TYPE I CRISPR-ASSOCIATED TRANSPOSASE SYSTEMS

Abstract
Systems and methods for targeted gene modification, targeted insertion, perturbation of gene transcripts, and nucleic acid editing. The novel nucleic acid targeting systems can comprise components of one or more transposases, one or more components of a CRISPR-Cas system, and a transposable element.
Description
SEQUENCE LISTING

This application contains a sequence listing filed in electronic form as an ASCII.txt file entitled BROD-5185WP_ST25.txt, created on Oct. 8, 2021 and having a size of 523,122 bytes (524 KB on disk). The content of the sequence listing is incorporated herein in its entirety.


TECHNICAL FIELD

The subject matter disclosed herein is generally directed to compositions and methods used for targeted gene modification, targeted insertion, perturbation of gene transcripts, and nucleic acid editing. Novel nucleic acid targeting systems comprise components of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) systems and transposable elements.


BACKGROUND

Recent advances in genome sequencing techniques and analysis methods have significantly accelerated the ability to catalog and map genetic factors associated with a diverse range of biological functions and diseases. Precise genome targeting technologies are needed to enable systematic reverse engineering of causal genetic variations by allowing selective perturbation of individual genetic elements, as well as to advance synthetic biology, biotechnological, and medical applications. Although genome-editing techniques such as designer zinc fingers, transcription activator-like effectors (TALEs), or homing meganucleases are available for producing targeted genome perturbations, there remains a need for new genome engineering technologies that employ novel strategies and molecular mechanisms and are affordable, easy to set up, scalable, and amenable to targeting multiple positions within the eukaryotic genome. This would provide a major resource for new applications in genome engineering and biotechnology.


The CRISPR-Cas systems of bacterial and archaeal adaptive immunity show extreme diversity of protein composition, genomic loci architecture, and system function, and systems comprising CRISPR-like components are widespread and continue to be discovered. Novel multi-subunit effector complexes and single-subunit effector modules may be developed as powerful genome engineering tools.


Citation or identification of any document in this application is not an admission that such document is available as prior art to the present invention.


SUMMARY

In one embodiment, the present disclosure provides an engineered composition, the composition comprising: one or more CRISPR-associated Tn7 transposases or functional fragments thereof; one or more Type I-F Cas proteins; and a guide molecule capable of complexing with the one or more Type I-F Cas proteins and directing binding of the guide-Cas protein complex to a target polynucleotide.


In an embodiment, the one or more CRISPR-associated Tn7 transposases comprise one or more of TnsA, TnsB, TnsC, and TnsD. In an embodiment, the one or more Tn7 transposases comprises TnsA, TnsB, TnsC, and TnsD. In an embodiment, the one or more Type I-F Cas proteins comprise one or more of Cas5, Cas6, Cas7, and Cas 8. In an embodiment, the one or more Type I-F Cas proteins comprise Cas5, Cas6, and Cas7. In an embodiment, the one or more Type I-F Cas proteins comprise Cas6, Cas7, and Cas8. In an embodiment, the components of the systems are encoded by polynucleotides in Tables 7-45.


In an embodiment, the one or more Type I-F Cas proteins lack nuclease activity. In an embodiment, the composition further comprises a donor polynucleotide. In an embodiment, the donor polynucleotide is a heterologous donor polynucleotide. In an embodiment, the donor polynucleotide comprises a polynucleotide insert, a left element sequence, and a right element sequence.


In an embodiment, the donor polynucleotide introduces one or more mutations to the target polynucleotide, corrects a premature stop codon in the target polynucleotide, disrupts a splicing site, restores a splicing site, or a combination thereof. In an embodiment, the one or more mutations introduced by the donor polynucleotide comprises substitutions, deletions, insertions, or a combination thereof. In an embodiment, the one or more mutations causes a shift in an open reading frame on the target polynucleotide. In an embodiment, the donor polynucleotide is between 100 bases and 30 kb in length. In an embodiment, the composition further comprises a targeting moiety. In an embodiment, the composition comprises a plurality of guide molecules capable of directing binding of the guide-Cas protein complex to one or more target polynucleotides. In an embodiment, the target polynucleotide is in a eukaryotic cell.


In an embodiment, the present disclosure provides a composition comprising one or more polynucleotides encoding: one or more CRISPR-associated Tn7 transposases or functional fragments thereof, one or more Type I-F Cas proteins; and a guide molecule capable of complexing with the one or more Type I-F Cas proteins and directing binding of the guide-Cas protein complex to a target polynucleotide. In an embodiment, the composition further comprises a donor polynucleotide. In an embodiment, the donor polynucleotide comprises a polynucleotide insert, a left element sequence, and a right element sequence. In an embodiment, the one or more polynucleotides encode components (a)-(d) herein. In an embodiment, the one or more Type I-F Cas proteins comprises Cas5, Cas6, Cas7, and/or Cas 8. In an embodiment, the one or more Type I-F Cas proteins comprises Cas5, Cas6, and Cas7. In an embodiment, the one or more Type I-F Cas proteins comprises Cas6, Cas7, and Cas8. In an embodiment, the one or more polynucleotides are selected from Tables 7-45.


In one embodiment, the present disclosure provides a vector comprising the one or more polynucleotides herein. In one embodiment, the present disclosure provides an engineered cell comprising the system herein, or the vector herein. In an embodiment, the cell produces and/or secretes an endogenous or non-endogenous biological product or chemical compound. In an embodiment, the biological product is a protein or an RNA.


