTAFGASLFVPPSHVRFVFPEPTADVNYIVMLTCAVCLVTYMVMAAILHKLDQL





DASRGRAIPFCGQRGRFKYEILVKTGWGRGSGTTAHVGIMLYGVDSRSGHRHLDGDRAFHRNSLDIFRIATPHS





LGSVWKIRVWHDNKGLSPAWFLOHVIVRDLQTARSAFFLVNDWLSVETEANGGLVEKEVLAASDAALLRERRLL





VAELQRGFFDKHIWLSIWDRPPRSRFTRIQRATCCVLLICLFLGANAVWYGAVGDSAYSTGHVSRLSPLSVDTV





AVGLVSSVVVYPVYLAILFLFRMSRSKVAGSPSPTPAGQQVLDIDSCLDSSVLDSSFLTFSGLHAEQAFVGQMK





SDLFLDDSKSLVCWPSGEGTLSWPDLLSDPSIVGSNLRQLARGOAGHGLGPEEDGFSLASPYSPAKSFSASDED





LIQQVLAEGVSSPAPTQDTHMETDLLSSLSSTPGEKTETLALQRLGELGPPSPGLNWEQPQAARLSRTGLVEGL





RKRLLPAWCASLAHGLSLLLVAVAVAVSGWVGASFPPGVSVAWLLSSSASFLASFLGWEPLKVLLEALYFSLVA





KRLHPDEDDTLVESPAVTPVSARVPRVRPPHGFALFLAKEEARKVKRLHGMLRSLLVYMLFLLVTLLASYGDAS





CHGHAYRLQSAIKQELHSRAFLAITRSEELWPWMAHVLLPYVHGNOSSPELGPPRLRQVRLOEALYPDPPGPRV





HTCSAAGGFSTSDYDVGWESPHNGSGTWAYSAPDLLGAWSWGSCAVYDSGGYVQELGLSLEESRDRLRFLQLHN





WLDNRSRAVFLELTRYSPAVGLHAAVTLRLEFPAAGRALAALSVRPFALRRLSAGLSLPLLTSVCLLLFAVHFA





VAEARTWHREGRWRVLRLGAWARWLLVALTAATALVRLAQLGAADRQWTRFVRGRPRRFTSFDQVAQLSSAARG





LAASLLFLLLVKAAQQLRFVROWSVFGKTLCRALPELLGVTLGLVVLGVAYAQLAILLVSSCVDSLWSVAQALL





VLCPGTGLSTLCPAESWHLSPLLCVGLWALRLWGALRLGAVILRWRYHALRGELYRPAWEPQDYEMVELFLRRL





RLWMGLSKVKEFRHKVRFEGMEPLPSRSSRGSKVSPDVPPPSAGSDASHPSTSSSQLDGLSVSLGRLGTRCEPE





PSRLQAVFEALLTQFDRLNQATEDVYQLEQQLHSLQGRRSSRAPAGSSRGPSPGLRPALPSRLARASRGVDLAT





GPSRTPLRAKNKVHPSST





PKD2 cDNA


SEQ ID NO: 3


ATGGTGAACTCCAGTCGCGTGCAGCCTCAGCAGCCCGGGGACGCCAAGCGGCCGCCCGCGCCCCGCGCGCCGGA





CCCGGGCCGGCTGATGGCTGGCTGCGCGGCCGTGGGCGCCAGCCTCGCCGCCCCGGGCGGCCTCTGCGAGCAGC





GGGGCCTGGAGATCGAGATGCAGCGCATCCGGCAGGCGGCCGCGCGGGACCCCCCGGCCGGAGCCGCGGCCTCC





CCTTCTCCTCCGCTCTCGTCGTGCTCCCGGCAGGCGTGGAGCCGCGATAACCCCGGCTTCGAGGCCGAGGAGGA





GGAGGAGGAGGTGGAAGGGGAAGAAGGCGGAATGGTGGTGGAGATGGACGTAGAGTGGCGCCCGGGCAGCCGGA





GGTCGGCCGCCTCCTCGGCCGTGAGCTCCGTGGGCGCGCGGAGCCGGGGGCTTGGGGGCTACCACGGCGCGGGC





CACCCGAGCGGGAGGCGGCGCCGGCGAGAGGACCAGGGCCCGCCGTGCCCCAGCCCAGTCGGCGGCGGGGACCC





GCTGCATCGCCACCTCCCCCTGGAAGGGCAGCCGCCCCGAGTGGCCTGGGCGGAGAGGCTGGTTCGCGGGCTGC





GAGGTCTCTGGGGAACAAGACTCATGGAGGAAAGCAGCACTAACCGAGAGAAATACCTTAAAAGTGTTTTACGG





GAACTGGTCACATACCTCCTTTTTCTCATAGTCTTGTGCATCTTGACCTACGGCATGATGAGCTCCAATGTGTA





CTACTACACCCGGATGATGTCACAGCTCTTCCTAGACACCCCCGTGTCCAAAACGGAGAAAACTAACTTTAAAA





CTCTGTCTTCCATGGAAGACTTCTGGAAGTTCACAGAAGGCTCCTTATTGGATGGGCTGTACTGGAAGATGCAG





CCCAGCAACCAGACTGAAGCTGACAACCGAAGTTTCATCTTCTATGAGAACCTGCTGTTAGGGGTTCCACGAAT





ACGGCAACTCCGAGTCAGAAATGGATCCTGCTCTATCCCCCAGGACTTGAGAGATGAAATTAAAGAGTGCTATG





ATGTCTACTCTGTCAGTAGTGAAGATAGGGCTCCCTTTGGGCCCCGAAATGGAACCGCTTGGATCTACACAAGT





GAAAAAGACTTGAATGGTAGTAGCCACTGGGGAATCATTGCAACTTATAGTGGAGCTGGCTATTATCTGGATTT





GTCAAGAACAAGAGAGGAAACAGCTGCACAAGTTGCTAGCCTCAAGAAAAATGTCTGGCTGGACCGAGGAACCA





GGGCAACTTTTATTGACTTCTCAGTGTACAACGCCAACATTAACCTGTTCTGTGTGGTCAGGTTATTGGTTGAA





TTCCCAGCAACAGGTGGTGTGATTCCATCTTGGCAATTTCAGCCTTTAAAGCTGATCCGATATGTCACAACTTT





TGATTTCTTCCTGGCAGCCTGTGAGATTATCTTTTGTTTCTTTATCTTTTACTATGTGGTGGAAGAGATATTGG





AAATTCGCATTCACAAACTACACTATTTCAGGAGTTTCTGGAATTGTCTGGATGTTGTGATCGTTGTGCTGTCA





GTGGTAGCTATAGGAATTAACATATACAGAACATCAAATGTGGAGGTGCTACTACAGTTTCTGGAAGATCAAAA





TACTTTCCCCAACTTTGAGCATCTGGCATATTGGCAGATACAGTTCAACAATATAGCTGCTGTCACAGTATTTT





TTGTCTGGATTAAGCTCTTCAAATTCATCAATTTTAACAGGACCATGAGCCAGCTCTCGACAACCATGTCTCGA





TGTGCCAAAGACCTGTTTGGCTTTGCTATTATGTTCTTCATTATTTTCCTAGCGTATGCTCAGTTGGCATACCT





TGTCTTTGGCACTCAGGTCGATGACTTCAGTACTTTCCAAGAGTGTATCTTCACTCAATTCCGTATCATTTTGG





GCGATATCAACTTTGCAGAGATTGAGGAAGCTAATCGAGTTTTGGGACCAATTTATTTCACTACATTTGTGTTC





TTTATGTTCTTCATTCTTTTGAATATGTTTTTGGCTATCATCAATGATACTTACTCTGAAGTGAAATCTGACTT





GGCACAGCAGAAAGCTGAAATGGAACTCTCAGATCTTATCAGAAAGGGCTACCATAAAGCTTTGGTCAAACTAA





AACTGAAAAAAAATACCGTGGATGACATTTCAGAGAGTCTGCGGCAAGGAGGAGGCAAGTTAAACTTTGACGAA





CTTCGACAAGATCTCAAAGGGAAGGGCCATACTGATGCAGAGATTGAGGCAATATTCACAAAGTACGACCAAGA





TGGAGACCAAGAACTGACCGAACATGAACATCAGCAGATGAGAGACGACTTGGAGAAAGAGAGGGAGGACCTGG





ATTTGGATCACAGTTCTTTACCACGTCCCATGAGCAGCCGAAGTTTCCCTCGAAGCCTGGATGACTCTGAGGAG





GATGACGATGAAGATAGCGGACATAGCTCCAGAAGGAGGGGAAGCATTTCTAGTGGCGTTTCTTACGAAGAGTT





TCAAGTCCTGGTGAGACGAGTGGACCGGATGGAGCATTCCATCGGCAGCATAGTGTCCAAGATTGACGCCGTGA





TCGTGAAGCTAGAGATTATGGAGCGAGCCAAACTGAAGAGGAGGGAGGTGCTGGGAAGGCTGTTGGATGGGGTG





GCCGAGGATGAAAGGCTGGGTCGTGACAGTGAAATCCATAGGGAACAGATGGAACGGCTAGTACGTGAAGAGTT





GGAACGCTGGGAATCCGATGATGCAGCTTCCCAGATCAGTCATGGTTTAGGCACGCCAGTGGGACTAAATGGTC





AACCTCGCCCCAGAAGCTCCCGCCCATCTTCCTCCCAATCTACAGAAGGCATGGAAGGTGCAGGTGGAAATGGG





AGTTCTAATGTCCACGTATGA





PC-2 polypeptide


SEQ ID NO: 4


MVNSSRVQPQQPGDAKRPPAPRAPDPGRLMAGCAAVGASLAAPGGLCEORGLEIEMORIRQAAARDPPAGAAAS





PSPPLSSCSRQAWSRDNPGFEAEEEEEEVEGEEGGMVVEMDVEWRPGSRRSAASSAVSSVGARSRGLGGYHGAG





HPSGRRRRREDQGPPCPSPVGGGDPLHRHLPLEGQPPRVAWAERLVRGLRGLWGTRLMEESSTNREKYLKSVLR





ELVTYLLFLIVLCILTYGMMSSNVYYYTRMMSQLFLDTPVSKTEKTNFKTLSSMEDFWKFTEGSLLDGLYWKMQ





PSNQTEADNRSFIFYENLLLGVPRIRQLRVRNGSCSIPQDLRDEIKECYDVYSVSSEDRAPFGPRNGTAWIYTS





EKDLNGSSHWGIIATYSGAGYYLDLSRTREETAAQVASLKKNVWLDRGTRATFIDESVYNANINLFCVVRLLVE





FPATGGVIPSWQFQPLKLIRYVTTFDFFLAACEIIFCFFIFYYVVEEILEIRIHKLHYFRSFWNCLDVVIVVLS





VVAIGINIYRTSNVEVLLQFLEDQNTFPNFEHLAYWQIQFNNIAAVTVFFVWIKLFKFINFNRTMSQLSTTMSR





CAKDLFGFAIMFFIIFLAYAQLAYLVFGTQVDDESTFQECIFTQFRIILGDINFAEIEEANRVLGPIYFTTFVF





FMFFILLNMFLAIINDTYSEVKSDLAQQKAEMELSDLIRKGYHKALVKLKLKKNTVDDISESLRQGGGKLNEDE





LRQDLKGKGHTDAEIEAIFTKYDQDGDQELTEHEHQQMRDDLEKEREDLDLDHSSLPRPMSSRSFPRSLDDSEE





DDDEDSGHSSRRRGSISSGVSYEEFQVLVRRVDRMEHSIGSIVSKIDAVIVKLEIMERAKLKRREVLGRLLDGV





AEDERLGRDSEIHREQMERLVREELERWESDDAASQISHGLGTPVGLNGQPRPRSSRPSSSQSTEGMEGAGGNG





SSNVHV





HDAd-PKD1


RightITR-CBh-mCherry: PKD1-HGHpA-PackagingSignal-LeftITR


SEQ ID NO: 5


CCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAAC





AAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGG





TAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCAC





TTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAG





TGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGG





GCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTA





CAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGG





CAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTG





TCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGG





AAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTT





TCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCC





GCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTT





CTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGATCCATGCATGTTAAGTTTAAACATCATC







AATAATATACCTTATTTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGTTTGTGACGTGGCGCG









GGGCGTGGGAACGGGGCGGGTGACGTAG
GTTTTAGGGCGGAGTAACTTGTATGTGTTGGGAATTGTAG






TTTTCTTAAAATGGGAAGTTACGTAACGTGGGAAAACGGAAGTGACGATTTGAGGAAGTTGTGGGTTT





TTTGGCTTTCGTTTCTGGGCGTAGGTTCGCGTGCGGTTTTCTGGGTGTTTTTTGTGGACTTTAACCGT





TACGTCATTTTTTAGTCCTATATATACTCGCTCTGCACTTGGCCCTTTTTTACACTGTGACTGATTGA





GCTGGTGCCGTGTCGAGTGGTGTTTTTTGATGCCCCCCCTCGAGGTTCGACGGTATCGATAAGCTTGA





TTTAATTAAGGCCGGCCCCTAGGGGCGCGCGCGGCCGCTAGGGATAACAGGGTAATTGTTGACAATTA





ATCATCGGCATAGTATATCGGCATAGTATAATACGACAAGGTGAGGAACTAAACCATGGCCAAGTTGA





CCAGTGCCGTTCCGGTGCTCACCGCGCGCGACGTCGCCGGAGCGGTCGAGTTCTGGACCGACCGGCTC





GGGTTCTCCCGGGACTTCGTGGAGGACGACTTCGCCGGTGTGGTCCGGGACGACGTGACCCTGTTCAT





CAGCGCGGTCCAGGACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCGCGGCCTGGACG





AGCTGTACGCCGAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGCCGGCCATGACC





GAGATCGGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGCGTGCACTT





CGTGGCCGAGGAGCAGGACTGAACGCGTCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCG






CCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTT







CCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATA







TGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATG







ACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTCGAGGT







GAGCCCCACGTTCTGCTTCACTCTCCCCATCTCCCCCCCCTCCCCACCCCCAATTTTGTATTTATTTA







TTTTTTAATTATTTTGTGCAGCGATGGGGGCGGGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGG







CGGGGCGAGGGGCGGGGCGGGGCGAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCG







AAAGTTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGCGG







GAGTCGCTGCGACGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCGCCTCGCGCCGCCCGCCCCGGCT







CTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGCTGTAATTAGC







TGAGCAAGAGGTAAGGGTTTAAGGGATGGTTGGTTGGTGGGGTATTAATGTTTAATTACCTGGAGCAC







CTGTCCGGAGAATTCGCCACCATGCCGCCCGCCGCGCCCGCCCGCCTGGCGCTGGCCCTGGGCCTGGG






CCTGTGGCTCGGGGCGCTGGCGGGGGGCCCCGGGATGGTGAGCAAGGGCGAGGAGGATAACATGGCCA






TCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATC







GAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGG







CCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGC







ACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATG







AACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTA







CAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCT







GGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTG







AAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCA







GCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAGGACTACACCATCG







TGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAAGGGCGCG







CCGGGGGGCCCCGGGCGCGGCTGCGGGCCCTGCGAGCCCCCCTGCCTCTGCGGCCCAGCGCCCGGCGC







CGCCTGCCGCGTCAACTGCTCGGGCCGCGGGCTGCGGACGCTCGGTCCCGCGCTGCGCATCCCCGCGG







ACGCCACAGCGCTAGACGTCTCCCACAACCTGCTCCGGGCGCTGGACGTTGGGCTCCTGGCGAACCTC







TCGGCGCTGGCAGAGCTGGATATAAGCAACAACAAGATTTCTACGTTAGAAGAAGGAATATTTGCTAA







TTTATTTAATTTAAGTGAAATAAACCTGAGTGGGAACCCGTTTGAGTGTGACTGTGGCCTGGCGTGGC







TGCCGCGATGGGCGGAGGAGCAGCAGGTGCGGGTGGTGCAGCCCGAGGCAGCCACGTGTGCTGGGCCT







GGCTCCCTGGCTGGCCAGCCTCTGCTTGGCATCCCCTTGCTGGACAGTGGCTGTGGTGAGGAGTATGT







CGCCTGCCTCCCTGACAACAGCTCAGGCACCGTGGCAGCAGTGTCCTTTTCAGCTGCCCACGAAGGCC







TGCTTCAGCCAGAGGCCTGCAGCGCCTTCTGCTTCTCCACCGGCCAGGGCCTCGCAGCCCTCTCGGAG







CAGGGCTGGTGCCTGTGTGGGGCGGCCCAGCCCTCCAGTGCCTCCTTTGCCTGCCTGTCCCTCTGCTC







CGGCCCCCCGCCACCTCCTGCCCCCACCTGTAGGGGCCCCACCCTCCTCCAGCACGTCTTCCCTGCCT







CCCCAGGGGCCACCCTGGTGGGGCCCCACGGACCTCTGGCCTCTGGCCAGCTAGCAGCCTTCCACATC







GCTGCCCCGCTCCCTGTCACTGCCACACGCTGGGACTTCGGAGACGGCTCCGCCGAGGTGGATGCCGC







TGGGCCGGCTGCCTCGCATCGCTATGTGCTGCCTGGGCGCTATCACGTGACGGCCGTGCTGGCCCTGG







GGGCCGGCTCAGCCCTGCTGGGGACAGACGTGCAGGTGGAAGCGGCACCTGCCGCCCTGGAGCTCGTG







TGCCCGTCCTCGGTGCAGAGTGACGAGAGCCTTGACCTCAGCATCCAGAACCGCGGTGGTTCAGGCCT







GGAGGCCGCCTACAGCATCGTGGCCCTGGGCGAGGAGCCGGCCCGAGCGGTGCACCCGCTCTGCCCCT







CGGACACGGAGATCTTCCCTGGCAACGGGCACTGCTACCGCCTGGTGGTGGAGAAGGCGGCCTGGCTG







CAGGCGCAGGAGCAGTGTCAGGCCTGGGCCGGGGCCGCCCTGGCAATGGTGGACAGTCCCGCCGTGCA







GCGCTTCCTGGTCTCCCGGGTCACCAGGAGCCTAGACGTGTGGATCGGCTTCTCGACTGTGCAGGGGG







TGGAGGTGGGCCCAGCGCCGCAGGGCGAGGCCTTCAGCCTGGAGAGCTGCCAGAACTGGCTGCCCGGG







GAGCCACACCCAGCCACAGCCGAGCACTGCGTCCGGCTCGGGCCCACCGGGTGGTGTAACACCGACCT







GTGCTCAGCGCCGCACAGCTACGTCTGCGAGCTGCAGCCCGGAGGCCCAGTGCAGGATGCCGAGAACC







TCCTCGTGGGAGCGCCCAGTGGGGACCTGCAGGGACCCCTGACGCCTCTGGCACAGCAGGACGGCCTC







TCAGCCCCGCACGAGCCCGTGGAGGTCATGGTATTCCCGGGCCTGCGTCTGAGCCGTGAAGCCTTCCT







CACCACGGCCGAATTTGGGACCCAGGAGCTCCGGCGGCCCGCCCAGCTGCGGCTGCAGGTGTACCGGC







TCCTCAGCACAGCAGGGACCCCGGAGAACGGCAGCGAGCCTGAGAGCAGGTCCCCGGACAACAGGACC







CAGCTGGCCCCCGCGTGCATGCCAGGGGGACGCTGGTGCCCTGGAGCCAACATCTGCTTGCCGCTGGA







CGCCTCCTGCCACCCCCAGGCCTGCGCCAATGGCTGCACGTCAGGGCCAGGGCTACCCGGGGCCCCCT







ATGCGCTATGGAGAGAGTTCCTCTTCTCCGTTCCCGCGGGGCCCCCCGCGCAGTACTCGGTCACCCTC







CACGGCCAGGATGTCCTCATGCTCCCTGGTGACCTCGTTGGCTTGCAGCACGACGCTGGCCCTGGCGC







CCTCCTGCACTGCTCGCCGGCTCCCGGCCACCCTGGTCCCCAGGCCCCGTACCTCTCCGCCAACGCCT







CGTCATGGCTGCCCCACTTGCCAGCCCAGCTGGAGGGCACTTGGGCCTGCCCTGCCTGTGCCCTGCGG







CTGCTTGCAGCCACGGAACAGCTCACCGTGCTGCTGGGCTTGAGGCCCAACCCTGGACTGCGGCTGCC







TGGGCGCTATGAGGTCCGGGCAGAGGTGGGCAATGGCGTGTCCAGGCACAACCTCTCCTGCAGCTTTG







ACGTGGTCTCCCCAGTGGCTGGGCTGCGGGTCATCTACCCTGCCCCCCGCGACGGCCGCCTCTACGTG







CCCACCAACGGCTCAGCCTTGGTGCTCCAGGTGGACTCTGGTGCCAACGCCACGGCCACGGCTCGCTG







GCCTGGGGGCAGTGTCAGCGCCCGCTTTGAGAATGTCTGCCCTGCCCTGGTGGCCACCTTCGTGCCCG







GCTGCCCCTGGGAGACCAACGATACCCTGTTCTCAGTGGTAGCACTGCCGTGGCTCAGTGAGGGGGAG







CACGTGGTGGACGTGGTGGTGGAAAACAGCGCCAGCCGGGCCAACCTCAGCCTGCGGGTGACGGCGGA







GGAGCCCATCTGTGGCCTCCGCGCCACGCCCAGCCCCGAGGCCCGTGTACTGCAGGGAGTCCTAGTGA







GGTACAGCCCCGTGGTGGAGGCCGGCTCGGACATGGTCTTCCGGTGGACCATCAACGACAAGCAGTCC







CTGACCTTCCAGAACGTGGTCTTCAATGTCATTTATCAGAGCGCGGCGGTCTTCAAGCTCTCACTGAC







GGCCTCCAACCACGTGAGCAACGTCACCGTGAACTACAACGTAACCGTGGAGCGGATGAACAGGATGC







AGGGTCTGCAGGTCTCCACAGTGCCGGCCGTGCTGTCCCCCAATGCCACGCTAGCACTGACGGCGGGC







GTGCTGGTGGACTCGGCCGTGGAGGTGGCCTTCCTGTGGACCTTTGGGGATGGGGAGCAGGCCCTCCA







CCAGTTCCAGCCTCCGTACAACGAGTCCTTCCCGGTTCCAGACCCCTCGGTGGCCCAGGTGCTGGTGG







AGCACAATGTCATGCACACCTACGCTGCCCCAGGTGAGTACCTCCTGACCGTGCTGGCATCTAATGCC







TTCGAGAACCTGACGCAGCAGGTGCCTGTGAGCGTGCGCGCCTCCCTGCCCTCCGTGGCTGTGGGTGT







GAGTGACGGCGTCCTGGTGGCCGGCCGGCCCGTCACCTTCTACCCGCACCCGCTGCCCTCGCCTGGGG







GTGTTCTTTACACGTGGGACTTCGGGGACGGCTCCCCTGTCCTGACCCAGAGCCAGCCGGCTGCCAAC







CACACCTATGCCTCGAGGGGCACCTACCACGTGCGCCTGGAGGTCAACAACACGGTGAGCGGTGCGGC







GGCCCAGGCGGATGTGCGCGTCTTTGAGGAGCTCCGCGGACTCAGCGTGGACATGAGCCTGGCCGTGG







AGCAGGGCGCCCCCGTGGTGGTCAGCGCCGCGGTGCAGACGGGCGACAACATCACGTGGACCTTCGAC







ATGGGGGACGGCACCGTGCTGTCGGGCCCGGAGGCAACAGTGGAGCATGTGTACCTGCGGGCACAGAA







CTGCACAGTGACCGTGGGTGCGGCCAGCCCCGCCGGCCACCTGGCCCGGAGCCTGCACGTGCTGGTCT







TCGTCCTGGAGGTGCTGCGCGTTGAACCCGCCGCCTGCATCCCCACGCAGCCTGACGCGCGGCTCACG







GCCTACGTCACCGGGAACCCGGCCCACTACCTCTTCGACTGGACCTTCGGGGATGGCTCCTCCAACAC







GACCGTGCGGGGGTGCCCGACGGTGACACACAACTTCACGCGGAGCGGCACGTTCCCCCTGGCGCTGG







TGCTGTCCAGCCGCGTGAACAGGGCGCATTACTTCACCAGCATCTGCGTGGAGCCAGAGGTGGGCAAC







GTCACCCTGCAGCCAGAGAGGCAGTTTGTGCAGCTCGGGGACGAGGCCTGGCTGGTGGCATGTGCCTG







GCCCCCGTTCCCCTACCGCTACACCTGGGACTTTGGCACCGAGGAAGCCGCCCCCACCCGTGCCAGGG







GCCCTGAGGTGACGTTCATCTACCGAGACCCAGGCTCCTATCTTGTGACAGTCACCGCGTCCAACAAC







ATCTCTGCTGCCAATGACTCAGCCCTGGTGGAGGTGCAGGAGCCCGTGCTGGTCACCAGCATCAAGGT







CAATGGCTCCCTTGGGCTGGAGCTGCAGCAGCCGTACCTGTTCTCTGCTGTGGGCCGTGGGCGCCCCG







CCAGCTACCTGTGGGATCTGGGGGACGGTGGGTGGCTCGAGGGTCCGGAGGTCACCCACGCTTACAAC







AGCACAGGTGACTTCACCGTTAGGGTGGCCGGCTGGAATGAGGTGAGCCGCAGCGAGGCCTGGCTCAA







TGTGACGGTGAAGCGGCGCGTGCGGGGGCTCGTCGTCAATGCAAGCCGCACGGTGGTGCCCCTGAATG







GGAGCGTGAGCTTCAGCACGTCGCTGGAGGCCGGCAGTGATGTGCGCTATTCCTGGGTGCTCTGTGAC







CGCTGCACGCCCATCCCTGGGGGTCCTACCATCTCTTACACCTTCCGCTCCGTGGGCACCTTCAATAT







CATCGTCACGGCTGAGAACGAGGTGGGCTCCGCCCAGGACAGCATCTTCGTCTATGTCCTGCAGCTCA







TAGAGGGGCTGCAGGTGGTGGGCGGTGGCCGCTACTTCCCCACCAACCACACGGTACAGCTGCAGGCC







GTGGTTAGGGATGGCACCAACGTCTCCTACAGCTGGACTGCCTGGAGGGACAGGGGCCCGGCCCTGGC







CGGCAGCGGCAAAGGCTTCTCGCTCACCGTGCTCGAGGCCGGCACCTACCATGTGCAGCTGCGGGCCA







CCAACATGCTGGGCAGCGCCTGGGCCGACTGCACCATGGACTTCGTGGAGCCTGTGGGGTGGCTGATG







GTGGCCGCCTCCCCGAACCCAGCTGCCGTCAACACAAGCGTCACCCTCAGTGCCGAGCTGGCTGGTGG







CAGTGGTGTCGTATACACTTGGTCCTTGGAGGAGGGGCTGAGCTGGGAGACCTCCGAGCCATTTACCA







CCCATAGCTTCCCCACACCCGGCCTGCACTTGGTCACCATGACGGCAGGGAACCCGCTGGGCTCAGCC







AACGCCACCGTGGAAGTGGATGTGCAGGTGCCTGTGAGTGGCCTCAGCATCAGGGCCAGCGAGCCCGG







AGGCAGCTTCGTGGCGGCCGGGTCCTCTGTGCCCTTTTGGGGGCAGCTGGCCACGGGCACCAATGTGA







GCTGGTGCTGGGCTGTGCCCGGCGGCAGCAGCAAGCGTGGCCCTCATGTCACCATGGTCTTCCCGGAT







GCTGGCACCTTCTCCATCCGGCTCAATGCCTCCAACGCAGTCAGCTGGGTCTCAGCCACGTACAACCT







CACGGCGGAGGAGCCCATCGTGGGCCTGGTGCTGTGGGCCAGCAGCAAGGTGGTGGCGCCCGGGCAGC







TGGTCCATTTTCAGATCCTGCTGGCTGCCGGCTCAGCTGTCACCTTCCGCCTGCAGGTCGGCGGGGCC







AACCCCGAGGTGCTCCCCGGGCCCCGTTTCTCCCACAGCTTCCCCCGCGTCGGAGACCACGTGGTGAG







CGTGCGGGGCAAAAACCACGTGAGCTGGGCCCAGGCGCAGGTGCGCATCGTGGTGCTGGAGGCCGTGA







GTGGGCTGCAGGTGCCCAACTGCTGCGAGCCTGGCATCGCCACGGGCACTGAGAGGAACTTCACAGCC







CGCGTGCAGCGCGGCTCTCGGGTCGCCTACGCCTGGTACTTCTCGCTGCAGAAGGTCCAGGGCGACTC







GCTGGTCATCCTGTCGGGCCGCGACGTCACCTACACGCCCGTGGCCGCGGGGCTGTTGGAGATCCAGG







TGCGCGCCTTCAACGCCCTGGGCAGTGAGAACCGCACGCTGGTGCTGGAGGTTCAGGACGCCGTCCAG







TATGTGGCCCTGCAGAGCGGCCCCTGCTTCACCAACCGCTCGGCGCAGTTTGAGGCCGCCACCAGCCC







CAGCCCCCGGCGTGTGGCCTACCACTGGGACTTTGGGGATGGGTCGCCAGGGCAGGACACAGATGAGC







CCAGGGCCGAGCACTCCTACCTGAGGCCTGGGGACTACCGCGTGCAGGTGAACGCCTCCAACCTGGTG







AGCTTCTTCGTGGCGCAGGCCACGGTGACCGTCCAGGTGCTGGCCTGCCGGGAGCCGGAGGTGGACGT







GGTCCTGCCCCTGCAGGTGCTGATGCGGCGATCACAGCGCAACTACTTGGAGGCCCACGTTGACCTGC







GCGACTGCGTCACCTACCAGACTGAGTACCGCTGGGAGGTGTATCGCACCGCCAGCTGCCAGCGGCCG







GGGCGCCCAGCGCGTGTGGCCCTGCCCGGCGTGGACGTGAGCCGGCCTCGGCTGGTGCTGCCGCGGCT







GGCGCTGCCTGTGGGGCACTACTGCTTTGTGTTTGTCGTGTCATTTGGGGACACGCCACTGACACAGA







GCATCCAGGCCAATGTGACGGTGGCCCCCGAGCGCCTGGTGCCCATCATTGAGGGTGGCTCATACCGC







GTGTGGTCAGACACACGGGACCTGGTGCTGGATGGGAGCGAGTCCTACGACCCCAACCTGGAGGACGG







CGACCAGACGCCGCTCAGTTTCCACTGGGCCTGTGTGGCTTCGACACAGAGGGAGGCTGGCGGGTGTG







CGCTGAACTTTGGGCCCCGCGGGAGCAGCACGGTCACCATTCCACGGGAGCGGCTGGCGGCTGGCGTG







GAGTACACCTTCAGCCTGACCGTGTGGAAGGCCGGCCGCAAGGAGGAGGCCACCAACCAGACGGTGCT







GATCCGGAGTGGCCGGGTGCCCATTGTGTCCTTGGAGTGTGTGTCCTGCAAGGCACAGGCCGTGTACG







AAGTGAGCCGCAGCTCCTACGTGTACTTGGAGGGCCGCTGCCTCAATTGCAGCAGCGGCTCCAAGCGA







GGGCGGTGGGCTGCACGTACGTTCAGCAACAAGACGCTGGTGCTGGATGAGACCACCACATCCACGGG







CAGTGCAGGCATGCGACTGGTGCTGCGGCGGGGCGTGCTGCGGGACGGCGAGGGATACACCTTCACGC







TCACGGTGCTGGGCCGCTCTGGCGAGGAGGAGGGCTGCGCCTCCATCCGCCTGTCCCCCAACCGCCCG







CCGCTGGGGGGCTCTTGCCGCCTCTTCCCACTGGGCGCTGTGCACGCCCTCACCACCAAGGTGCACTT







CGAATGCACGGGCTGGCATGACGCGGAGGATGCTGGCGCCCCGCTGGTGTACGCCCTGCTGCTGCGGC







GCTGTCGCCAGGGCCACTGCGAGGAGTTCTGTGTCTACAAGGGCAGCCTCTCCAGCTACGGAGCCGTG







CTGCCCCCGGGTTTCAGGCCACACTTCGAGGTGGGCCTGGCCGTGGTGGTGCAGGACCAGCTGGGAGC







CGCTGTGGTCGCCCTCAACAGGTCTTTGGCCATCACCCTCCCAGAGCCCAACGGCAGCGCAACGGGGC







TCACAGTCTGGCTGCACGGGCTCACCGCTAGTGTGCTCCCAGGGCTGCTGCGGCAGGCCGATCCCCAG







CACGTCATCGAGTACTCGTTGGCCCTGGTCACCGTGCTGAACGAGTACGAGCGGGCCCTGGACGTGGC







GGCAGAGCCCAAGCACGAGCGGCAGCACCGAGCCCAGATACGCAAGAACATCACGGAGACTCTGGTGT







CCCTGAGGGTCCACACTGTGGATGACATCCAGCAGATCGCTGCTGCGCTGGCCCAGTGCATGGGGCCC







AGCAGGGAGCTCGTATGCCGCTCGTGCCTGAAGCAGACGCTGCACAAGCTGGAGGCCATGATGCTCAT







CCTGCAGGCAGAGACCACCGCGGGCACCGTGACGCCCACCGCCATCGGAGACAGCATCCTCAACATCA







CAGGAGACCTCATCCACCTGGCCAGCTCGGACGTGCGGGCACCACAGCCCTCAGAGCTGGGAGCCGAG







TCACCATCTCGGATGGTGGCGTCCCAGGCCTACAACCTGACCTCTGCCCTCATGCGCATCCTCATGCG







CTCCCGCGTGCTCAACGAGGAGCCCCTGACGCTGGCGGGCGAGGAGATCGTGGCCCAGGGCAAGCGCT






CGGACCCGCGGAGCCTGCTGTGCTATGGCGGCGCCCCAGGGCCTGGCTGCCACTTCTCCATCCCCGAG






GCTTTCAGCGGGGCCCTGGCCAACCTCAGTGACGTGGTGCAGCTCATCTTTCTGGTGGACTCCAATCC







CTTTCCCTTTGGCTATATCAGCAACTACACCGTCTCCACCAAGGTGGCCTCGATGGCATTCCAGACAC







AGGCCGGCGCCCAGATCCCCATCGAGCGGCTGGCCTCAGAGCGCGCCATCACCGTGAAGGTGCCCAAC







AACTCGGACTGGGCTGCCCGGGGCCACCGCAGCTCCGCCAACTCCGCCAACTCCGTTGTGGTCCAGCC







CCAGGCCTCCGTCGGTGCTGTGGTCACCCTGGACAGCAGCAACCCTGCGGCCGGGCTGCATCTGCAGC







TCAACTATACGCTGCTGGACGGCCACTACCTGTCTGAGGAACCTGAGCCCTACCTGGCAGTCTACCTA







CACTCGGAGCCCCGGCCCAATGAGCACAACTGCTCGGCTAGCAGGAGGATCCGCCCAGAGTCACTCCA







GGGTGCTGACCACCGGCCCTACACCTTCTTCATTTCCCCGGGGAGCAGAGACCCAGCGGGGAGTTACC







ATCTGAACCTCTCCAGCCACTTCCGCTGGTCGGCGCTGCAGGTGTCCGTGGGCCTGTACACGTCCCTG







TGCCAGTACTTCAGCGAGGAGGACATGGTGTGGCGGACAGAGGGGCTGCTGCCCCTGGAGGAGACCTC







GCCCCGCCAGGCCGTCTGCCTCACCCGCCACCTCACCGCCTTCGGCGCCAGCCTCTTCGTGCCCCCAA







GCCATGTCCGCTTTGTGTTTCCTGAGCCGACAGCGGATGTAAACTACATCGTCATGCTGACATGTGCT







GTGTGCCTGGTGACCTACATGGTCATGGCCGCCATCCTGCACAAGCTGGACCAGTTGGATGCCAGCCG







GGGCCGCGCCATCCCTTTCTGTGGGCAGCGGGGCCGCTTCAAGTACGAGATCCTCGTCAAGACAGGCT







GGGGCCGGGGCTCAGGTACCACGGCCCACGTGGGCATCATGCTGTATGGGGTGGACAGCCGGAGCGGC







CACCGGCACCTGGACGGCGACAGAGCCTTCCACCGCAACAGCCTGGACATCTTCCGGATCGCCACCCC







GCACAGCCTGGGTAGCGTGTGGAAGATCCGAGTGTGGCACGACAACAAAGGGCTCAGCCCTGCCTGGT







TCCTGCAGCACGTCATCGTCAGGGACCTGCAGACGGCACGCAGCGCCTTCTTCCTGGTCAATGACTGG







CTTTCGGTGGAGACGGAGGCCAACGGGGGCCTGGTGGAGAAGGAGGTGCTGGCCGCGAGCGACGCAGC







CCTTTTGCGCTTCCGGCGCCTGCTGGTGGCTGAGCTGCAGCGTGGCTTCTTTGACAAGCACATCTGGC







TCTCCATATGGGACCGGCCGCCTCGTAGCCGTTTCACTCGCATCCAGAGGGCCACCTGCTGCGTTCTC







CTCATCTGCCTCTTCCTGGGCGCCAACGCCGTGTGGTACGGGGCTGTTGGCGACTCTGCCTACAGCAC







GGGGCATGTGTCCAGGCTGAGCCCGCTGAGCGTCGACACAGTCGCTGTTGGCCTGGTGTCCAGCGTGG







TTGTCTATCCCGTCTACCTGGCCATCCTTTTTCTCTTCCGGATGTCCCGGAGCAAGGTGGCTGGGAGC







CCGAGCCCCACACCTGCCGGGCAGCAGGTGCTGGACATCGACAGCTGCCTGGACTCGTCCGTGCTGGA







CAGCTCCTTCCTCACGTTCTCAGGCCTCCACGCTGAGCAGGCCTTTGTTGGACAGATGAAGAGTGACT







TGTTTCTGGATGATTCTAAGAGTCTGGTGTGCTGGCCCTCCGGCGAGGGAACGCTCAGTTGGCCGGAC







CTGCTCAGTGACCCGTCCATTGTGGGTAGCAATCTGCGGCAGCTGGCACGGGGCCAGGCGGGCCATGG







GCTGGGCCCAGAGGAGGACGGCTTCTCCCTGGCCAGCCCCTACTCGCCTGCCAAATCCTTCTCAGCAT







CAGATGAAGACCTGATCCAGCAGGTCCTTGCCGAGGGGGTCAGCAGCCCAGCCCCTACCCAAGACACC







CACATGGAAACGGACCTGCTCAGCAGCCTGTCCAGCACTCCTGGGGAGAAGACAGAGACGCTGGCGCT







GCAGAGGCTGGGGGAGCTGGGGCCACCCAGCCCAGGCCTGAACTGGGAACAGCCCCAGGCAGCGAGGC







TGTCCAGGACAGGACTGGTGGAGGGTCTGCGGAAGCGCCTGCTGCCGGCCTGGTGTGCCTCCCTGGCC







CACGGGCTCAGCCTGCTCCTGGTGGCTGTGGCTGTGGCTGTCTCAGGGTGGGTGGGTGCGAGCTTCCC







CCCGGGCGTGAGTGTTGCGTGGCTCCTGTCCAGCAGCGCCAGCTTCCTGGCCTCATTCCTCGGCTGGG







AGCCACTGAAGGTCTTGCTGGAAGCCCTGTACTTCTCACTGGTGGCCAAGCGGCTGCACCCGGATGAA







GATGACACCCTGGTAGAGAGCCCGGCTGTGACGCCTGTGAGCGCACGTGTGCCCCGCGTACGGCCACC







CCACGGCTTTGCACTCTTCCTGGCCAAGGAAGAAGCCCGCAAGGTCAAGAGGCTACATGGCATGCTGC







GGAGCCTCCTGGTGTACATGCTTTTTCTGCTGGTGACCCTGCTGGCCAGCTATGGGGATGCCTCATGC







CATGGGCACGCCTACCGTCTGCAAAGCGCCATCAAGCAGGAGCTGCACAGCCGGGCCTTCCTGGCCAT







CACGCGGTCTGAGGAGCTCTGGCCATGGATGGCCCACGTGCTGCTGCCCTACGTCCACGGGAACCAGT







CCAGCCCAGAGCTGGGGCCCCCACGGCTGCGGCAGGTGCGGCTGCAGGAAGCACTCTACCCAGACCCT







CCCGGCCCCAGGGTCCACACGTGCTCGGCCGCAGGAGGCTTCAGCACCAGCGATTACGACGTTGGCTG







GGAGAGTCCTCACAATGGCTCGGGGACGTGGGCCTATTCAGCGCCGGATCTGCTGGGGGCATGGTCCT







GGGGCTCCTGTGCCGTGTATGACAGCGGGGGCTACGTGCAGGAGCTGGGCCTGAGCCTGGAGGAGAGC







CGCGACCGGCTGCGCTTCCTGCAGCTGCACAACTGGCTGGACAACAGGAGCCGCGCTGTGTTCCTGGA







GCTCACGCGCTACAGCCCGGCCGTGGGGCTGCACGCCGCCGTCACGCTGCGCCTCGAGTTCCCGGCGG







CCGGCCGCGCCCTGGCCGCCCTCAGCGTCCGCCCCTTTGCGCTGCGCCGCCTCAGCGCGGGCCTCTCG







CTGCCTCTGCTCACCTCGGTGTGCCTGCTGCTGTTCGCCGTGCACTTCGCCGTGGCCGAGGCCCGTAC







TTGGCACAGGGAAGGGCGCTGGCGCGTGCTGCGGCTCGGAGCCTGGGCGCGGTGGCTGCTGGTGGCGC







TGACGGCGGCCACGGCACTGGTACGCCTCGCCCAGCTGGGTGCCGCTGACCGCCAGTGGACCCGTTTC







GTGCGCGGCCGCCCGCGCCGCTTCACTAGCTTCGACCAGGTGGCGCAGCTGAGCTCCGCAGCCCGTGG







CCTGGCGGCCTCGCTGCTCTTCCTGCTTTTGGTCAAGGCTGCCCAGCAGCTACGCTTCGTGCGCCAGT







GGTCCGTCTTTGGCAAGACATTATGCCGAGCTCTGCCAGAGCTCCTGGGGGTCACCTTGGGCCTGGTG







GTGCTCGGGGTAGCCTACGCCCAGCTGGCCATCCTGCTCGTGTCTTCCTGTGTGGACTCCCTCTGGAG







CGTGGCCCAGGCCCTGTTGGTGCTGTGCCCTGGGACTGGGCTCTCTACCCTGTGTCCTGCCGAGTCCT







GGCACCTGTCACCCCTGCTGTGTGTGGGGCTCTGGGCACTGCGGCTGTGGGGCGCCCTACGGCTGGGG







GCTGTTATTCTCCGCTGGCGCTACCACGCCTTGCGTGGAGAGCTGTACCGGCCGGCCTGGGAGCCCCA







GGACTACGAGATGGTGGAGTTGTTCCTGCGCAGGCTGCGCCTCTGGATGGGCCTCAGCAAGGTCAAGG







AGTTCCGCCACAAAGTCCGCTTTGAAGGGATGGAGCCGCTGCCCTCTCGCTCCTCCAGGGGCTCCAAG







GTATCCCCGGATGTGCCCCCACCCAGCGCTGGCTCCGATGCCTCGCACCCCTCCACCTCCTCCAGCCA







GCTGGATGGGCTGAGCGTGAGCCTGGGCCGGCTGGGGACAAGGTGTGAGCCTGAGCCCTCCCGCCTCC







AAGCCGTGTTCGAGGCCCTGCTCACCCAGTTTGACCGACTCAACCAGGCCACAGAGGACGTCTACCAG







CTGGAGCAGCAGCTGCACAGCCTGCAAGGCCGCAGGAGCAGCCGGGCGCCCGCCGGATCTTCCCGTGG







CCCATCCCCGGGCCTGCGGCCAGCACTGCCCAGCCGCCTTGCCCGGGCCAGTCGGGGTGTGGACCTGG







CCACTGGCCCCAGCAGGACACCCCTTCGGGCCAAGAACAAGGTCCACCCCAGCAGCACTTAGTCCTCC






TTCCTGGCGGGGGTGGGCCGTGGAGTCGGAGTGGACACCGCTCAGTATTACTTTCTGCCGCTGTCAAG





GCCGAGGGCCAGGCAGAATGGCTGCACGTAGGTTCCCCAGAGAGCAGGCAGGGGCATCTGTCTGTCTG





TGGGCTTCAGCACTTTAAAGAGGCTGTGTGGCCAACCAGGACCCAGGGTCCCCTCCCCAGCTCCCTTG





GGAAGGACACAGCAGTATTGGACGGTTTCTAGCCTCTGAGATGCTAATTTATTTCCCCGAGTCCTCAG





GTACAGCGGGCTGTGCCCGGCCCCACCCCCTGGGCAGATGTCCCCCACTGCTAAGGCTGCTGGCTTCA





GGGAGGGTTAGCCTGCACCGCCGCCACCCTGCCCCTAAGTTATTACCTCTCCAGTTCCTACCGTACTC





CCTGCACCGTCTCACTGTGTGTCTCGTGTCAGTAATTTATATGGTGTTAAAATGTGTATATTTTTGTA





TGTCACTATTTTCACTAGGGCTGAGGGGCCTGCGCCCAGAGCTGGCCTCCCCCAACACCTGCTGCGCT





TGGTAGGTGTGGTGGCGTTATGGCAGCCCGGCTGCTGCTTGGATGCGAGCTTGGCCTTGGGCCGGTGC





TGGGGGCACAGCTGTCTGCCAGGCACTCTCATCACCCCAGAGGCCTTGTCATCCTCCCTTGCCCCAGG





CCAGGTAGCAAGAGAGCAGCGCCCAGGCCTGCTGGCATCAGGTCTGGGCAAGTAGCAGGACTAGGCAT





GTCAGAGGACCCCAGGGTGGTTAGAGGAAAAGACTCCTCCTGGGGGCTGGCTCCCAGGGTGGAGGAAG





GTGACTGTGTGTGTGTGTGTGTGCGCGCGCGCACGCGCGAGTGTGCTGTATGGCCCAGGCAGCCTCAA





GGCCCTCGGAGCTGGCTGTGCCTGCTTCTGTGTACCACTTCTGTGGGCATGGCCGCTTCTAGAACGGG






TGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAG







CCTTGTCCTAATAAAATTAAGTTGCATCATTTTGTCTGACTAGGTGTCCTTCTATAATATTATGGGGT







GGAGGGGGGTGGTATGGAGCAAGGGGCAAGTTGGGAAGACAACCTGTAGGGCCTGCGGGGTCTATTGG







GAACCAAGCTGGAGTGCAGTGGCACAATCTTGGCTCACTGCAATCTCCGCCTCCTGGGTTCAAGCGAT







TCTCCTGCCTCAGCCTCCCGAGTTGTTGGGATTCCAGGCATGCATGACCAGGCTCAGCTAATTTTTGT







TTTTTTGGTAGAGACGGGGTTTCACCATATTGGCCAGGCTGGTCTCCAACTCCTAATCTCAGGTGATC







TACCCACCTTGGCCTCCCAAATTGCTGGGATTACAGGCGTGAACCACTGCTCCCTTCCCTGTCCTTTA






ACTATAACGGTCCTAAGGTAGCGAAGTCGACCGAATCGTTGTCCCTTGTCACAGCCATTGAGAATTTT





GGCAGGGAGCATGTTCTTAGAGCATTTTTAGGCTCTGCGGGACATAACAGCTCTGCCTCAGAGCACAT





GCCTTTCTCAGCTCCTGAAAGCCACTGATCAAATTGGAACATTTTGTACCTTAGGGATGAGGATATCA





ACTCTCCCAGCCACTTAGAGGGATAAATGTGATGATGCATTCAATTGTGACTACATCTGATCCCAACT





GTTGCTTCAGCTGCTCTCCTATAGCACATGGCGGGAGGCGTGCATCCCAGTAGCTACCTCCCCACTTT





TGGGGAGATGTGGTTCCATCCATGAAACCTGGGTACCCGCCTACCAGGTCCTGGCCTATCAGGTGGCA





GGGTCTGGTCAAAGAAGGGCATGTGTGGTCTTCAGCAAGGGAGACAGGACGGTGGTGCAGAGCGTCTA





GACCCTCAGGGCAAGTCTCCCCCACACCTGCTCCCGGGGCAGTTGTCTTTGTGACCTCCCATCCCCCT





CTGTTTCATCCTCTATAAAATGAGGGGCTGAGCCCCAAAATAACAGGCTTCTTTGCCATGATGCAAAA





CTGCTGAATCTTTCTTTCTGACACACAAGGCATCGAGCAGCCTCTGAAAGAACCAAAGCCACTAGCAG





GCTTCCTGACTTGGGTTTGTAGGTACTGAATACTCCCTTGAAAAATAAAAACATAGAGGCACTTTTCT





CCTGGCTGTTTATTACAGAACGAAGAAAAAACACACTGGCTTGAAACAGACGCCAGATTTCAAATGTA





GAGGTGAAATACGAGGTGGCAATTAAAATGTGATTACAGAAAGTCTGGACACTGAGAAAAGTTTACAG





GACAGTGGGTGTGGGTTTTCTATAACAGACACTTAAATATACATGACGATAATTGCAGATAGAAACCA





TCAAAGACAAACCCCAAATCAACTAATAATGTTTACAGATGTTCCCCCCCAAACCACAGAGCCTTACA





TCAAAACAAATACTGAAAGGCTTTAAACCAGGAACAGCTCGCCTTAACCCCACGAGGGTGCACACAAG





CTGGGCTTTTTCTCTCGGTCTGAATGGTAAAGGGAGGAGGATACTCTAGCTCCTCCAGGTGGATTGCT





GAGACAGGGCTCGGCTCACACACTGTCTCTGCGCCTCTCCCAAATCTGGAGAACTCTCCCAGCCTCCT





GGTAAAGTGTCTCTGTGGGGCACTTAACGATAAAACAGCTTCTGCTGTAAAGCTCATTAGGAAAGAGC





TAGCGGAGACTGAAAGGTTCGCAAAAGAGATTAAGAATCACACAAGGCAATAGGATTTTTAGTGAACA





TAGAAATAAATGGCCAAGTGGTTTTCTATTTGGCATTTGTCAACTTGCACAACAACTCTTGGTCATAT





CCACATTGCTCATTGCATTAAAACCATAAGCGACTCAGCCACCTAGCTTAACAAGGTATCACTGGAGC





AAACAACACGGTCTGCATATTTGTAACATTGTATAATAAACACAAAACAATGCATAGTAAACACAACT





CTACTGAAACAAAAGCCGTCGCTTTATTTACAAAGTCACAAAATGAAGTATAAATACTTCTGTCATTA





ATGTTTAGGAAAACCATTTACAAAATTTTCAAATATGTACACGTAGCTTGAAAAATCACCAGCTTTCC





ATTTTGTCACAGGTAGAGAGAGGGATAAGCATGGGCTGACAACACCACTCAAATTGTAACGGGAGACA





ACTGCGGGTATGGATCGACACCACTTCCTAGAGTGATGTCACCATGGGGGTTTCTATGGGCATCCTGC





TCAGATTTAAAGTGCCCCAGCATCCTGGGTGACTTGCCCAGAATTCTGGGCTGTGGCATTTTGAGCAG





CAGCATGCTGTTCCAAAATGTCGTCGATCAGCCTCAAGTTGCACACCCAGTCTTCATCTGGGCTCACA





CAGGAGCCTTTCAAGAGAGCTTCAATGAAATCTACCTCATTGCAGTCAGGTGACGAAATCAGATCATT





TAGTGGGGGTTGGGGCTGGCGCAAAAAGTCGGCAGGTGGCAGCTCAGGGGGAATATCCGTTCTGTCGA





ACGGACCTGGGAACTGGCTGGCAGCAACGGCAGAAGCAGCAGCAGCGGTGGCAGCAGCAGCCACATAG





CTTGGTGGCTCGATGCCCTGTATGGGGCTCAGGGGACTAAAGCTGGCCATACCCTGCTGGAGGAACTT





GGTGGTGTTTGCTACAGGCACCGGGCCCTGTACCGGGCTCTGCCTGAGGCTCTGGCTGCCCAGCAGGC





TGAAGCTGGGGTTGTTGGCCAGGGGCACTTGTGTTCCCATCGCAGCGGGCACTTGTGCCTCCCAATCA





GATGGCCTCTGAAGGCAGGCCTGGCCAGAAGGTGAGTGCTGCTGAACGCTATTATCCACTTGGCTGAG





GGGTGTTTTCCCCGAAACTGCTGTGGTCACAGCTGCTGCCGCTGTGACCCATGCAGCATTGTTGAACG





CAGTGGGCATTCTTGGCACACTAGGCCGTCTGAGCTGGTGGGGACTCAAGGACTGGGTGCCCAGGGAG





CTGGGACAGAACCCAGGCAGGGGCACTTCTGGTGGGGTGGCCTTGGGGCTCTGCATATGCTGGCAGAC





AGAGTCAAGTCTGCCCAGGGGAGTCTGGCCTGAGTGTGAGAGGATGGGACACTGGGGGCTGGAGGTGA





AAATTCCTTGCCGCTTCCCCAGAGTTGGTGAGATCACTCCCATGCCCTCGCAGCTCTGGTGCCTGGTG





AGTGGGATCATTCCTGGACTCAGATTGTTCTGAAGAAGCCCAGTTCTGGGTGGCATCAAGTGCTTGCT





AGATGGGGGGCTTGCCTTGATCCGGCTACACTTGGAGGTGACTTGTTCTTGGACGGCTACATACAGAA





AGAGAGAAGTGGGGATGAGTTCCAAAGGCATCCTCGACTTCGGCTGTGGCCACCGGAGGGTAGCTCCT





GGCCCAACACGGACTTCTCACCTCCCGCCCTTGGCTCTCTACTGAGCTCCCCCCTGCTCCCCAATTCC





TCGCCATTCCCCTCATTTCTCTGCCCTCAGCCTGGACTGCAGTTCTTCTGGGAAGCTGCCCCAACTCC





CTAGGTCTGTGCTCACCAAGAGCAGATCACACTGGACTGAAATGCCAGCTGATTTGTCTCTTCAAGAA





AATTGGAAGCTCCTGGAGGTCAGGGTCCATGTCTGCTTTTACACTCAGTGCTCTGTATGCAGGCCTGG





CACTGCCCACCCTTTGACAGGTGGTGCATATTTTGTAGAAGGAAGGAAGGGGCCAGGTGGGGTGGGCT





GGGCTGGTGGCGGGAGCTAGCTCAGCCTCTTAGATTCTCTACCCGATGGATGTGACCTGGGACAGCAA





GTGAGTGTGGTGAGTGAGTGCAGACGGTGCTTTGTTCCCCTCTTGTCTCATAGCCTAGATGGCCTCTG





AGCCCAGATCTGGGGCTCAGACAACATTTGTTCAACTGAACGGTAATGGGTTTCCTTTCTGAAGGCTG





AAATCTGGGAGCTGACATTCTGGACTCCCTGAGTTCTGAAGAGCCTGGGGATGGAGAGACACGGAGCA





GAAGATGGAAGGTAGAGTCCCAGGTGCCTAAGATGGGGAATACATCTCCCCTCATTGTCATGAGAGTC





CACTCTAGCTGATATCTACTGTGGCCAATATCTACCGGTACTTTTTTGGGGTGGACACTGAGTCATGC





AGCAGTCTTATGGTTTACCCAAGGTCAGGTAGGGGAGACAGTGCAGTCAGAGCACAAGCCCAGTGTGT





CTGACCCACCCAAGAATCCATGCTCGTATCTACAAAAATGATTTTTTCTCTTGTAATGGTGCCTAGGT





TCTTTTATTATCATGGCATGTGTATGTTTTTCAACTAGGTTACAATCTGGCCTTATAAGGTTAACCTC





CTGGAGGCCACCAGCCTTCCTGAAACTTGTCTGTGCTGTCCCTGCAACTGGAGTGTGCCTGATGTGGC





ACTCCAGCCTGGACAAGTGGGACACAGACTCCGCTGTTATCAGGCCCAAAGATGTCTTCCATAAGACC





AGAAGAGCAATGGTGTAGAGGTGTCATGGGCTACAATAAAGATGCTGACCTCCTGTCTGAGGGCAAGC





AGCCTCTTCTGGCCCTCAGACAAATGCTGAGTGTTCCCAAGACTACCCTCGGCCTGGTCCAATCTCAT





CCCACTGGTGCGTAAGGGTTGCTGAACTCATGACTTCTTGGCTAGCCTGCAACCTCCACGGAGTGGGA





ACTACATCAGGCATTTTGCTAACTGCTGTATCCTAGGCCAATAAATGTTGATCACATTTATAGCTGCC





ATGGTAGGGTGGGGACCCCTGCTATCTATCTGTGGAGGCTCTGGGAGCCCCTGACACAAACTTTCTGA





AGCAGAGCCTCCCCAACCCCTTTTCCATTCCCTATACCTGACAGATGGCCCAGGAACCCATTAGAAAT





GGAAGGTCACTGCAGCAGTATGTGAATGTGCGTGTGGGAGAAGGGCAGGATCAGAGCCCTGGGGGTGT





GGCAGCCCCCAAGTGATTCTAATCCAGATCCTAGGGTTGTTTCCCTGTCCCATTGAAATAGCTGCTTT





AAGGGGCCTGACTCAGGGAAATCAGTCTCTTGAATTAAGTGGTGATTTTGGAGTCATTTAGACCAGGC





CTTCAATTGGGATCCACTAGTTCTAGAGCGGCCGGGCCCAGGGAACCCCGCAGGCGGGGGCGGCCAGT





TTCCCGGGTTCGGCTTTACGTCACGCGAGGGCGGCAGGGAGGACGGAATGGCGGGGTTTGGGGTGGGT





CCCTCCTCGGGGGAGCCCTGGGAAAAGAGGACTGCGTGTGGGAAGAGAAGGTGGAAATGGCGTTTTGG





TTGACATGTGCCGCCTGCGAGCGTGCTGCGGGGAGGGGCCGAGGGCAGATTCGGGAATGATGGCGCGG





GGTGGGGGCGTGGGGGCTTTCTCGGGAGAGGCCCTTCCCTGGAAGTTTGGGGTGCGATGGTGAGGTTC





TCGGGGCACCTCTGGAGGGGCCTCGGCACGGAAAGCGACCACCTGGGAGGGCGTGTGGGGACCAGGTT





TTGCCTTTAGTTTTGCACACACTGTAGTTCATCTTTATGGAGATGCTCATGGCCTCATTGAAGCCCCA





CTACAGCTCTGGTAGCGGTAACCATGCGTATTTGACACACGAAGGAACTAGGGAAAAGGCATTAGGTC





ATTTCAAGCCGAAATTCACATGTGCTAGAATCCAGATTCCATGCTGACCGATGCCCCAGGATATAGAA





AATGAGAATCTGGTCCTTACCTTCAAGAACATTCTTAACCGTAATCAGCCTCTGGTATCTTAGCTCCA





CCCTCACTGGTTTTTTCTTGTTTGTTGAACCGGCCAAGCTGCTGGCCTCCCTCCTCAACCGTTCTGAT





CATGCTTGCTAAAATAGTCAAAACCCCGGCCAGTTAAATATGCTTTAGCCTGCTTTATTATGATTATT





TTTGTTGTTTTGGCAATGACCTGGTTACCTGTTGTTTCTCCCACTAAAACTTTTTAAGGGCAGGAATC





ACCGCCGTAACTCTAGCACTTAGCACAGTACTTGGCTTGTAAGAGGTCCTCGATGATGGTTTGTTGAA





TGAATACATTAAATAATTAACCACTTGAACCCTAAGAAAGAAGCGATTCTATTTCATATTAGGCATTG





TAATGACTTAAGGTAAAGAGCAGTGCTATTAACGGAGTCTAACTGGGAATCCAGCTTGTTTGGGCTAT





TTACTAGTTGTGTGGCTGTGGGCAACTTACTTCACCTCTCTGGGCTTAAGTCATTTTATGTATATCTG





AGGTGCTGGCTACCTCTTGGAGTTATTGAGAGGATTATAAGACAGTCTATGTGAATCAGCAACCCTTG





CATGGCCCCTGGCGGGGAACAGTAATAATAGCCATCATCATGTTTACTTACATAGTCCTAATTAGTCT





TCAAAACAGCCCTGTAGCAATGGTATGATTATTACCATTTTACAGATGAGGAACCTTTGAAGCCTCAG





AGAGGCTAACAGACATACCCTAGGTCATACAGTTATTAAGAGAAGGAGCTCTGTCTCGAACCTAGCTC





TCTCTCTCTCGAGTAATACCAGTTAAAAAATAGGCTACAAATAGGTACTCAAAAAAATGGTAGTGGCT





GTTGTTTTTATTCAGTTGCTGAGGAAAAAATGTTGATTTTTCATCTCTAAACATCAACTTACTTAATT





CTGCCAATTTCTTTTTTTTGAGACAGGGTCTCACTCTGTCACCTAGGATGGAGTGCAGTGGCACAATC





ACTGCTCACTGCAGCCTCGACTTCCCGGGCTCGGGTGATTCTCCCCAGGCTCAGGGGATTCTCCCACT





TCAGCCTCCCAAGTAGCTGGGACTACAGGTGCGCACCACCATCCCTGGCTAATATTTGTACTTTATTT





TATTTATTTATTTATTTATTTTTTGAGATGGAGTTTCGCTCTTGTTGCCCAAATGAATTGCCTCTTAT





TTAATTTCGTCTGATGATACATTTTGTTTTTATTTTGTAAAAAATTATTTTTTTTCTTTTTGGAGACA





GGGTCTTGCTCTGTTGCCCAGGCTGGTCACAAACTCCTGACCTCAAGCAATCCTCCTGCCTTAGCCTC





CCAAAATGCTGGGATTACAGGCGTGACGACCTCGCCCGGCCTTGTATTATGATACATTTTGAACAACT





ACAAGTAGACTTGGTATAATGAACCTGCACGTACCCATTGCCAAGTTCTGACAACTGTCTGTCTATAG





CCAATTATGCATTTCTTAAATTAGAACCCCCCCAATATACCCAAATATATATATATGTGTGCATATAT





ATAGTAAGTTGTAACAAAGTTGTGAATTCATACCTGAAGTATCTCAAGTGATGCAAGTTTTATGAATT





TTTGTTTATGCCTTTTGGGAAGAGTTGTATTGACAAATTTTTTATGCTTAAAGTAAACCATAAATCAA





AAAAATAAAATCTAGGATGCAATAAAACAAAACAACTTCTTGACATAAGTATGGTATGTAAATCTGTT





TTGATTGGAAATCAATTTGTTATATTGCCAGAATTCCTGTTTTAGAATACATCTCTGCTGATCTGTCT





GTATTCTTAGACTGCATATCTGGGATGAACTCTGGGCAGAATTCACATGGGCTTCCTTTGAAATAAAC





AAGACTTTTCAAATTCTTAGTCGATCTGCAGAACCTGTAGCCAGGCACTGAACCATTTTGATAGATGC





AGTAATCGTTGCAAGTGTATATTTCAAGGGAGTTCTGGCTGGGTCCTAGTTTATGCTTGTGGCAGAAG





CAGTGAGTAACTGGGAGGAAGTTGGTGAGTAAGCTTCAAGGAAGAAGTCATTTTTAGTACTCTGGATC





TTCCTGATTTTAAAGCACTACAAAATGGTGCATTTTCATTCTTGTCAAGTGATAACAGATATATTCTG





ATGAGCCTGAAATGAATATATATTGTATCATTTTTATAATATCTAGCAAGGTTTGTATTTTCCTAGAA





CTTGAACTAAATTTCAGTTCATAAAATTTATAAAATACTTAGTTGTTGTAAAATATTTTTGGAATGTT





CACATAGGTGACACACAAATGTCCCATTTTCATTCTTTCTATAGTAAATATGTTCTGATATGTGAAGG





TTTAGCAGATGCATCAGCATTTAATCCTAGAGGATCTGGCATAATCTTTTCCCCCAAGAATAGAAATT





TTTTCTGCTTATGAAAGTAGTACATGTTTCTTTAAAAACAAATCAATATTGACTTCTGCCTGCTGTAT





AGCACTATGCCTCCACCTGGCCATGACCAGGGGCATGTCCTGGTCCACCTACCTGAAAATGTTTGCAA





CCAGCCTCCTGGCCATGTGCACAGGGGCTGAAGTTGTCCCACAGGTATTACGGGCCAACCTGACAATA





CATGAAGTTCCACCAAAGTCTGAGAACTCAGAACTGAGCTTTGGGGACTGAAAGACAGCACAAACCTC





AAATTTCTCAGCACTGGAAACCTCAAAATATAACTGAATTCCATAAATAAGATTTTAAGTCTTAAATA





TGTATTTTTAAATGTATTAAAAGTCAAGCTGCTTGTATTTAAGCACCTAATACAATGCTTAGGTTGTA





AAAGGAGATGCTCAATAGGTACTAACTGATATATTGAGATTTAATTATGGTTTGACCAATATTTATTG





GAAACCGCCAAAGCTTAAATCATCAGCTTCTTGAATGTGATTTGAAAGGTAATTTAGTATTGAATAGC





ATGTGAGCTAGAGTATTTCATTCTTTCTGGTTTATTTCTTCAAATAGACTTTGAATATAATGGTGAAT





GGGTATTATAAATTAACTAATAAAAATGACATTGAAAATGAAAAAATATATATATTAAAGTGTAGAAA





GTGACCAGGCGTGGTGGCTCACACCTGTAATCCAAGCACCTTGGGAGGCTGAGGCAGGAGGATCTCTT





GATCCCAGGAGTTCAAGACCAGCCTGGGCAACATAGCGAGACTTCGTCTCTAAAAAAAAAAAAGAGAG





AGAAAAAAATTTTTTTTATTTAAAAAAAGTGTAGAAAGTGTCAAGACCCCACTTCTTACCATTATTTG





GTATATTTCTCTATACCCACCCACCCTTCCTCCTTACTCCCTCCCTCCCTTCCCAATCTTTTTATCTT





TTTGTATTCTGATTTTTTGTTTGTATATTTTGCTTTAATTTAATGTATCCTTTAAAAATTTCCCATAC





ATTTTATATGTATATATAAAAACGCATGCTGCCAAAGATAATTTATAAGAAAGACCATTGAATTTTTT





TAAAAGTGATATATATTCATTGAAAAAAATTTAGAATATATAGCAAAGCAATAAAGAACTAAATAAAA





TTGCTGTAACTCCTCTTTCAAAGATAAGTGCTTTTATGATTTTGTTGTATTTTTTTCTGTATATAGGT





ACATATATAGTATTTATAAAGCTGTACTCATAGTACATTTTCACATCACAGGTACCATATCAGTGTTA





TTAAATATTTTGTATGCCAGGGGCTAGACATACCAAGACAACCAATATGTGGTTCTACTTAAATAATA





TTAGAGTATCTTTTATGATGACACTTCATGAGTTGACTATAATAATCTTAGACTTCTAAGAGTTTGGG





TTTTCAAAAGATCACTTAGCTTTTTTGGGTGATTTTTCCCCCTTACTGTGAGATGAGAGAGGCTGTTT





GGATTTGGGATTGGGGTAGCGGGGACAGCAACTTTTCTTTTCTTTTTCTTTTTTATTTTGAGGTAGGG





TATTGCTGTGTCACCCAGGCTGGAGTGCAGTGGTGTGATCTCGGCTCACTGCAACCTCCACCTCCCGG





GCTCAGGTGATCCTCCTGCTTCAGCCTCCCAGTAACTGGGACTACAGGCGCGTGCCACATGCCTGGCT





AATTTTGTATTTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTCTAACTCCTGACCTC





AGGTGATACGCCCACCTGGGCCTCCCAAAATACTGGGATTACAGGCATGAGCCGCTGCATCAGCCAGC





AGTTTTTCTTGTGGTTTTTTTTGTTTGTTTTGTTTTGTTTTGTTTTTGAGATAGGGTCTTACTCTGTT





GTCCACGCTGGAGTGCTGTGGTATGATCGTAGCTCACTGCAGCCTCAAACTCCTGGGCTCAAGTGATT





CCTTCTGCCTCCGCCTCCCGAGTAGCTGGGACTACAGGTATGCACCACCATACCTGGCAAATTTTTAC





AAAGTTTTTTGTAGGGACGGGGTCTTGCTACATTCCCCATGTCGGTCTTGAACTCCTGGCCTCAAGCA





ACTCTCCTGTCTCAGCCTCCCAAAGCACTGGGATTACAAGTGTGAGCCACCACACCATGCCAGTTTTT





CCTGTTCAGTGTGATATTTTATCTTGTTAGACTACAGTGTGTTAAAACTTGTTTTACTAAATTTTCAA





ACATACTCAAAAGTGGAGAGAATAGTATAATGAATACCCGTATGTTCATCACCCATGTTTAGAATATT





ATTAAATATAAAGATTTTGCTGCGTTTGTCTTAGCTCTTTAAAATTTTTCTTTTTCTCTTTGTGACCT





AAAGGAAATTCCATATCTTATCACTTTACTTCTACATTCTTGACTAAGATGACTAAGACATATAGTTA





CATGGTTTTTTGTTTTGTTTTTGTTTTTTAAAGACGAAATCTCGCTCTTGTCCCCCAGGCTGGAGTGC





AATGGTGCCATCTCAGCTCAGTGCAACCTCTGCCTTCTGGGTACAAGCGATTCTCCTGCCTCAGCCTC





CCAAGTAGCTGGGATTACAGGCTCCTGCCACCACGCCTGGCTAATTTTTGTATTTTTAGTAGAGACGG





CGGGGGGAGGTTTCACCATGTTGACAAGGCTGGTCTGGAACTCCTGACCTCAGGTGATCCACCCGCCT





CGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGCGCCCAGCCTGTTTTTTTGTTTGTGTGT





