This application claims priority of European Patent Application number EP15203223.1 which was filed on Dec. 30, 2015 and the contents of which are incorporated herein by reference.
The present invention concerns the area of optical instrument making and can be used for testing optical systems and samples, including those having a high level of accuracy of correction of aberrations and errors, with deformations of wave front less than 1/90 wavelength, in particular the present invention is related with the two-channel point-diffraction interferometer for testing the optical systems or optical elements/samples.
The document KR 20050102264 A (KOREA ELECTRO TECH RES INST) 26.10.2005 describes the interferometer intended for testing optical surfaces and optical systems. The interferometer comprises: laser; elements of an objective of the illuminating system; inclined flat mirror, in whose reflection coating there is a pinhole aperture, whose diameter is comparable with the wavelength of radiation passing through the interferometer; tested optical element; autocollimating illuminating optical system, whose focus coincides with the pinhole aperture of the flat mirror, and after an objective of a collimator, towards to it, the objective of the second collimator is disposed, in whose focal plane an autocollimating flat mirror is disposed; an autocollimating flat mirror is fixed on the holder as a piezo-element, to whose electrodes the control electronic block is connected, the voltage from which provides reciprocating movement of a flat mirror along the optical axis; further there are established an objective, Bertran lens, projection objective of the observing system for matching the scale of the interference picture. Estonian patent No. 05614 (P200800069, 16.08.2010) describes the previous solution of the inventors of the present invention and is incorporated here by reference.
The aim of the present invention is to overcome disadvantages of the previous solution and to propose the improved interferometer to allow the light of two channels—working channel and reference channel—to be focused absolutely independently to pinholes on plate with pinholes due to flexibility of single-mode optical fibres whereas independence of focusing light of two channels improves and contributes to stability and low vibration sensitivity of the whole device.
The further advantage is that the focusing light of channels is performed strictly along x, y, z directions due to possibility of using linear stages to move objectives in contrary to the previously patented scheme where focusing only in z direction is strict, but no possibility to keep strictly x, y directions because of using tilting mirrors. In the patented scheme it is principally impossible to attain the same best focus as in the new scheme. This advantage helps attain the highest possible s/n ratio for the fringe pattern especially during testing glass or plastic uncoated mirrors.
Yet another advantage is that the excellent stability of the whole point-diffraction interferometer is achieved easier due to short optical path lengths of two channels and possibility to mount firmly objectives on one small plate which can be made necessarily thick. This helps use the point-diffraction interferometer in any orientation keeping the light of two channels best focused to corresponding pinholes.
The further advantage is that by using pinhole plate with two pinholes helps exclude mutual influence of the diffracted fields of the working and reference channels. Light of each channel is focused to its own pinhole provided that the offset between pinholes exceeds the field of view of the imaging objective. In this case the imaging objective is focused to the pinhole to which the light of reference channel is focused and the diffracted light from the pinhole to which the light of working channel is focused passes beyond the field of view of the imaging objective. Therefore the image of the fringe pattern can be obtained without the imposition of interference with stray light emerging from the pinhole to which the light of working channel is focused. This is a crucial advantage of this scheme over all existing schemes of point-diffraction interferometers providing achievement of the best possible accuracy.
The interferometer disclosed in present patent application is intended for precise testing topography of optical surfaces and wave fronts of optical systems without necessity of a reference surface, reference part, or any other reference artificial base.
The present invention is described in details in the following description with references to the enclosed drawings where
A two-channel point-diffraction interferometer consists of the following details and elements:
A frame and housing, a laser source (1), a Faraday isolator (2), a right angle prism (3), a right angle prism (4), a beam splitter (5), an unit for adjusting two angles θx, θy (6), a collimator (7), a single-mode optical fibre keeping polarization of light unchanged (8), a working collimator (9), a plate (λ/4) (10), an working channel objective (11), an attenuating stop (12), a first piezo shifter (13), a right angle prism (14), a second piezo shifter (15), an unit for adjusting two angles θx, θy (16), a second collimator (17), a single-mode optical fibre keeping polarization of light unchanged (18), a reference collimator (19), a plate (λ/4) (20), an reference channel objective (21), a plate with pinholes (22), a test part (23), an imaging objective (24), a right angle prism (25), a ZOOM system (26), a CCD camera (27), and a computer (28) (see
The working principle of two-channel point-diffraction interferometer is as follows: linearly polarized light generated by laser (1) passes through Faraday isolator (2), which prevents laser (1) from retro reflections, then light is directed by prisms (3) and (4) to beam splitter (5), after which one half of light which is working channel, passes through a first collimator (7) which can be tilted by unit (6) under two angles θx, θy providing best coupling of light into single-mode fibre (8), then light passes through fibre (8) and through the working collimator (9) and the plate (λ/4) (10), which transforms linear polarized light into circularly polarized light, and then light is focused by working channel objective (11), which is put on linear stages in order be moved in x, y, z directions, to pinhole (29) on plate with pinholes (22) (see
There are two pinholes on plate with pinholes (22) placed along Y direction: pinhole (29) is for focusing light of working channel, pinhole (30) is for focusing light of reference channel (see
Another implementation of two-channel point-diffraction interferometer:
Differently from the prior art the working channel consists of an unit for adjusting two angles θx, θy (6), a first collimator (7), a single-mode optical fibre keeping polarization of light unchanged (8), a working collimator (9), a plate (λ/4) (10), a working channel objective (11), a plate with pinholes (31), a test part (23) (see
Advantages which the new scheme gives versus the scheme in the previous interferometer design (Patent No. EE 05614 incorporated here by reference) are:
There is in addition other advantage as the light of working channel in the new scheme is focused only by movement of working channel objective (11) which is very light versus the more heavy unit containing beam splitter and several parts of phase shifting device together with contrast regulating parts: this advantage provides better stability of light focusing of working channel which is very important during phase shifting measurements with high accuracy.
In addition the regulation of phase of reference channel in the new scheme is performed by movement of only very light small prism (14) versus moving sufficiently heavy parts of contrast regulation and light coupling device in the provisional application: this advantage allows application of very accurate phase shifter which can carry only small light loads but provides sub-nanometer accuracy of phase shifts.
Both above mentioned advantages are crucial for achievement of extremely high accuracy of measurements in phase shifting mode which is impossible in the scheme of previous technical solutions.
Number | Date | Country | Kind |
---|---|---|---|
15203223.1 | Dec 2015 | EP | regional |