In an embodiment, the present disclosure provides a cell line comprising the engineered cell herein and progeny thereof. In an embodiment, the present disclosure provides a plant or animal comprising the engineered cell herein and progeny thereof. In another aspect, the present disclosure provides a composition comprising the engineered cell herein. In an embodiment, the composition is formulated for use as a therapeutic.


In one embodiment, the present disclosure provides a biological product or chemical compound produced by the engineered cell herein. In an embodiment, the present disclosure provides an engineered cell or progeny thereof, the cell being engineered using the composition herein. In an embodiment, the cell or progeny thereof is isolated. In an embodiment, the cell or progeny thereof is further used as a therapeutic. In an embodiment, the cell or progeny thereof is one from which a product is isolated.


In an embodiment, the present disclosure provides a product produced by the cell or progeny thereof herein. In an embodiment, the product is a protein or an RNA. In an embodiment, the protein comprises a mutation.


In another aspect, the present disclosure provides a pharmaceutical composition for treatment of a disease or disorder, comprising the cell or progeny thereof herein. In an embodiment, the treatment results in genetic changes in one or more cells. In an embodiment, the treatment results in correction of one or more defective genotypes. In an embodiment, the treatment results in improved phenotype. In an embodiment, the cell comprises a mutation in a protein expressed from a gene comprising the target sequence. In an embodiment, the cell comprises deletion of a genomic region comprising the target sequence. In an embodiment, the cell comprises integration of an exogenous sequence by homology-directed repair. In an embodiment, the cell comprises decreased transcription of a gene associated with the target sequence. In an embodiment, the cell comprises increased transcription of a gene associated with the target sequence. In an embodiment, the product is a mutated protein or product provided by a template.


In one embodiment, the present disclosure provides a method of inserting a donor polynucleotide into a target polynucleotide in a cell, the method comprises introducing to the cell: one or more CRISPR-associated Tn7 transposases or functional fragments thereof; one or more Type I-F Cas proteins; a guide molecule capable of complexing with the Type I-F Cas protein and directing binding of the guide-Cas protein complex to a target polynucleotide; and the donor polynucleotide.


In an embodiment, the donor polynucleotide: introduces one or more mutations to the target polynucleotide, corrects a premature stop codon in the target polynucleotide, disrupts a splicing site, restores a splicing site, or a combination thereof. In an embodiment, the one or more mutations introduced by the donor polynucleotide comprises substitutions, deletions, insertions, or a combination thereof. In an embodiment, the one or more mutations causes a shift in an open reading frame on the target polynucleotide. In an embodiment, the donor polynucleotide is between 100 bases and 30 kb in length. In an embodiment, one or more of components (a), (b), (c), and (d) is expressed from a nucleic acid operably linked to a regulatory sequence. In an embodiment, one or more of components (a), (b), (c), and (d) is introduced in a particle.


In an embodiment, the particle comprises a ribonucleoprotein (RNP). In an embodiment, the cell is a prokaryotic cell. In an embodiment, the cell is a eukaryotic cell. In an embodiment, the cell is a mammalian cell, a cell of a non-human primate, or a human cell. In an embodiment, the cell is a plant cell. In an embodiment, insertion of the donor polynucleotide into the target polynucleotide in the cell results in: a cell or population of cells comprising altered expression levels of one or more gene products; a cell or population of cells that produces and/or secrete an endogenous or non-endogenous biological product or chemical compound.


These and other aspects, objects, features, and advantages of the example embodiments will become apparent to those having ordinary skill in the art upon consideration of the following detailed description of illustrated example embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

An understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention may be utilized, and the accompanying drawings of which:



FIG. 1 shows transposition experiments using type 1-F genes tagged with a nuclear localization signal (NLS) along with donor and target plasmids transfected into HEK293 cells.





The FIGURES herein are for illustrative purposes only and are not necessarily drawn to scale.


DETAILED DESCRIPTION OF THE EXAMPLE EMBODIMENTS
General Definitions

Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. Definitions of common terms and techniques in molecular biology may be found in Molecular Cloning: A Laboratory Manual, 2nd edition (1989) (Sambrook, Fritsch, and Maniatis); Molecular Cloning: A Laboratory Manual, 4th edition (2012) (Green and Sambrook); Current Protocols in Molecular Biology (1987) (F. M. Ausubel et al. eds.); the series Methods in Enzymology (Academic Press, Inc.): PCR 2: A Practical Approach (1995) (M. J. MacPherson, B. D. Hames, and G. R. Taylor eds.): Antibodies, A Laboratory Manual (1988) (Harlow and Lane, eds.): Antibodies A Laboratory Manual, 2nd edition 2013 (E. A. Greenfield ed.); Animal Cell Culture (1987) (R. I. Freshney, ed.); Benjamin Lewin, Genes IX, published by Jones and Bartlet, 2008 (ISBN 0763752223); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, published by Blackwell Science Ltd., 1994 (ISBN 0632021829); Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 9780471185710); Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992); and Marten H. Hofker and Jan van Deursen, Transgenic Mouse Methods and Protocols, 2nd edition (2011).


As used herein, the singular forms “a”, “an”, and “the” include both singular and plural referents unless the context clearly dictates otherwise.