TTTGTTTTTTTTGAGACAGAGTCTTGCTCTGTTTCCCAGGCTGGAGTGAAGTGGTGCCATCTCAGCTC





AGAGACAGAGTCTTGCTCTGTTTCCCAGGCTGGAGTGAAGTGGTGCCATCTTGGCTCACTGCAACCTT





CACCTCCCAGGTTCAAGTGATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGACTACAGGCATGTGTCA





CCACACCCGGCTAATTTTTTTGTATTTTTAGTAGAGACGGGATTTCACCGTGTTGCCCAGGCTGGTCT





CGAACTCCTGAGCTCAGGCAGTCTGCCTGCCTCAGCCTCCCAAAGTGCTGGGATTACACGTGTGAACC





AACCCGCCCGGCCTGTTGTTTTCTTACATAATTCATTATCATACCTACAAAGTTAACAGTTACTAATA





TCATCTTACACCTAAATTTCTCTGATAGACTAAGGTTATTTTTTAACATCTTAATCCAATCAAATGTT





TGTATCCTGTAATGCTCTCATTGAAACAGCTATATTTCTTTTTCAGATTAGTGATGATGAACCAGGTT





ATGACCTTGATTTATTTTGCATACCTAATCATTATGCTGAGGATTTGGAAAGGGTGTTTATTCCTCAT





GGACTAATTATGGACAGGTAAGTAAGATCTTAAAATGAGGTTTTTTACTTTTTCTTGTGTTAATTTCA





AACATCAGCAGCTGTTCTGAGTACTTGCTATTTGAACATAAACTAGGCCAACTTATTAAATAACTGAT





GCTTTCTAAAATCTTCTTTATTAAAAATAAAAGAGGAGGGCCTTACTAATTACTTAGTATCAGTTGTG





GTATAGTGGGACTCTGTAGGGACCAGAACAAAGTAAACATTGAAGGGAGATGGAAGAAGGAACTCTAG





CCAGAGTCTTGCATTTCTCAGTCCTAAACAGGGTAATGGACTGGGGCTGAATCACATGAAGGCAAGGT





CAGATTTTTATTATTATGCACATCTAGCTTGAAAATTTTCTGTTAAGTCAATTACAGTGAAAAACCTT





ACCTGGTATTGAATGCTTGCATTGTATGTCTGGCTATTCTGTGTTTTTATTTTAAAATTATAATATCA





AAATATTTGTGTTATAAAATATTCTAACTATGGAGGCCATAAACAAGAAGACTAAAGTTCTCTCCTTT





CAGCCTTCTGTACACATTTCTTCTCAAGCACTGGCCTATGCATGTATACTATATGCAAAAGTACATAT





ATACATTTATATTTTAACGTATGAGTATAGTTTTAAATGTTATTGGACACTTTTAATATTAGTGTGTC





TAGAGCTATCTAATATATTTTAAAGGTTGCATAGCATTCTGTCTTATGGAGATACCATAACTGATTTA





ACCAGTCCACTATTGATAGACACTATTTTGTTCTTACCGACTGTACTAGAAGAAACATTCTTTTACAT





GTTTGGTACTTGTTCAGCTTTATTCAAGTGGAATTTCTGGGTCAAGGGGAAAGAGTTTATTGAATATT





TTGGTATTGCCAAATTTTCCTCTAAGAAGTTGAATCATTTTATACTCCTGATGTTATATGAGAGTACC





TTTCTCTTCACAATTTGTCTCTTTTTTTTTTTTTTTTGAGACAAGGTCTCTGTTGCCCAGGCTGGGGT





GCAGTGCAGCAGAATGATCACAGTTCACTGCAGTCTCAACCTCCTGGGTTCAAGCGATCCTTCCACCT





CAGCCTCCTGAGTAGCTGGGACTATAGGTGTGCGCCACCACTCCCAGCTAATATTTTTATTTTGTAGA





AACAGGGTTCGCCATGTTACCCAGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACTGGCCCAGT





TTCTACAGTCTCTCTTAATATTGTATATTATCCAGAAAATTTCATTTAATCAGAACCTGCCAGTCTGA





TAGGTGAAAATGGTATCTTGTTTTTATTTGCATTTAAAAAAAATTATGATAGTGGTATGCTTGGTTTT





TTTGAAGGTATCAAATTTTTTACCTTATGAAACATGAGGGCAAAGGATGTGATACGTGGAAGATTTAA





AAAAAATTTTTAATGCATTTTTTTGAGACAAGGTCTTGCTCTATTGTCCAGGCTGGAGTGCAGTGGCA





CAATCACAGTTCACTCCAGCCTCAACATCCTGCACTAAAGTGATTTTCCCACCTCACCTCTCAAGTAG





CTGGGACTACAGGTACATGCTACCATGCCTGGCTAATTTTTTTTTTTTTGCAGGCATGGGGTCTCACT





ATATTGCCCAGGTTGGTGTGGAAGTTTAATGACTAAGAGGTGTTTGTTATAAAGTTTAATGTATGAAA





CTTTCTATTAAATTCCTGATTTTATTTCTGTAGGACTGAACGTCTTGCTCGAGATGTGATGAAGGAGA





TGGGAGGCCATCACATTGTAGCCCTCTGTGTGCTCAAGGGGGGCTATAAATTCTTTGCTGACCTGCTG





GATTACATCAAAGCACTGAATAGAAATAGTGATAGATCCATTCCTATGACTGTAGATTTTATCAGACT





GAAGAGCTATTGTGTGAGTATATTTAATATATGATTCTTTTTAGTGGCAACAGTAGGTTTTCTTATAT





TTTCTTTGAATCTCTGCAAACCATACTTGCTTTCATTTCACTTGGTTACAGTGAGATTTTTCTAACAT





ATTCACTAGTACTTTACATCAAAGCCAATACTGTTTTTTTAAAACTAGTCACCTTGGAGGATATATAC





TTATTTTACAGGTGTGTGTGGTTTTTTAAATAAACTCCTTTTAGGAATTGCTGTTGGGACTTGGGATA





CTTTTTTCACTATACATACTGGTGACAGATACCCTCTCTTGAGCTACATCGGTTTGTGGGGAGTCAAA





AGTCCTTTGGAGCTAGGTTTGACAAATAAGGTGGGTTAACACTTGTTTCCTAGAAAGCACATGGAGAG





CTAGAGTATTGGCGAATTGAAGAAATCCCCCTTTTTTTTTAACACACTTAAGAAAGGGGACTGCAGGT





ATACTCAAGAGAGTAAGTCGCACCAGAAACCACTTTTGATCCACAGTCTGCCTGTGTCACACAATTGA





AATGCATCACAACATTGACACTGTGGATGAAACAAAATCAGTGTGAATTTTAGTAGTGAATTTCATTC





ATAATTTGATCGTGCAAACGTTTGATTTTTATTACTTTAGACTATTGTTTCTGATTTTATGTTGGGTT





GGTATTTCCTGTGAGTTACTGTTTTACCTTTAAAATAGGAATTTTTCATACTCTTCAAAGATTAGAAC





AAATGTCCAGTTTTTGCTGTTTCATGAATGAGTCCTGTCCATCTTTGTAGAAACTCGCCTTATGTTCA





CATTTTTATTGAGAATAAGACCACTTATCTACATTTAACTATCAACCTCATCCTCTCCATTAATCATC





TATTTTAGTGACCCAAGTTTTTGACCTTTTCCATGTTTACATCAATCCTGTAGGTGATTGGGCAGCCA





TTTAAGTATTATTATAGACATTTTCACTATCCCATTAAAACCCTTTATGCCCATACATCATAACACTA





CTTCCTACCCATAAGCTCCTTTTAACTTGTTAAAGTCTTGCTTGAATTAAAGACTTGTTTACGGTATC





GATAAGCTTGATATCAAAACGCCAACTTTGACCCGGAACGCGGAAAACACCTGAGAAAAACACCTGGG





CGAGTCTCCACGTAAACGGTCAAAGTCCCCGCGGCCCTAGACAAATATTACGCGCTATGAGTAACACA






AAATTATTCAGATTTCACTTCCTCTTATTCAGTTTTCCCGCGAAAATGGCCAAATCTTACTCGGTTAC







GCCCAAATTTACTACAACATCCGCCTAAAACCGCGCGAAAATTGTCACTTCCTGTGTACACCGGCGCA






CACCAAAAACGTCACTTTTGCCACATCCGTCGCTTACATGTGTTCCGCCACACTTGCAACATCACACT





TCCGCCACACTACTACGTCACCCGCCCCGTTCCCACGCCCCGCGCCACGTCACAAACTCCACCCCCTC







ATTATCATATTGGCTTCAATCCAAAATAAGGTATATTATTGATGATG
TTTAAACATTAAGAATTAATT






CGATCCTGAATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGCGGGTGTGGTGGTTACGCG





CAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCG





CCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGAGCT





TTACGGCACCTCGACCGCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATA





GACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAA





CAACACTCAACCCTATCGCGGTCTATTCTTTTGATTTATAAGGGATGTTGCCGATTTCGGCCTATTGG





TTAAAAAATGAGCTGATTTAACAAAAATTTTAACAAAATTCAGAAGAACTCGTCAAGAAGGCGATAGA





AGGCGATGCGCTGCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCG





CCAAGCTCTTCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACACCCAGCCG





GCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCGCCAT





GGGTCACGACGAGATCCTCGCCGTCGGGCATGCTCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCG





AGCCCCTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCG





CTCGATGCGATGTTTCGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCA





TTGCATCAGCCATGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGC





ACTTCGCCCAATAGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGAAC





GCCCGTCGTGGCCAGCCACGATAGCCGCGCTGCCTCGTCTTGCAGTTCATTCAGGGCACCGGACAGGT





CGGTCTTGACAAAAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCG





ATTGTCTGTTGTGCCCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCAA





TCCATCTTGTTCAATCATGCGAAACGATCCTCATCCTGTCTCTTGATCAGAGCTTGATCCCCTGCGCC





ATCAGATCCTTGGCGGCAAGAAAGCCATCCAGTTTACTTTGCAGGGCTTCCCAACCTTACCAGAGGGC





GCCCCAGCTGGCAATTCCGGTTCGCTTGCTGTCCATAAAACCGCCCAGTCTAGCTATCGCCATGTAAG





CCCACTGCAAGCTACCTGCTTTCTCTTTGCGCTTGCGTTTTCCCTTGTCCAGATAGCCCAGTAGCTGA





CATTCATCCGGGGTCAGCACCGTTTCTGCGGACTGGCTTTCTACGTGAAAAGGATCTAGGTGAAGATC





CTTTTTGATAATCTCATGGCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACT





TACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGC





GCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGT





ATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCA





GGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAAC





TGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATC





TAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGC





GTCAGAC





RightITR = first underlined and bold sequence


CBh = first underlined sequence


mCherry: PKD1 = first bold sequence


HGHpA = second underlined sequence


Packaging Signal = second bold sequence


LeftITR = second underlined and bold sequence





AAV-PKD2


LeftITR-EFlα-PKD2-BGHpA-RightITR


SEQ ID NO: 6


AGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCA





CCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTT





CAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACT





CTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAG





TCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGG





GGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGC





TATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGA





ACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCG





CCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCA





GCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTG







CGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGC









CTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCT
GCGGCCGCA






CGCGTTAACTATAACGGTCCTAAGGTAGCGAAGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCG






CCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGG







GGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATA







TAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGGTAAGTGCC







GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATTACTTCCAC







CTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTT







GCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGTG







CGAATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTG







ATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTG







GTATTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTTCGGCGAGG







CGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGT







GCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGCACCAGTTG







CGTGAGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGAAGGACGCGGCGCTCG







GGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATG







TGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAGTACGTCGT







CTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTT







AGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTTGGATCTTGGTTCAT







TCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGATCCGGAGGCGGCG






GCACGGGCGGCGGCAGCGGCGGCATGGTGAACTCCAGTCGCGTGCAGCCTCAGCAGCCCGGGGACGCC






AAGCGGCCGCCCGCGCCCCGCGCGCCGGACCCGGGCCGGCTGATGGCTGGCTGCGCGGCCGTGGGCGC







CAGCCTCGCCGCCCCGGGCGGCCTCTGCGAGCAGCGGGGCCTGGAGATCGAGATGCAGCGCATCCGGC







AGGCGGCCGCGCGGGACCCCCCGGCCGGAGCCGCGGCCTCCCCTTCTCCTCCGCTCTCGTCGTGCTCC







CGGCAGGCGTGGAGCCGCGATAACCCCGGCTTCGAGGCCGAGGAGGAGGAGGAGGAGGTGGAAGGGGA







AGAAGGCGGAATGGTGGTGGAGATGGACGTAGAGTGGCGCCCGGGCAGCCGGAGGTCGGCCGCCTCCT







CGGCCGTGAGCTCCGTGGGCGCGCGGAGCCGGGGGCTTGGGGGCTACCACGGCGCGGGCCACCCGAGC







GGGAGGCGGCGCCGGCGAGAGGACCAGGGCCCGCCGTGCCCCAGCCCAGTCGGCGGCGGGGACCCGCT







GCATCGCCACCTCCCCCTGGAAGGGCAGCCGCCCCGAGTGGCCTGGGCGGAGAGGCTGGTTCGCGGGC







TGCGAGGTCTCTGGGGAACAAGACTCATGGAGGAAAGCAGCACTAACCGAGAGAAATACCTTAAAAGT







GTTTTACGGGAACTGGTCACATACCTCCTTTTTCTCATAGTCTTGTGCATCTTGACCTACGGCATGAT







GAGCTCCAATGTGTACTACTACACCCGGATGATGTCACAGCTCTTCCTAGACACCCCCGTGTCCAAAA







CGGAGAAAACTAACTTTAAAACTCTGTCTTCCATGGAAGACTTCTGGAAGTTCACAGAAGGCTCCTTA







TTGGATGGGCTGTACTGGAAGATGCAGCCCAGCAACCAGACTGAAGCTGACAACCGAAGTTTCATCTT







CTATGAGAACCTGCTGTTAGGGGTTCCACGAATACGGCAACTCCGAGTCAGAAATGGATCCTGCTCTA







TCCCCCAGGACTTGAGAGATGAAATTAAAGAGTGCTATGATGTCTACTCTGTCAGTAGTGAAGATAGG







GCTCCCTTTGGGCCCCGAAATGGAACCGCTTGGATCTACACAAGTGAAAAAGACTTGAATGGTAGTAG







CCACTGGGGAATCATTGCAACTTATAGTGGAGCTGGCTATTATCTGGATTTGTCAAGAACAAGAGAGG







AAACAGCTGCACAAGTTGCTAGCCTCAAGAAAAATGTCTGGCTGGACCGAGGAACCAGGGCAACTTTT







ATTGACTTCTCAGTGTACAACGCCAACATTAACCTGTTCTGTGTGGTCAGGTTATTGGTTGAATTCCC







AGCAACAGGTGGTGTGATTCCATCTTGGCAATTTCAGCCTTTAAAGCTGATCCGATATGTCACAACTT







TTGATTTCTTCCTGGCAGCCTGTGAGATTATCTTTTGTTTCTTTATCTTTTACTATGTGGTGGAAGAG







ATATTGGAAATTCGCATTCACAAACTACACTATTTCAGGAGTTTCTGGAATTGTCTGGATGTTGTGAT







CGTTGTGCTGTCAGTGGTAGCTATAGGAATTAACATATACAGAACATCAAATGTGGAGGTGCTACTAC







AGTTTCTGGAAGATCAAAATACTTTCCCCAACTTTGAGCATCTGGCATATTGGCAGATACAGTTCAAC







AATATAGCTGCTGTCACAGTATTTTTTGTCTGGATTAAGCTCTTCAAATTCATCAATTTTAACAGGAC







CATGAGCCAGCTCTCGACAACCATGTCTCGATGTGCCAAAGACCTGTTTGGCTTTGCTATTATGTTCT







TCATTATTTTCCTAGCGTATGCTCAGTTGGCATACCTTGTCTTTGGCACTCAGGTCGATGACTTCAGT







ACTTTCCAAGAGTGTATCTTCACTCAATTCCGTATCATTTTGGGCGATATCAACTTTGCAGAGATTGA







GGAAGCTAATCGAGTTTTGGGACCAATTTATTTCACTACATTTGTGTTCTTTATGTTCTTCATTCTTT






TGAATATGTTTTTGGCTATCATCAATGATACTTACTCTGAAGTGAAATCTGACTTGGCACAGCAGAAA






GCTGAAATGGAACTCTCAGATCTTATCAGAAAGGGCTACCATAAAGCTTTGGTCAAACTAAAACTGAA







AAAAAATACCGTGGATGACATTTCAGAGAGTCTGCGGCAAGGAGGAGGCAAGTTAAACTTTGACGAAC







TTCGACAAGATCTCAAAGGGAAGGGCCATACTGATGCAGAGATTGAGGCAATATTCACAAAGTACGAC







CAAGATGGAGACCAAGAACTGACCGAACATGAACATCAGCAGATGAGAGACGACTTGGAGAAAGAGAG







GGAGGACCTGGATTTGGATCACAGTTCTTTACCACGTCCCATGAGCAGCCGAAGTTTCCCTCGAAGCC







TGGATGACTCTGAGGAGGATGACGATGAAGATAGCGGACATAGCTCCAGAAGGAGGGGAAGCATTTCT







AGTGGCGTTTCTTACGAAGAGTTTCAAGTCCTGGTGAGACGAGTGGACCGGATGGAGCATTCCATCGG







CAGCATAGTGTCCAAGATTGACGCCGTGATCGTGAAGCTAGAGATTATGGAGCGAGCCAAACTGAAGA







GGAGGGAGGTGCTGGGAAGGCTGTTGGATGGGGTGGCCGAGGATGAAAGGCTGGGTCGTGACAGTGAA







ATCCATAGGGAACAGATGGAACGGCTAGTACGTGAAGAGTTGGAACGCTGGGAATCCGATGATGCAGC







TTCCCAGATCAGTCATGGTTTAGGCACGCCAGTGGGACTAAATGGTCAACCTCGCCCCAGAAGCTCCC







GCCCATCTTCCTCCCAATCTACAGAAGGCATGGAAGGTGCAGGTGGAAATGGGAGTTCTAATGTCCAC







GTATGATTCTAGAGTCGACCTGCAGAAGCTTGCCTCGAGCCTGTGCCTTCTAGTTGCCAGCCATCTGT







TGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAA







ATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGAC







AGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGTAACTAT






AACGGTCCTAAGGTAGCGAACGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCCC







TCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCG









GGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGG
GGCGCCTGATGCGGTATTTTCTCCTTA






CGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCAT





TAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCT





CCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGG





GCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATG





GTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTT





AATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATA





AGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATT





TTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAG





TTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATC





CGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGA





AACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTT





TCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAAT





ACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGA





AGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTT





TTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTA





CATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGA





TGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTC





GGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTAC





GGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACT





TACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTA





ACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGAT





GCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGC





AACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCT





GGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGG





GCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAAC





GAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTAC





TCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTT





TGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAA





RightITR = first underlined and bold sequence


EF1α = first underlined sequence


PKD2 = bold sequence


BGHpA = second underlined sequence


LeftITR = second underlined and bold sequence





HDAd-PKD1-PKD2


RightITR-CBh-mCherry: PKD1-HGHpA-EF1α-PKD2-BGHpA-PackagingSignal-


LeftITR





SEQ ID NO: 7


CCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAAC





AAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGG





TAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCAC





TTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAG





TGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGG





GCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTA





CAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGG





CAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTG





TCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGG





AAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTT





TCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCC





GCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTT





CTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGATCCATGCATGTTAAGTTTAAACATCATC





AATAATATACCTTATTTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGTTTGTGACGTGGCGCG







GGGCGTGGGAACGGGGCGGGTGACGTAG
GTTTTAGGGCGGAGTAACTTGTATGTGTTGGGAATTGTAG






TTTTCTTAAAATGGGAAGTTACGTAACGTGGGAAAACGGAAGTGACGATTTGAGGAAGTTGTGGGTTT





TTTGGCTTTCGTTTCTGGGCGTAGGTTCGCGTGCGGTTTTCTGGGTGTTTTTTGTGGACTTTAACCGT





TACGTCATTTTTTAGTCCTATATATACTCGCTCTGCACTTGGCCCTTTTTTACACTGTGACTGATTGA





GCTGGTGCCGTGTCGAGTGGTGTTTTTTGATGCCCCCCCTCGAGGTTCGACGGTATCGATAAGCTTGA





TTTAATTAAGGCCGGCCCCTAGGGGCGCGCGCGGCCGCTAGGGATAACAGGGTAATTGTTGACAATTA





ATCATCGGCATAGTATATCGGCATAGTATAATACGACAAGGTGAGGAACTAAACCATGGCCAAGTTGA





CCAGTGCCGTTCCGGTGCTCACCGCGCGCGACGTCGCCGGAGCGGTCGAGTTCTGGACCGACCGGCTC





GGGTTCTCCCGGGACTTCGTGGAGGACGACTTCGCCGGTGTGGTCCGGGACGACGTGACCCTGTTCAT





CAGCGCGGTCCAGGACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCGCGGCCTGGACG





AGCTGTACGCCGAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGCCGGCCATGACC





GAGATCGGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGCGTGCACTT





CGTGGCCGAGGAGCAGGACTGAACGCGTCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCG






CCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTT







CCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATA







TGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATG







ACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTCGAGGT







GAGCCCCACGTTCTGCTTCACTCTCCCCATCTCCCCCCCCTCCCCACCCCCAATTTTGTATTTATTTA







TTTTTTAATTATTTTGTGCAGCGATGGGGGCGGGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGG







CGGGGCGAGGGGCGGGGCGGGGCGAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCG







AAAGTTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGCGG







GAGTCGCTGCGACGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCGCCTCGCGCCGCCCGCCCCGGCT







CTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGCTGTAATTAGC







TGAGCAAGAGGTAAGGGTTTAAGGGATGGTTGGTTGGTGGGGTATTAATGTTTAATTACCTGGAGCAC







CTGTCCGGAGAATTCGCCACCATGCCGCCCGCCGCGCCCGCCCGCCTGGCGCTGGCCCTGGGCCTGGG







CCTGTGGCTCGGGGCGCTGGCGGGGGGCCCCGGGATGGTGAGCAAGGGCGAGGAGGATAACATGGCCA







TCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATC







GAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGG







CCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGC







ACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATG







AACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTA







CAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCT







GGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTG







AAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCA







GCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAGGACTACACCATCG







TGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAAGGGCGCG







CCGGGGGGCCCCGGGCGCGGCTGCGGGCCCTGCGAGCCCCCCTGCCTCTGCGGCCCAGCGCCCGGCGC







CGCCTGCCGCGTCAACTGCTCGGGCCGCGGGCTGCGGACGCTCGGTCCCGCGCTGCGCATCCCCGCGG







ACGCCACAGCGCTAGACGTCTCCCACAACCTGCTCCGGGCGCTGGACGTTGGGCTCCTGGCGAACCTC







TCGGCGCTGGCAGAGCTGGATATAAGCAACAACAAGATTTCTACGTTAGAAGAAGGAATATTTGCTAA







TTTATTTAATTTAAGTGAAATAAACCTGAGTGGGAACCCGTTTGAGTGTGACTGTGGCCTGGCGTGGC







TGCCGCGATGGGCGGAGGAGCAGCAGGTGCGGGTGGTGCAGCCCGAGGCAGCCACGTGTGCTGGGCCT







GGCTCCCTGGCTGGCCAGCCTCTGCTTGGCATCCCCTTGCTGGACAGTGGCTGTGGTGAGGAGTATGT







CGCCTGCCTCCCTGACAACAGCTCAGGCACCGTGGCAGCAGTGTCCTTTTCAGCTGCCCACGAAGGCC







TGCTTCAGCCAGAGGCCTGCAGCGCCTTCTGCTTCTCCACCGGCCAGGGCCTCGCAGCCCTCTCGGAG







CAGGGCTGGTGCCTGTGTGGGGCGGCCCAGCCCTCCAGTGCCTCCTTTGCCTGCCTGTCCCTCTGCTC







CGGCCCCCCGCCACCTCCTGCCCCCACCTGTAGGGGCCCCACCCTCCTCCAGCACGTCTTCCCTGCCT







CCCCAGGGGCCACCCTGGTGGGGCCCCACGGACCTCTGGCCTCTGGCCAGCTAGCAGCCTTCCACATC







GCTGCCCCGCTCCCTGTCACTGCCACACGCTGGGACTTCGGAGACGGCTCCGCCGAGGTGGATGCCGC







TGGGCCGGCTGCCTCGCATCGCTATGTGCTGCCTGGGCGCTATCACGTGACGGCCGTGCTGGCCCTGG







GGGCCGGCTCAGCCCTGCTGGGGACAGACGTGCAGGTGGAAGCGGCACCTGCCGCCCTGGAGCTCGTG







TGCCCGTCCTCGGTGCAGAGTGACGAGAGCCTTGACCTCAGCATCCAGAACCGCGGTGGTTCAGGCCT







GGAGGCCGCCTACAGCATCGTGGCCCTGGGCGAGGAGCCGGCCCGAGCGGTGCACCCGCTCTGCCCCT







CGGACACGGAGATCTTCCCTGGCAACGGGCACTGCTACCGCCTGGTGGTGGAGAAGGCGGCCTGGCTG







CAGGCGCAGGAGCAGTGTCAGGCCTGGGCCGGGGCCGCCCTGGCAATGGTGGACAGTCCCGCCGTGCA







GCGCTTCCTGGTCTCCCGGGTCACCAGGAGCCTAGACGTGTGGATCGGCTTCTCGACTGTGCAGGGGG







TGGAGGTGGGCCCAGCGCCGCAGGGCGAGGCCTTCAGCCTGGAGAGCTGCCAGAACTGGCTGCCCGGG







GAGCCACACCCAGCCACAGCCGAGCACTGCGTCCGGCTCGGGCCCACCGGGTGGTGTAACACCGACCT







GTGCTCAGCGCCGCACAGCTACGTCTGCGAGCTGCAGCCCGGAGGCCCAGTGCAGGATGCCGAGAACC







TCCTCGTGGGAGCGCCCAGTGGGGACCTGCAGGGACCCCTGACGCCTCTGGCACAGCAGGACGGCCTC







TCAGCCCCGCACGAGCCCGTGGAGGTCATGGTATTCCCGGGCCTGCGTCTGAGCCGTGAAGCCTTCCT







CACCACGGCCGAATTTGGGACCCAGGAGCTCCGGCGGCCCGCCCAGCTGCGGCTGCAGGTGTACCGGC







TCCTCAGCACAGCAGGGACCCCGGAGAACGGCAGCGAGCCTGAGAGCAGGTCCCCGGACAACAGGACC







CAGCTGGCCCCCGCGTGCATGCCAGGGGGACGCTGGTGCCCTGGAGCCAACATCTGCTTGCCGCTGGA







CGCCTCCTGCCACCCCCAGGCCTGCGCCAATGGCTGCACGTCAGGGCCAGGGCTACCCGGGGCCCCCT







ATGCGCTATGGAGAGAGTTCCTCTTCTCCGTTCCCGCGGGGCCCCCCGCGCAGTACTCGGTCACCCTC







CACGGCCAGGATGTCCTCATGCTCCCTGGTGACCTCGTTGGCTTGCAGCACGACGCTGGCCCTGGCGC







CCTCCTGCACTGCTCGCCGGCTCCCGGCCACCCTGGTCCCCAGGCCCCGTACCTCTCCGCCAACGCCT







CGTCATGGCTGCCCCACTTGCCAGCCCAGCTGGAGGGCACTTGGGCCTGCCCTGCCTGTGCCCTGCGG







CTGCTTGCAGCCACGGAACAGCTCACCGTGCTGCTGGGCTTGAGGCCCAACCCTGGACTGCGGCTGCC







TGGGCGCTATGAGGTCCGGGCAGAGGTGGGCAATGGCGTGTCCAGGCACAACCTCTCCTGCAGCTTTG







ACGTGGTCTCCCCAGTGGCTGGGCTGCGGGTCATCTACCCTGCCCCCCGCGACGGCCGCCTCTACGTG







CCCACCAACGGCTCAGCCTTGGTGCTCCAGGTGGACTCTGGTGCCAACGCCACGGCCACGGCTCGCTG







GCCTGGGGGCAGTGTCAGCGCCCGCTTTGAGAATGTCTGCCCTGCCCTGGTGGCCACCTTCGTGCCCG







GCTGCCCCTGGGAGACCAACGATACCCTGTTCTCAGTGGTAGCACTGCCGTGGCTCAGTGAGGGGGAG







CACGTGGTGGACGTGGTGGTGGAAAACAGCGCCAGCCGGGCCAACCTCAGCCTGCGGGTGACGGCGGA







GGAGCCCATCTGTGGCCTCCGCGCCACGCCCAGCCCCGAGGCCCGTGTACTGCAGGGAGTCCTAGTGA







GGTACAGCCCCGTGGTGGAGGCCGGCTCGGACATGGTCTTCCGGTGGACCATCAACGACAAGCAGTCC







CTGACCTTCCAGAACGTGGTCTTCAATGTCATTTATCAGAGCGCGGCGGTCTTCAAGCTCTCACTGAC







GGCCTCCAACCACGTGAGCAACGTCACCGTGAACTACAACGTAACCGTGGAGCGGATGAACAGGATGC







AGGGTCTGCAGGTCTCCACAGTGCCGGCCGTGCTGTCCCCCAATGCCACGCTAGCACTGACGGCGGGC







GTGCTGGTGGACTCGGCCGTGGAGGTGGCCTTCCTGTGGACCTTTGGGGATGGGGAGCAGGCCCTCCA







CCAGTTCCAGCCTCCGTACAACGAGTCCTTCCCGGTTCCAGACCCCTCGGTGGCCCAGGTGCTGGTGG







AGCACAATGTCATGCACACCTACGCTGCCCCAGGTGAGTACCTCCTGACCGTGCTGGCATCTAATGCC







TTCGAGAACCTGACGCAGCAGGTGCCTGTGAGCGTGCGCGCCTCCCTGCCCTCCGTGGCTGTGGGTGT







GAGTGACGGCGTCCTGGTGGCCGGCCGGCCCGTCACCTTCTACCCGCACCCGCTGCCCTCGCCTGGGG







GTGTTCTTTACACGTGGGACTTCGGGGACGGCTCCCCTGTCCTGACCCAGAGCCAGCCGGCTGCCAAC







CACACCTATGCCTCGAGGGGCACCTACCACGTGCGCCTGGAGGTCAACAACACGGTGAGCGGTGCGGC







GGCCCAGGCGGATGTGCGCGTCTTTGAGGAGCTCCGCGGACTCAGCGTGGACATGAGCCTGGCCGTGG







AGCAGGGCGCCCCCGTGGTGGTCAGCGCCGCGGTGCAGACGGGCGACAACATCACGTGGACCTTCGAC







ATGGGGGACGGCACCGTGCTGTCGGGCCCGGAGGCAACAGTGGAGCATGTGTACCTGCGGGCACAGAA







CTGCACAGTGACCGTGGGTGCGGCCAGCCCCGCCGGCCACCTGGCCCGGAGCCTGCACGTGCTGGTCT







TCGTCCTGGAGGTGCTGCGCGTTGAACCCGCCGCCTGCATCCCCACGCAGCCTGACGCGCGGCTCACG







GCCTACGTCACCGGGAACCCGGCCCACTACCTCTTCGACTGGACCTTCGGGGATGGCTCCTCCAACAC







GACCGTGCGGGGGTGCCCGACGGTGACACACAACTTCACGCGGAGCGGCACGTTCCCCCTGGCGCTGG







TGCTGTCCAGCCGCGTGAACAGGGCGCATTACTTCACCAGCATCTGCGTGGAGCCAGAGGTGGGCAAC







GTCACCCTGCAGCCAGAGAGGCAGTTTGTGCAGCTCGGGGACGAGGCCTGGCTGGTGGCATGTGCCTG







GCCCCCGTTCCCCTACCGCTACACCTGGGACTTTGGCACCGAGGAAGCCGCCCCCACCCGTGCCAGGG







GCCCTGAGGTGACGTTCATCTACCGAGACCCAGGCTCCTATCTTGTGACAGTCACCGCGTCCAACAAC







ATCTCTGCTGCCAATGACTCAGCCCTGGTGGAGGTGCAGGAGCCCGTGCTGGTCACCAGCATCAAGGT







CAATGGCTCCCTTGGGCTGGAGCTGCAGCAGCCGTACCTGTTCTCTGCTGTGGGCCGTGGGCGCCCCG







CCAGCTACCTGTGGGATCTGGGGGACGGTGGGTGGCTCGAGGGTCCGGAGGTCACCCACGCTTACAAC







AGCACAGGTGACTTCACCGTTAGGGTGGCCGGCTGGAATGAGGTGAGCCGCAGCGAGGCCTGGCTCAA







TGTGACGGTGAAGCGGCGCGTGCGGGGGCTCGTCGTCAATGCAAGCCGCACGGTGGTGCCCCTGAATG







GGAGCGTGAGCTTCAGCACGTCGCTGGAGGCCGGCAGTGATGTGCGCTATTCCTGGGTGCTCTGTGAC







CGCTGCACGCCCATCCCTGGGGGTCCTACCATCTCTTACACCTTCCGCTCCGTGGGCACCTTCAATAT







CATCGTCACGGCTGAGAACGAGGTGGGCTCCGCCCAGGACAGCATCTTCGTCTATGTCCTGCAGCTCA







TAGAGGGGCTGCAGGTGGTGGGCGGTGGCCGCTACTTCCCCACCAACCACACGGTACAGCTGCAGGCC







GTGGTTAGGGATGGCACCAACGTCTCCTACAGCTGGACTGCCTGGAGGGACAGGGGCCCGGCCCTGGC







CGGCAGCGGCAAAGGCTTCTCGCTCACCGTGCTCGAGGCCGGCACCTACCATGTGCAGCTGCGGGCCA







CCAACATGCTGGGCAGCGCCTGGGCCGACTGCACCATGGACTTCGTGGAGCCTGTGGGGTGGCTGATG







GTGGCCGCCTCCCCGAACCCAGCTGCCGTCAACACAAGCGTCACCCTCAGTGCCGAGCTGGCTGGTGG







CAGTGGTGTCGTATACACTTGGTCCTTGGAGGAGGGGCTGAGCTGGGAGACCTCCGAGCCATTTACCA







CCCATAGCTTCCCCACACCCGGCCTGCACTTGGTCACCATGACGGCAGGGAACCCGCTGGGCTCAGCC







AACGCCACCGTGGAAGTGGATGTGCAGGTGCCTGTGAGTGGCCTCAGCATCAGGGCCAGCGAGCCCGG







AGGCAGCTTCGTGGCGGCCGGGTCCTCTGTGCCCTTTTGGGGGCAGCTGGCCACGGGCACCAATGTGA







GCTGGTGCTGGGCTGTGCCCGGCGGCAGCAGCAAGCGTGGCCCTCATGTCACCATGGTCTTCCCGGAT







GCTGGCACCTTCTCCATCCGGCTCAATGCCTCCAACGCAGTCAGCTGGGTCTCAGCCACGTACAACCT







CACGGCGGAGGAGCCCATCGTGGGCCTGGTGCTGTGGGCCAGCAGCAAGGTGGTGGCGCCCGGGCAGC







TGGTCCATTTTCAGATCCTGCTGGCTGCCGGCTCAGCTGTCACCTTCCGCCTGCAGGTCGGCGGGGCC







AACCCCGAGGTGCTCCCCGGGCCCCGTTTCTCCCACAGCTTCCCCCGCGTCGGAGACCACGTGGTGAG







CGTGCGGGGCAAAAACCACGTGAGCTGGGCCCAGGCGCAGGTGCGCATCGTGGTGCTGGAGGCCGTGA







GTGGGCTGCAGGTGCCCAACTGCTGCGAGCCTGGCATCGCCACGGGCACTGAGAGGAACTTCACAGCC







CGCGTGCAGCGCGGCTCTCGGGTCGCCTACGCCTGGTACTTCTCGCTGCAGAAGGTCCAGGGCGACTC







GCTGGTCATCCTGTCGGGCCGCGACGTCACCTACACGCCCGTGGCCGCGGGGCTGTTGGAGATCCAGG







TGCGCGCCTTCAACGCCCTGGGCAGTGAGAACCGCACGCTGGTGCTGGAGGTTCAGGACGCCGTCCAG







TATGTGGCCCTGCAGAGCGGCCCCTGCTTCACCAACCGCTCGGCGCAGTTTGAGGCCGCCACCAGCCC







CAGCCCCCGGCGTGTGGCCTACCACTGGGACTTTGGGGATGGGTCGCCAGGGCAGGACACAGATGAGC







CCAGGGCCGAGCACTCCTACCTGAGGCCTGGGGACTACCGCGTGCAGGTGAACGCCTCCAACCTGGTG







AGCTTCTTCGTGGCGCAGGCCACGGTGACCGTCCAGGTGCTGGCCTGCCGGGAGCCGGAGGTGGACGT







GGTCCTGCCCCTGCAGGTGCTGATGCGGCGATCACAGCGCAACTACTTGGAGGCCCACGTTGACCTGC







GCGACTGCGTCACCTACCAGACTGAGTACCGCTGGGAGGTGTATCGCACCGCCAGCTGCCAGCGGCCG






GGGCGCCCAGCGCGTGTGGCCCTGCCCGGCGTGGACGTGAGCCGGCCTCGGCTGGTGCTGCCGCGGCT






GGCGCTGCCTGTGGGGCACTACTGCTTTGTGTTTGTCGTGTCATTTGGGGACACGCCACTGACACAGA







GCATCCAGGCCAATGTGACGGTGGCCCCCGAGCGCCTGGTGCCCATCATTGAGGGTGGCTCATACCGC







GTGTGGTCAGACACACGGGACCTGGTGCTGGATGGGAGCGAGTCCTACGACCCCAACCTGGAGGACGG







CGACCAGACGCCGCTCAGTTTCCACTGGGCCTGTGTGGCTTCGACACAGAGGGAGGCTGGCGGGTGTG







CGCTGAACTTTGGGCCCCGCGGGAGCAGCACGGTCACCATTCCACGGGAGCGGCTGGCGGCTGGCGTG







GAGTACACCTTCAGCCTGACCGTGTGGAAGGCCGGCCGCAAGGAGGAGGCCACCAACCAGACGGTGCT







GATCCGGAGTGGCCGGGTGCCCATTGTGTCCTTGGAGTGTGTGTCCTGCAAGGCACAGGCCGTGTACG







AAGTGAGCCGCAGCTCCTACGTGTACTTGGAGGGCCGCTGCCTCAATTGCAGCAGCGGCTCCAAGCGA







GGGCGGTGGGCTGCACGTACGTTCAGCAACAAGACGCTGGTGCTGGATGAGACCACCACATCCACGGG







CAGTGCAGGCATGCGACTGGTGCTGCGGCGGGGCGTGCTGCGGGACGGCGAGGGATACACCTTCACGC







TCACGGTGCTGGGCCGCTCTGGCGAGGAGGAGGGCTGCGCCTCCATCCGCCTGTCCCCCAACCGCCCG







CCGCTGGGGGGCTCTTGCCGCCTCTTCCCACTGGGCGCTGTGCACGCCCTCACCACCAAGGTGCACTT







CGAATGCACGGGCTGGCATGACGCGGAGGATGCTGGCGCCCCGCTGGTGTACGCCCTGCTGCTGCGGC







GCTGTCGCCAGGGCCACTGCGAGGAGTTCTGTGTCTACAAGGGCAGCCTCTCCAGCTACGGAGCCGTG







CTGCCCCCGGGTTTCAGGCCACACTTCGAGGTGGGCCTGGCCGTGGTGGTGCAGGACCAGCTGGGAGC







CGCTGTGGTCGCCCTCAACAGGTCTTTGGCCATCACCCTCCCAGAGCCCAACGGCAGCGCAACGGGGC







TCACAGTCTGGCTGCACGGGCTCACCGCTAGTGTGCTCCCAGGGCTGCTGCGGCAGGCCGATCCCCAG







CACGTCATCGAGTACTCGTTGGCCCTGGTCACCGTGCTGAACGAGTACGAGCGGGCCCTGGACGTGGC







GGCAGAGCCCAAGCACGAGCGGCAGCACCGAGCCCAGATACGCAAGAACATCACGGAGACTCTGGTGT







CCCTGAGGGTCCACACTGTGGATGACATCCAGCAGATCGCTGCTGCGCTGGCCCAGTGCATGGGGCCC







AGCAGGGAGCTCGTATGCCGCTCGTGCCTGAAGCAGACGCTGCACAAGCTGGAGGCCATGATGCTCAT







CCTGCAGGCAGAGACCACCGCGGGCACCGTGACGCCCACCGCCATCGGAGACAGCATCCTCAACATCA







CAGGAGACCTCATCCACCTGGCCAGCTCGGACGTGCGGGCACCACAGCCCTCAGAGCTGGGAGCCGAG







TCACCATCTCGGATGGTGGCGTCCCAGGCCTACAACCTGACCTCTGCCCTCATGCGCATCCTCATGCG







CTCCCGCGTGCTCAACGAGGAGCCCCTGACGCTGGCGGGCGAGGAGATCGTGGCCCAGGGCAAGCGCT







CGGACCCGCGGAGCCTGCTGTGCTATGGCGGCGCCCCAGGGCCTGGCTGCCACTTCTCCATCCCCGAG







GCTTTCAGCGGGGCCCTGGCCAACCTCAGTGACGTGGTGCAGCTCATCTTTCTGGTGGACTCCAATCC







CTTTCCCTTTGGCTATATCAGCAACTACACCGTCTCCACCAAGGTGGCCTCGATGGCATTCCAGACAC







AGGCCGGCGCCCAGATCCCCATCGAGCGGCTGGCCTCAGAGCGCGCCATCACCGTGAAGGTGCCCAAC







AACTCGGACTGGGCTGCCCGGGGCCACCGCAGCTCCGCCAACTCCGCCAACTCCGTTGTGGTCCAGCC







CCAGGCCTCCGTCGGTGCTGTGGTCACCCTGGACAGCAGCAACCCTGCGGCCGGGCTGCATCTGCAGC







TCAACTATACGCTGCTGGACGGCCACTACCTGTCTGAGGAACCTGAGCCCTACCTGGCAGTCTACCTA







CACTCGGAGCCCCGGCCCAATGAGCACAACTGCTCGGCTAGCAGGAGGATCCGCCCAGAGTCACTCCA







GGGTGCTGACCACCGGCCCTACACCTTCTTCATTTCCCCGGGGAGCAGAGACCCAGCGGGGAGTTACC







ATCTGAACCTCTCCAGCCACTTCCGCTGGTCGGCGCTGCAGGTGTCCGTGGGCCTGTACACGTCCCTG







TGCCAGTACTTCAGCGAGGAGGACATGGTGTGGCGGACAGAGGGGCTGCTGCCCCTGGAGGAGACCTC







GCCCCGCCAGGCCGTCTGCCTCACCCGCCACCTCACCGCCTTCGGCGCCAGCCTCTTCGTGCCCCCAA







GCCATGTCCGCTTTGTGTTTCCTGAGCCGACAGCGGATGTAAACTACATCGTCATGCTGACATGTGCT







GTGTGCCTGGTGACCTACATGGTCATGGCCGCCATCCTGCACAAGCTGGACCAGTTGGATGCCAGCCG







GGGCCGCGCCATCCCTTTCTGTGGGCAGCGGGGCCGCTTCAAGTACGAGATCCTCGTCAAGACAGGCT







GGGGCCGGGGCTCAGGTACCACGGCCCACGTGGGCATCATGCTGTATGGGGTGGACAGCCGGAGCGGC







CACCGGCACCTGGACGGCGACAGAGCCTTCCACCGCAACAGCCTGGACATCTTCCGGATCGCCACCCC







GCACAGCCTGGGTAGCGTGTGGAAGATCCGAGTGTGGCACGACAACAAAGGGCTCAGCCCTGCCTGGT







TCCTGCAGCACGTCATCGTCAGGGACCTGCAGACGGCACGCAGCGCCTTCTTCCTGGTCAATGACTGG







CTTTCGGTGGAGACGGAGGCCAACGGGGGCCTGGTGGAGAAGGAGGTGCTGGCCGCGAGCGACGCAGC







CCTTTTGCGCTTCCGGCGCCTGCTGGTGGCTGAGCTGCAGCGTGGCTTCTTTGACAAGCACATCTGGC







TCTCCATATGGGACCGGCCGCCTCGTAGCCGTTTCACTCGCATCCAGAGGGCCACCTGCTGCGTTCTC







CTCATCTGCCTCTTCCTGGGCGCCAACGCCGTGTGGTACGGGGCTGTTGGCGACTCTGCCTACAGCAC







GGGGCATGTGTCCAGGCTGAGCCCGCTGAGCGTCGACACAGTCGCTGTTGGCCTGGTGTCCAGCGTGG







TTGTCTATCCCGTCTACCTGGCCATCCTTTTTCTCTTCCGGATGTCCCGGAGCAAGGTGGCTGGGAGC







CCGAGCCCCACACCTGCCGGGCAGCAGGTGCTGGACATCGACAGCTGCCTGGACTCGTCCGTGCTGGA







CAGCTCCTTCCTCACGTTCTCAGGCCTCCACGCTGAGCAGGCCTTTGTTGGACAGATGAAGAGTGACT







TGTTTCTGGATGATTCTAAGAGTCTGGTGTGCTGGCCCTCCGGCGAGGGAACGCTCAGTTGGCCGGAC







CTGCTCAGTGACCCGTCCATTGTGGGTAGCAATCTGCGGCAGCTGGCACGGGGCCAGGCGGGCCATGG







GCTGGGCCCAGAGGAGGACGGCTTCTCCCTGGCCAGCCCCTACTCGCCTGCCAAATCCTTCTCAGCAT







CAGATGAAGACCTGATCCAGCAGGTCCTTGCCGAGGGGGTCAGCAGCCCAGCCCCTACCCAAGACACC







CACATGGAAACGGACCTGCTCAGCAGCCTGTCCAGCACTCCTGGGGAGAAGACAGAGACGCTGGCGCT







GCAGAGGCTGGGGGAGCTGGGGCCACCCAGCCCAGGCCTGAACTGGGAACAGCCCCAGGCAGCGAGGC







TGTCCAGGACAGGACTGGTGGAGGGTCTGCGGAAGCGCCTGCTGCCGGCCTGGTGTGCCTCCCTGGCC







CACGGGCTCAGCCTGCTCCTGGTGGCTGTGGCTGTGGCTGTCTCAGGGTGGGTGGGTGCGAGCTTCCC







CCCGGGCGTGAGTGTTGCGTGGCTCCTGTCCAGCAGCGCCAGCTTCCTGGCCTCATTCCTCGGCTGGG







AGCCACTGAAGGTCTTGCTGGAAGCCCTGTACTTCTCACTGGTGGCCAAGCGGCTGCACCCGGATGAA







GATGACACCCTGGTAGAGAGCCCGGCTGTGACGCCTGTGAGCGCACGTGTGCCCCGCGTACGGCCACC







CCACGGCTTTGCACTCTTCCTGGCCAAGGAAGAAGCCCGCAAGGTCAAGAGGCTACATGGCATGCTGC







GGAGCCTCCTGGTGTACATGCTTTTTCTGCTGGTGACCCTGCTGGCCAGCTATGGGGATGCCTCATGC







CATGGGCACGCCTACCGTCTGCAAAGCGCCATCAAGCAGGAGCTGCACAGCCGGGCCTTCCTGGCCAT







CACGCGGTCTGAGGAGCTCTGGCCATGGATGGCCCACGTGCTGCTGCCCTACGTCCACGGGAACCAGT







CCAGCCCAGAGCTGGGGCCCCCACGGCTGCGGCAGGTGCGGCTGCAGGAAGCACTCTACCCAGACCCT







CCCGGCCCCAGGGTCCACACGTGCTCGGCCGCAGGAGGCTTCAGCACCAGCGATTACGACGTTGGCTG







GGAGAGTCCTCACAATGGCTCGGGGACGTGGGCCTATTCAGCGCCGGATCTGCTGGGGGCATGGTCCT







GGGGCTCCTGTGCCGTGTATGACAGCGGGGGCTACGTGCAGGAGCTGGGCCTGAGCCTGGAGGAGAGC







CGCGACCGGCTGCGCTTCCTGCAGCTGCACAACTGGCTGGACAACAGGAGCCGCGCTGTGTTCCTGGA







GCTCACGCGCTACAGCCCGGCCGTGGGGCTGCACGCCGCCGTCACGCTGCGCCTCGAGTTCCCGGCGG







CCGGCCGCGCCCTGGCCGCCCTCAGCGTCCGCCCCTTTGCGCTGCGCCGCCTCAGCGCGGGCCTCTCG







CTGCCTCTGCTCACCTCGGTGTGCCTGCTGCTGTTCGCCGTGCACTTCGCCGTGGCCGAGGCCCGTAC







TTGGCACAGGGAAGGGCGCTGGCGCGTGCTGCGGCTCGGAGCCTGGGCGCGGTGGCTGCTGGTGGCGC







TGACGGCGGCCACGGCACTGGTACGCCTCGCCCAGCTGGGTGCCGCTGACCGCCAGTGGACCCGTTTC







GTGCGCGGCCGCCCGCGCCGCTTCACTAGCTTCGACCAGGTGGCGCAGCTGAGCTCCGCAGCCCGTGG







CCTGGCGGCCTCGCTGCTCTTCCTGCTTTTGGTCAAGGCTGCCCAGCAGCTACGCTTCGTGCGCCAGT







GGTCCGTCTTTGGCAAGACATTATGCCGAGCTCTGCCAGAGCTCCTGGGGGTCACCTTGGGCCTGGTG







GTGCTCGGGGTAGCCTACGCCCAGCTGGCCATCCTGCTCGTGTCTTCCTGTGTGGACTCCCTCTGGAG







CGTGGCCCAGGCCCTGTTGGTGCTGTGCCCTGGGACTGGGCTCTCTACCCTGTGTCCTGCCGAGTCCT







GGCACCTGTCACCCCTGCTGTGTGTGGGGCTCTGGGCACTGCGGCTGTGGGGCGCCCTACGGCTGGGG







GCTGTTATTCTCCGCTGGCGCTACCACGCCTTGCGTGGAGAGCTGTACCGGCCGGCCTGGGAGCCCCA







GGACTACGAGATGGTGGAGTTGTTCCTGCGCAGGCTGCGCCTCTGGATGGGCCTCAGCAAGGTCAAGG







AGTTCCGCCACAAAGTCCGCTTTGAAGGGATGGAGCCGCTGCCCTCTCGCTCCTCCAGGGGCTCCAAG







GTATCCCCGGATGTGCCCCCACCCAGCGCTGGCTCCGATGCCTCGCACCCCTCCACCTCCTCCAGCCA







GCTGGATGGGCTGAGCGTGAGCCTGGGCCGGCTGGGGACAAGGTGTGAGCCTGAGCCCTCCCGCCTCC







AAGCCGTGTTCGAGGCCCTGCTCACCCAGTTTGACCGACTCAACCAGGCCACAGAGGACGTCTACCAG







CTGGAGCAGCAGCTGCACAGCCTGCAAGGCCGCAGGAGCAGCCGGGCGCCCGCCGGATCTTCCCGTGG







CCCATCCCCGGGCCTGCGGCCAGCACTGCCCAGCCGCCTTGCCCGGGCCAGTCGGGGTGTGGACCTGG







CCACTGGCCCCAGCAGGACACCCCTTCGGGCCAAGAACAAGGTCCACCCCAGCAGCACTTAGTCCTCC






TTCCTGGCGGGGGTGGGCCGTGGAGTCGGAGTGGACACCGCTCAGTATTACTTTCTGCCGCTGTCAAG





GCCGAGGGCCAGGCAGAATGGCTGCACGTAGGTTCCCCAGAGAGCAGGCAGGGGCATCTGTCTGTCTG





TGGGCTTCAGCACTTTAAAGAGGCTGTGTGGCCAACCAGGACCCAGGGTCCCCTCCCCAGCTCCCTTG





GGAAGGACACAGCAGTATTGGACGGTTTCTAGCCTCTGAGATGCTAATTTATTTCCCCGAGTCCTCAG





GTACAGCGGGCTGTGCCCGGCCCCACCCCCTGGGCAGATGTCCCCCACTGCTAAGGCTGCTGGCTTCA





GGGAGGGTTAGCCTGCACCGCCGCCACCCTGCCCCTAAGTTATTACCTCTCCAGTTCCTACCGTACTC





CCTGCACCGTCTCACTGTGTGTCTCGTGTCAGTAATTTATATGGTGTTAAAATGTGTATATTTTTGTA





TGTCACTATTTTCACTAGGGCTGAGGGGCCTGCGCCCAGAGCTGGCCTCCCCCAACACCTGCTGCGCT





TGGTAGGTGTGGTGGCGTTATGGCAGCCCGGCTGCTGCTTGGATGCGAGCTTGGCCTTGGGCCGGTGC





TGGGGGCACAGCTGTCTGCCAGGCACTCTCATCACCCCAGAGGCCTTGTCATCCTCCCTTGCCCCAGG





CCAGGTAGCAAGAGAGCAGCGCCCAGGCCTGCTGGCATCAGGTCTGGGCAAGTAGCAGGACTAGGCAT





GTCAGAGGACCCCAGGGTGGTTAGAGGAAAAGACTCCTCCTGGGGGCTGGCTCCCAGGGTGGAGGAAG





GTGACTGTGTGTGTGTGTGTGTGCGCGCGCGCACGCGCGAGTGTGCTGTATGGCCCAGGCAGCCTCAA





GGCCCTCGGAGCTGGCTGTGCCTGCTTCTGTGTACCACTTCTGTGGGCATGGCCGCTTCTAGAACGGG






TGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAG







CCTTGTCCTAATAAAATTAAGTTGCATCATTTTGTCTGACTAGGTGTCCTTCTATAATATTATGGGGT







GGAGGGGGGTGGTATGGAGCAAGGGGCAAGTTGGGAAGACAACCTGTAGGGCCTGCGGGGTCTATTGG







GAACCAAGCTGGAGTGCAGTGGCACAATCTTGGCTCACTGCAATCTCCGCCTCCTGGGTTCAAGCGAT







TCTCCTGCCTCAGCCTCCCGAGTTGTTGGGATTCCAGGCATGCATGACCAGGCTCAGCTAATTTTTGT







TTTTTTGGTAGAGACGGGGTTTCACCATATTGGCCAGGCTGGTCTCCAACTCCTAATCTCAGGTGATC







TACCCACCTTGGCCTCCCAAATTGCTGGGATTACAGGCGTGAACCACTGCTCCCTTCCCTGTCCTTTA






ACTATAACGGTCCTAAGGTAGCGAAGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAG






TCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAAC







TGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGC







AGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTG







GTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATTACTTCCACCTGGCTG







CAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTA







AGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGTGCGAATCT







GGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGATGACCT







GCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTGGTATTTC







GGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTTCGGCGAGGCGGGGCC







TGCGAGCGCGGCCACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGC







CTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGC







GGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGAAGGACGCGGCGCTCGGGAGAGC







GGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCC







ACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAGTACGTCGTCTTTAGG







TTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTAGGCCAG







CTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAG







CCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGATCCGGAGGCGGCGGCACGGG






CGGCGGCAGCGGCGGCATGGTGAACTCCAGTCGCGTGCAGCCTCAGCAGCCCGGGGACGCCAAGCGGC





CGCCCGCGCCCCGCGCGCCGGACCCGGGCCGGCTGATGGCTGGCTGCGCGGCCGTGGGCGCCAGCCTC






GCCGCCCCGGGCGGCCTCTGCGAGCAGCGGGGCCTGGAGATCGAGATGCAGCGCATCCGGCAGGCGGC







CGCGCGGGACCCCCCGGCCGGAGCCGCGGCCTCCCCTTCTCCTCCGCTCTCGTCGTGCTCCCGGCAGG







CGTGGAGCCGCGATAACCCCGGCTTCGAGGCCGAGGAGGAGGAGGAGGAGGTGGAAGGGGAAGAAGGC







GGAATGGTGGTGGAGATGGACGTAGAGTGGCGCCCGGGCAGCCGGAGGTCGGCCGCCTCCTCGGCCGT







GAGCTCCGTGGGCGCGCGGAGCCGGGGGCTTGGGGGCTACCACGGCGCGGGCCACCCGAGCGGGAGGC







GGCGCCGGCGAGAGGACCAGGGCCCGCCGTGCCCCAGCCCAGTCGGCGGCGGGGACCCGCTGCATCGC







CACCTCCCCCTGGAAGGGCAGCCGCCCCGAGTGGCCTGGGCGGAGAGGCTGGTTCGCGGGCTGCGAGG







TCTCTGGGGAACAAGACTCATGGAGGAAAGCAGCACTAACCGAGAGAAATACCTTAAAAGTGTTTTAC







GGGAACTGGTCACATACCTCCTTTTTCTCATAGTCTTGTGCATCTTGACCTACGGCATGATGAGCTCC







AATGTGTACTACTACACCCGGATGATGTCACAGCTCTTCCTAGACACCCCCGTGTCCAAAACGGAGAA







AACTAACTTTAAAACTCTGTCTTCCATGGAAGACTTCTGGAAGTTCACAGAAGGCTCCTTATTGGATG







GGCTGTACTGGAAGATGCAGCCCAGCAACCAGACTGAAGCTGACAACCGAAGTTTCATCTTCTATGAG







AACCTGCTGTTAGGGGTTCCACGAATACGGCAACTCCGAGTCAGAAATGGATCCTGCTCTATCCCCCA







GGACTTGAGAGATGAAATTAAAGAGTGCTATGATGTCTACTCTGTCAGTAGTGAAGATAGGGCTCCCT







TTGGGCCCCGAAATGGAACCGCTTGGATCTACACAAGTGAAAAAGACTTGAATGGTAGTAGCCACTGG







GGAATCATTGCAACTTATAGTGGAGCTGGCTATTATCTGGATTTGTCAAGAACAAGAGAGGAAACAGC







TGCACAAGTTGCTAGCCTCAAGAAAAATGTCTGGCTGGACCGAGGAACCAGGGCAACTTTTATTGACT







TCTCAGTGTACAACGCCAACATTAACCTGTTCTGTGTGGTCAGGTTATTGGTTGAATTCCCAGCAACA







GGTGGTGTGATTCCATCTTGGCAATTTCAGCCTTTAAAGCTGATCCGATATGTCACAACTTTTGATTT







CTTCCTGGCAGCCTGTGAGATTATCTTTTGTTTCTTTATCTTTTACTATGTGGTGGAAGAGATATTGG







AAATTCGCATTCACAAACTACACTATTTCAGGAGTTTCTGGAATTGTCTGGATGTTGTGATCGTTGTG







CTGTCAGTGGTAGCTATAGGAATTAACATATACAGAACATCAAATGTGGAGGTGCTACTACAGTTTCT







GGAAGATCAAAATACTTTCCCCAACTTTGAGCATCTGGCATATTGGCAGATACAGTTCAACAATATAG







CTGCTGTCACAGTATTTTTTGTCTGGATTAAGCTCTTCAAATTCATCAATTTTAACAGGACCATGAGC







CAGCTCTCGACAACCATGTCTCGATGTGCCAAAGACCTGTTTGGCTTTGCTATTATGTTCTTCATTAT







TTTCCTAGCGTATGCTCAGTTGGCATACCTTGTCTTTGGCACTCAGGTCGATGACTTCAGTACTTTCC







AAGAGTGTATCTTCACTCAATTCCGTATCATTTTGGGCGATATCAACTTTGCAGAGATTGAGGAAGCT







AATCGAGTTTTGGGACCAATTTATTTCACTACATTTGTGTTCTTTATGTTCTTCATTCTTTTGAATAT







GTTTTTGGCTATCATCAATGATACTTACTCTGAAGTGAAATCTGACTTGGCACAGCAGAAAGCTGAAA







TGGAACTCTCAGATCTTATCAGAAAGGGCTACCATAAAGCTTTGGTCAAACTAAAACTGAAAAAAAAT







ACCGTGGATGACATTTCAGAGAGTCTGCGGCAAGGAGGAGGCAAGTTAAACTTTGACGAACTTCGACA







AGATCTCAAAGGGAAGGGCCATACTGATGCAGAGATTGAGGCAATATTCACAAAGTACGACCAAGATG







GAGACCAAGAACTGACCGAACATGAACATCAGCAGATGAGAGACGACTTGGAGAAAGAGAGGGAGGAC







CTGGATTTGGATCACAGTTCTTTACCACGTCCCATGAGCAGCCGAAGTTTCCCTCGAAGCCTGGATGA







CTCTGAGGAGGATGACGATGAAGATAGCGGACATAGCTCCAGAAGGAGGGGAAGCATTTCTAGTGGCG







TTTCTTACGAAGAGTTTCAAGTCCTGGTGAGACGAGTGGACCGGATGGAGCATTCCATCGGCAGCATA







GTGTCCAAGATTGACGCCGTGATCGTGAAGCTAGAGATTATGGAGCGAGCCAAACTGAAGAGGAGGGA







GGTGCTGGGAAGGCTGTTGGATGGGGTGGCCGAGGATGAAAGGCTGGGTCGTGACAGTGAAATCCATA







GGGAACAGATGGAACGGCTAGTACGTGAAGAGTTGGAACGCTGGGAATCCGATGATGCAGCTTCCCAG







ATCAGTCATGGTTTAGGCACGCCAGTGGGACTAAATGGTCAACCTCGCCCCAGAAGCTCCCGCCCATC







TTCCTCCCAATCTACAGAAGGCATGGAAGGTGCAGGTGGAAATGGGAGTTCTAATGTCCACGTATGAT






TCTAGAGTCGACCTGCAGAAGCTTGCCTCGAGCCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGC






CCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGA







AATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGG







GGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGTAACTATAACGGTC






CTAAGGTAGCGAAGTCGACCGAATCGTTGTCCCTTGTCACAGCCATTGAGAATTTTGGCAGGGAGCAT





GTTCTTAGAGCATTTTTAGGCTCTGCGGGACATAACAGCTCTGCCTCAGAGCACATGCCTTTCTCAGC





TCCTGAAAGCCACTGATCAAATTGGAACATTTTGTACCTTAGGGATGAGGATATCAACTCTCCCAGCC





ACTTAGAGGGATAAATGTGATGATGCATTCAATTGTGACTACATCTGATCCCAACTGTTGCTTCAGCT





GCTCTCCTATAGCACATGGCGGGAGGCGTGCATCCCAGTAGCTACCTCCCCACTTTTGGGGAGATGTG





GTTCCATCCATGAAACCTGGGTACCCGCCTACCAGGTCCTGGCCTATCAGGTGGCAGGGTCTGGTCAA





AGAAGGGCATGTGTGGTCTTCAGCAAGGGAGACAGGACGGTGGTGCAGAGCGTCTAGACCCTCAGGGC





AAGTCTCCCCCACACCTGCTCCCGGGGCAGTTGTCTTTGTGACCTCCCATCCCCCTCTGTTTCATCCT





CTATAAAATGAGGGGCTGAGCCCCAAAATAACAGGCTTCTTTGCCATGATGCAAAACTGCTGAATCTT





TCTTTCTGACACACAAGGCATCGAGCAGCCTCTGAAAGAACCAAAGCCACTAGCAGGCTTCCTGACTT





GGGTTTGTAGGTACTGAATACTCCCTTGAAAAATAAAAACATAGAGGCACTTTTCTCCTGGCTGTTTA





TTACAGAACGAAGAAAAAACACACTGGCTTGAAACAGACGCCAGATTTCAAATGTAGAGGTGAAATAC





GAGGTGGCAATTAAAATGTGATTACAGAAAGTCTGGACACTGAGAAAAGTTTACAGGACAGTGGGTGT





GGGTTTTCTATAACAGACACTTAAATATACATGACGATAATTGCAGATAGAAACCATCAAAGACAAAC





CCCAAATCAACTAATAATGTTTACAGATGTTCCCCCCCAAACCACAGAGCCTTACATCAAAACAAATA





CTGAAAGGCTTTAAACCAGGAACAGCTCGCCTTAACCCCACGAGGGTGCACACAAGCTGGGCTTTTTC





TCTCGGTCTGAATGGTAAAGGGAGGAGGATACTCTAGCTCCTCCAGGTGGATTGCTGAGACAGGGCTC





GGCTCACACACTGTCTCTGCGCCTCTCCCAAATCTGGAGAACTCTCCCAGCCTCCTGGTAAAGTGTCT





CTGTGGGGCACTTAACGATAAAACAGCTTCTGCTGTAAAGCTCATTAGGAAAGAGCTAGCGGAGACTG





AAAGGTTCGCAAAAGAGATTAAGAATCACACAAGGCAATAGGATTTTTAGTGAACATAGAAATAAATG





GCCAAGTGGTTTTCTATTTGGCATTTGTCAACTTGCACAACAACTCTTGGTCATATCCACATTGCTCA





TTGCATTAAAACCATAAGCGACTCAGCCACCTAGCTTAACAAGGTATCACTGGAGCAAACAACACGGT





CTGCATATTTGTAACATTGTATAATAAACACAAAACAATGCATAGTAAACACAACTCTACTGAAACAA





AAGCCGTCGCTTTATTTACAAAGTCACAAAATGAAGTATAAATACTTCTGTCATTAATGTTTAGGAAA





ACCATTTACAAAATTTTCAAATATGTACACGTAGCTTGAAAAATCACCAGCTTTCCATTTTGTCACAG





GTAGAGAGAGGGATAAGCATGGGCTGACAACACCACTCAAATTGTAACGGGAGACAACTGCGGGTATG





GATCGACACCACTTCCTAGAGTGATGTCACCATGGGGGTTTCTATGGGCATCCTGCTCAGATTTAAAG





TGCCCCAGCATCCTGGGTGACTTGCCCAGAATTCTGGGCTGTGGCATTTTGAGCAGCAGCATGCTGTT





CCAAAATGTCGTCGATCAGCCTCAAGTTGCACACCCAGTCTTCATCTGGGCTCACACAGGAGCCTTTC





AAGAGAGCTTCAATGAAATCTACCTCATTGCAGTCAGGTGACGAAATCAGATCATTTAGTGGGGGTTG





GGGCTGGCGCAAAAAGTCGGCAGGTGGCAGCTCAGGGGGAATATCCGTTCTGTCGAACGGACCTGGGA





ACTGGCTGGCAGCAACGGCAGAAGCAGCAGCAGCGGTGGCAGCAGCAGCCACATAGCTTGGTGGCTCG





ATGCCCTGTATGGGGCTCAGGGGACTAAAGCTGGCCATACCCTGCTGGAGGAACTTGGTGGTGTTTGC





TACAGGCACCGGGCCCTGTACCGGGCTCTGCCTGAGGCTCTGGCTGCCCAGCAGGCTGAAGCTGGGGT





TGTTGGCCAGGGGCACTTGTGTTCCCATCGCAGCGGGCACTTGTGCCTCCCAATCAGATGGCCTCTGA





AGGCAGGCCTGGCCAGAAGGTGAGTGCTGCTGAACGCTATTATCCACTTGGCTGAGGGGTGTTTTCCC





CGAAACTGCTGTGGTCACAGCTGCTGCCGCTGTGACCCATGCAGCATTGTTGAACGCAGTGGGCATTC





TTGGCACACTAGGCCGTCTGAGCTGGTGGGGACTCAAGGACTGGGTGCCCAGGGAGCTGGGACAGAAC





CCAGGCAGGGGCACTTCTGGTGGGGTGGCCTTGGGGCTCTGCATATGCTGGCAGACAGAGTCAAGTCT





GCCCAGGGGAGTCTGGCCTGAGTGTGAGAGGATGGGACACTGGGGGCTGGAGGTGAAAATTCCTTGCC





GCTTCCCCAGAGTTGGTGAGATCACTCCCATGCCCTCGCAGCTCTGGTGCCTGGTGAGTGGGATCATT





CCTGGACTCAGATTGTTCTGAAGAAGCCCAGTTCTGGGTGGCATCAAGTGCTTGCTAGATGGGGGGCT





TGCCTTGATCCGGCTACACTTGGAGGTGACTTGTTCTTGGACGGCTACATACAGAAAGAGAGAAGTGG





GGATGAGTTCCAAAGGCATCCTCGACTTCGGCTGTGGCCACCGGAGGGTAGCTCCTGGCCCAACACGG





ACTTCTCACCTCCCGCCCTTGGCTCTCTACTGAGCTCCCCCCTGCTCCCCAATTCCTCGCCATTCCCC





TCATTTCTCTGCCCTCAGCCTGGACTGCAGTTCTTCTGGGAAGCTGCCCCAACTCCCTAGGTCTGTGC





TCACCAAGAGCAGATCACACTGGACTGAAATGCCAGCTGATTTGTCTCTTCAAGAAAATTGGAAGCTC





CTGGAGGTCAGGGTCCATGTCTGCTTTTACACTCAGTGCTCTGTATGCAGGCCTGGCACTGCCCACCC





TTTGACAGGTGGTGCATATTTTGTAGAAGGAAGGAAGGGGCCAGGTGGGGTGGGCTGGGCTGGTGGCG





GGAGCTAGCTCAGCCTCTTAGATTCTCTACCCGATGGATGTGACCTGGGACAGCAAGTGAGTGTGGTG





AGTGAGTGCAGACGGTGCTTTGTTCCCCTCTTGTCTCATAGCCTAGATGGCCTCTGAGCCCAGATCTG





GGGCTCAGACAACATTTGTTCAACTGAACGGTAATGGGTTTCCTTTCTGAAGGCTGAAATCTGGGAGC





TGACATTCTGGACTCCCTGAGTTCTGAAGAGCCTGGGGATGGAGAGACACGGAGCAGAAGATGGAAGG





TAGAGTCCCAGGTGCCTAAGATGGGGAATACATCTCCCCTCATTGTCATGAGAGTCCACTCTAGCTGA





TATCTACTGTGGCCAATATCTACCGGTACTTTTTTGGGGTGGACACTGAGTCATGCAGCAGTCTTATG





GTTTACCCAAGGTCAGGTAGGGGAGACAGTGCAGTCAGAGCACAAGCCCAGTGTGTCTGACCCACCCA





AGAATCCATGCTCGTATCTACAAAAATGATTTTTTCTCTTGTAATGGTGCCTAGGTTCTTTTATTATC





ATGGCATGTGTATGTTTTTCAACTAGGTTACAATCTGGCCTTATAAGGTTAACCTCCTGGAGGCCACC





AGCCTTCCTGAAACTTGTCTGTGCTGTCCCTGCAACTGGAGTGTGCCTGATGTGGCACTCCAGCCTGG





ACAAGTGGGACACAGACTCCGCTGTTATCAGGCCCAAAGATGTCTTCCATAAGACCAGAAGAGCAATG





GTGTAGAGGTGTCATGGGCTACAATAAAGATGCTGACCTCCTGTCTGAGGGCAAGCAGCCTCTTCTGG





CCCTCAGACAAATGCTGAGTGTTCCCAAGACTACCCTCGGCCTGGTCCAATCTCATCCCACTGGTGCG





TAAGGGTTGCTGAACTCATGACTTCTTGGCTAGCCTGCAACCTCCACGGAGTGGGAACTACATCAGGC





ATTTTGCTAACTGCTGTATCCTAGGCCAATAAATGTTGATCACATTTATAGCTGCCATGGTAGGGTGG





GGACCCCTGCTATCTATCTGTGGAGGCTCTGGGAGCCCCTGACACAAACTTTCTGAAGCAGAGCCTCC





CCAACCCCTTTTCCATTCCCTATACCTGACAGATGGCCCAGGAACCCATTAGAAATGGAAGGTCACTG





CAGCAGTATGTGAATGTGCGTGTGGGAGAAGGGCAGGATCAGAGCCCTGGGGGTGTGGCAGCCCCCAA





GTGATTCTAATCCAGATCCTAGGGTTGTTTCCCTGTCCCATTGAAATAGCTGCTTTAAGGGGCCTGAC





TCAGGGAAATCAGTCTCTTGAATTAAGTGGTGATTTTGGAGTCATTTAGACCAGGCCTTCAATTGGGA





TCCACTAGTTCTAGAGCGGCCGGGCCCAGGGAACCCCGCAGGCGGGGGGGGCCAGTTTCCCGGGTTCG





GCTTTACGTCACGCGAGGGCGGCAGGGAGGACGGAATGGCGGGGTTTGGGGTGGGTCCCTCCTCGGGG





GAGCCCTGGGAAAAGAGGACTGCGTGTGGGAAGAGAAGGTGGAAATGGCGTTTTGGTTGACATGTGCC





GCCTGCGAGCGTGCTGCGGGGAGGGGCCGAGGGCAGATTCGGGAATGATGGCGCGGGGTGGGGGCGTG





GGGGCTTTCTCGGGAGAGGCCCTTCCCTGGAAGTTTGGGGTGCGATGGTGAGGTTCTCGGGGCACCTC





TGGAGGGGCCTCGGCACGGAAAGCGACCACCTGGGAGGGCGTGTGGGGACCAGGTTTTGCCTTTAGTT





TTGCACACACTGTAGTTCATCTTTATGGAGATGCTCATGGCCTCATTGAAGCCCCACTACAGCTCTGG





TAGCGGTAACCATGCGTATTTGACACACGAAGGAACTAGGGAAAAGGCATTAGGTCATTTCAAGCCGA





AATTCACATGTGCTAGAATCCAGATTCCATGCTGACCGATGCCCCAGGATATAGAAAATGAGAATCTG





GTCCTTACCTTCAAGAACATTCTTAACCGTAATCAGCCTCTGGTATCTTAGCTCCACCCTCACTGGTT





TTTTCTTGTTTGTTGAACCGGCCAAGCTGCTGGCCTCCCTCCTCAACCGTTCTGATCATGCTTGCTAA





AATAGTCAAAACCCCGGCCAGTTAAATATGCTTTAGCCTGCTTTATTATGATTATTTTTGTTGTTTTG





GCAATGACCTGGTTACCTGTTGTTTCTCCCACTAAAACTTTTTAAGGGCAGGAATCACCGCCGTAACT





CTAGCACTTAGCACAGTACTTGGCTTGTAAGAGGTCCTCGATGATGGTTTGTTGAATGAATACATTAA





ATAATTAACCACTTGAACCCTAAGAAAGAAGCGATTCTATTTCATATTAGGCATTGTAATGACTTAAG





GTAAAGAGCAGTGCTATTAACGGAGTCTAACTGGGAATCCAGCTTGTTTGGGCTATTTACTAGTTGTG





TGGCTGTGGGCAACTTACTTCACCTCTCTGGGCTTAAGTCATTTTATGTATATCTGAGGTGCTGGCTA





CCTCTTGGAGTTATTGAGAGGATTATAAGACAGTCTATGTGAATCAGCAACCCTTGCATGGCCCCTGG





CGGGGAACAGTAATAATAGCCATCATCATGTTTACTTACATAGTCCTAATTAGTCTTCAAAACAGCCC





TGTAGCAATGGTATGATTATTACCATTTTACAGATGAGGAACCTTTGAAGCCTCAGAGAGGCTAACAG





ACATACCCTAGGTCATACAGTTATTAAGAGAAGGAGCTCTGTCTCGAACCTAGCTCTCTCTCTCTCGA





GTAATACCAGTTAAAAAATAGGCTACAAATAGGTACTCAAAAAAATGGTAGTGGCTGTTGTTTTTATT





CAGTTGCTGAGGAAAAAATGTTGATTTTTCATCTCTAAACATCAACTTACTTAATTCTGCCAATTTCT





TTTTTTTGAGACAGGGTCTCACTCTGTCACCTAGGATGGAGTGCAGTGGCACAATCACTGCTCACTGC





AGCCTCGACTTCCCGGGCTCGGGTGATTCTCCCCAGGCTCAGGGGATTCTCCCACTTCAGCCTCCCAA





GTAGCTGGGACTACAGGTGCGCACCACCATCCCTGGCTAATATTTGTACTTTATTTTATTTATTTATT





TATTTATTTTTTGAGATGGAGTTTCGCTCTTGTTGCCCAAATGAATTGCCTCTTATTTAATTTCGTCT





GATGATACATTTTGTTTTTATTTTGTAAAAAATTATTTTTTTTCTTTTTGGAGACAGGGTCTTGCTCT





GTTGCCCAGGCTGGTCACAAACTCCTGACCTCAAGCAATCCTCCTGCCTTAGCCTCCCAAAATGCTGG





GATTACAGGCGTGACGACCTCGCCCGGCCTTGTATTATGATACATTTTGAACAACTACAAGTAGACTT





GGTATAATGAACCTGCACGTACCCATTGCCAAGTTCTGACAACTGTCTGTCTATAGCCAATTATGCAT





TTCTTAAATTAGAACCCCCCCAATATACCCAAATATATATATATGTGTGCATATATATAGTAAGTIGT





AACAAAGTTGTGAATTCATACCTGAAGTATCTCAAGTGATGCAAGTTTTATGAATTTTTGTTTATGCC





TTTTGGGAAGAGTTGTATTGACAAATTTTTTATGCTTAAAGTAAACCATAAATCAAAAAAATAAAATC





TAGGATGCAATAAAACAAAACAACTTCTTGACATAAGTATGGTATGTAAATCTGTTTTGATTGGAAAT





CAATTTGTTATATTGCCAGAATTCCTGTTTTAGAATACATCTCTGCTGATCTGTCTGTATTCTTAGAC





TGCATATCTGGGATGAACTCTGGGCAGAATTCACATGGGCTTCCTTTGAAATAAACAAGACTTTTCAA





ATTCTTAGTCGATCTGCAGAACCTGTAGCCAGGCACTGAACCATTTTGATAGATGCAGTAATCGTTGC





AAGTGTATATTTCAAGGGAGTTCTGGCTGGGTCCTAGTTTATGCTTGTGGCAGAAGCAGTGAGTAACT





GGGAGGAAGTTGGTGAGTAAGCTTCAAGGAAGAAGTCATTTTTAGTACTCTGGATCTTCCTGATTTTA





AAGCACTACAAAATGGTGCATTTTCATTCTTGTCAAGTGATAACAGATATATTCTGATGAGCCTGAAA





TGAATATATATTGTATCATTTTTATAATATCTAGCAAGGTTTGTATTTTCCTAGAACTTGAACTAAAT





TTCAGTTCATAAAATTTATAAAATACTTAGTTGTTGTAAAATATTTTTGGAATGTTCACATAGGTGAC





ACACAAATGTCCCATTTTCATTCTTTCTATAGTAAATATGTTCTGATATGTGAAGGTTTAGCAGATGC





ATCAGCATTTAATCCTAGAGGATCTGGCATAATCTTTTCCCCCAAGAATAGAAATTTTTTCTGCTTAT





GAAAGTAGTACATGTTTCTTTAAAAACAAATCAATATTGACTTCTGCCTGCTGTATAGCACTATGCCT





CCACCTGGCCATGACCAGGGGCATGTCCTGGTCCACCTACCTGAAAATGTTTGCAACCAGCCTCCTGG





CCATGTGCACAGGGGCTGAAGTTGTCCCACAGGTATTACGGGCCAACCTGACAATACATGAAGTTCCA





CCAAAGTCTGAGAACTCAGAACTGAGCTTTGGGGACTGAAAGACAGCACAAACCTCAAATTTCTCAGC





ACTGGAAACCTCAAAATATAACTGAATTCCATAAATAAGATTTTAAGTCTTAAATATGTATTTTTAAA





TGTATTAAAAGTCAAGCTGCTTGTATTTAAGCACCTAATACAATGCTTAGGTTGTAAAAGGAGATGCT





CAATAGGTACTAACTGATATATTGAGATTTAATTATGGTTTGACCAATATTTATTGGAAACCGCCAAA





GCTTAAATCATCAGCTTCTTGAATGTGATTTGAAAGGTAATTTAGTATTGAATAGCATGTGAGCTAGA





GTATTTCATTCTTTCTGGTTTATTTCTTCAAATAGACTTTGAATATAATGGTGAATGGGTATTATAAA





TTAACTAATAAAAATGACATTGAAAATGAAAAAATATATATATTAAAGTGTAGAAAGTGACCAGGCGT





GGTGGCTCACACCTGTAATCCAAGCACCTTGGGAGGCTGAGGCAGGAGGATCTCTTGATCCCAGGAGT





TCAAGACCAGCCTGGGCAACATAGCGAGACTTCGTCTCTAAAAAAAAAAAAGAGAGAGAAAAAAATTT





TTTTTATTTAAAAAAAGTGTAGAAAGTGTCAAGACCCCACTTCTTACCATTATTTGGTATATTTCTCT





ATACCCACCCACCCTTCCTCCTTACTCCCTCCCTCCCTTCCCAATCTTTTTATCTTTTTGTATTCTGA





TTTTTTGTTTGTATATTTTGCTTTAATTTAATGTATCCTTTAAAAATTTCCCATACATTTTATATGTA





TATATAAAAACGCATGCTGCCAAAGATAATTTATAAGAAAGACCATTGAATTTTTTTAAAAGTGATAT





ATATTCATTGAAAAAAATTTAGAATATATAGCAAAGCAATAAAGAACTAAATAAAATTGCTGTAACTC





CTCTTTCAAAGATAAGTGCTTTTATGATTTTGTTGTATTTTTTTCTGTATATAGGTACATATATAGTA





TTTATAAAGCTGTACTCATAGTACATTTTCACATCACAGGTACCATATCAGTGTTATTAAATATTTTG





TATGCCAGGGGCTAGACATACCAAGACAACCAATATGTGGTTCTACTTAAATAATATTAGAGTATCTT





TTATGATGACACTTCATGAGTTGACTATAATAATCTTAGACTTCTAAGAGTTTGGGTTTTCAAAAGAT





CACTTAGCTTTTTTGGGTGATTTTTCCCCCTTACTGTGAGATGAGAGAGGCTGTTTGGATTTGGGATT





GGGGTAGCGGGGACAGCAACTTTTCTTTTCTTTTTCTTTTTTATTTTGAGGTAGGGTATTGCTGTGTC





ACCCAGGCTGGAGTGCAGTGGTGTGATCTCGGCTCACTGCAACCTCCACCTCCCGGGCTCAGGTGATC





CTCCTGCTTCAGCCTCCCAGTAACTGGGACTACAGGCGCGTGCCACATGCCTGGCTAATTTTGTATTT





TTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTCTAACTCCTGACCTCAGGTGATACGCC





CACCTGGGCCTCCCAAAATACTGGGATTACAGGCATGAGCCGCTGCATCAGCCAGCAGTTTTTCTTGT





GGTTTTTTTTGTTTGTTTTGTTTTGTTTTGTTTTTGAGATAGGGTCTTACTCTGTTGTCCACGCTGGA





GTGCTGTGGTATGATCGTAGCTCACTGCAGCCTCAAACTCCTGGGCTCAAGTGATTCCTTCTGCCTCC





GCCTCCCGAGTAGCTGGGACTACAGGTATGCACCACCATACCTGGCAAATTTTTACAAAGTTTTTTGT





AGGGACGGGGTCTTGCTACATTCCCCATGTCGGTCTTGAACTCCTGGCCTCAAGCAACTCTCCTGTCT





CAGCCTCCCAAAGCACTGGGATTACAAGTGTGAGCCACCACACCATGCCAGTTTTTCCTGTTCAGTGT





GATATTTTATCTTGTTAGACTACAGTGTGTTAAAACTTGTTTTACTAAATTTTCAAACATACTCAAAA





GTGGAGAGAATAGTATAATGAATACCCGTATGTTCATCACCCATGTTTAGAATATTATTAAATATAAA





GATTTTGCTGCGTTTGTCTTAGCTCTTTAAAATTTTTCTTTTTCTCTTTGTGACCTAAAGGAAATTCC





ATATCTTATCACTTTACTTCTACATTCTTGACTAAGATGACTAAGACATATAGTTACATGGTTTTTTG





TTTTGTTTTTGTTTTTTAAAGACGAAATCTCGCTCTTGTCCCCCAGGCTGGAGTGCAATGGTGCCATC





TCAGCTCAGTGCAACCTCTGCCTTCTGGGTACAAGCGATTCTCCTGCCTCAGCCTCCCAAGTAGCTGG





GATTACAGGCTCCTGCCACCACGCCTGGCTAATTTTTGTATTTTTAGTAGAGACGGCGGGGGGAGGTT





TCACCATGTTGACAAGGCTGGTCTGGAACTCCTGACCTCAGGTGATCCACCCGCCTCGGCCTCCCAAA





GTGCTGGGATTACAGGCGTGAGCCACCGCGCCCAGCCTGTTTTTTTGTTTGTGTGTTTTGTTTTTTTT





GAGACAGAGTCTTGCTCTGTTTCCCAGGCTGGAGTGAAGTGGTGCCATCTCAGCTCAGAGACAGAGTC





TTGCTCTGTTTCCCAGGCTGGAGTGAAGTGGTGCCATCTTGGCTCACTGCAACCTTCACCTCCCAGGT





TCAAGTGATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGACTACAGGCATGTGTCACCACACCCGGCT





AATTTTTTTGTATTTTTAGTAGAGACGGGATTTCACCGTGTTGCCCAGGCTGGTCTCGAACTCCTGAG





CTCAGGCAGTCTGCCTGCCTCAGCCTCCCAAAGTGCTGGGATTACACGTGTGAACCAACCCGCCCGGC





CTGTTGTTTTCTTACATAATTCATTATCATACCTACAAAGTTAACAGTTACTAATATCATCTTACACC





TAAATTTCTCTGATAGACTAAGGTTATTTTTTAACATCTTAATCCAATCAAATGTTTGTATCCTGTAA





TGCTCTCATTGAAACAGCTATATTTCTTTTTCAGATTAGTGATGATGAACCAGGTTATGACCTTGATT





TATTTTGCATACCTAATCATTATGCTGAGGATTTGGAAAGGGTGTTTATTCCTCATGGACTAATTATG





GACAGGTAAGTAAGATCTTAAAATGAGGTTTTTTACTTTTTCTTGTGTTAATTTCAAACATCAGCAGC





TGTTCTGAGTACTTGCTATTTGAACATAAACTAGGCCAACTTATTAAATAACTGATGCTTTCTAAAAT





CTTCTTTATTAAAAATAAAAGAGGAGGGCCTTACTAATTACTTAGTATCAGTTGTGGTATAGTGGGAC





TCTGTAGGGACCAGAACAAAGTAAACATTGAAGGGAGATGGAAGAAGGAACTCTAGCCAGAGTCTTGC





ATTTCTCAGTCCTAAACAGGGTAATGGACTGGGGCTGAATCACATGAAGGCAAGGTCAGATTTTTATT





ATTATGCACATCTAGCTTGAAAATTTTCTGTTAAGTCAATTACAGTGAAAAACCTTACCTGGTATTGA





ATGCTTGCATTGTATGTCTGGCTATTCTGTGTTTTTATTTTAAAATTATAATATCAAAATATTTGTGT





TATAAAATATTCTAACTATGGAGGCCATAAACAAGAAGACTAAAGTTCTCTCCTTTCAGCCTTCTGTA





CACATTTCTTCTCAAGCACTGGCCTATGCATGTATACTATATGCAAAAGTACATATATACATTTATAT





TTTAACGTATGAGTATAGTTTTAAATGTTATTGGACACTTTTAATATTAGTGTGTCTAGAGCTATCTA





ATATATTTTAAAGGTTGCATAGCATTCTGTCTTATGGAGATACCATAACTGATTTAACCAGTCCACTA





TTGATAGACACTATTTTGTTCTTACCGACTGTACTAGAAGAAACATTCTTTTACATGTTTGGTACTTG





TTCAGCTTTATTCAAGTGGAATTTCTGGGTCAAGGGGAAAGAGTTTATTGAATATTTTGGTATTGCCA





AATTTTCCTCTAAGAAGTTGAATCATTTTATACTCCTGATGTTATATGAGAGTACCTTTCTCTTCACA





ATTTGTCTCTTTTTTTTTTTTTTTTGAGACAAGGTCTCTGTTGCCCAGGCTGGGGTGCAGTGCAGCAG





AATGATCACAGTTCACTGCAGTCTCAACCTCCTGGGTTCAAGCGATCCTTCCACCTCAGCCTCCTGAG





TAGCTGGGACTATAGGTGTGCGCCACCACTCCCAGCTAATATTTTTATTTTGTAGAAACAGGGTTCGC





CATGTTACCCAGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACTGGCCCAGTTTCTACAGTCTC





TCTTAATATTGTATATTATCCAGAAAATTTCATTTAATCAGAACCTGCCAGTCTGATAGGTGAAAATG





GTATCTTGTTTTTATTTGCATTTAAAAAAAATTATGATAGTGGTATGCTTGGTTTTTTTGAAGGTATC





AAATTTTTTACCTTATGAAACATGAGGGCAAAGGATGTGATACGTGGAAGATTTAAAAAAAATTTTTA





ATGCATTTTTTTGAGACAAGGTCTTGCTCTATTGTCCAGGCTGGAGTGCAGTGGCACAATCACAGTTC





ACTCCAGCCTCAACATCCTGCACTAAAGTGATTTTCCCACCTCACCTCTCAAGTAGCTGGGACTACAG





GTACATGCTACCATGCCTGGCTAATTTTTTTTTTTTTGCAGGCATGGGGTCTCACTATATTGCCCAGG





TTGGTGTGGAAGTTTAATGACTAAGAGGTGTTTGTTATAAAGTTTAATGTATGAAACTTTCTATTAAA





TTCCTGATTTTATTTCTGTAGGACTGAACGTCTTGCTCGAGATGTGATGAAGGAGATGGGAGGCCATC





ACATTGTAGCCCTCTGTGTGCTCAAGGGGGGCTATAAATTCTTTGCTGACCTGCTGGATTACATCAAA





GCACTGAATAGAAATAGTGATAGATCCATTCCTATGACTGTAGATTTTATCAGACTGAAGAGCTATTG





TGTGAGTATATTTAATATATGATTCTTTTTAGTGGCAACAGTAGGTTTTCTTATATTTTCTTTGAATC





TCTGCAAACCATACTTGCTTTCATTTCACTTGGTTACAGTGAGATTTTTCTAACATATTCACTAGTAC





TTTACATCAAAGCCAATACTGTTTTTTTAAAACTAGTCACCTTGGAGGATATATACTTATTTTACAGG





TGTGTGTGGTTTTTTAAATAAACTCCTTTTAGGAATTGCTGTTGGGACTTGGGATACTTTTTTCACTA





TACATACTGGTGACAGATACCCTCTCTTGAGCTACATCGGTTTGTGGGGAGTCAAAAGTCCTTTGGAG





CTAGGTTTGACAAATAAGGTGGGTTAACACTTGTTTCCTAGAAAGCACATGGAGAGCTAGAGTATTGG





CGAATTGAAGAAATCCCCCTTTTTTTTTAACACACTTAAGAAAGGGGACTGCAGGTATACTCAAGAGA





GTAAGTCGCACCAGAAACCACTTTTGATCCACAGTCTGCCTGTGTCACACAATTGAAATGCATCACAA





CATTGACACTGTGGATGAAACAAAATCAGTGTGAATTTTAGTAGTGAATTTCATTCATAATTTGATCG





TGCAAACGTTTGATTTTTATTACTTTAGACTATTGTTTCTGATTTTATGTTGGGTTGGTATTTCCTGT





GAGTTACTGTTTTACCTTTAAAATAGGAATTTTTCATACTCTTCAAAGATTAGAACAAATGTCCAGTT





TTTGCTGTTTCATGAATGAGTCCTGTCCATCTTTGTAGAAACTCGCCTTATGTTCACATTTTTATTGA





GAATAAGACCACTTATCTACATTTAACTATCAACCTCATCCTCTCCATTAATCATCTATTTTAGTGAC





CCAAGTTTTTGACCTTTTCCATGTTTACATCAATCCTGTAGGTGATTGGGCAGCCATTTAAGTATTAT





TATAGACATTTTCACTATCCCATTAAAACCCTTTATGCCCATACATCATAACACTACTTCCTACCCAT





AAGCTCCTTTTAACTTGTTAAAGTCTTGCTTGAATTAAAGACTTGTTTACGGTATCGATAAGCTTGAT





ATCAAAACGCCAACTTTGACCCGGAACGCGGAAAACACCTGAGAAAAACACCTGGGCGAGTCTCCACG





TAAACGGTCAAAGTCCCCGCGGCCCTAGACAAATATTACGCGCTATGAGTAACACAAAATTATTCAGA






TTTCACTTCCTCTTATTCAGTTTTCCCGCGAAAATGGCCAAATCTTACTCGGTTACGCCCAAATTTAC







TACAACATCCGCCTAAAACCGCGCGAAAATTGTCACTTCCTGTGTACACCGGCGCACACCAAAAACGT






CACTTTTGCCACATCCGTCGCTTACATGTGTTCCGCCACACTTGCAACATCACACTTCCGCCACACTA







CTACGTCACCCGCCCCGTTCCCACGCCCCGCGCCACGTCACAAACTCCACCCCCTCATTATCATATTG









GCTTCAATCCAAAATAAGGTATATTATTGATGATG
TTTAAACATTAAGAATTAATTCGATCCTGAATG






GCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGCGGGTGTGGTGGTTACGCGCAGCGTGACCGC





TACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCG





GCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGAGCTTTACGGCACCTC





GACCGCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCG





CCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACC





CTATCGCGGTCTATTCTTTTGATTTATAAGGGATGTTGCCGATTTCGGCCTATTGGTTAAAAAATGAG





CTGATTTAACAAAAATTTTAACAAAATTCAGAAGAACTCGTCAAGAAGGCGATAGAAGGCGATGCGCT





GCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTCTTCA





GCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACACCCAGCCGGCCACAGTCGAT





GAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCGCCATGGGTCACGACGA





GATCCTCGCCGTCGGGCATGCTCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAGCCCCTGATGC





TCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCGCTCGATGCGATG





TTTCGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAGCCA





TGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGCACTTCGCCCAAT





AGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGC





CAGCCACGATAGCCGCGCTGCCTCGTCTTGCAGTTCATTCAGGGCACCGGACAGGTCGGTCTTGACAA





AAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGT





GCCCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCAATCCATCTTGTTC





AATCATGCGAAACGATCCTCATCCTGTCTCTTGATCAGAGCTTGATCCCCTGCGCCATCAGATCCTTG





GCGGCAAGAAAGCCATCCAGTTTACTTTGCAGGGCTTCCCAACCTTACCAGAGGGCGCCCCAGCTGGC





AATTCCGGTTCGCTTGCTGTCCATAAAACCGCCCAGTCTAGCTATCGCCATGTAAGCCCACTGCAAGC





TACCTGCTTTCTCTTTGCGCTTGCGTTTTCCCTTGTCCAGATAGCCCAGTAGCTGACATTCATCCGGG





GTCAGCACCGTTTCTGCGGACTGGCTTTCTACGTGAAAAGGATCTAGGTGAAGATCCTTTTTGATAAT





CTCATGGCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTC





CCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTC





CGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCA





CTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGA





TGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAG





TTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATC





CTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGAC





RightITR = first underlined and bold sequence


CBh = first underlined sequence


mCherry: PKD1 = first bold sequence


HGHpA = second underlined sequence


EF1α = second bold sequence


PKD2 = third underlined sequence


BGHpA = third bold sequence


Packaging Signal = fourth underlined sequence


LeftITR = second underlined and bold sequence





HDAd-SAM


RightITR-U6-sgRNA-CMV-dCas9VP64-HGHpA-EFlα-MPH-HGHpA-


PackagingSignal-LeftITR


SEQ ID NO: 8


CCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAAC





AAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGG





TAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCAC





TTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAG





TGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGG





GCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTA





CAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGG





CAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTG





TCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGG





AAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTT





TCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCC





GCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTT





CTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGATCCATGCATGTTAAGTTTAAACATCATC







AATAATATACCTTATTTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGTTTGTGACGTGGCGCG









GGGCGTGGGAACGGGGCGGGTGACGTAG
GTTTTAGGGCGGAGTAACTTGTATGTGTTGGGAATTGTAG






TTTTCTTAAAATGGGAAGTTACGTAACGTGGGAAAACGGAAGTGACGATTTGAGGAAGTTGTGGGTTT





TTTGGCTTTCGTTTCTGGGCGTAGGTTCGCGTGCGGTTTTCTGGGTGTTTTTTGTGGACTTTAACCGT





TACGTCATTTTTTAGTCCTATATATACTCGCTCTGCACTTGGCCCTTTTTTACACTGTGACTGATTGA





GCTGGTGCCGTGTCGAGTGGTGTTTTTTGATGCCCCCCCTCGAGGTTCGACGGTATCGATAAGCTTGA





TTTAATTAAGGCCGGCCCCTAGGGGCGCGCGCGGCCGCTAGGGATAACAGGGTAATGAGGGCCTATTT






CCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTGGAATTAATTTGAC







TGTAAACACAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAG







TTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTG








embedded image




CCAACATGAGGATCACCCATGTCTGCAGGGCCTAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTT





GGCCAACATGAGGATCACCCATGTCTGCAGGGCCAAGTGGCACCGAGTCGGTGCTTTTTTTGGATCCT





GTTGACAATTAATCATCGGCATAGTATATCGGCATAGTATAATACGACAAGGTGAGGAACTAAACCAT





GGCCAAGTTGACCAGTGCCGTTCCGGTGCTCACCGCGCGCGACGTCGCCGGAGCGGTCGAGTTCTGGA





CCGACCGGCTCGGGTTCTCCCGGGACTTCGTGGAGGACGACTTCGCCGGTGTGGTCCGGGACGACGTG





ACCCTGTTCATCAGCGCGGTCCAGGACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCG





CGGCCTGGACGAGCTGTACGCCGAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGC





CGGCCATGACCGAGATCGGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAAC





TGCGTGCACTTCGTGGCCGAGGAGCAGGACTGATAGGGATAACAGGGTAATGCTAGCATAGTAATCAA






TTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCG







CCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGTC






AATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATC






AAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTAT







GCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTAC







CATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAA







GTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGCACCAAAATCAACGGGACTTTCCAAAATGTC







GTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGA







GCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACA







CCGGGACCGATCCAGCCTCCGCGGATTCGAATCCCGGCCGGGAACGGTGCATTGGAACGCGGATTCCC







CGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTATAGGCCCACAAAAAATGCTTTCTTCTTTTA







ATATACTTTTTTGTTTATCTTATTTCTAATACTTTCCCTAATCTCTTTCTTTCAGGGCAATAATGATA







CAATGTATCATGCCTCTTTGCACCATTCTAAAGAATAACAGTGATAATTTCTGGGTTAAGGCAATAGC







AATATTTCTGCATATAAATATTTCTGCATATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAAT







AGCAGCTACAATCCAGCTACCATTCTGCTTTTATTTTATGGTTGGGATAAGGCTGGATTATTCTGAGT







CCAAGCTAGGCCCTTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCAACGT







GCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTGGGATCGTACGGCCACCATGAAAAGGCCG







GCGGCCACGAAAAAGGCCGGCCAGGCAAAAAAGAAAAAGGACAAGAAGTACAGCATCGGCCTGGCCAT







CGGCACCAACTCTGTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAAATTCAAGG







TGCTGGGCAACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTCGACAGCGGC







GAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATACACCAGACGGAAGAACCGGAT







CTGCTATCTGCAAGAGATCTTCAGCAACGAGATGGCCAAGGTGGACGACAGCTTCTTCCACAGACTGG







AAGAGTCCTTCCTGGTGGAAGAGGATAAGAAGCACGAGCGGCACCCCATCTTCGGCAACATCGTGGAC







GAGGTGGCCTACCACGAGAAGTACCCCACCATCTACCACCTGAGAAAGAAACTGGTGGACAGCACCGA







CAAGGCCGACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATCAAGTTCCGGGGCCACTTCCTGA







TCGAGGGCGACCTGAACCCCGACAACAGCGACGTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTAC







AACCAGCTGTTCGAGGAAAACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTCTGCCAG







ACTGAGCAAGAGCAGACGGCTGGAAAATCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAATGGCCTGT







TCGGCAACCTGATTGCCCTGAGCCTGGGCCTGACCCCCAACTTCAAGAGCAACTTCGACCTGGCCGAG







GATGCCAAACTGCAGCTGAGCAAGGACACCTACGACGACGACCTGGACAACCTGCTGGCCCAGATCGG







CGACCAGTACGCCGACCTGTTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCC







TGAGAGTGAACACCGAGATCACCAAGGCCCCCCTGAGCGCCTCTATGATCAAGAGATACGACGAGCAC







CACCAGGACCTGACCCTGCTGAAAGCTCTCGTGCGGCAGCAGCTGCCTGAGAAGTACAAAGAGATTTT







CTTCGACCAGAGCAAGAACGGCTACGCCGGCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACA







AGTTCATCAAGCCCATCCTGGAAAAGATGGACGGCACCGAGGAACTGCTCGTGAAGCTGAACAGAGAG







GACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCCACCAGATCCACCTGGGAGAGCT







GCACGCCATTCTGCGGCGGCAGGAAGATTTTTACCCATTCCTGAAGGACAACCGGGAAAAGATCGAGA







AGATCCTGACCTTCCGCATCCCCTACTACGTGGGCCCTCTGGCCAGGGGAAACAGCAGATTCGCCTGG







ATGACCAGAAAGAGCGAGGAAACCATCACCCCCTGGAACTTCGAGGAAGTGGTGGACAAGGGCGCTTC







CGCCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCCAACGAGAAGGTGCTGCCCA







AGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACGAGCTGACCAAAGTGAAATACGTGACCGAG







GGAATGAGAAAGCCCGCCTTCCTGAGCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGAC







CAACCGGAAAGTGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACTCCG







TGGAAATCTCCGGCGTGGAAGATCGGTTCAACGCCTCCCTGGGCACATACCACGATCTGCTGAAAATT







ATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACGAGGACATTCTGGAAGATATCGTGCTGACCCT







GACACTGTTTGAGGACAGAGAGATGATCGAGGAACGGCTGAAAACCTATGCCCACCTGTTCGACGACA







AAGTGATGAAGCAGCTGAAGCGGCGGAGATACACCGGCTGGGGCAGGCTGAGCCGGAAGCTGATCAAC







GGCATCCGGGACAAGCAGTCCGGCAAGACAATCCTGGATTTCCTGAAGTCCGACGGCTTCGCCAACAG







AAACTTCATGCAGCTGATCCACGACGACAGCCTGACCTTTAAAGAGGACATCCAGAAAGCCCAGGTGT







CCGGCCAGGGCGATAGCCTGCACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAAGGGC







ATCCTGCAGACAGTGAAGGTGGTGGACGAGCTCGTGAAAGTGATGGGCCGGCACAAGCCCGAGAACAT







CGTGATCGAAATGGCCAGAGAGAACCAGACCACCCAGAAGGGACAGAAGAACAGCCGCGAGAGAATGA







AGCGGATCGAAGAGGGCATCAAAGAGCTGGGCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACC







CAGCTGCAGAACGAGAAGCTGTACCTGTACTACCTGCAGAATGGGCGGGATATGTACGTGGACCAGGA







ACTGGACATCAACCGGCTGTCCGACTACGATGTGGACCACATCGTGCCTCAGAGCTTTCTGAAGGACG







ACTCCATCGACAACAAGGTGCTGACCAGAAGCGACAAGGCCCGGGGCAAGAGCGACAACGTGCCCTCC







GAAGAGGTCGTGAAGAAGATGAAGAACTACTGGCGGCAGCTGCTGAACGCCAAGCTGATTACCCAGAG







AAAGTTCGACAATCTGACCAAGGCCGAGAGAGGCGGCCTGAGCGAACTGGATAAGGCCGGCTTCATCA







AGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCCGGATGAAC







ACTAAGTACGACGAGAATGACAAGCTGATCCGGGAAGTGAAAGTGATCACCCTGAAGTCCAAGCTGGT







GTCCGATTTCCGGAAGGATTTCCAGTTTTACAAAGTGCGCGAGATCAACAACTACCACCACGCCCACG







ACGCCTACCTGAACGCCGTCGTGGGAACCGCCCTGATCAAAAAGTACCCTAAGCTGGAAAGCGAGTTC







GTGTACGGCGACTACAAGGTGTACGACGTGCGGAAGATGATCGCCAAGAGCGAGCAGGAAATCGGCAA







GGCTACCGCCAAGTACTTCTTCTACAGCAACATCATGAACTTTTTCAAGACCGAGATTACCCTGGCCA







ACGGCGAGATCCGGAAGCGGCCTCTGATCGAGACAAACGGCGAAACCGGGGAGATCGTGTGGGATAAG







GGCCGGGATTTTGCCACCGTGCGGAAAGTGCTGAGCATGCCCCAAGTGAATATCGTGAAAAAGACCGA







GGTGCAGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCCAAGAGGAACAGCGATAAGCTGATCGCCA







GAAAGAAGGACTGGGACCCTAAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCTGTGCTG







GTGGTGGCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGGATCAC







CATCATGGAAAGAAGCAGCTTCGAGAAGAATCCCATCGACTTTCTGGAAGCCAAGGGCTACAAAGAAG







TGAAAAAGGACCTGATCATCAAGCTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACGGCCGGAAGAGA







ATGCTGGCCTCTGCCGGCGAACTGCAGAAGGGAAACGAACTGGCCCTGCCCTCCAAATATGTGAACTT







CCTGTACCTGGCCAGCCACTATGAGAAGCTGAAGGGCTCCCCCGAGGATAATGAGCAGAAACAGCTGT







TTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGCGAGTTCTCCAAGAGAGTG







ATCCTGGCCGACGCTAATCTGGACAAAGTGCTGTCCGCCTACAACAAGCACCGGGATAAGCCCATCAG







AGAGCAGGCCGAGAATATCATCCACCTGTTTACCCTGACCAATCTGGGAGCCCCTGCCGCCTTCAAGT







ACTTTGACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGAGGTGCTGGACGCCACCCTGATC







CACCAGAGCATCACCGGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGGAGGCGACAGCGCTGG







AGGAGGTGGAAGCGGAGGAGGAGGAAGCGGAGGAGGAGGTAGCGGACCTAAGAAAAAGAGGAAGGTGG







CGGCCGCTGGATCCGGACGGGCTGACGCATTGGACGATTTTGATCTGGATATGCTGGGAAGTGACGCC







CTCGATGATTTTGACCTTGACATGCTTGGTTCGGATGCCCTTGATGACTTTGACCTCGACATGCTCGG







CAGTGACGCCCTTGATGATTTCGACCTGGACATGCTGATTAACTGTACATAA
ACGGGTGGCATCCCTG







TGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTCCTAA







TAAAATTAAGTTGCATCATTTTGTCTGACTAGGTGTCCTTCTATAATATTATGGGGTGGAGGGGGGTG







GTATGGAGCAAGGGGCAAGTTGGGAAGACAACCTGTAGGGCCTGCGGGGTCTATTGGGAACCAAGCTG







GAGTGCAGTGGCACAATCTTGGCTCACTGCAATCTCCGCCTCCTGGGTTCAAGCGATTCTCCTGCCTC







AGCCTCCCGAGTTGTTGGGATTCCAGGCATGCATGACCAGGCTCAGCTAATTTTTGTTTTTTTGGTAG







AGACGGGGTTTCACCATATTGGCCAGGCTGGTCTCCAACTCCTAATCTCAGGTGATCTACCCACCTTG







GCCTCCCAAATTGCTGGGATTACAGGCGTGAACCACTGCTCCCTTCCCTGTCCTTGAATTCTAACTAT






AACGGTCCTAAGGTAGCGAAGCTAGCTGCAAAGATGGATAAAGTTTTAAACAGAGAGGAATCTTTGCA





GCTAATGGACCTTCTAGGTCTTGAAAGGAGTGGGAATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGC






ACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTG







GCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAAC







CGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGGTA







AGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATTAC







TTCCACCTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGA







GGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGC







CGCGTGCGAATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAA







TTTTTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGC







ACACTGGTATTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTTCG







GCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGC







TCTGGTGCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGCAC







CAGTTGCGTGAGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGAAGGACGCGG







CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGC







TTCATGTGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAGTA







CGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACT







GAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTTGGATCTTG







GTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACGTACGG






CCACCATGGCTTCAAACTTTACTCAGTTCGTGCTCGTGGACAATGGTGGGACAGGGGATGTGACAGTG






GCTCCTTCTAATTTCGCTAATGGGGTGGCAGAGTGGATCAGCTCCAACTCACGGAGCCAGGCCTACAA







GGTGACATGCAGCGTCAGGCAGTCTAGTGCCCAGAAGAGAAAGTATACCATCAAGGTGGAGGTCCCCA







AAGTGGCTACCCAGACAGTGGGCGGAGTCGAACTGCCTGTCGCCGCTTGGAGGTCCTACCTGAACATG







GAGCTCACTATCCCAATTTTCGCTACCAATTCTGACTGTGAACTCATCGTGAAGGCAATGCAGGGGCT







CCTCAAAGACGGTAATCCTATCCCTTCCGCCATCGCCGCTAACTCAGGTATCTACAGCGCTGGAGGAG







GTGGAAGCGGAGGAGGAGGAAGCGGAGGAGGAGGTAGCGGACCTAAGAAAAAGAGGAAGGTGGCGGCC







GCTGGATCCCCTTCAGGGCAGATCAGCAACCAGGCCCTGGCTCTGGCCCCTAGCTCCGCTCCAGTGCT







GGCCCAGACTATGGTGCCCTCTAGTGCTATGGTGCCTCTGGCCCAGCCACCTGCTCCAGCCCCTGTGC







TGACCCCAGGACCACCCCAGTCACTGAGCGCTCCAGTGCCCAAGTCTACACAGGCCGGCGAGGGGACT







CTGAGTGAAGCTCTGCTGCACCTGCAGTTCGACGCTGATGAGGACCTGGGAGCTCTGCTGGGGAACAG







CACCGATCCCGGAGTGTTCACAGATCTGGCCTCCGTGGACAACTCTGAGTTTCAGCAGCTGCTGAATC







AGGGCGTGTCCATGTCTCATAGTACAGCCGAACCAATGCTGATGGAGTACCCCGAAGCCATTACCCGG







CTGGTGACCGGCAGCCAGCGGCCCCCCGACCCCGCTCCAACTCCCCTGGGAACCAGCGGCCTGCCTAA







TGGGCTGTCCGGAGATGAAGACTTCTCAAGCATCGCTGATATGGACTTTAGTGCCCTGCTGTCACAGA







TTTCCTCTAGTGGGCAGGGAGGAGGTGGAAGCGGCTTCAGCGTGGACACCAGTGCCCTGCTGGACCTG







TTCAGCCCCTCGGTGACCGTGCCCGACATGAGCCTGCCTGACCTTGACAGCAGCCTGGCCAGTATCCA







AGAGCTCCTGTCTCCCCAGGAGCCCCCCAGGCCTCCCGAGGCAGAGAACAGCAGCCCGGATTCAGGGA







AGCAGCTGGTGCACTACACAGCGCAGCCGCTGTTCCTGCTGGACCCCGGCTCCGTGGACACCGGGAGC







AACGACCTGCCGGTGCTGTTTGAGCTGGGAGAGGGCTCCTACTTCTCCGAAGGGGACGGCTTCGCCGA







GGACCCCACCATCTCCCTGCTGACAGGCTCGGAGCCTCCCAAAGCCAAGGACCCCACTGTCTCCTGTA







CATAA
ACGGGTGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAG







TGCCCACCAGCCTTGTCCTAATAAAATTAAGTTGCATCATTTTGTCTGACTAGGTGTCCTTCTATAAT







ATTATGGGGTGGAGGGGGGTGGTATGGAGCAAGGGGCAAGTTGGGAAGACAACCTGTAGGGCCTGCGG







GGTCTATTGGGAACCAAGCTGGAGTGCAGTGGCACAATCTTGGCTCACTGCAATCTCCGCCTCCTGGG







TTCAAGCGATTCTCCTGCCTCAGCCTCCCGAGTTGTTGGGATTCCAGGCATGCATGACCAGGCTCAGC







TAATTTTTGTTTTTTTGGTAGAGACGGGGTTTCACCATATTGGCCAGGCTGGTCTCCAACTCCTAATC






TCAGGTGATCTACCCACCTTGGCCTCCCAAATTGCTGGGATTACAGGCGTGAACCACTGCTCCCTTCC






CTGTCCTTGAATTCTAACTATAACGGTCCTAAGGTAGCGAAGTCGACCGAATCGTTGTCCCTTGTCAC






AGCCATTGAGAATTTTGGCAGGGAGCATGTTCTTAGAGCATTTTTAGGCTCTGCGGGACATAACAGCT





CTGCCTCAGAGCACATGCCTTTCTCAGCTCCTGAAAGCCACTGATCAAATTGGAACATTTTGTACCTT





AGGGATGAGGATATCAACTCTCCCAGCCACTTAGAGGGATAAATGTGATGATGCATTCAATTGTGACT





ACATCTGATCCCAACTGTTGCTTCAGCTGCTCTCCTATAGCACATGGCGGGAGGCGTGCATCCCAGTA





GCTACCTCCCCACTTTTGGGGAGATGTGGTTCCATCCATGAAACCTGGGTACCCGCCTACCAGGTCCT





GGCCTATCAGGTGGCAGGGTCTGGTCAAAGAAGGGCATGTGTGGTCTTCAGCAAGGGAGACAGGACGG





TGGTGCAGAGCGTCTAGACCCTCAGGGCAAGTCTCCCCCACACCTGCTCCCGGGGCAGTTGTCTTTGT





GACCTCCCATCCCCCTCTGTTTCATCCTCTATAAAATGAGGGGCTGAGCCCCAAAATAACAGGCTTCT





TTGCCATGATGCAAAACTGCTGAATCTTTCTTTCTGACACACAAGGCATCGAGCAGCCTCTGAAAGAA





CCAAAGCCACTAGCAGGCTTCCTGACTTGGGTTTGTAGGTACTGAATACTCCCTTGAAAAATAAAAAC





ATAGAGGCACTTTTCTCCTGGCTGTTTATTACAGAACGAAGAAAAAACACACTGGCTTGAAACAGACG





CCAGATTTCAAATGTAGAGGTGAAATACGAGGTGGCAATTAAAATGTGATTACAGAAAGTCTGGACAC





TGAGAAAAGTTTACAGGACAGTGGGTGTGGGTTTTCTATAACAGACACTTAAATATACATGACGATAA





TTGCAGATAGAAACCATCAAAGACAAACCCCAAATCAACTAATAATGTTTACAGATGTTCCCCCCCAA





ACCACAGAGCCTTACATCAAAACAAATACTGAAAGGCTTTAAACCAGGAACAGCTCGCCTTAACCCCA





CGAGGGTGCACACAAGCTGGGCTTTTTCTCTCGGTCTGAATGGTAAAGGGAGGAGGATACTCTAGCTC





CTCCAGGTGGATTGCTGAGACAGGGCTCGGCTCACACACTGTCTCTGCGCCTCTCCCAAATCTGGAGA





ACTCTCCCAGCCTCCTGGTAAAGTGTCTCTGTGGGGCACTTAACGATAAAACAGCTTCTGCTGTAAAG





CTCATTAGGAAAGAGCTAGCGGAGACTGAAAGGTTCGCAAAAGAGATTAAGAATCACACAAGGCAATA





GGATTTTTAGTGAACATAGAAATAAATGGCCAAGTGGTTTTCTATTTGGCATTTGTCAACTTGCACAA





CAACTCTTGGTCATATCCACATTGCTCATTGCATTAAAACCATAAGCGACTCAGCCACCTAGCTTAAC





AAGGTATCACTGGAGCAAACAACACGGTCTGCATATTTGTAACATTGTATAATAAACACAAAACAATG





CATAGTAAACACAACTCTACTGAAACAAAAGCCGTCGCTTTATTTACAAAGTCACAAAATGAAGTATA





AATACTTCTGTCATTAATGTTTAGGAAAACCATTTACAAAATTTTCAAATATGTACACGTAGCTTGAA





AAATCACCAGCTTTCCATTTTGTCACAGGTAGAGAGAGGGATAAGCATGGGCTGACAACACCACTCAA





ATTGTAACGGGAGACAACTGCGGGTATGGATCGACACCACTTCCTAGAGTGATGTCACCATGGGGGTT





TCTATGGGCATCCTGCTCAGATTTAAAGTGCCCCAGCATCCTGGGTGACTTGCCCAGAATTCTGGGCT





GTGGCATTTTGAGCAGCAGCATGCTGTTCCAAAATGTCGTCGATCAGCCTCAAGTTGCACACCCAGTC





TTCATCTGGGCTCACACAGGAGCCTTTCAAGAGAGCTTCAATGAAATCTACCTCATTGCAGTCAGGTG





ACGAAATCAGATCATTTAGTGGGGGTTGGGGCTGGCGCAAAAAGTCGGCAGGTGGCAGCTCAGGGGGA





ATATCCGTTCTGTCGAACGGACCTGGGAACTGGCTGGCAGCAACGGCAGAAGCAGCAGCAGCGGTGGC





AGCAGCAGCCACATAGCTTGGTGGCTCGATGCCCTGTATGGGGCTCAGGGGACTAAAGCTGGCCATAC





CCTGCTGGAGGAACTTGGTGGTGTTTGCTACAGGCACCGGGCCCTGTACCGGGCTCTGCCTGAGGCTC





TGGCTGCCCAGCAGGCTGAAGCTGGGGTTGTTGGCCAGGGGCACTTGTGTTCCCATCGCAGCGGGCAC





TTGTGCCTCCCAATCAGATGGCCTCTGAAGGCAGGCCTGGCCAGAAGGTGAGTGCTGCTGAACGCTAT





TATCCACTTGGCTGAGGGGTGTTTTCCCCGAAACTGCTGTGGTCACAGCTGCTGCCGCTGTGACCCAT





GCAGCATTGTTGAACGCAGTGGGCATTCTTGGCACACTAGGCCGTCTGAGCTGGTGGGGACTCAAGGA





CTGGGTGCCCAGGGAGCTGGGACAGAACCCAGGCAGGGGCACTTCTGGTGGGGTGGCCTTGGGGCTCT





GCATATGCTGGCAGACAGAGTCAAGTCTGCCCAGGGGAGTCTGGCCTGAGTGTGAGAGGATGGGACAC





TGGGGGCTGGAGGTGAAAATTCCTTGCCGCTTCCCCAGAGTTGGTGAGATCACTCCCATGCCCTCGCA





GCTCTGGTGCCTGGTGAGTGGGATCATTCCTGGACTCAGATTGTTCTGAAGAAGCCCAGTTCTGGGTG





GCATCAAGTGCTTGCTAGATGGGGGGCTTGCCTTGATCCGGCTACACTTGGAGGTGACTTGTTCTTGG





ACGGCTACATACAGAAAGAGAGAAGTGGGGATGAGTTCCAAAGGCATCCTCGACTTCGGCTGTGGCCA





CCGGAGGGTAGCTCCTGGCCCAACACGGACTTCTCACCTCCCGCCCTTGGCTCTCTACTGAGCTCCCC





CCTGCTCCCCAATTCCTCGCCATTCCCCTCATTTCTCTGCCCTCAGCCTGGACTGCAGTTCTTCTGGG





AAGCTGCCCCAACTCCCTAGGTCTGTGCTCACCAAGAGCAGATCACACTGGACTGAAATGCCAGCTGA





TTTGTCTCTTCAAGAAAATTGGAAGCTCCTGGAGGTCAGGGTCCATGTCTGCTTTTACACTCAGTGCT





CTGTATGCAGGCCTGGCACTGCCCACCCTTTGACAGGTGGTGCATATTTTGTAGAAGGAAGGAAGGGG





CCAGGTGGGGTGGGCTGGGCTGGTGGCGGGAGCTAGCTCAGCCTCTTAGATTCTCTACCCGATGGATG





TGACCTGGGACAGCAAGTGAGTGTGGTGAGTGAGTGCAGACGGTGCTTTGTTCCCCTCTTGTCTCATA





GCCTAGATGGCCTCTGAGCCCAGATCTGGGGCTCAGACAACATTTGTTCAACTGAACGGTAATGGGTT





TCCTTTCTGAAGGCTGAAATCTGGGAGCTGACATTCTGGACTCCCTGAGTTCTGAAGAGCCTGGGGAT





GGAGAGACACGGAGCAGAAGATGGAAGGTAGAGTCCCAGGTGCCTAAGATGGGGAATACATCTCCCCT





CATTGTCATGAGAGTCCACTCTAGCTGATATCTACTGTGGCCAATATCTACCGGTACTTTTTTGGGGT





GGACACTGAGTCATGCAGCAGTCTTATGGTTTACCCAAGGTCAGGTAGGGGAGACAGTGCAGTCAGAG





CACAAGCCCAGTGTGTCTGACCCACCCAAGAATCCATGCTCGTATCTACAAAAATGATTTTTTCTCTT





GTAATGGTGCCTAGGTTCTTTTATTATCATGGCATGTGTATGTTTTTCAACTAGGTTACAATCTGGCC





TTATAAGGTTAACCTCCTGGAGGCCACCAGCCTTCCTGAAACTTGTCTGTGCTGTCCCTGCAACTGGA





GTGTGCCTGATGTGGCACTCCAGCCTGGACAAGTGGGACACAGACTCCGCTGTTATCAGGCCCAAAGA





TGTCTTCCATAAGACCAGAAGAGCAATGGTGTAGAGGTGTCATGGGCTACAATAAAGATGCTGACCTC





CTGTCTGAGGGCAAGCAGCCTCTTCTGGCCCTCAGACAAATGCTGAGTGTTCCCAAGACTACCCTCGG





CCTGGTCCAATCTCATCCCACTGGTGCGTAAGGGTTGCTGAACTCATGACTTCTTGGCTAGCCTGCAA





CCTCCACGGAGTGGGAACTACATCAGGCATTTTGCTAACTGCTGTATCCTAGGCCAATAAATGTTGAT





CACATTTATAGCTGCCATGGTAGGGTGGGGACCCCTGCTATCTATCTGTGGAGGCTCTGGGAGCCCCT





GACACAAACTTTCTGAAGCAGAGCCTCCCCAACCCCTTTTCCATTCCCTATACCTGACAGATGGCCCA





GGAACCCATTAGAAATGGAAGGTCACTGCAGCAGTATGTGAATGTGCGTGTGGGAGAAGGGCAGGATC





AGAGCCCTGGGGGTGTGGCAGCCCCCAAGTGATTCTAATCCAGATCCTAGGGTTGTTTCCCTGTCCCA





TTGAAATAGCTGCTTTAAGGGGCCTGACTCAGGGAAATCAGTCTCTTGAATTAAGTGGTGATTTTGGA





GTCATTTAGACCAGGCCTTCAATTGGGATCCACTAGTTCTAGAGCGGCCGGGCCCAGGGAACCCCGCA





GGCGGGGGCGGCCAGTTTCCCGGGTTCGGCTTTACGTCACGCGAGGGCGGCAGGGAGGACGGAATGGC





GGGGTTTGGGGTGGGTCCCTCCTCGGGGGAGCCCTGGGAAAAGAGGACTGCGTGTGGGAAGAGAAGGT





GGAAATGGCGTTTTGGTTGACATGTGCCGCCTGCGAGCGTGCTGCGGGGAGGGGCCGAGGGCAGATTC





GGGAATGATGGCGCGGGGTGGGGGCGTGGGGGCTTTCTCGGGAGAGGCCCTTCCCTGGAAGTTTGGGG





TGCGATGGTGAGGTTCTCGGGGCACCTCTGGAGGGGCCTCGGCACGGAAAGCGACCACCTGGGAGGGC





GTGTGGGGACCAGGTTTTGCCTTTAGTTTTGCACACACTGTAGTTCATCTTTATGGAGATGCTCATGG





CCTCATTGAAGCCCCACTACAGCTCTGGTAGCGGTAACCATGCGTATTTGACACACGAAGGAACTAGG





GAAAAGGCATTAGGTCATTTCAAGCCGAAATTCACATGTGCTAGAATCCAGATTCCATGCTGACCGAT





GCCCCAGGATATAGAAAATGAGAATCTGGTCCTTACCTTCAAGAACATTCTTAACCGTAATCAGCCTC





TGGTATCTTAGCTCCACCCTCACTGGTTTTTTCTTGTTTGTTGAACCGGCCAAGCTGCTGGCCTCCCT





CCTCAACCGTTCTGATCATGCTTGCTAAAATAGTCAAAACCCCGGCCAGTTAAATATGCTTTAGCCTG





CTTTATTATGATTATTTTTGTTGTTTTGGCAATGACCTGGTTACCTGTTGTTTCTCCCACTAAAACTT





TTTAAGGGCAGGAATCACCGCCGTAACTCTAGCACTTAGCACAGTACTTGGCTTGTAAGAGGTCCTCG





ATGATGGTTTGTTGAATGAATACATTAAATAATTAACCACTTGAACCCTAAGAAAGAAGCGATTCTAT





TTCATATTAGGCATTGTAATGACTTAAGGTAAAGAGCAGTGCTATTAACGGAGTCTAACTGGGAATCC





AGCTTGTTTGGGCTATTTACTAGTTGTGTGGCTGTGGGCAACTTACTTCACCTCTCTGGGCTTAAGTC





ATTTTATGTATATCTGAGGTGCTGGCTACCTCTTGGAGTTATTGAGAGGATTATAAGACAGTCTATGT





GAATCAGCAACCCTTGCATGGCCCCTGGCGGGGAACAGTAATAATAGCCATCATCATGTTTACTTACA





TAGTCCTAATTAGTCTTCAAAACAGCCCTGTAGCAATGGTATGATTATTACCATTTTACAGATGAGGA





ACCTTTGAAGCCTCAGAGAGGCTAACAGACATACCCTAGGTCATACAGTTATTAAGAGAAGGAGCTCT





GTCTCGAACCTAGCTCTCTCTCTCTCGAGTAATACCAGTTAAAAAATAGGCTACAAATAGGTACTCAA





AAAAATGGTAGTGGCTGTTGTTTTTATTCAGTTGCTGAGGAAAAAATGTTGATTTTTCATCTCTAAAC





ATCAACTTACTTAATTCTGCCAATTTCTTTTTTTTGAGACAGGGTCTCACTCTGTCACCTAGGATGGA





GTGCAGTGGCACAATCACTGCTCACTGCAGCCTCGACTTCCCGGGCTCGGGTGATTCTCCCCAGGCTC





AGGGGATTCTCCCACTTCAGCCTCCCAAGTAGCTGGGACTACAGGTGCGCACCACCATCCCTGGCTAA





TATTTGTACTTTATTTTATTTATTTATTTATTTATTTTTTGAGATGGAGTTTCGCTCTTGTTGCCCGG





GCTGGAGTACAGTGGCATGATCTCGGCTCAGTGCAACCTCTGCCTCCCGGGTTCAAGCGATTCTCCTA





CCTCATCCCCCTGAGTAGCTGGGATTACAGGCGCCTGCCACCATGCCTGGCTAATTTTTTGTATTTTT





AATAGAGACGAGGTTTCACCATGTTGGCCAGGCTACTCTCGAACTCCTGATCTCAGGTGATCCACCCG





CCTTGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACTGCGCCCGGCCTAATATTTGTATTTTT





TGTAGAGATGGTGTTTTGCCATGTTGTCCAGGCTGGTCTTGAACTCCTGAGCTCAAGCGATCTGCCCG





CCTCTGCTTCCCAAAGTGCTGGGATTACAGGCATGAGCCACCGTGCCTGGCCTAGGTAGACGCTTTTA





GCTTTGGGGTGTGATGCCTGCCCCAGTATATAGTGAATTTAATTATTGCTAGAGCTGGCTGTTTGTTA





GTTTTCTTTGAACATAAGATACTCATTGTTTTTAGTTTGCAAATCCCTCTTCCTTTTTAAAAAATTTC





TTTCCCTTAAATTGTTTGCATGTTAGCAATAACAAATGCTTAAATGGTGCTATGTGCTAGATACTCTT





CTAAGCCCTGTTATGTATATTAACTAATTTTTTAAATTACACAAATCAGAGAGGTTAAGTAACTTGCC





CAAGATTACCCAACAATACTAGGATTTGAACCTAAGTTTGTCTCACCCCAGATTCTGCTCTTAATCTC





TAAACTTTTAAGTTAGTAGTGACAATAGTAGGTATTTATTGAATACTTAACTATGTTTTAGGCGTTGA





AGTAAATATTTTGCAGGCATTATCTAATGTAAACACCCTAAAGTTACATAACAGGTACCCTTTAGGTA





AATAAACACTAGTATGACCTTGGAGGCACAGATAGTTGAAGTAACTTGCCCAATATCACTTACATGAA





ATTGGCCCTCAAATGTGTCTGATACAACCCATGCTGCTTGTAACTATCGTTTTAAACTGCCAGGGTAA





ACTTGGACACACTTGAGCTAAGAAAAAGCTTTTAGATTTTTGCAAATTAATGTGAAAGATATGCTTTA





TGTGGATATAATATCTTCTAAATTTCGGGGATGGTAGTCCTAGAAATGTAATCCTGCCCTAGCCGAGC





TTACCCTGCCAATAATTTTTTACAGAATTGGTAAAACGGAGCACCTTTTTTTTGTCCTTGGCCACACT





GTTATCAACAGGGTGTAGATTGACATCAATCTGTAGGTGTAAACCAGAATTACTCTTTGTGACCACCA





GGAAATAGAGCAGTTCAGTTCAGGGGTTTCTTTCTGTGAATTTAGCACTGTGACCTGCATACTACAAG





TCTACTTTGTTTTCTATCCATTGTTTGTATCTGGGTATTGCAAAAGGTAGGAAAAGGACCAACCAGAT





CAGCAGAGAAGAGTTGCCTTGGAGTTTTCTTTTAGTTTTCTGCAGTTCATTAGATAGTAACTAGGCCA





TGTCATTTTACTCCCTTGTAGTGAAGATATGTTGAAGTTGTACTGGTATACTCTTCTACCTTTCTGTA





ATTTTATATTGTGTAGACTTGATAAAATTTATGTGTCAATCACCACCATTAATATCAATATTGAGCCT





CAATTCTTATTTTTCTGCCCAGTGGCTGCCAAATTACTAACATTTACAATAATTCACTACTACTAAGA





TAATCTACTAGTTCGATCACATACTTCAAATTGTTATGGAACTACTGTCTTCAGCATTGTGCTTCTGA





TAACTGATAAGTATAATTTTTTTTTTGTCCAGAGTGAACATGTCTATTCTTCCACTGTACACACTAAT





AAAAGGAAAAATTGTAATATTGGGTAAATTCATGTCCTTACACATGTAGTAGTTATGAGCCCATGTCC





CTAGAATGAGTAATAATTTATCCCTCCCTTGGTTGAATAGTCAAGAATGCTGATTTTAATTCTTCTAA





CAGCTTTATCCCTCAGAAGGGAAGGCAAGCAAGTTATATATGTAGTTTATTTGTAAGACTGATATGAA





ATTGGAAGATGAATCTACTATTAGCTTTAATTATTTTTACATTTAGGAATATTGCATCAGTAACTCAT





AATTTTGGTTTTCTGTTATCCTGAGTTAACACAAATTATCCAAGGAGATGGCGGATCATCTGCTTTGA





GGTGTTTTTTTTTGAGAATTTTAATGTATCTGAATATAAAAGGTAAAAATATGCCAACTAGCAATTTC





TGCCCATTCCAGAAGTTTGGAAATATTACTCATTACTAGGAATTAAATAAAATATGGTTTATCTATTG





TTATACCTCTTTTAATTCACATAGCTCATTTTTATCTTTTATTTTTGTTTGTTTTTTTTGAGATGGAG





TCTTGCTCTGTCACCAGGCAGGAGTGCAGTGATGCAAATCTCGGCTCACTCTAGCCACCGACTCCCTG





GTTCAAGCGATTCTCCTGCCTGAGCCTTCTGAGTAGCTGGGATTACAGGCAGGCACCACCACGCCCAG





CTAATTTTTGTAGAGACAGGATTTCACCGTGTTGGCCAGGATGGTCTCCATCTCCTGACCTCATGATC





TGCCTGCTTCGGCCTCCCAAAGTGCTGGGATTACAGGTGGGAGCCACTACGCCTGGCCCACATAGCTC





ATTTTTAGACTCACTTCCATTAAGTCTTGTTTGGACCCACGAACATTGTCTTTTTTTTTTTAAGATGG





AGTTTCACTTTTGTTGCCCAGACTGTAGTGCAATGGTGCAATCTCAGCTCACTGCAATCTCTGCCTCC





TGGGTTCTAGCAATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGAATTACAGGCGCCCGCCACCACGCC





CAGCTAATTTTTGTGTTTTTAGTAGAGACGGGGTTTCACCATGTTGGGCAGGCCAGGGGTGATCCGCC





CACCTCAGCCTCCCAAAGTGCTGGGATTACAGGTGTGAGCCACCGCATCTGGCCAACATGTCTTTTTT





TTTTTTTTCCTTTTTAACCACAAAGAGACTTAAGCAGTCCTTGTCACAGATGATGAATTGATGTTGCA





AGTATTGTCTTAGCTTGGATTAATTTTCTTGCTTACTGTAATTTTAGATAATATAGCTTTGTAATTAG





AGATTTTATGTGTAAACCACAAAAATGTTTACATGAAGGCCATTATTACAGATGTGACGTGCATAATT





ATTAGTAATTTGTATGTTTACATGGGTCAGTCTGGCAAAAAATTATGAAGTTTTAAAAATTAAAAAAA





ATTATAATGCCAGTTTTACTGGAAAGTAAAATTATTTCAGTAATCGATTATAGCAAAAGTATTGATTT





TCATTCCAGACAAAAGTCAGAATGAAAGGTAATTTCTCAATACTCTTTCAGATTAATAAAAGTACCTG





TAGCGATTTTTATCATTCACAAGTATATCACAAGTAAGTTAGAATTTGAGAACTGTGTTCTAGATCTC





TGAGGAGATGCAGTCAGATTTCTGAACTGTCTCAGCAAATGGTAAGTAACTTAGAGCTAGTAATTAAT





AACCTGTCCTTTGATTTCTGATTCAGCCAAGAATGGCCATATTTGGGAAAGGCAGATCTGGAGAGTAA





CCACGTTTTCATTCATTTACCACTTCTAGGCCCCTCCAGAGCTCTCAGATATTTTGGGGTTGAGCCCT





TCCCCAAAGCCATACAGGACCTTTTTTTTGTGATCTGTTCTAGCCATTTTTATGTTGGGTGCTTGTTA





TGGACTGAGCATTTATGTCCTCCCACACCCCCCCCATACCTTTTTTGAAGTCCTAACCCCCAGTGTGA





TGGTATTTGGAGACAGGGCCTTTGGAAGGTAATTACAGTTAGAAGAAGTCGGGAGGGTTGGGCCCAGG





TCTGATTGGATTAGTGCCCTTATATGAAAAGACACCAGGACGGGCGCAGTGGCTCACACCTGTAATCC





CAGCACTTTGGGAGGCCAAGGTGGGTGGATCACGAGGTCAGGAGTTTGAGACCAGCCTGGCCAATGTA





GTGAAACACCATCTCTACTAAAAATACAAAAATTAGCTGGGTGTGGTAGCGGGCTCCTGTCATCCAAG





CTACTCGGGAGGGTGAGGCATGAGAATCACTTGAACCCGGGAGTTGGAGGTTGCAGTGAGCCCAGATT





GTGCCACTGTACTCCAGCCTGGGTGACAGAGTGAGACTCTGTCTCAAAAAAGAAAAAAAAAAAAAAAG





AGACACCAGAGAGCTTGTTAGAAGAGGTCATGTGAGCACACAGTTAGAAGACCTTCAAGCCAAAGAAG





AGGCCTGAGATTGAAACCTACCTTGCAGGTACCTTAATTTTGGACTTCCCAGCCTCCAAAACTGTGAG





AAATAAGTTTCTGTTAAGTCACTCAGTCTGTGGTATTTTGTTATGGCAGCCTGAGCAGGTAGTTGTTC





TTTCAGAAGGTGTTGATAATAACCACATGCAACACCAAGTCACAAATAATAAAACAGATGTAACTTAT





ATTCATACAGAAAGTTGGGCACTGCCATTGCCTTGTTGGTTTACACGGCTGTGCTAGTTCAGTAGCAG





AAAGGTGCTGGTCTCCTTTACTCAGTTTACAATCTAGGCAGTAGAATGTAATCACTGCTTTAAACTTG





ATACTGCTTAGGGAGAGAATCATTGGTGCTGGGTAACTTTGGGTTCTAGGTTTACTTTTTGTGTATAT





ATAACTGTTTTTGGTAAATCACAAGTTTCTGGGCTTGTCGAATTAGATTTTGTTACAGATTATGAGCT





TTATTATGCTATACAGTTAGTTGTATGTATATATGCCTTTCCCACTAGATTTTAAGCTTTTTTTTTTT





TTTTTTTTTTGTGACGGAGTCTTGCTCTTGTCGCCCAGGCTGAAGTGGAGTGCAGTGGCACAATCTCG





GCTCACTGCAGCCTCCACCTCCTAGGTTCAAGCGATTCTCCTGCCTCGGCCTCCCAAGTAACTGGGAC





TACAGGCACGTGCCACCACACCCGGCTAATTTTTGTATTTTTTGTAGAGACAGGGTTTCGCCATGTTG





GCTAGGCTGGTCTTGAACTTCTGGCCTCAGGTGATCCACCCGCCTCAGCCTCCCAAAGTGCTGGGATT





TACAGGCATGAGCCACCACGCCCAGCTATAGCTCTTTAAGGGTTGTAAATTTATAATCATTCTTTTAC





TCTCCTGCAAATTCTGTTGCACACTGCCTTAATCAAGGTAGATGCTGAATGCATTTTTGTATAATTGA





ATATGTTGCAATCCCCAACTCTCTCCAACTGTTCCTGTCAAAGCAGCCACTGGATTGTTAACTAATCC





ATATTAGATGGGGTTAATTAATATCAGATGGGACAAGTAAGGGCTAATAAGATTATAGGCCACCAAGT





AGATTTCTGTCTAGCTCTTATAGAGATTGAGTTTATTGGACCTGTTTGATAGGAAGTTTTGGTGTTTG





GGATGATTAAAACTGAAGTTCCTATTTATTGAATTATACCTATTTATATTATTTCATATCAGTGGTCC





ACATGCAAGTGAGGCTTCTGAGACAGAGTTTGAGTTCTCTCTTCAACTACCATAACACTTAACCTGTA





TCTTTTTTTTTTTTTTTTTTTTTAGACAGGAGTCTCGCTCTGTCACTCAGGCTGGAGTGTAGTGGTAT





GATCTCGGCTCACTGTAACCTCTGCCTCCTGGATTCAAGCAGTTCTCCATGTCTCAGCCTCCCTAGTA





GCTGGGATTACAGGCCTGTGCCACCATGCCTGGCTAATTTTTTTTTTGTATTTTTAGTAGAGACGGGG





TTTTACCACGTTGGCCAGGCTGGTCTCGAACTCTTGACCTCGAGCGATCAACTTGCCTTGGCCTCCCA





AAGTGCTGGGATTACAGGCATGAGCCACAGCGCCCAGCCGTCTTTTTTTTTAAATAGCAATTTAACAC





TGTTCACAGTTACTCATGTACATGTCATGCCATCTATTACACTGTAAGTTCTGTGAGGGTAGCTGTAT





CAAATTTATCTAACTCTCTCTAGTATGCATGACATAGTAAGTATTCAATAAATATTTGCATATTAGTG





ATAAGGATACAGGTTCTGAATAGTGGGTCCTTACCATTTAAGAATTAGTATTTGATGGCCGGGGGGGG





TGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCGGATCATGAGATCAGGAGATCGA





GACCATCCTGGCTAACATGGTGAAATCCCGTCTTTACAAAAAAAATACAAAAGAATTAACCAAGTGTG





GTGGTGGGTGCCTGTAGTCCCAGCTACTGCTTTGTGAGGCTGAGGCAGGCAGATCACCTGAGGTGGGA





AATTCAAGACCAGCCTGACCAACATGGAGAAACCCCATCTCTACTAAAAATACAAAATTAGCCGGGCG





TGGTGGCGCATGTCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGCGTGAACCCGGGAG





GCGGAGCTTGCAGTGAGCCAGGATCGCGCCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCCGTC





TCAAAAAAAAAAAAAAAAAAAAAATTAGTATTTGATATTTGATCATTAAATATGAATTAAGAGGACTT





AGACTTTTTGTTAAATGTCAAGCTGGGAAAAGTTGTCATTTAAATGAATTGCCTCTTATTTAATTTCG





TCTGATGATACATTTTGTTTTTATTTTGTAAAAAATTATTTTTTTTCTTTTTGGAGACAGGGTCTTGC





TCTGTTGCCCAGGCTGGTCACAAACTCCTGACCTCAAGCAATCCTCCTGCCTTAGCCTCCCAAAATGC





TGGGATTACAGGCGTGACGACCTCGCCCGGCCTTGTATTATGATACATTTTGAACAACTACAAGTAGA





CTTGGTATAATGAACCTGCACGTACCCATTGCCAAGTTCTGACAACTGTCTGTCTATAGCCAATTATG





CATTTCTTAAATTAGAACCCCCCCAATATACCCAAATATATATATATGTGTGCATATATATAGTAAGT





TGTAACAAAGTTGTGAATTCATACCTGAAGTATCTCAAGTGATGCAAGTTTTATGAATTTTTGTTTAT





GCCTTTTGGGAAGAGTTGTATTGACAAATTTTTTATGCTTAAAGTAAACCATAAATCAAAAAAATAAA





ATCTAGGATGCAATAAAACAAAACAACTTCTTGACATAAGTATGGTATGTAAATCTGTTTTGATTGGA





AATCAATTTGTTATATTGCCAGAATTCCTGTTTTAGAATACATCTCTGCTGATCTGTCTGTATTCTTA





GACTGCATATCTGGGATGAACTCTGGGCAGAATTCACATGGGCTTCCTTTGAAATAAACAAGACTTTT





CAAATTCTTAGTCGATCTGCAGAACCTGTAGCCAGGCACTGAACCATTTTGATAGATGCAGTAATCGT





TGCAAGTGTATATTTCAAGGGAGTTCTGGCTGGGTCCTAGTTTATGCTTGTGGCAGAAGCAGTGAGTA





ACTGGGAGGAAGTTGGTGAGTAAGCTTCAAGGAAGAAGTCATTTTTAGTACTCTGGATCTTCCTGATT





TTAAAGCACTACAAAATGGTGCATTTTCATTCTTGTCAAGTGATAACAGATATATTCTGATGAGCCTG





AAATGAATATATATTGTATCATTTTTATAATATCTAGCAAGGTTTGTATTTTCCTAGAACTTGAACTA





AATTTCAGTTCATAAAATTTATAAAATACTTAGTTGTTGTAAAATATTTTTGGAATGTTCACATAGGT





GACACACAAATGTCCCATTTTCATTCTTTCTATAGTAAATATGTTCTGATATGTGAAGGTTTAGCAGA





TGCATCAGCATTTAATCCTAGAGGATCTGGCATAATCTTTTCCCCCAAGAATAGAAATTTTTTCTGCT





TATGAAAGTAGTACATGTTTCTTTAAAAACAAATCAATATTGACTTCTGCCTGCTGTATAGCACTATG





CCTCCACCTGGCCATGACCAGGGGCATGTCCTGGTCCACCTACCTGAAAATGTTTGCAACCAGCCTCC





TGGCCATGTGCACAGGGGCTGAAGTTGTCCCACAGGTATTACGGGCCAACCTGACAATACATGAAGTT





CCACCAAAGTCTGAGAACTCAGAACTGAGCTTTGGGGACTGAAAGACAGCACAAACCTCAAATTTCTC





AGCACTGGAAACCTCAAAATATAACTGAATTCCATAAATAAGATTTTAAGTCTTAAATATGTATTTTT





AAATGTATTAAAAGTCAAGCTGCTTGTATTTAAGCACCTAATACAATGCTTAGGTTGTAAAAGGAGAT





GCTCAATAGGTACTAACTGATATATTGAGATTTAATTATGGTTTGACCAATATTTATTGGAAACCGCC





AAAGCTTAAATCATCAGCTTCTTGAATGTGATTTGAAAGGTAATTTAGTATTGAATAGCATGTGAGCT





AGAGTATTTCATTCTTTCTGGTTTATTTCTTCAAATAGACTTTGAATATAATGGTGAATGGGTATTAT





AAATTAACTAATAAAAATGACATTGAAAATGAAAAAATATATATATTAAAGTGTAGAAAGTGACCAGG





CGTGGTGGCTCACACCTGTAATCCAAGCACCTTGGGAGGCTGAGGCAGGAGGATCTCTTGATCCCAGG





AGTTCAAGACCAGCCTGGGCAACATAGCGAGACTTCGTCTCTAAAAAAAAAAAAGAGAGAGAAAAAAA





TTTTTTTTATTTAAAAAAAGTGTAGAAAGTGTCAAGACCCCACTTCTTACCATTATTTGGTATATTTC





TCTATACCCACCCACCCTTCCTCCTTACTCCCTCCCTCCCTTCCCAATCTTTTTATCTTTTTGTATTC





TGATTTTTTGTTTGTATATTTTGCTTTAATTTAATGTATCCTTTAAAAATTTCCCATACATTTTATAT





GTATATATAAAAACGCATGCTGCCAAAGATAATTTATAAGAAAGACCATTGAATTTTTTTAAAAGTGA





TATATATTCATTGAAAAAAATTTAGAATATATAGCAAAGCAATAAAGAACTAAATAAAATTGCTGTAA





CTCCTCTTTCAAAGATAAGTGCTTTTATGATTTTGTTGTATTTTTTTCTGTATATAGGTACATATATA





GTATTTATAAAGCTGTACTCATAGTACATTTTCACATCACAGGTACCATATCAGTGTTATTAAATATT





TTGTATGCCAGGGGCTAGACATACCAAGACAACCAATATGTGGTTCTACTTAAATAATATTAGAGTAT





CTTTTATGATGACACTTCATGAGTTGACTATAATAATCTTAGACTTCTAAGAGTTTGGGTTTTCAAAA





GATCACTTAGCTTTTTTGGGTGATTTTTCCCCCTTACTGTGAGATGAGAGAGGCTGTTTGGATTTGGG





ATTGGGGTAGCGGGGACAGCAACTTTTCTTTTCTTTTTCTTTTTTATTTTGAGGTAGGGTATTGCTGT





GTCACCCAGGCTGGAGTGCAGTGGTGTGATCTCGGCTCACTGCAACCTCCACCTCCCGGGCTCAGGTG





ATCCTCCTGCTTCAGCCTCCCAGTAACTGGGACTACAGGCGCGTGCCACATGCCTGGCTAATTTTGTA





TTTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTCTAACTCCTGACCTCAGGTGATAC