The term “optional” or “optionally” means that the subsequent described event, circumstance or substituent may or may not occur, and that the description includes instances where the event or circumstance occurs and instances where it does not.


The recitation of numerical ranges by endpoints includes all numbers and fractions subsumed within the respective ranges, as well as the recited endpoints.


The term “about” in relation to a reference numerical value and its grammatical equivalents as used herein can include the numerical value itself and a range of values plus or minus 10% from that numerical value. For example, the amount “about 10” includes 10 and any amounts from 9 to 11. For example, the term “about” in relation to a reference numerical value can also include a range of values plus or minus 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1% from that value.


As used herein, a “biological sample” may contain whole cells and/or live cells and/or cell debris. The biological sample may contain (or be derived from) a “bodily fluid”. The present invention encompasses embodiments wherein the bodily fluid is selected from amniotic fluid, aqueous humour, vitreous humour, bile, blood serum, breast milk, cerebrospinal fluid, cerumen (earwax), chyle, chyme, endolymph, perilymph, exudates, feces, female ejaculate, gastric acid, gastric juice, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, sebum (skin oil), semen, sputum, synovial fluid, sweat, tears, urine, vaginal secretion, vomit and mixtures of one or more thereof. Biological samples include cell cultures, bodily fluids, cell cultures from bodily fluids. Bodily fluids may be obtained from a mammal organism, for example by puncture, or other collecting or sampling procedures.


The terms “subject,” “individual,” and “patient” are used interchangeably herein to refer to a vertebrate, preferably a mammal, more preferably a human. Mammals include, but are not limited to, murines, simians, humans, farm animals, sport animals, and pets. Tissues, cells and their progeny of a biological entity obtained in vivo or cultured in vitro are also encompassed.


The term “exemplary” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the word exemplary is intended to present concepts in a concrete fashion.


A protein or nucleic acid derived from a species means that the protein or nucleic acid has a sequence identical to an endogenous protein or nucleic acid or a portion thereof in the species. The protein or nucleic acid derived from the species may be directly obtained from an organism of the species (e.g., by isolation), or may be produced, e.g., by recombination production or chemical synthesis.


Various embodiments are described hereinafter. It should be noted that the specific embodiments are not intended as an exhaustive description or as a limitation to the broader aspects discussed herein. One aspect described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced with any other embodiment(s). Reference throughout this specification to “one embodiment”, “an embodiment,” “an example embodiment,” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” or “an example embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to a person skilled in the art from this disclosure, in one or more embodiments. Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention. For example, in the appended claims, any of the claimed embodiments can be used in any combination.


All publications, published patent documents, and patent applications cited herein are hereby incorporated by reference to the same extent as though each individual publication, published patent document, or patent application was specifically and individually indicated as being incorporated by reference.


Overview

The present disclosure provides for engineered nucleic acid editing systems and methods for inserting a polynucleotide to a desired position in a target polynucleotide. The systems and methods may be used to insert one or more donor polynucleotides in a genome of a eukaryotic cell, e.g., a human cell.


In general, the systems comprise one or more transposases or functional fragments thereof, and one or more components of a sequence-specific nucleotide binding system, e.g., a Cas protein and a guide molecule. In an embodiment, the system further comprises one or more Cas-associated transposases, e.g., Cas-associated Tn7 transposases. In an embodiment, the systems comprise one or more Tn7 transposases or functional fragments thereof, and one or more Type I (e.g., Type I-F) Cas protein and a guide molecule capable of complexing with the Cas protein and directing binding of the guide-Cas protein complex to a target polynucleotide. In an embodiment, the systems further comprise one or more donor polynucleotides to be inserted to one or more positions in a target polynucleotide (e.g., a genome of a eukaryotic cell). In an embodiment the donor polynucleotide may be a heterologous donor polynucleotide.


In an embodiment, the present disclosure provides polynucleotides encoding such nucleic acid targeting systems, vector systems comprising one or more vectors comprising said polynucleotides, and one or more cells generated with said vector systems, as well as methods of using the systems and methods.


Systems and Compositions

In one embodiment, the present disclosure provides systems that comprise one or more transposases and nucleotide-binding molecules (e.g., nucleotide-binding proteins). The nucleotide binding proteins may be sequence-specific. The system may further comprise one or more transposon components. In an embodiment, the systems comprise one or more transposases associated with (e.g., linked to, bound to, or otherwise capable of forming a complex with) a sequence-specific nucleotide-binding system. In an embodiment, the one or more transposases, and the sequence-specific nucleotide-binding system are associated by co-regulation or expression. In other example embodiments, the transposase(s) and sequence-specific nucleotide binding system are associated by the ability of the sequence-specific nucleotide-binding domain to direct or recruit the transposase(s) to an insertion site where the transposase(s) direct insertion of a donor polynucleotide into a target polynucleotide sequence.


A sequence-specific nucleotide-binding system may be a sequence-specific DNA-binding protein, or functional fragment thereof, and/or sequence-specific RNA-binding protein or functional fragment thereof. In an embodiment, a sequence-specific nucleotide-binding component may be a CRISPR-Cas system, a transcription activator-like effector nuclease, a Zn finger nuclease, a meganuclease, a functional fragment, a variant thereof, of any combination thereof. Accordingly, the system may also be considered to comprise a nucleotide binding component and a transposase. For ease of reference, further example embodiments will be discussed in the context of example Cas-associated transposase systems.