GCCCACCTGGGCCTCCCAAAATACTGGGATTACAGGCATGAGCCGCTGCATCAGCCAGCAGTTTTTCT





TGTGGTTTTTTTTGTTTGTTTTGTTTTGTTTTGTTTTTGAGATAGGGTCTTACTCTGTTGTCCACGCT





GGAGTGCTGTGGTATGATCGTAGCTCACTGCAGCCTCAAACTCCTGGGCTCAAGTGATTCCTTCTGCC





TCCGCCTCCCGAGTAGCTGGGACTACAGGTATGCACCACCATACCTGGCAAATTTTTACAAAGTTTTT





TGTAGGGACGGGGTCTTGCTACATTCCCCATGTCGGTCTTGAACTCCTGGCCTCAAGCAACTCTCCTG





TCTCAGCCTCCCAAAGCACTGGGATTACAAGTGTGAGCCACCACACCATGCCAGTTTTTCCTGTTCAG





TGTGATATTTTATCTTGTTAGACTACAGTGTGTTAAAACTTGTTTTACTAAATTTTCAAACATACTCA





AAAGTGGAGAGAATAGTATAATGAATACCCGTATGTTCATCACCCATGTTTAGAATATTATTAAATAT





AAAGATTTTGCTGCGTTTGTCTTAGCTCTTTAAAATTTTTCTTTTTCTCTTTGTGACCTAAAGGAAAT





TCCATATCTTATCACTTTACTTCTACATTCTTGACTAAGATGACTAAGACATATAGTTACATGGTTTT





TTGTTTTGTTTTTGTTTTTTAAAGACGAAATCTCGCTCTTGTCCCCCAGGCTGGAGTGCAATGGTGCC





ATCTCAGCTCAGTGCAACCTCTGCCTTCTGGGTACAAGCGATTCTCCTGCCTCAGCCTCCCAAGTAGC





TGGGATTACAGGCTCCTGCCACCACGCCTGGCTAATTTTTGTATTTTTAGTAGAGACGGCGGGGGGAG





GTTTCACCATGTTGACAAGGCTGGTCTGGAACTCCTGACCTCAGGTGATCCACCCGCCTCGGCCTCCC





AAAGTGCTGGGATTACAGGCGTGAGCCACCGCGCCCAGCCTGTTTTTTTGTTTGTGTGTTTTGTTTTT





TTTGAGACAGAGTCTTGCTCTGTTTCCCAGGCTGGAGTGAAGTGGTGCCATCTCAGCTCAGAGACAGA





GTCTTGCTCTGTTTCCCAGGCTGGAGTGAAGTGGTGCCATCTTGGCTCACTGCAACCTTCACCTCCCA





GGTTCAAGTGATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGACTACAGGCATGTGTCACCACACCCG





GCTAATTTTTTTGTATTTTTAGTAGAGACGGGATTTCACCGTGTTGCCCAGGCTGGTCTCGAACTCCT





GAGCTCAGGCAGTCTGCCTGCCTCAGCCTCCCAAAGTGCTGGGATTACACGTGTGAACCAACCCGCCC





GGCCTGTTGTTTTCTTACATAATTCATTATCATACCTACAAAGTTAACAGTTACTAATATCATCTTAC





ACCTAAATTTCTCTGATAGACTAAGGTTATTTTTTAACATCTTAATCCAATCAAATGTTTGTATCCTG





TAATGCTCTCATTGAAACAGCTATATTTCTTTTTCAGATTAGTGATGATGAACCAGGTTATGACCTTG





ATTTATTTTGCATACCTAATCATTATGCTGAGGATTTGGAAAGGGTGTTTATTCCTCATGGACTAATT





ATGGACAGGTAAGTAAGATCTTAAAATGAGGTTTTTTACTTTTTCTTGTGTTAATTTCAAACATCAGC





AGCTGTTCTGAGTACTTGCTATTTGAACATAAACTAGGCCAACTTATTAAATAACTGATGCTTTCTAA





AATCTTCTTTATTAAAAATAAAAGAGGAGGGCCTTACTAATTACTTAGTATCAGTTGTGGTATAGTGG





GACTCTGTAGGGACCAGAACAAAGTAAACATTGAAGGGAGATGGAAGAAGGAACTCTAGCCAGAGTCT





TGCATTTCTCAGTCCTAAACAGGGTAATGGACTGGGGCTGAATCACATGAAGGCAAGGTCAGATTTTT





ATTATTATGCACATCTAGCTTGAAAATTTTCTGTTAAGTCAATTACAGTGAAAAACCTTACCTGGTAT





TGAATGCTTGCATTGTATGTCTGGCTATTCTGTGTTTTTATTTTAAAATTATAATATCAAAATATTTG





TGTTATAAAATATTCTAACTATGGAGGCCATAAACAAGAAGACTAAAGTTCTCTCCTTTCAGCCTTCT





GTACACATTTCTTCTCAAGCACTGGCCTATGCATGTATACTATATGCAAAAGTACATATATACATTTA





TATTTTAACGTATGAGTATAGTTTTAAATGTTATTGGACACTTTTAATATTAGTGTGTCTAGAGCTAT





CTAATATATTTTAAAGGTTGCATAGCATTCTGTCTTATGGAGATACCATAACTGATTTAACCAGTCCA





CTATTGATAGACACTATTTTGTTCTTACCGACTGTACTAGAAGAAACATTCTTTTACATGTTTGGTAC





TTGTTCAGCTTTATTCAAGTGGAATTTCTGGGTCAAGGGGAAAGAGTTTATTGAATATTTTGGTATTG





CCAAATTTTCCTCTAAGAAGTTGAATCATTTTATACTCCTGATGTTATATGAGAGTACCTTTCTCTTC





ACAATTTGTCTCTTTTTTTTTTTTTTTTGAGACAAGGTCTCTGTTGCCCAGGCTGGGGTGCAGTGCAG





CAGAATGATCACAGTTCACTGCAGTCTCAACCTCCTGGGTTCAAGCGATCCTTCCACCTCAGCCTCCT





GAGTAGCTGGGACTATAGGTGTGCGCCACCACTCCCAGCTAATATTTTTATTTTGTAGAAACAGGGTT





CGCCATGTTACCCAGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACTGGCCCAGTTTCTACAGT





CTCTCTTAATATTGTATATTATCCAGAAAATTTCATTTAATCAGAACCTGCCAGTCTGATAGGTGAAA





ATGGTATCTTGTTTTTATTTGCATTTAAAAAAAATTATGATAGTGGTATGCTTGGTTTTTTTGAAGGT





ATCAAATTTTTTACCTTATGAAACATGAGGGCAAAGGATGTGATACGTGGAAGATTTAAAAAAAATTT





TTAATGCATTTTTTTGAGACAAGGTCTTGCTCTATTGTCCAGGCTGGAGTGCAGTGGCACAATCACAG





TTCACTCCAGCCTCAACATCCTGCACTAAAGTGATTTTCCCACCTCACCTCTCAAGTAGCTGGGACTA





CAGGTACATGCTACCATGCCTGGCTAATTTTTTTTTTTTTGCAGGCATGGGGTCTCACTATATTGCCC





AGGTTGGTGTGGAAGTTTAATGACTAAGAGGTGTTTGTTATAAAGTTTAATGTATGAAACTTTCTATT





AAATTCCTGATTTTATTTCTGTAGGACTGAACGTCTTGCTCGAGATGTGATGAAGGAGATGGGAGGCC





ATCACATTGTAGCCCTCTGTGTGCTCAAGGGGGGCTATAAATTCTTTGCTGACCTGCTGGATTACATC





AAAGCACTGAATAGAAATAGTGATAGATCCATTCCTATGACTGTAGATTTTATCAGACTGAAGAGCTA





TTGTGTGAGTATATTTAATATATGATTCTTTTTAGTGGCAACAGTAGGTTTTCTTATATTTTCTTTGA





ATCTCTGCAAACCATACTTGCTTTCATTTCACTTGGTTACAGTGAGATTTTTCTAACATATTCACTAG





TACTTTACATCAAAGCCAATACTGTTTTTTTAAAACTAGTCACCTTGGAGGATATATACTTATTTTAC





AGGTGTGTGTGGTTTTTTAAATAAACTCCTTTTAGGAATTGCTGTTGGGACTTGGGATACTTTTTTCA





CTATACATACTGGTGACAGATACCCTCTCTTGAGCTACATCGGTTTGTGGGGAGTCAAAAGTCCTTTG





GAGCTAGGTTTGACAAATAAGGTGGGTTAACACTTGTTTCCTAGAAAGCACATGGAGAGCTAGAGTAT





TGGCGAATTGAAGAAATCCCCCTTTTTTTTTAACACACTTAAGAAAGGGGACTGCAGGTATACTCAAG





AGAGTAAGTCGCACCAGAAACCACTTTTGATCCACAGTCTGCCTGTGTCACACAATTGAAATGCATCA





CAACATTGACACTGTGGATGAAACAAAATCAGTGTGAATTTTAGTAGTGAATTTCATTCATAATTTGA





TCGTGCAAACGTTTGATTTTTATTACTTTAGACTATTGTTTCTGATTTTATGTTGGGTTGGTATTTCC





TGTGAGTTACTGTTTTACCTTTAAAATAGGAATTTTTCATACTCTTCAAAGATTAGAACAAATGTCCA





GTTTTTGCTGTTTCATGAATGAGTCCTGTCCATCTTTGTAGAAACTCGCCTTATGTTCACATTTTTAT





TGAGAATAAGACCACTTATCTACATTTAACTATCAACCTCATCCTCTCCATTAATCATCTATTTTAGT





GACCCAAGTTTTTGACCTTTTCCATGTTTACATCAATCCTGTAGGTGATTGGGCAGCCATTTAAGTAT





TATTATAGACATTTTCACTATCCCATTAAAACCCTTTATGCCCATACATCATAACACTACTTCCTACC





CATAAGCTCCTTTTAACTTGTTAAAGTCTTGCTTGAATTAAAGACTTGTTTACGGTATCGATAAGCTT





GATATCAAAACGCCAACTTTGACCCGGAACGCGGAAAACACCTGAGAAAAACACCTGGGCGAGTCTCC





ACGTAAACGGTCAAAGTCCCCGCGGCCCTAGACAAATATTACGCGCTATGAGTAACACAAAATTATTC






AGATTTCACTTCCTCTTATTCAGTTTTCCCGCGAAAATGGCCAAATCTTACTCGGTTACGCCCAAATT







TACTACAACATCCGCCTAAAACCGCGCGAAAATTGTCACTTCCTGTGTACACCGGCGCACACCAAAAA






CGTCACTTTTGCCACATCCGTCGCTTACATGTGTTCCGCCACACTTGCAACATCACACTTCCGCCACA





CTACTACGTCACCCGCCCCGTTCCCACGCCCCGCGCCACGTCACAAACTCCACCCCCTCATTATCATA







TTGGCTTCAATCCAAAATAAGGTATATTATTGATGATG
TTTAAACATTAAGAATTAATTCGATCCTGA






ATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGCGGGTGTGGTGGTTACGCGCAGCGTGAC





CGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCG





CCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGAGCTTTACGGCAC





CTCGACCGCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTT





TCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCA





ACCCTATCGCGGTCTATTCTTTTGATTTATAAGGGATGTTGCCGATTTCGGCCTATTGGTTAAAAAAT





GAGCTGATTTAACAAAAATTTTAACAAAATTCAGAAGAACTCGTCAAGAAGGCGATAGAAGGCGATGC





GCTGCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTCT





TCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACACCCAGCCGGCCACAGTC





GATGAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCGCCATGGGTCACGA





CGAGATCCTCGCCGTCGGGCATGCTCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAGCCCCTGA





TGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCGCTCGATGCG





ATGTTTCGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAG





CCATGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGCACTTCGCCC





AATAGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGT





GGCCAGCCACGATAGCCGCGCTGCCTCGTCTTGCAGTTCATTCAGGGCACCGGACAGGTCGGTCTTGA





CAAAAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCGATTGTCTGT





TGTGCCCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCAATCCATCTTG





TTCAATCATGCGAAACGATCCTCATCCTGTCTCTTGATCAGAGCTTGATCCCCTGCGCCATCAGATCC





TTGGCGGCAAGAAAGCCATCCAGTTTACTTTGCAGGGCTTCCCAACCTTACCAGAGGGCGCCCCAGCT





GGCAATTCCGGTTCGCTTGCTGTCCATAAAACCGCCCAGTCTAGCTATCGCCATGTAAGCCCACTGCA





AGCTACCTGCTTTCTCTTTGCGCTTGCGTTTTCCCTTGTCCAGATAGCCCAGTAGCTGACATTCATCC





GGGGTCAGCACCGTTTCTGCGGACTGGCTTTCTACGTGAAAAGGATCTAGGTGAAGATCCTTTTTGAT





AATCTCATGGCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGC





TTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCC





TTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCA





GCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTAT





GGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACC





AAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAG





ATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGAC





RightITR = first underlined and bold sequence


U6 = first underlined sequence


CMV = first bold sequence


dCas 9VP64 = second underlined sequence


HGHpA = second bold sequence


EF1α = third underlined sequence


MPH = third bold sequence


HGHpA = fourth underlined sequence


Packaging Signal = fourth bold sequence


LeftITR = second underlined and bold sequence





LV-SAM


LeftLTR-PackagingSignal-RRE-U6-sgRNA-CMV-dCas9VP64-HGHpA-EFlα-MPH-


HGHpA-RightLTR





SEQ ID NO: 9


AGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGAC





GTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAA





ATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATG





AGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCA





CCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAAC





TGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACT





TTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCG





CATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCA





TGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTG





ACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCT





TGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAG





CAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTA





ATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTT





TATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATG





GTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGA





CAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATAT





ACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATC





TCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAA





GGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACC





AGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAG





CGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCA





CCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCT





TACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGT





GCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAA





AGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGA





GCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCT





GACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCG





GCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGA





TTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTCAGATGGTCCCCAGATATGGCCCAACCCTCA





GCAGTTTCTTAAGACCCATCAGATGTTTCCAGGCTCCCCCAAGGACCTGAAATGACCCTGCGCCTTAT





TTGAATTAACCAATCAGCCTGCTTCTCGCTTCTGTTCGCGCGCTTCTGCTTCCCGAGCTCTATAAAAG





AGCTCACAACCCCTCACTCGGCGCGCCAGTCCTCCGACAGACTGAGTCGCCCGGGGGGGATCACCAGA





TACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAA





TACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGTGGAATGTGTGTCAGTTAG





GGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCA





ACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTC





AGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTC





CGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTC





CAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTTGGACACAAGACAGGCTT





GCGAGATATGTTTGAGAATACCACTTTATCCCGCGTCAGGGAGAGGCAGTGCGTAAAAAGACGCGGAC





TCATGTGAAATACTGGTTTTTAGTGCGCCAGATCTCTATAATCTCGCGCAACCTATTTTCCCCTCGAA





CACTTTTTAAGCCGTAGATAAACAGGCTGGGACACTTCACATGAGCGAAAAATACATCGTCACCTGGG





ACATGTTGCAGATCCATGCACGTAAACTCGCAAGCCGACTGATGCCTTCTGAACAATGGAAAGGCATT





ATTGCCGTAAGCCGTGGCGGTCTGTACCGGGTGCGTTACTGGCGCGTGAACTGGGTATTCGTCATGTC





GATACCGTTTGTATTTCCAGCTACGATCACGACAACCAGCGCGAGCTTAAAGTGCTGAAACGCGCAGA





AGGCGATGGCGAAGGCTTCATCGTTATTGATGACCTGGTGGATACCGGTGGTACTGCGGTTGCGATTC





GTGAAATGTATCCAAAAGCGCACTTTGTCACCATCTTCGCAAAACCGGCTGGTCGTCCGCTGGTTGAT





GACTATGTTGTTGATATCCCGCAAGATACCTGGATTGAACAGCCGTGGGATATGGGCGTCGTATTCGT





CCCGCCAATCTCCGGTCGCTAATCTTTTCAACGCCTGGCACTGCCGGGCGTTGTTCTTTTTAACTTCA





GGCGGGTTACAATAGTTTCCAGTAAGTATTCTGGAGGCTGCATCCATGACACAGGCAAACCTGAGCGA





AACCCTGTTCAAACCCCGCTTTAAACATCCTGAAACCTCGACGCTAGTCCGCCGCTTTAATCACGGCG





CACAACCGCCTGTGCAGTCGGCCCTTGATGGTAAAACCATCCCTCACTGGTATCGCATGATTAACCGT





CTGATGTGGATCTGGCGCGGCATTGACCCACGCGAAATCCTCGACGTCCAGGCACGTATTGTGATGAG





CGATGCCGAACGTACCGACGATGATTTATACGATACGGTGATTGGCTACCGTGGCGGCAACTGGATTT





ATGAGTGGGCCCCGGATCTTTGTGAAGGAACCTTACTTCTGTGGTGTGACATAATTGGACAAACTACC





TACAGAGATTTAAAGCTCTAAGGTAAATATAAAATTTTTAAGTGTATAATGTGTTAAACTACTGATTC





TAATTGTTTGTGTATTTTAGATTCCAACCTATGGAACTGATGAATGGGAGCAGTGGTGGAATGCCTTT





AATGAGGAAAACCTGTTTTGCTCAGAAGAAATGCCATCTAGTGATGATGAGGCTACTGCTGACTCTCA





ACATTCTACTCCTCCAAAAAAGAAGAGAAAGGTAGAAGACCCCAAGGACTTTCCTTCAGAATTGCTAA





GTTTTTTGAGTCATGCTGTGTTTAGTAATAGAACTCTTGCTTGCTTTGCTATTTACACCACAAAGGAA





AAAGCTGCACTGCTATACAAGAAAATTATGGAAAAATATTCTGTAACCTTTATAAGTAGGCATAACAG





TTATAATCATAACATACTGTTTTTTCTTACTCCACACAGGCATAGAGTGTCTGCTATTAATAACTATG





CTCAAAAATTGTGTACCTTTAGCTTTTTAATTTGTAAAGGGGTTAATAAGGAATATTTGATGTATAGT





GCCTTGACTAGAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCC





CACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCT





TATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTC





TAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCAACTGGATAACTCAAGCTA





ACCAAAATCATCCCAAACTTCCCACCCCATACCCTATTACCACTGCCAATTACCTGTGGTTTCATTTA





CTCTAAACCTGTGATTCCTCTGAATTATTTTCATTTTAAAGAAATTGTATTTGTTAAATATGTACTAC





AAACTTAGTAGTTGGAAGGGCTAATTCACTCCCAAAGAAGACAAGATATCCTTGATCTGTGGATCTAC







CACACACAAGGCTACTTCCCTGATTAGCAGAACTACACACCAGGGCCAGGGGTCAGATATCCACTGAC









CTTTGGATGGTGCTACAAGCTAGTACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGA









ACACCAGCTTGTTACACCCTGTGAGCCTGCATGGGATGGATGACCCGGAGAGAGAAGTGTTAGAGTGG









AGGTTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTG









CTGATATCGAGCTTGCTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGGCGTGGCCTGGGCGGGA









CTGGGGAGTGGCGAGCCCTCAGATCCTGCATATAAGCAGCTGCTTTTTGCCTGTACTGGGTCTCTCTG









GTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAA









GCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTC









AGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCA
GTGGCGCCCGAACAGGGACTTGAAAGCGAAAGGG






AAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACGGCAAGAGGCGAGGGGCG





GCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTAGAAGGAGAGAGATGGGTGCGAGAGCG





TCAGTATTAAGCGGGGAGAATTAGATCGCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAA





AATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTG





TTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGATCAGA





AGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAG





ACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACCGCACAGCAAGCG





GCCGGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATATAAA





TATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAGAG





AGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGG






GCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAAC







AATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCT







CCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCT






CTGGAAAACTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAG





ATTTGGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTAATACACTC





CTTAATTGAAGAATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAATTAGATAAATGGG





CAAGTTTGTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAATTATTCATAATGATAGTA





GGAGGCTTGGTAGGTTTAAGAATAGTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGATA





TTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGACAGGCCCGAAGGAATAGAAG





AAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGGATCTCGACGGTATCGCCAA





ATGGCAGTATTCATCCACAATTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAAT





AGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATT





TTCGGGTTTATTACAGGGACAGCAGAGATCCAGTTTGGATCGATAAGCTTGATATCGAATTCGTAGGG





ATAACAGGGTAATGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTA






GAGAGATAATTGGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTGACGTAGAAAG







TAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGT








embedded image






embedded image




AATAAGGCTAGTCCGTTATCAACTTGGCCAACATGAGGATCACCCATGTCTGCAGGGCCAAGTGGCAC





CGAGTCGGTGCTTTTTTTGGATCCTGTTGACAATTAATCATCGGCATAGTATATCGGCATAGTATAAT





ACGACAAGGTGAGGAACTAAACCATGGCCAAGTTGACCAGTGCCGTTCCGGTGCTCACCGCGCGCGAC





GTCGCCGGAGCGGTCGAGTTCTGGACCGACCGGCTCGGGTTCTCCCGGGACTTCGTGGAGGACGACTT





CGCCGGTGTGGTCCGGGACGACGTGACCCTGTTCATCAGCGCGGTCCAGGACCAGGTGGTGCCGGACA





ACACCCTGGCCTGGGTGTGGGTGCGCGGCCTGGACGAGCTGTACGCCGAGTGGTCGGAGGTCGTGTCC





ACGAACTTCCGGGACGCCTCCGGGCCGGCCATGACCGAGATCGGCGAGCAGCCGTGGGGGCGGGAGTT





CGCCCTGCGCGACCCGGCCGGCAACTGCGTGCACTTCGTGGCCGAGGAGCAGGACTGATAGGGATAAC





AGGGTAATGCTAGCATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGT






TACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAA







TGACGTATGTTCCCATAGTAACGTCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGG







TAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGA







CGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACA







TCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAG







CGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGCACCAA







AATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGT







ACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCAC







GCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGATTCGAATCCCGGCCGGGA







ACGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTATAGGC







CCACAAAAAATGCTTTCTTCTTTTAATATACTTTTTTGTTTATCTTATTTCTAATACTTTCCCTAATC







TCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTTTGCACCATTCTAAAGAATAACAGTG







ATAATTTCTGGGTTAAGGCAATAGCAATATTTCTGCATATAAATATTTCTGCATATAAATTGTAACTG







ATGTAAGAGGTTTCATATTGCTAATAGCAGCTACAATCCAGCTACCATTCTGCTTTTATTTTATGGTT







GGGATAAGGCTGGATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTCATACCTCTTATCT







TCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTGGGA







TCGTACGGCCACCATGAAAAGGCCGGCGGCCACGAAAAAGGCCGGCCAGGCAAAAAAGAAAAAGGACA







AGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGGGCCGTGATCACCGACGAGTAC







AAGGTGCCCAGCAAGAAATTCAAGGTGCTGGGCAACACCGACCGGCACAGCATCAAGAAGAACCTGAT







CGGAGCCCTGCTGTTCGACAGCGGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAA







GATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGATGGCCAAGGTG







GACGACAGCTTCTTCCACAGACTGGAAGAGTCCTTCCTGGTGGAAGAGGATAAGAAGCACGAGCGGCA







CCCCATCTTCGGCAACATCGTGGACGAGGTGGCCTACCACGAGAAGTACCCCACCATCTACCACCTGA







GAAAGAAACTGGTGGACAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTGGCCCTGGCCCACATG







ATCAAGTTCCGGGGCCACTTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGACGTGGACAAGCT







GTTCATCCAGCTGGTGCAGACCTACAACCAGCTGTTCGAGGAAAACCCCATCAACGCCAGCGGCGTGG







ACGCCAAGGCCATCCTGTCTGCCAGACTGAGCAAGAGCAGACGGCTGGAAAATCTGATCGCCCAGCTG







CCCGGCGAGAAGAAGAATGGCCTGTTCGGCAACCTGATTGCCCTGAGCCTGGGCCTGACCCCCAACTT







CAAGAGCAACTTCGACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGACACCTACGACGACGACC







TGGACAACCTGCTGGCCCAGATCGGCGACCAGTACGCCGACCTGTTTCTGGCCGCCAAGAACCTGTCC







GACGCCATCCTGCTGAGCGACATCCTGAGAGTGAACACCGAGATCACCAAGGCCCCCCTGAGCGCCTC







TATGATCAAGAGATACGACGAGCACCACCAGGACCTGACCCTGCTGAAAGCTCTCGTGCGGCAGCAGC







TGCCTGAGAAGTACAAAGAGATTTTCTTCGACCAGAGCAAGAACGGCTACGCCGGCTACATTGACGGC







GGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGCCCATCCTGGAAAAGATGGACGGCACCGAGGA







ACTGCTCGTGAAGCTGAACAGAGAGGACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCC







CCCACCAGATCCACCTGGGAGAGCTGCACGCCATTCTGCGGCGGCAGGAAGATTTTTACCCATTCCTG







AAGGACAACCGGGAAAAGATCGAGAAGATCCTGACCTTCCGCATCCCCTACTACGTGGGCCCTCTGGC







CAGGGGAAACAGCAGATTCGCCTGGATGACCAGAAAGAGCGAGGAAACCATCACCCCCTGGAACTTCG







AGGAAGTGGTGGACAAGGGCGCTTCCGCCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAAC







CTGCCCAACGAGAAGGTGCTGCCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACGAGCT







GACCAAAGTGAAATACGTGACCGAGGGAATGAGAAAGCCCGCCTTCCTGAGCGGCGAGCAGAAAAAGG







CCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAGTGACCGTGAAGCAGCTGAAAGAGGACTACTTC







AAGAAAATCGAGTGCTTCGACTCCGTGGAAATCTCCGGCGTGGAAGATCGGTTCAACGCCTCCCTGGG







CACATACCACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACGAGGACA







TTCTGGAAGATATCGTGCTGACCCTGACACTGTTTGAGGACAGAGAGATGATCGAGGAACGGCTGAAA







ACCTATGCCCACCTGTTCGACGACAAAGTGATGAAGCAGCTGAAGCGGCGGAGATACACCGGCTGGGG







CAGGCTGAGCCGGAAGCTGATCAACGGCATCCGGGACAAGCAGTCCGGCAAGACAATCCTGGATTTCC







TGAAGTCCGACGGCTTCGCCAACAGAAACTTCATGCAGCTGATCCACGACGACAGCCTGACCTTTAAA







GAGGACATCCAGAAAGCCCAGGTGTCCGGCCAGGGCGATAGCCTGCACGAGCACATTGCCAATCTGGC







CGGCAGCCCCGCCATTAAGAAGGGCATCCTGCAGACAGTGAAGGTGGTGGACGAGCTCGTGAAAGTGA







TGGGCCGGCACAAGCCCGAGAACATCGTGATCGAAATGGCCAGAGAGAACCAGACCACCCAGAAGGGA







CAGAAGAACAGCCGCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGGGCAGCCAGATCCT







GAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAGAAGCTGTACCTGTACTACCTGCAGAATG







GGCGGGATATGTACGTGGACCAGGAACTGGACATCAACCGGCTGTCCGACTACGATGTGGACCACATC







GTGCCTCAGAGCTTTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAGAAGCGACAAGGCCCG







GGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTCGTGAAGAAGATGAAGAACTACTGGCGGCAGCTGC







TGAACGCCAAGCTGATTACCCAGAGAAAGTTCGACAATCTGACCAAGGCCGAGAGAGGCGGCCTGAGC







GAACTGGATAAGGCCGGCTTCATCAAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGC







ACAGATCCTGGACTCCCGGATGAACACTAAGTACGACGAGAATGACAAGCTGATCCGGGAAGTGAAAG







TGATCACCCTGAAGTCCAAGCTGGTGTCCGATTTCCGGAAGGATTTCCAGTTTTACAAAGTGCGCGAG







ATCAACAACTACCACCACGCCCACGACGCCTACCTGAACGCCGTCGTGGGAACCGCCCTGATCAAAAA







GTACCCTAAGCTGGAAAGCGAGTTCGTGTACGGCGACTACAAGGTGTACGACGTGCGGAAGATGATCG







CCAAGAGCGAGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTCTACAGCAACATCATGAACTTT







TTCAAGACCGAGATTACCCTGGCCAACGGCGAGATCCGGAAGCGGCCTCTGATCGAGACAAACGGCGA







AACCGGGGAGATCGTGTGGGATAAGGGCCGGGATTTTGCCACCGTGCGGAAAGTGCTGAGCATGCCCC







AAGTGAATATCGTGAAAAAGACCGAGGTGCAGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCCAAG







AGGAACAGCGATAAGCTGATCGCCAGAAAGAAGGACTGGGACCCTAAGAAGTACGGCGGCTTCGACAG







CCCCACCGTGGCCTATTCTGTGCTGGTGGTGGCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGA







GTGTGAAAGAGCTGCTGGGGATCACCATCATGGAAAGAAGCAGCTTCGAGAAGAATCCCATCGACTTT







CTGGAAGCCAAGGGCTACAAAGAAGTGAAAAAGGACCTGATCATCAAGCTGCCTAAGTACTCCCTGTT







CGAGCTGGAAAACGGCCGGAAGAGAATGCTGGCCTCTGCCGGCGAACTGCAGAAGGGAAACGAACTGG







CCCTGCCCTCCAAATATGTGAACTTCCTGTACCTGGCCAGCCACTATGAGAAGCTGAAGGGCTCCCCC







GAGGATAATGAGCAGAAACAGCTGTTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCA







GATCAGCGAGTTCTCCAAGAGAGTGATCCTGGCCGACGCTAATCTGGACAAAGTGCTGTCCGCCTACA







ACAAGCACCGGGATAAGCCCATCAGAGAGCAGGCCGAGAATATCATCCACCTGTTTACCCTGACCAAT







CTGGGAGCCCCTGCCGCCTTCAAGTACTTTGACACCACCATCGACCGGAAGAGGTACACCAGCACCAA







AGAGGTGCTGGACGCCACCCTGATCCACCAGAGCATCACCGGCCTGTACGAGACACGGATCGACCTGT







CTCAGCTGGGAGGCGACAGCGCTGGAGGAGGTGGAAGCGGAGGAGGAGGAAGCGGAGGAGGAGGTAGC







GGACCTAAGAAAAAGAGGAAGGTGGCGGCCGCTGGATCCGGACGGGCTGACGCATTGGACGATTTTGA







TCTGGATATGCTGGGAAGTGACGCCCTCGATGATTTTGACCTTGACATGCTTGGTTCGGATGCCCTTG







ATGACTTTGACCTCGACATGCTCGGCAGTGACGCCCTTGATGATTTCGACCTGGACATGCTGATTAAC







TGTACATAA
ACGGGTGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACT







CCAGTGCCCACCAGCCTTGTCCTAATAAAATTAAGTTGCATCATTTTGTCTGACTAGGTGTCCTTCTA







TAATATTATGGGGTGGAGGGGGGTGGTATGGAGCAAGGGGCAAGTTGGGAAGACAACCTGTAGGGCCT







GCGGGGTCTATTGGGAACCAAGCTGGAGTGCAGTGGCACAATCTTGGCTCACTGCAATCTCCGCCTCC







TGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCCGAGTTGTTGGGATTCCAGGCATGCATGACCAGGCT







CAGCTAATTTTTGTTTTTTTGGTAGAGACGGGGTTTCACCATATTGGCCAGGCTGGTCTCCAACTCCT







AATCTCAGGTGATCTACCCACCTTGGCCTCCCAAATTGCTGGGATTACAGGCGTGAACCACTGCTCCC







TTCCCTGTCCTTGAATTCTAACTATAACGGTCCTAAGGTAGCGAAGCTAGCTGCAAAGATGGATAAAG






TTTTAAACAGAGAGGAATCTTTGCAGCTAATGGACCTTCTAGGTCTTGAAAGGAGTGGGAATTGGCTC







CGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCA









ATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGC









CTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAA









CGGGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTT









ATGGCCCTTGCGTGCCTTGAATTACTTCCACCTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGG









GTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGA









GGCCTGGCCTGGGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTT









TCGATAAGTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGT









CTTGTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGC









CCGTGCGTCCCAGCGCACATGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACGGG









GGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGG









GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGC









AGGGAGCTCAAAATGAAGGACGCGGCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAA









GGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTC









GATTAGTTCTCGAGCTTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTT









TCCCCACACTGAGTGGGTGGAGACTGAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAAT








TTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTT








CCATTTCAGGTGTCGTGA
CGTACGGCCACCATGGCTTCAAACTTTACTCAGTTCGTGCTCGTGGACAA







TGGTGGGACAGGGGATGTGACAGTGGCTCCTTCTAATTTCGCTAATGGGGTGGCAGAGTGGATCAGCT







CCAACTCACGGAGCCAGGCCTACAAGGTGACATGCAGCGTCAGGCAGTCTAGTGCCCAGAAGAGAAAG







TATACCATCAAGGTGGAGGTCCCCAAAGTGGCTACCCAGACAGTGGGCGGAGTCGAACTGCCTGTCGC







CGCTTGGAGGTCCTACCTGAACATGGAGCTCACTATCCCAATTTTCGCTACCAATTCTGACTGTGAAC







TCATCGTGAAGGCAATGCAGGGGCTCCTCAAAGACGGTAATCCTATCCCTTCCGCCATCGCCGCTAAC







TCAGGTATCTACAGCGCTGGAGGAGGTGGAAGCGGAGGAGGAGGAAGCGGAGGAGGAGGTAGCGGACC







TAAGAAAAAGAGGAAGGTGGCGGCCGCTGGATCCCCTTCAGGGCAGATCAGCAACCAGGCCCTGGCTC







TGGCCCCTAGCTCCGCTCCAGTGCTGGCCCAGACTATGGTGCCCTCTAGTGCTATGGTGCCTCTGGCC







CAGCCACCTGCTCCAGCCCCTGTGCTGACCCCAGGACCACCCCAGTCACTGAGCGCTCCAGTGCCCAA







GTCTACACAGGCCGGCGAGGGGACTCTGAGTGAAGCTCTGCTGCACCTGCAGTTCGACGCTGATGAGG







ACCTGGGAGCTCTGCTGGGGAACAGCACCGATCCCGGAGTGTTCACAGATCTGGCCTCCGTGGACAAC







TCTGAGTTTCAGCAGCTGCTGAATCAGGGCGTGTCCATGTCTCATAGTACAGCCGAACCAATGCTGAT







GGAGTACCCCGAAGCCATTACCCGGCTGGTGACCGGCAGCCAGCGGCCCCCCGACCCCGCTCCAACTC







CCCTGGGAACCAGCGGCCTGCCTAATGGGCTGTCCGGAGATGAAGACTTCTCAAGCATCGCTGATATG







GACTTTAGTGCCCTGCTGTCACAGATTTCCTCTAGTGGGCAGGGAGGAGGTGGAAGCGGCTTCAGCGT







GGACACCAGTGCCCTGCTGGACCTGTTCAGCCCCTCGGTGACCGTGCCCGACATGAGCCTGCCTGACC







TTGACAGCAGCCTGGCCAGTATCCAAGAGCTCCTGTCTCCCCAGGAGCCCCCCAGGCCTCCCGAGGCA







GAGAACAGCAGCCCGGATTCAGGGAAGCAGCTGGTGCACTACACAGCGCAGCCGCTGTTCCTGCTGGA







CCCCGGCTCCGTGGACACCGGGAGCAACGACCTGCCGGTGCTGTTTGAGCTGGGAGAGGGCTCCTACT







TCTCCGAAGGGGACGGCTTCGCCGAGGACCCCACCATCTCCCTGCTGACAGGCTCGGAGCCTCCCAAA







GCCAAGGACCCCACTGTCTCCTGTACATAA
ACGGGTGGCATCCCTGTGACCCCTCCCCAGTGCCTCTC







CTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTCCTAATAAAATTAAGTTGCATCATTTT