In an embodiment, the system may be an engineered system, the system comprising one or more CRISPR-associated Tn7 transposases or functional fragments thereof; one or more Cas proteins; and a guide molecule capable of complexing with the Cas protein and directing binding of the guide-Cas protein complex to a target polynucleotide.


A transposase or transposase complex may interact with a Cas protein herein. In an embodiment, the transposase or transposase complex interacts with the N-terminus of the Cas protein. In an example embodiment, the transposase or transposase complex interacts with the C-terminus of the Cas protein. In an example embodiment, the transposase or transposase complex interacts with a fragment of the Cas protein between its N-terminus and C-terminus.


Heterologous Components

In an embodiment, the components in the system may be heterologous, i.e., they do not naturally occur together in the same cell or organism.


In an embodiment, the system comprises one or more heterologous guide molecules. The heterologous guide molecules may not naturally occur in the same cell or organism with a Cas protein, transposase, or donor polynucleotide in the system. Such a guide molecule may comprise a heterologous guide sequence, which does not naturally occur in the same molecule with the rest of the guide molecule. In an embodiment, the guide molecule may not occur in nature.


In an embodiment, the system may comprise one or more heterologous donor polynucleotides. The heterologous donor polynucleotides may not naturally occur in the same cell or organism with a Cas protein, transposase, or guide molecule in the system. Such donor polynucleotides may comprise a heterologous insertion sequence, which does not naturally occur in the same molecule with the rest of the guide molecule. In an embodiment, the heterologous donor polynucleotides may not occur in nature.


Alternatively or additionally, the system comprises heterologous Cas proteins and/or transposases.


Transposons and Transposases

The systems disclosed herein may comprise one or more components of a transposon and/or one or more transposases. The transposases in the systems herein may be CRISPR-associated transposases (also used interchangeably with Cas-associated transposases, CRISPR-associated transposase proteins herein, also referred to as CAST) or functional fragments thereof. CRISPR-associated transposases may include any transposases that can be directed to, or recruited to, a region of a target polynucleotide by sequence-specific binding of a CRISPR-Cas complex. CRISPR-associated transposases may include any transposases that associate (e.g., form a complex) with one or more components in a CRISPR-Cas system, e.g., Cas protein, guide molecule etc.). In an embodiment, CRISPR-associated transposases may be fused or tethered (e.g., by a linker) to one or more components in a CRISPR-Cas system, e.g., Cas protein, guide molecule etc.).


The term “transposon,” as used herein, refers to a polynucleotide (or nucleic acid segment), which may be recognized by a transposase or an integrase enzyme and which is a component of a functional nucleic acid-protein complex (e.g., a transpososome, or transposon complex) capable of transposition. The term “transposase” as used herein refers to an enzyme, which is a component of a functional nucleic acid-protein complex capable of transposition and which mediates transposition. The transposase may comprise a single protein or comprise multiple protein sub-units. A transposase may be an enzyme capable of forming a functional complex with a transposon end or transposon end sequences. The term “transposase” may also refer In an embodiment to integrases. The expression “transposition reaction” used herein refers to a reaction wherein a transposase inserts a donor polynucleotide sequence in or adjacent to an insertion site on a target polynucleotide. The insertion site may contain a sequence or secondary structure recognized by the transposase and/or an insertion motif sequence where the transposase cuts or creates staggered breaks in the target polynucleotide into which the donor polynucleotide sequence may be inserted. The term “transposase” may refer to a full-length transposase protein or a fragment of a full-length transposase that has transposase activity. Exemplary components in a transposition reaction include a transposon, comprising the donor polynucleotide sequence to be inserted, and a transposase or an integrase enzyme. The term “transposon end sequence” as used herein refers to the nucleotide sequences at the distal ends of a transposon. The transposon end sequences may be responsible for identifying the donor polynucleotide for transposition. The transposon end sequences may be the DNA sequences the transpose enzyme uses in order to form transpososome complex and to perform a transposition reaction.


Transposons employ a variety of regulatory mechanisms to maintain transposition at a low frequency and sometimes coordinate transposition with various cell processes. Some prokaryotic transposons can also mobilize functions that benefit the host or otherwise help maintain the element.


In an embodiment, the system comprises one or more Tn7 transposases. In an embodiment, three transposon-encoded proteins form the core transposition machinery of Tn7: a heteromeric transposase (TnsA and TnsB) and a regulator protein (TnsC). In addition to the core TnsABC transposition proteins, Tn7 elements encode dedicated target site-selection proteins, TnsD and TnsE. In conjunction with TnsABC, the sequence-specific DNA-binding protein TnsD directs transposition into a conserved site referred to as the “Tn7 attachment site,” attTn7. TnsD is a member of a large family of proteins that also includes TniQ, a protein found in other types of bacterial transposons. TniQ has been shown to target transposition into resolution sites of plasmids. As used herein, a TniQ transposase may be a TnsD transposase.