GTCTGACTAGGTGTCCTTCTATAATATTATGGGGTGGAGGGGGGTGGTATGGAGCAAGGGGCAAGTTG






GGAAGACAACCTGTAGGGCCTGCGGGGTCTATTGGGAACCAAGCTGGAGTGCAGTGGCACAATCTTGG






CTCACTGCAATCTCCGCCTCCTGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCCGAGTTGTTGGGATT







CCAGGCATGCATGACCAGGCTCAGCTAATTTTTGTTTTTTTGGTAGAGACGGGGTTTCACCATATTGG







CCAGGCTGGTCTCCAACTCCTAATCTCAGGTGATCTACCCACCTTGGCCTCCCAAATTGCTGGGATTA







CAGGCGTGAACCACTGCTCCCTTCCCTGTCCTTGAATTCTAACTATAACGGTCCTAAGGTAGCGAAGG






TACCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTTAAAAGAAAAGGGGGGA





CTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATCTGCTTTTTGCTTGTACTGGGTCTCTCTGGTT







AGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCT









TGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGA









CCCTTTTAGTCAGTGTGGAAAATCTCTAGCA
GCATCTAGAATTAATTCCGTGTATTCTATAGTGTCAC






CTAAATCGTATGTGTATGATACATAAGGTTATGTATTAATTGTAGCCGCGTTCTAACGACAATATGTA





CAAGCCTAATTGTGTAGCATCTGGCTTACTGAAGCAGACCCTATCATCTCTCTCGTAAACTGCCGTCA





GAGTCGGTTTGGTTGGACGAACCTTCTGAGTTTCTGGTAACGCCGTCCCGCACCCGGAAATGGTCAGC





GAACCAATCAGCAGGGTCATCGCTAGCCAGATCCTCTACGCCGGACGCATCGTGGCCGGCATCACCGG





CGCCACAGGTGCGGTTGCTGGCGCCTATATCGCCGACATCACCGATGGGGAAGATCGGGCTCGCCACT





TCGGGCTCATGAGCGCTTGTTTCGGCGTGGGTATGGTGGCAGGCCCCGTGGCCGGGGGACTGTTGGGC





GCCATCTCCTTGCATGCACCATTCCTTGCGGCGGCGGTGCTCAACGGCCTCAACCTACTACTGGGCTG





CTTCCTAATGCAGGAGTCGCATAAGGGAGAGCGTCGAATGGTGCACTCTCAGTACAATCTGCTCTGAT





GCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCT





CCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGT





CATCACCGAAACGCGCG





RightITR = first underlined and bold sequence


Packaging Signal = first underlined sequence


RRE = first bold sequence


U6 = second underlined sequence


CMV = second bold sequence


dCas9VP64 = third underlined sequence


HGHpA = third bold sequence


EF1α = fourth underlined sequence


MPH = fourth bold sequence


HGHpA = fifth underlined sequence


LeftITR = second underlined and bold sequence





AAV-dCas9VP64


LeftITR-EF1α-dCas9VP64-FpA-RightITR


SEQ ID NO: 10


GTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAA





AAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAA





CTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTC





AAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGG





CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCT





GAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAG





CGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAG





GGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCG





GGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAA





AACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAG







GCAGCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTC









GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCT
GC






GGCCGCACGCGTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTT






GGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATG







TCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTG







AACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGGAATTCGCCACCATGAAAAGGCCGGCGGC







CACGAAAAAGGCCGGCCAGGCAAAAAAGAAAAAGGACAAGAAGTACAGCATCGGCCTGGCCATCGGCA







CCAACTCTGTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAAATTCAAGGTGCTG







GGCAACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTCGACAGCGGCGAAAC







AGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATACACCAGACGGAAGAACCGGATCTGCT







ATCTGCAAGAGATCTTCAGCAACGAGATGGCCAAGGTGGACGACAGCTTCTTCCACAGACTGGAAGAG







TCCTTCCTGGTGGAAGAGGATAAGAAGCACGAGCGGCACCCCATCTTCGGCAACATCGTGGACGAGGT







GGCCTACCACGAGAAGTACCCCACCATCTACCACCTGAGAAAGAAACTGGTGGACAGCACCGACAAGG







CCGACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATCAAGTTCCGGGGCCACTTCCTGATCGAG







GGCGACCTGAACCCCGACAACAGCGACGTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTACAACCA







GCTGTTCGAGGAAAACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTGA







GCAAGAGCAGACGGCTGGAAAATCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAATGGCCTGTTCGGC







AACCTGATTGCCCTGAGCCTGGGCCTGACCCCCAACTTCAAGAGCAACTTCGACCTGGCCGAGGATGC







CAAACTGCAGCTGAGCAAGGACACCTACGACGACGACCTGGACAACCTGCTGGCCCAGATCGGCGACC







AGTACGCCGACCTGTTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGAGA







GTGAACACCGAGATCACCAAGGCCCCCCTGAGCGCCTCTATGATCAAGAGATACGACGAGCACCACCA







GGACCTGACCCTGCTGAAAGCTCTCGTGCGGCAGCAGCTGCCTGAGAAGTACAAAGAGATTTTCTTCG







ACCAGAGCAAGAACGGCTACGCCGGCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTC







ATCAAGCCCATCCTGGAAAAGATGGACGGCACCGAGGAACTGCTCGTGAAGCTGAACAGAGAGGACCT







GCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCCACCAGATCCACCTGGGAGAGCTGCACG







CCATTCTGCGGCGGCAGGAAGATTTTTACCCATTCCTGAAGGACAACCGGGAAAAGATCGAGAAGATC







CTGACCTTCCGCATCCCCTACTACGTGGGCCCTCTGGCCAGGGGAAACAGCAGATTCGCCTGGATGAC







CAGAAAGAGCGAGGAAACCATCACCCCCTGGAACTTCGAGGAAGTGGTGGACAAGGGCGCTTCCGCCC






AGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCCAACGAGAAGGTGCTGCCCAAGCAC






AGCCTGCTGTACGAGTACTTCACCGTGTATAACGAGCTGACCAAAGTGAAATACGTGACCGAGGGAAT







GAGAAAGCCCGCCTTCCTGAGCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACC







GGAAAGTGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACTCCGTGGAA







ATCTCCGGCGTGGAAGATCGGTTCAACGCCTCCCTGGGCACATACCACGATCTGCTGAAAATTATCAA







GGACAAGGACTTCCTGGACAATGAGGAAAACGAGGACATTCTGGAAGATATCGTGCTGACCCTGACAC







TGTTTGAGGACAGAGAGATGATCGAGGAACGGCTGAAAACCTATGCCCACCTGTTCGACGACAAAGTG







ATGAAGCAGCTGAAGCGGCGGAGATACACCGGCTGGGGCAGGCTGAGCCGGAAGCTGATCAACGGCAT







CCGGGACAAGCAGTCCGGCAAGACAATCCTGGATTTCCTGAAGTCCGACGGCTTCGCCAACAGAAACT







TCATGCAGCTGATCCACGACGACAGCCTGACCTTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGGC







CAGGGCGATAGCCTGCACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCT







GCAGACAGTGAAGGTGGTGGACGAGCTCGTGAAAGTGATGGGCCGGCACAAGCCCGAGAACATCGTGA







TCGAAATGGCCAGAGAGAACCAGACCACCCAGAAGGGACAGAAGAACAGCCGCGAGAGAATGAAGCGG







ATCGAAGAGGGCATCAAAGAGCTGGGCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCT







GCAGAACGAGAAGCTGTACCTGTACTACCTGCAGAATGGGCGGGATATGTACGTGGACCAGGAACTGG







ACATCAACCGGCTGTCCGACTACGATGTGGACCACATCGTGCCTCAGAGCTTTCTGAAGGACGACTCC







ATCGACAACAAGGTGCTGACCAGAAGCGACAAGGCCCGGGGCAAGAGCGACAACGTGCCCTCCGAAGA







GGTCGTGAAGAAGATGAAGAACTACTGGCGGCAGCTGCTGAACGCCAAGCTGATTACCCAGAGAAAGT







TCGACAATCTGACCAAGGCCGAGAGAGGCGGCCTGAGCGAACTGGATAAGGCCGGCTTCATCAAGAGA







CAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCCGGATGAACACTAA







GTACGACGAGAATGACAAGCTGATCCGGGAAGTGAAAGTGATCACCCTGAAGTCCAAGCTGGTGTCCG







ATTTCCGGAAGGATTTCCAGTTTTACAAAGTGCGCGAGATCAACAACTACCACCACGCCCACGACGCC







TACCTGAACGCCGTCGTGGGAACCGCCCTGATCAAAAAGTACCCTAAGCTGGAAAGCGAGTTCGTGTA







CGGCGACTACAAGGTGTACGACGTGCGGAAGATGATCGCCAAGAGCGAGCAGGAAATCGGCAAGGCTA







CCGCCAAGTACTTCTTCTACAGCAACATCATGAACTTTTTCAAGACCGAGATTACCCTGGCCAACGGC







GAGATCCGGAAGCGGCCTCTGATCGAGACAAACGGCGAAACCGGGGAGATCGTGTGGGATAAGGGCCG







GGATTTTGCCACCGTGCGGAAAGTGCTGAGCATGCCCCAAGTGAATATCGTGAAAAAGACCGAGGTGC







AGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCCAAGAGGAACAGCGATAAGCTGATCGCCAGAAAG







AAGGACTGGGACCCTAAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGGT







GGCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGGATCACCATCA







TGGAAAGAAGCAGCTTCGAGAAGAATCCCATCGACTTTCTGGAAGCCAAGGGCTACAAAGAAGTGAAA







AAGGACCTGATCATCAAGCTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACGGCCGGAAGAGAATGCT







GGCCTCTGCCGGCGAACTGCAGAAGGGAAACGAACTGGCCCTGCCCTCCAAATATGTGAACTTCCTGT







ACCTGGCCAGCCACTATGAGAAGCTGAAGGGCTCCCCCGAGGATAATGAGCAGAAACAGCTGTTTGTG







GAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGCGAGTTCTCCAAGAGAGTGATCCT







GGCCGACGCTAATCTGGACAAAGTGCTGTCCGCCTACAACAAGCACCGGGATAAGCCCATCAGAGAGC







AGGCCGAGAATATCATCCACCTGTTTACCCTGACCAATCTGGGAGCCCCTGCCGCCTTCAAGTACTTT







GACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGAGGTGCTGGACGCCACCCTGATCCACCA







GAGCATCACCGGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGGAGGCGACAGCGCTGGAGGAG







GTGGAAGCGGAGGAGGAGGAAGCGGAGGAGGAGGTAGCGGACCTAAGAAAAAGAGGAAGGTGGCGGCC







GCTGGATCCGGACGGGCTGACGCATTGGACGATTTTGATCTGGATATGCTGGGAAGTGACGCCCTCGA







TGATTTTGACCTTGACATGCTTGGTTCGGATGCCCTTGATGACTTTGACCTCGACATGCTCGGCAGTG







ACGCCCTTGATGATTTCGACCTGGACATGCTGTAACTCGAGCAATAAAGAATCGTTTGTGTTATGTTT







CAACGTGTTTATTTTTCAATTGCAGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCA








CTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTT









GCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGG
GGCGCCTGATGCGGTATTTTCT






CCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGG





CGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGC





CCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAAT





CGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGG





TGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGT





TCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGAT





TTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGC





GAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCG





CATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCG





GCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATC





ACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAA





TGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTC





TAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAA





AAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTC





CTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTG





GGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCC





AATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGC





AACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCAT





CTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGC





CAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATC





ATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACC





ACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTC





CCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTC





CGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCA





CTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGA





TGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAG





TTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATC





CTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCC





RightITR = first underlined and bold sequence


EF1α = first underlined sequence


dCas 9VP64 = bold sequence


FpA = second underlined sequence


LeftITR = second underlined and bold sequence





AAV-MPH


LeftITR-CMV-MPH-HGHpA-U6-sgRNA-RightITR


SEQ ID NO: 11


AGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCA





CCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTT





CAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACT





CTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAG





TCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGG





GGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGC





TATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGA





ACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCG





CCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCA





GCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTG







CGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGC









CTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCT
GCGGCCGCA






CGCGTGGAGCTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTC






CGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTC







AATAATGACGTATGTTCCCATAGTAACGTCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATT







TACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTC







AATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCA







GTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTG







GATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGC







ACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGG







CGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCA







TCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGATTCGAATCCCGGC







CGGGAACGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTA







TAGGCCCACAAAAAATGCTTTCTTCTTTTAATATACTTTTTTGTTTATCTTATTTCTAATACTTTCCC







TAATCTCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTTTGCACCATTCTAAAGAATAA







CAGTGATAATTTCTGGGTTAAGGCAATAGCAATATTTCTGCATATAAATATTTCTGCATATAAATTGT







AACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCTACAATCCAGCTACCATTCTGCTTTTATTTTA







TGGTTGGGATAAGGCTGGATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTCATACCTCT







TATCTTCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAAT







TGGGATTCGAACATCGATTGAATTCACCATGGCTTCAAACTTTACTCAGTTCGTGCTCGTGGACAATG







GTGGGACAGGGGATGTGACAGTGGCTCCTTCTAATTTCGCTAATGGGGTGGCAGAGTGGATCAGCTCC







AACTCACGGAGCCAGGCCTACAAGGTGACATGCAGCGTCAGGCAGTCTAGTGCCCAGAAGAGAAAGTA







TACCATCAAGGTGGAGGTCCCCAAAGTGGCTACCCAGACAGTGGGCGGAGTCGAACTGCCTGTCGCCG







CTTGGAGGTCCTACCTGAACATGGAGCTCACTATCCCAATTTTCGCTACCAATTCTGACTGTGAACTC







ATCGTGAAGGCAATGCAGGGGCTCCTCAAAGACGGTAATCCTATCCCTTCCGCCATCGCCGCTAACTC







AGGTATCTACAGCGCTGGAGGAGGTGGAAGCGGAGGAGGAGGAAGCGGAGGAGGAGGTAGCGGACCTA







AGAAAAAGAGGAAGGTGGCGGCCGCTGGATCCCCTTCAGGGCAGATCAGCAACCAGGCCCTGGCTCTG







GCCCCTAGCTCCGCTCCAGTGCTGGCCCAGACTATGGTGCCCTCTAGTGCTATGGTGCCTCTGGCCCA







GCCACCTGCTCCAGCCCCTGTGCTGACCCCAGGACCACCCCAGTCACTGAGCGCTCCAGTGCCCAAGT







CTACACAGGCCGGCGAGGGGACTCTGAGTGAAGCTCTGCTGCACCTGCAGTTCGACGCTGATGAGGAC







CTGGGAGCTCTGCTGGGGAACAGCACCGATCCCGGAGTGTTCACAGATCTGGCCTCCGTGGACAACTC







TGAGTTTCAGCAGCTGCTGAATCAGGGCGTGTCCATGTCTCATAGTACAGCCGAACCAATGCTGATGG







AGTACCCCGAAGCCATTACCCGGCTGGTGACCGGCAGCCAGCGGCCCCCCGACCCCGCTCCAACTCCC







CTGGGAACCAGCGGCCTGCCTAATGGGCTGTCCGGAGATGAAGACTTCTCAAGCATCGCTGATATGGA







CTTTAGTGCCCTGCTGTCACAGATTTCCTCTAGTGGGCAGGGAGGAGGTGGAAGCGGCTTCAGCGTGG







ACACCAGTGCCCTGCTGGACCTGTTCAGCCCCTCGGTGACCGTGCCCGACATGAGCCTGCCTGACCTT







GACAGCAGCCTGGCCAGTATCCAAGAGCTCCTGTCTCCCCAGGAGCCCCCCAGGCCTCCCGAGGCAGA







GAACAGCAGCCCGGATTCAGGGAAGCAGCTGGTGCACTACACAGCGCAGCCGCTGTTCCTGCTGGACC







CCGGCTCCGTGGACACCGGGAGCAACGACCTGCCGGTGCTGTTTGAGCTGGGAGAGGGCTCCTACTTC







TCCGAAGGGGACGGCTTCGCCGAGGACCCCACCATCTCCCTGCTGACAGGCTCGGAGCCTCCCAAAGC







CAAGGACCCCACTGTCTCCTGACCTCGAGCAGCGCTGCTCGAGAGATCTACGGGTGGCATCCCTGTGA







CCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTCCTAATAA







AATTAAGTTGCATCATTTTGTCTGACTAGGTGTCCTTCTATAATATTATGGGGTGGAGGGGGGTGGTA







TGGAGCAAGGGGCAAGTTGGGAAGACAACCTGTAGGGCCTGCGGGGTCTATTGGGAACCAAGCTGGAG







TGCAGTGGCACAATCTTGGCTCACTGCAATCTCCGCCTCCTGGGTTCAAGCGATTCTCCTGCCTCAGC







CTCCCGAGTTGTTGGGATTCCAGGCATGCATGACCAGGCTCAGCTAATTTTTGTTTTTTTGGTAGAGA







CGGGGTTTCACCATATTGGCCAGGCTGGTCTCCAACTCCTAATCTCAGGTGATCTACCCACCTTGGCC







TCCCAAATTGCTGGGATTACAGGCGTGAACCACTGCTCCCTTCCCTGTCCTTCTGATTTTGTAGGTAA






CCACGTGCGGACCTAGGGATAACAGGGTAATGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATA






TACGATACAAGGCTGTTAGAGAGATAATTGGAATTAATTTGACTGTAAACACAAAGATATTAGTACAA







AATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGA







CTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGAC








embedded image




CAGGGCCTAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGGCCAACATGAGGATCACCCATGTC





TGCAGGGCCAAGTGGCACCGAGTCGGTGCTTTTTTTGGATCCTGTTGACAATTAATCATCGGCATAGT





ATATCGGCATAGTATAATACGACAAGGTGAGGAACTAAACCATGGCCAAGTTGACCAGTGCCGTTCCG





GTGCTCACCGCGCGCGACGTCGCCGGAGCGGTCGAGTTCTGGACCGACCGGCTCGGGTTCTCCCGGGA





CTTCGTGGAGGACGACTTCGCCGGTGTGGTCCGGGACGACGTGACCCTGTTCATCAGCGCGGTCCAGG





ACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCGCGGCCTGGACGAGCTGTACGCCGAG





TGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGCCGGCCATGACCGAGATCGGCGAGCA





GCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGCGTGCACTTCGTGGCCGAGGAGC





AGGACTGATAGGGATAACAGGGTAATTAACTATAACGGTCCTAAGGTAGCGAAGGACCGAGCGGCCGC







AGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGA









CCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCT









GCAGG
GGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAA






GCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGA





CCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTC





GCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCA





CCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTT





TTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTC





AACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAA





TGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCA





CTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGAC





GCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTG





CATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTAT





TTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTG





CGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACC





CTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTA





TTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGAT





GCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGA





GAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTAT





TATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTT





GAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGC





CATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAA





CCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAA





GCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATT





AACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTG





CAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAG





CGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTA





CACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGA





TTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTT





TAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTT





TTCGTTCCACTGAGCGTCAGACCCCGTAGAAA





RightITR = first underlined and bold sequence


CMV = first underlined sequence


MPH = first bold sequence


HGHpA = second underlined sequence


U6 = second bold sequence


LeftITR = second underlined and bold sequence





AAV-dCasΦ1-MPH-sgRNA


LeftITR-CBh-dCasΦ1-P2A-MPH-FpA-U6-sgRNA-RightITR


SEQ ID NO: 12


AGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCA





CCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTT





CAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACT





CTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAG





TCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGG





GGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGC





TATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGA





ACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCG





CCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCA





GCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTG







CGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGC









CTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCT
GCGGCCGCA






CGCGTCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGAC






GTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGT







ATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGAC







GTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTG







GCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTCGAGGTGAGCCCCACGTTCTGCTTCACTC







TCCCCATCTCCCCCCCCTCCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGCAGCG







ATGGGGGCGGGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCGGGGCGGGGC







GAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATGGCGAGGC







GGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGCGGGAGTCGCTGCGACGCTGCCTTCG







CCCCGTGCCCCGCTCCGCCGCCGCCTCGCGCCGCCCGCCCCGGCTCTGACTGACCGCGTTACTCCCAC







AGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGCTGTAATTAGCTGAGCAAGAGGTAAGGGTTTAAG







GGATGGTTGGTTGGTGGGGTATTAATGTTTAATTACCTGGAGCACCTGTCCGGAGAATTCGCCACCAT







GAAAAGGCCGGCGGCCACGAAAAAGGCCGGCCAGGCAAAAAAGAAAAAGGCCGATACCCCCACACTGT







TCACCCAATTCCTCAGACACCACCTCCCCGGCCAAAGATTTAGAAAGGACATTCTGAAGCAAGCCGGA







AGAATCCTCGCTAATAAGGGAGAGGACGCCACAATTGCCTTTCTGAGAGGCAAATCCGAGGAGAGCCC







TCCCGACTTCCAACCCCCCGTGAAGTGCCCCATCATCGCTTGCAGCAGACCTCTGACAGAATGGCCCA







TCTATCAAGCCAGCGTGGCTATCCAAGGCTACGTCTACGGCCAGTCTCTGGCCGAATTTGAGGCCAGC







GACCCCGGCTGTTCCAAGGATGGACTCCTCGGATGGTTTGACAAGACCGGCGTCTGCACCGATTATTT







CAGCGTGCAAGGACTGAACCTCATTTTCCAGAACGCTAGGAAGAGGTATATCGGCGTGCAGACCAAGG







TGACCAATAGAAACGAAAAGAGGCACAAAAAGCTGAAGAGGATCAACGCCAAGAGAATCGCTGAAGGA







CTGCCCGAGCTGACCTCCGACGAGCCCGAGAGCGCTCTGGATGAAACCGGCCATCTGATCGACCCTCC







CGGACTGAACACAAACATCTACTGCTACCAGCAAGTGAGCCCTAAGCCTCTGGCTCTCAGCGAGGTGA







ATCAGCTGCCCACCGCCTACGCTGGATACAGCACCTCCGGAGATGATCCCATCCAGCCCATGGTGACC







AAAGATAGACTGAGCATCTCCAAAGGCCAGCCCGGATATATCCCCGAGCACCAGAGGGCTCTGCTGAG







CCAAAAGAAGCATAGAAGGATGAGAGGCTACGGACTGAAGGCTAGGGCTCTGCTCGTGATCGTGAGGA







TTCAAGATGACTGGGCCGTCATCGATCTGAGGTCTCTGCTGAGGAACGCTTACTGGAGGAGGATCGTC







CAGACAAAGGAGCCCTCCACAATCACCAAGCTGCTCAAGCTCGTGACCGGCGATCCCGTGCTGGACGC







CACCAGAATGGTCGCCACCTTCACCTATAAACCCGGAATCGTGCAAGTGAGGAGCGCTAAATGTCTGA







AGAACAAGCAAGGCAGCAAGCTGTTCAGCGAAAGGTATCTGAACGAAACCGTGAGCGTGACCAGCATT







GCCCTCGGCTCCAACAATCTGGTCGCTGTGGCCACCTACAGACTGGTCAACGGAAATACCCCCGAACT







GCTGCAGAGGTTTACACTCCCTAGCCATCTGGTGAAGGATTTCGAGAGGTACAAACAAGCTCACGATA







CACTGGAGGACTCCATTCAGAAGACCGCCGTGGCTTCTCTGCCCCAAGGCCAGCAAACCGAGATTAGA







ATGTGGTCCATGTACGGCTTTAGAGAGGCCCAAGAGAGGGTCTGTCAAGAGCTGGGACTGGCCGACGG







ATCCATCCCTTGGAATGTGATGACCGCCACATCCACCATTCTGACAGATCTCTTTCTGGCCAGAGGAG







GAGACCCCAAGAAGTGCATGTTCACCAGCGAGCCCAAGAAGAAGAAGAACTCCAAGCAAGTGCTCTAT







AAGATTAGAGATAGAGCTTGGGCCAAGATGTACAGAACACTGCTGTCCAAAGAGACCAGAGAGGCTTG







GAATAAAGCTCTGTGGGGACTGAAAAGGGGCAGCCCCGACTATGCCAGACTGTCCAAGAGGAAGGAAG







AGCTGGCTAGAAGATGCGTCAACTACACCATCTCCACCGCCGAGAAGAGGGCCCAGTGTGGAAGGACC







ATTGTGGCCCTCGAAGATCTGAACATCGGCTTCTTCCACGGCAGAGGAAAACAAGAGCCCGGATGGGT







GGGACTGTTCACAAGAAAGAAGGAGAACAGATGGCTCATGCAAGCCCTCCACAAGGCTTTTCTGGAGC







TGGCTCATCATAGAGGCTACCACGTCATCGAAGTCAACCCCGCCTATACCTCCCAGACATGCCCCGTG







TGTAGACATTGCGACCCCGACAATAGAGACCAGCATAACAGAGAGGCCTTCCACTGTATCGGATGTGG







CTTCAGAGGCAACGCTGACCTCGACGTGGCCACCCACAACATTGCTATGGTGGCCATCACCGGCGAAT







CCCTCAAAAGGGCCAGAGGCTCCGTGGCTTCCAAGACACCTCAACCTCTGGCCGCCGAGGGCAGTGGA







GAGGGCAGAGGAAGTCTGCTAACATGCGGTGACGTCGAGGAGAATCCTGGCCCAGCCACCATGGCTTC







AAACTTTACTCAGTTCGTGCTCGTGGACAATGGTGGGACAGGGGATGTGACAGTGGCTCCTTCTAATT







TCGCTAATGGGGTGGCAGAGTGGATCAGCTCCAACTCACGGAGCCAGGCCTACAAGGTGACATGCAGC







GTCAGGCAGTCTAGTGCCCAGAAGAGAAAGTATACCATCAAGGTGGAGGTCCCCAAAGTGGCTACCCA







GACAGTGGGCGGAGTCGAACTGCCTGTCGCCGCTTGGAGGTCCTACCTGAACATGGAGCTCACTATCC







CAATTTTCGCTACCAATTCTGACTGTGAACTCATCGTGAAGGCAATGCAGGGGCTCCTCAAAGACGGT







AATCCTATCCCTTCCGCCATCGCCGCTAACTCAGGTATCTACAGCGCTGGAGGAGGTGGAAGCGGAGG







AGGAGGAAGCGGAGGAGGAGGTAGCGGACCTAAGAAAAAGAGGAAGGTGGCGGCCGCTGGATCCCCTT







CAGGGCAGATCAGCAACCAGGCCCTGGCTCTGGCCCCTAGCTCCGCTCCAGTGCTGGCCCAGACTATG







GTGCCCTCTAGTGCTATGGTGCCTCTGGCCCAGCCACCTGCTCCAGCCCCTGTGCTGACCCCAGGACC







ACCCCAGTCACTGAGCGCTCCAGTGCCCAAGTCTACACAGGCCGGCGAGGGGACTCTGAGTGAAGCTC







TGCTGCACCTGCAGTTCGACGCTGATGAGGACCTGGGAGCTCTGCTGGGGAACAGCACCGATCCCGGA







GTGTTCACAGATCTGGCCTCCGTGGACAACTCTGAGTTTCAGCAGCTGCTGAATCAGGGCGTGTCCAT







GTCTCATAGTACAGCCGAACCAATGCTGATGGAGTACCCCGAAGCCATTACCCGGCTGGTGACCGGCA







GCCAGCGGCCCCCCGACCCCGCTCCAACTCCCCTGGGAACCAGCGGCCTGCCTAATGGGCTGTCCGGA







GATGAAGACTTCTCAAGCATCGCTGATATGGACTTTAGTGCCCTGCTGTCACAGATTTCCTCTAGTGG







GCAGGGAGGAGGTGGAAGCGGCTTCAGCGTGGACACCAGTGCCCTGCTGGACCTGTTCAGCCCCTCGG







TGACCGTGCCCGACATGAGCCTGCCTGACCTTGACAGCAGCCTGGCCAGTATCCAAGAGCTCCTGTCT







CCCCAGGAGCCCCCCAGGCCTCCCGAGGCAGAGAACAGCAGCCCGGATTCAGGGAAGCAGCTGGTGCA







CTACACAGCGCAGCCGCTGTTCCTGCTGGACCCCGGCTCCGTGGACACCGGGAGCAACGACCTGCCGG







TGCTGTTTGAGCTGGGAGAGGGCTCCTACTTCTCCGAAGGGGACGGCTTCGCCGAGGACCCCACCATC







TCCCTGCTGACAGGCTCGGAGCCTCCCAAAGCCAAGGACCCCACTGTCTCCTGACCTCGAGCAATAAA







GAATCGTTTGTGTTATGTTTCAACGTGTTTATTTTTCAATTGCAGCGGACCTAGGGATAACAGGGTAA






TGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTG





GAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTT






GGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTA







TTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGGCCAACATGAGGATCACCCATGTCTGCAG








embedded image






embedded image






GCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCG









AGCGAGCGCGCAGCTGCCTGCAGG
GGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATT






TCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTG





GTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCC





TTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCC





GATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCA





TCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTT





CCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTT





CGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACG





TTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACA





CCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTG





TGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAG





GGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGG





CACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATC





CGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAA





CATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC





GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCA





ACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTT





CTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTA





TTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAA





GAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATC





GGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTG





GGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAA





CAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGG





ATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGA





TAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCT





CCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCT





GAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGAT





TGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCA





AAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAA





RightITR = first underlined and bold sequence


CBh = first underlined sequence


dCasΦ1 = first bold sequence


P2A = second underlined sequence


MPH = second bold sequence


FpA = third underlined sequence


U6 = third bold sequence


LeftITR = second underlined and bold sequence









OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Claims
  • 1. A method for treating a mammal having a polycystic kidney disease (PKD), wherein said method comprises administering to said mammal nucleic acid encoding a polycystin-1 (PC-1) polypeptide or a variant of said PC-1 polypeptide, wherein said PC-1 polypeptide or said variant is expressed by kidney cells within said mammal.
  • 2. The method of claim 1, wherein said nucleic acid encoding said PC-1 polypeptide or said variant is administered to said mammal in the form of a viral vector.
  • 3. The method of claim 2, wherein said viral vector is a helper-dependent adenovirus (HDAd) vector.
  • 4. The method of claim 1, wherein said nucleic acid encoding said PC-1 polypeptide or said variant is operably linked to a promoter sequence.
  • 5. The method of claim 4, wherein said promoter sequence is selected from the group consisting of a human elongation factor 1α (EF1α) promoter sequence, a chicken β-actin hybrid (CBh) promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a cytomegalovirus (CMV) promoter sequence, a Rous sarcoma virus (RSV) promoter sequence, an aquaporin 2 (AQP2) promoter sequence, a gamma-glutamyltransferase 1 (Ggt1) promoter sequence, and a Ksp-cadherin promoter sequence.
  • 6. A method for treating a mammal having a polycystic kidney disease (PKD), wherein said method comprises administering to said mammal nucleic acid encoding a polycystin-2 (PC-2) polypeptide or a variant of said PC-2 polypeptide, wherein said PC-2 polypeptide or said variant is expressed by kidney cells within said mammal.
  • 7. The method of claim 6, wherein said nucleic acid encoding said PC-2 polypeptide or said variant is administered to said mammal in the form of a viral vector.
  • 8. The method of claim 7, wherein said viral vector is an adenovirus-associated virus (AAV) vector.
  • 9. The method of claim 6, wherein said nucleic acid encoding said PC-2 polypeptide or said variant is operably linked to a promoter sequence.
  • 10. The method of claim 9, wherein said promoter sequence is selected from the group consisting of a EF1α promoter sequence, a CBh promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a CMV promoter sequence, a RSV promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, and a Ksp-cadherin promoter sequence.
  • 11. A method for treating a mammal having a polycystic kidney disease (PKD), wherein said method comprises administering to said mammal: (a) nucleic acid encoding a PC-1 polypeptide or a variant of said PC-1 polypeptide, wherein said PC-1 polypeptide or said variant is expressed by kidney cells within said mammal; and(b) nucleic acid encoding a PC-2 polypeptide or a variant of said PC-2 polypeptide, wherein said PC-2 polypeptide or said variant is expressed by kidney cells within said mammal.
  • 12-19. (canceled)
  • 20. The method of claim 11, wherein said nucleic acid encoding said PC-1 polypeptide or said variant and said nucleic acid encoding said PC-2 polypeptide or said variant are administered to said mammal in the form of a viral vector.
  • 21. The method of claim 20, wherein said viral vector is a HDAd vector.
  • 22. The method of claim 20, wherein said nucleic acid encoding said PC-1 polypeptide or said variant is operably linked to a first promoter sequence, and wherein said nucleic acid encoding said PC-2 polypeptide or said variant is operably linked to a second promoter sequence.
  • 23. The method of claim 22, wherein said first promoter sequence and said second promoter sequence are each independently selected from the group consisting of a EF1α promoter sequence, a CBh promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a CMV promoter sequence, a RSV promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, and a Ksp-cadherin promoter sequence.
  • 24. The method of claim 1, wherein said method comprises identifying said mammal as being in need of a treatment for said PKD.
  • 25. The method of claim 1, wherein said mammal is a human.
  • 26. The method of claim 1, wherein PKD is an autosomal dominant PKD (ADPKD).
  • 27. The method of claim 1, wherein said method further comprises, prior to said administering said nucleic acid, administering a lipopolysaccharides (LPS) to said mammal.
  • 28. (canceled)
  • 29. (canceled)
  • 30. A method for treating a mammal having a PKD, wherein said method comprises administering to said mammal: (a) nucleic acid encoding a fusion polypeptide including a deactivated Cas (dCas) polypeptide and a transcriptional activator polypeptide;(b) nucleic acid encoding a helper activator polypeptide; and(c) nucleic acid encoding a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind said helper activator polypeptide.
  • 31-48. (canceled)
  • 49. A method for delivering nucleic acid to a cell within a mammal, wherein said method comprises: (a) administering a proteinuria-inducing agent to said mammal; and(b) administering said nucleic acid to said mammal.
  • 50-60. (canceled)
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Patent Application Ser. No. 63/137,629, filed on Jan. 14, 2021, and U.S. Patent Application Ser. No. 63/221,196, filed on Jul. 13, 2021. The disclosures of the prior applications are considered part of (and are incorporated by reference in) the disclosure of this application.

STATEMENT REGARDING FEDERAL FUNDING

This invention was made with government support under DK090728 and DK123858 awarded by the National Institutes of Health. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2022/012461 1/14/2022 WO
Provisional Applications (2)
Number Date Country
63221196 Jul 2021 US
63137629 Jan 2021 US