Examples of Tn7 transposases include TnsA, TnsB, TnsC, TniQ, TnsD, and TnsE. In an embodiment, the system comprises TnsA, TnsB, TnsC, and/or TniQ. In an embodiment, the system comprises TnsA, TnsB, TnsC, and/or TnsD (e.g., TnsD2). In an embodiment, the system comprises TnsA, TnsB, TnsC, and TniQ (e.g., TniQ2). In an embodiment, the system comprises TnsA, TnsB, TnsC, and TnsD (e.g., TnsD2). In an embodiment, the system comprises two or more TnsA. In an embodiment, the system comprises two or more TnsA (e.g., 2 TnsA). In an embodiment, the system comprises two or more TnsB (e.g., 2 TnsB). In an embodiment, the system comprises two or more TnsC (e.g., 2 TnsC). In an embodiment, the system comprises two or more TnsD (e.g., 2 TnsDs). In an embodiment, the system comprises two or more TniQ (e.g., 2 TniQs). The TniQ or TnsD may comprise a DNA-binding domain. The DNA-binding domain may be at the C terminus of the TniQ or TnsD. In an embodiment, the DNA-binding domain may be at the N terminus, or between the N- and C-termini of the TniQ or TnsD. In an embodiment, the system comprises TnsA, TnsB, TnsC, and only one TniQ or TnsD, e.g., such TniQ or TnsD may comprise a DNA-binding domain. In a particular example, the system comprises TnsA, TnsB, TnsC, and TnsD1. In another example, the system comprises TnsA, TnsB, TnsC, and TnsD2. In another example, the system comprises TnsA, TnsB, TnsC, TnsD1, and TnsD2. Two or more of the components in the system may be comprised in a single protein (e.g., fusion protein). For example, TnsA and TnsB may be comprised in a single protein. Examples of Tn7 transposases further include those described in Peters J E and Craig N L, Tn7: smarter than we thought, Nat Rev Mol Cell Biol. 2001 November; 2(11):806-14, which is incorporated by reference herein in its entirety.


The term “Tn7 transposon” or “Tn7 transposase” herein also encompass “Tn7-like transposon” or “Tn7-like transposase.”


In an embodiment, the system comprises one or more polynucleotides encoding one or more of the Tn7 transposases. In an embodiment, the system comprises one or more polynucleotides encoding TnsA. In an embodiment, the system comprises one or more polynucleotides encoding TnsB. In an embodiment, the system comprises one or more polynucleotides encoding TnsC. In an embodiment, the system comprises one or more polynucleotides encoding TnsD. In an embodiment, the system comprises one or more polynucleotides encoding TnsE. In an embodiment, the system comprises one or more polynucleotides encoding TniQ. The system may comprise two or more polynucleotides encoding the same type of transposase. In one example, the system may comprise two or more polynucleotides encoding TnsA (the same or different TnsA). In one example, the system may comprise two or more polynucleotides encoding TnsB (the same or different TnsB). In one example, the system may comprise two or more polynucleotides encoding TnsC (the same or different TnsC). In one example, the system may comprise two or more polynucleotides encoding TnsD (the same or different TnsD). In one example, the system may comprise two or more polynucleotides encoding TnsE (the same or different TnsE). In one example, the system may comprise two or more polynucleotides encoding TniQ (the same or different TniQ).


As used herein, a right end sequence element or a left end sequence element are made in reference to an example Tn7 transposon. The general structure of the left end (LE) and right end (RE) sequence elements of canonical Tn7 is established. Tn7 ends comprise a series of 22-bp TnsB-binding sites. Flanking the most distal TnsB-binding sites is an 8-bp terminal sequence ending with 5′-TGT-3′/3′-ACA-5′. The right end of Tn7 contains four overlapping TnsB-binding sites in the ˜90-bp right end element. The left end contains three TnsB-binding sites dispersed in the ˜150-bp left end of the element. The number and distribution of TnsB-binding sites can vary among Tn7 elements. End sequences of Tn7-related elements can be determined by identifying the directly repeated 5-bp target site duplication, the terminal 8-bp sequence, and 22-bp TnsB-binding sites (Peters J E et al., 2017). Example Tn7 elements, including right end sequence element and left end sequence element include those described in Parks A R, Plasmid, 2009 January; 61(1):1-14.


The transposases herein (e.g., Tn7) include the wild type transposases, variants thereof, functional fragments thereof, and any combination thereof.


Donor Polynucleotides

The systems disclosed herein may comprise one or more donor polynucleotides (e.g., for insertion into the target polynucleotide). A donor polynucleotide may be an equivalent of a transposable element that can be inserted or integrated into a target site. For example, the donor polynucleotide may comprise a polynucleotide to be inserted, a left element sequence, and a right element sequence. The donor polynucleotide may be or comprise one or more components of a transposon. A donor polynucleotide may be any type of polynucleotide, including, but not limited to, a gene, a gene fragment, a non-coding polynucleotide, a regulatory polynucleotide, a synthetic polynucleotide, etc.


A target polynucleotide may comprise a PAM sequence. The donor polynucleotides may be inserted upstream or downstream of the PAM sequence of a target polynucleotide. For CRISPR-associated transposases, the donor polynucleotide may be inserted at a position from 10 bases to 200 bases, e.g., from 20 bases to 150 bases, from 30 bases to 100 bases, from 45 bases to 70 bases, from 45 bases to 60 bases, from 55 bases to 70 bases, from 49 bases to 56 bases or from 60 bases to 66 bases, from a PAM sequence on the target polynucleotide. In an embodiment, the insertion is at a position upstream of the PAM sequence. In an embodiment, the insertion is at a position downstream of the PAM sequence. In an embodiment, the insertion is at a position from 49 to 56 bases or base pairs downstream from a PAM sequence. In an embodiment, the insertion is at a position from 60 to 66 bases or base pairs downstream from a PAM sequence.


The donor polynucleotide may be used for editing the target polynucleotide. In an embodiment, the donor polynucleotide comprises one or more mutations to be introduced into the target polynucleotide. Examples of such mutations include substitutions, deletions, insertions, or a combination thereof. The mutations may cause a shift in an open reading frame on the target polynucleotide. In an embodiment, the donor polynucleotide alters a stop codon in the target polynucleotide. For example, the donor polynucleotide may correct a premature stop codon. The correction may be achieved by deleting the stop codon or introduces one or more mutations to the stop codon. In other example embodiments, the donor polynucleotide addresses loss of function mutations, deletions, or translocations that may occur, for example, in certain disease contexts by inserting or restoring a functional copy of a gene, or functional fragment thereof, or a functional regulatory sequence or functional fragment of a regulatory sequence. A functional fragment refers to less than the entire copy of a gene by providing sufficient nucleotide sequence to restore the functionality of a wild type gene or non-coding regulatory sequence (e.g., sequences encoding long, non-coding RNA). In an embodiment, the systems disclosed herein may be used to replace a single allele of a defective gene or defective fragment thereof. In another example embodiment, the systems disclosed herein may be used to replace both alleles of a defective gene or defective gene fragment. A “defective gene” or “defective gene fragment” is a gene or portion of a gene that when expressed fails to generate a functioning protein or non-coding RNA with functionality of the corresponding wild-type gene. In an embodiment, these defective genes may be associated with one or more disease phenotypes. In an embodiment, the defective gene or gene fragment is not replaced but the systems described herein are used to insert donor polynucleotides that encode gene or gene fragments that compensate for or override defective gene expression such that cell phenotypes associated with defective gene expression are eliminated or changed to a different or desired cellular phenotype. Thus, insertion of the donor polynucleotides may alter expression of levels of one or more gene products or may allow for production and or secretion of an endogenous or non-endogenous biological product or chemical compound when inserted into the target polynucleotide in a cell or population of cells.


In an embodiment of the invention, the donor may include, but not be limited to, genes or gene fragments, encoding proteins or RNA transcripts to be expressed, regulatory elements, repair templates, and the like. According to the invention, the donor polynucleotides may comprise left end and right end sequence elements that function with transposition components that mediate insertion.


In embodiments, the donor polynucleotide manipulates a splicing site on the target polynucleotide. In an embodiment, the donor polynucleotide disrupts a splicing site. The disruption may be achieved by inserting the polynucleotide to a splicing site and/or introducing one or more mutations to the splicing site. In an example embodiment, the donor polynucleotide may restore a splicing site. For example, the polynucleotide may comprise a splicing site sequence.


The donor polynucleotide to be inserted may have a size from 10 bases to 50 kb in length, e.g., from 50 to 40 kb, from 100 and 30 kb, from 100 bases to 300 bases, from 200 bases to 400 bases, from 300 bases to 500 bases, from 400 bases to 600 bases, from 500 bases to 700 bases, from 600 bases to 800 bases, from 700 bases to 900 bases, from 800 bases to 1000 bases, from 900 bases to from 1100 bases, from 1000 bases to 1200 bases, from 1100 bases to 1300 bases, from 1200 bases to 1400 bases, from 1300 bases to 1500 bases, from 1400 bases to 1600 bases, from 1500 bases to 1700 bases, from 600 bases to 1800 bases, from 1700 bases to 1900 bases, from 1800 bases to 2000 bases, from 1900 bases to 2100 bases, from 2000 bases to 2200 bases, from 2100 bases to 2300 bases, from 2200 bases to 2400 bases, from 2300 bases to 2500 bases, from 2400 bases to 2600 bases, from 2500 bases to 2700 bases, from 2600 bases to 2800 bases, from 2700 bases to 2900 bases, or from 2800 bases to 3000 bases in length.


The components in the systems disclosed herein may comprise one or more mutations that alter their (e.g., the transposase(s)) binding affinity to the donor polynucleotide. In an embodiment, the mutations increase the binding affinity between the transposase(s) and the donor polynucleotide. In an example embodiment, the mutations decrease the binding affinity between the transposase(s) and the donor polynucleotide. The mutations may alter the activity of the Cas and/or transposase(s).


The insertion may occur at a position from a Cas binding site on a nucleic acid molecule. In an embodiment, the insertion may occur at a position on the 3′ side from a Cas binding site, e.g., at least 1 bp, at least 5 bp, at least 10 bp, at least 15 bp, at least 20 bp, at least 35 bp, at least 40 bp, at least 45 bp, at least 50 bp, at least 55 bp, at least 60 bp, at least 65 bp, at least 70 bp, at least 75 bp, at least 80 bp, at least 85 bp, at least 90 bp, at least 95 bp, or at least 100 bp on the 3′ side from a Cas binding site. In an embodiment, the insertion may occur at a position on the 5′ side from a Cas binding site, e.g., at least 1 bp, at least 5 bp, at least 10 bp, at least 15 bp, at least 20 bp, at least 35 bp, at least 40 bp, at least 45 bp, at least 50 bp, at least 55 bp, at least 60 bp, at least 65 bp, at least 70 bp, at least 75 bp, at least 80 bp, at least 85 bp, at least 90 bp, at least 95 bp, or at least 100 bp on the 5′ side from a Cas binding site. In a particular example, the insertion may occur 65 bp on the 3′ side from the Cas binding site.


In an embodiment, the donor polynucleotide is inserted to the target polynucleotide via a co-integrate mechanism. For example, the donor polynucleotide and the target polynucleotide may be nicked and fused. A duplicate of the fused donor polynucleotide and the target polynucleotide may be generated by a polymerase. In certain cases, the donor polynucleotide is inserted in the target polynucleotide via a cut-and-paste mechanism. For example, the donor polynucleotide may be comprised in a nucleic acid molecule and may be cut out and inserted at another position in the nucleic acid molecule.


The target polynucleotide may be a polynucleotide in a eukaryotic cell. For example, the target polynucleotide may be a polynucleotide in the genome of a eukaryotic cell. The genome may be the nuclear genome, mitochondrial genome, or chloroplast genome.


CRISPR-Cas Systems

The systems herein may comprise one or more components of a CRISPR-Cas system. The one or more components of the CRISPR-Cas system may serve as the nucleotide-binding component in the systems. The nucleotide-binding molecule may be a Cas protein (used interchangeably with CRISPR protein, CRISPR enzyme, Cas effector, CRISPR-Cas protein, CRISPR-Cas enzyme), a fragment thereof, or a mutated form thereof. The Cas protein may have reduced or no nuclease activity. For example, the Cas protein may be an inactive or dead Cas protein (dCas). The dead Cas protein may comprise one or more mutations or truncations. In an embodiment, the DNA binding domain comprises one or more Class I (e.g., Type I, Type III, Type VI) or Class 2 (e.g., Type II, Type V, or Type VI) CRISPR-Cas proteins. In an embodiment, the sequence-specific nucleotide binding domains directs a transposon to a target site comprising a target sequence and the transposase directs insertion of a donor polynucleotide sequence at the target site. In an embodiment, the transposon component includes, associates with, or forms a complex with a CRISPR-Cas complex. In one example embodiment, the CRISPR-Cas component directs the transposon component and/or transposase(s) to a target insertion site where the transposon component directs insertion of the donor polynucleotide into a target nucleic acid sequence.


In general, a CRISPR-Cas or CRISPR system as used herein and in documents, such as International Patent Publication No. WO 2014/093622 (PCT/US2013/074667), refers collectively to transcripts and other elements involved in the expression of or directing the activity of CRISPR-associated (“Cas”) genes, including sequences encoding a Cas gene, a tracr (trans-activating CRISPR) sequence (e.g., tracrRNA or an active partial tracrRNA), a tracr-mate sequence (encompassing a “direct repeat” and a tracrRNA-processed partial direct repeat in the context of an endogenous CRISPR system), a guide sequence (also referred to as a “spacer” in the context of an endogenous CRISPR system), or “RNA(s)” as that term is herein used (e.g., RNA(s) to guide Cas, such as Cas9, e.g. CRISPR RNA and transactivating (tracr) RNA or a single guide RNA (sgRNA) (chimeric RNA)) or other sequences and transcripts from a CRISPR locus. In general, a CRISPR system is characterized by elements that promote the formation of a CRISPR complex at the site of a target sequence (also referred to as a protospacer in the context of an endogenous CRISPR system). See, e.g., Shmakov et al. (2015) “Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems,” Molecular Cell, DOI: dx.doi.org/10.1016/j.molcel.2015.10.008.


In an embodiment, a protospacer adjacent motif (PAM) or PAM-like motif directs binding of the effector protein complex as disclosed herein to the target locus of interest. In an embodiment, the PAM may be a 5′ PAM (i.e., located upstream of the 5′ end of the protospacer). In other embodiments, the PAM may be a 3′ PAM (i.e., located downstream of the 5′ end of the protospacer). The term “PAM” may be used interchangeably with the term “PFS” or “protospacer flanking site” or “protospacer flanking sequence.”


In a preferred embodiment, the CRISPR effector protein may recognize a 3′ PAM. In an embodiment, the CRISPR effector protein may recognize a 3′ PAM which is 5′H, wherein H is A, C or U.


In the context of formation of a CRISPR complex, “target sequence” refers to a sequence to which a guide sequence is designed to have complementarity, where hybridization between a target sequence and a guide sequence promotes the formation of a CRISPR complex. A target sequence may comprise RNA polynucleotides. The term “target RNA” refers to a RNA polynucleotide being or comprising the target sequence. In other words, the target RNA may be a RNA polynucleotide or a part of a RNA polynucleotide to which a part of the gRNA, i.e. the guide sequence, is designed to have complementarity and to which the effector function mediated by the complex comprising CRISPR effector protein and a gRNA is to be directed. In an embodiment, a target sequence is located in the nucleus or cytoplasm of a cell.


The CRISPR-Cas systems herein may comprise a Cas protein and a guide molecule. In an embodiment, the system comprises one or more Cas proteins. The Cas proteins may be Type 1 Cas proteins, e.g., Cas proteins of Type I CRISPR-Cas systems.


Examples of Cas proteins that may be used with the systems disclosed herein include Cas proteins of Class 1 and Class 2 CRISPR-Cas systems.


In an embodiment, the CRISPR-Cas system is a Class 1 CRISPR-Cas system, e.g., a Class 1 type I CRISPR-Cas system. In an embodiment, a Class I CRISPR-Cas system comprises Cascade (a multimeric complex consisting of three to five proteins that processes crRNA arrays), Cas3 (a protein with nuclease, helicase, and exonuclease activity that is responsible for degradation of the target DNA), and crRNA (stabilizes Cascade complex and directs Cascade and Cas3 to DNA target). A Class 1 CRISPR-Cas system may be of a subtype, e.g., Type I-A, Type I-B, Type I-C, Type I-D, Type I-E, Type I-F, Type I-U, Type III-A, Type III-B Type-III-C, Type-III-D, or Type-IV CRISPR-Cas system.


The Class 1 type I CRISPR Cas system may be used to catalyze RNA-guided integration of mobile genetic elements into a target nucleic acid (e.g., genomic DNA). For example, the systems herein may comprise a complex between Cascade and a transposon protein. At a given distance downstream of a target nucleic acid, a donor nucleic acid (e.g., DNA) may be inserted. The insertion may be in one of two possible orientations. The system may be used to integrate a nucleic acid sequence of desired length. In an embodiment, the type I CRISPR-Cas system is nuclease-deficient. In an embodiment, the type I CRISPR-Cas system is Type I-F CRISPR-Cas system.


A Class 1 type I-A CRISPR-Cas system may comprise Cas7 (Csa2), Cas8a1 (Csx13), Cas8a2 (Csx9), Cas5, Csa5, Cas6a, Cas3′ and/or a Cas3. A type I-B CRISPR-Cas system may comprise Cas6b, Cas8b (Csh1), Cas7 (Csh2) and/or Cas5. A type I-C CRISPR-Cas system may comprise Cas5d, Cas8c (Csd1), and/or Cas7 (Csd2). A type I-D CRISPR-Cas system may comprise Cas10d (Csc3), Csc2, Csc1, and/or Cas6d. A type I-E CRISPR-Cas system may comprise Cse1 (CasA), Cse2 (CasB), Cas7 (CasC), Cas5 (CasD) and/or Cas6e (CasE). A type I-F CRISPR-Cas system may comprise Cys1, Cys2, Cas7 (Cys3) and/or Cas6f (Csy4). An example type I-F CRISPR-Cas system may include a DNA-targeting complex Cascade (also known as Csy complex) which is encoded by three genes: cas6, cas7, and a natural cas8-cas5 fusion (hereafter referred to simply as cas8). The type I-F CRISPR-Cas system may further comprise a native CRISPR array, comprising four repeat and three spacer sequences, encodes distinct mature CRISPR RNAs (crRNAs), which are also referred to as guide RNAs.


A further example type 1-F CRISPR-Cas system may include a canonical subtype 1-F system comprising Cas1, Cas2, Cas3, Cas8f, Cas5f, Cas7f and Cas6f, wherein the cas5f and cas8f genes each are contained in their own respective open reading frame (Peters, J. et al. (2017), PNAS, E7358-E7366; doi/10.1073/pnas.1709035114). Type 1-F CRISPR-Cas system variants have been identified. For example, in Shewanella strain ANA 3 (Shewan3_3852 Shewan3_3854), the cas8f gene is fused to the cas5f1 gene followed downstream by the cas7f1 and cas6f genes (Makarova, K. et al. (2018), CRISPR J 1(5), 325-336). In Shewanella putrefaciens CN-32 (Sputcn32_1819 Sputcn32_1823), the type 1-F CRISPR-Cas is comprised of Cas1, Cas2, Cas3, Cas7f2, Cas5f2, and cas6f (Makarova, K. et al. (2018), CRISPR J 1(5), 325-336). Cas5/Cas8 fusion sequences as disclosed herein are provided in Tables 7-45.


In an embodiment, a Type I CRISPR-Cas system may comprise one or more: (a) a nucleotide sequence encoding a Cas7 (Csa2) polypeptide, a nucleotide sequence encoding a Cas8a1 (Csx13) polypeptide or a Cas8a2 (Csx9) polypeptide, a nucleotide sequence encoding a Cas5 polypeptide, a nucleotide sequence encoding a Csa5 polypeptide, a nucleotide sequence encoding a Cas6a polypeptide, a nucleotide sequence encoding a Cas3′ polypeptide, and a nucleotide sequence encoding a Cas3″ polypeptide (Type I-A); (b) a nucleotide sequence encoding a Cas6b polypeptide, a nucleotide sequence encoding a Cas8b (Csh1) polypeptide, a nucleotide sequence encoding a Cas7 (Csh2) polypeptide, a nucleotide sequence encoding a Cas5 polypeptide, a nucleotide sequence encoding a Cas3′ polypeptide, and a nucleotide sequence encoding a Cas3″ polypeptide (Type I-B); (c) a nucleotide sequence encoding a Cas5d polypeptide, a nucleotide sequence encoding a Cas8c (Csd1) polypeptide, a nucleotide sequence encoding a Cas7 (Csd2) polypeptide and a nucleotide sequence encoding a Cas3 polypeptide (Type I-C); (d) a nucleotide sequence encoding a Cas10d (Csc3) polypeptide, a nucleotide sequence encoding a Csc2 polypeptide, a nucleotide sequence encoding a Csc1 polypeptide, a nucleotide sequence encoding a Cas6d polypeptide, and a nucleotide sequence encoding a Cas3 polypeptide (Type I-D); (e) a nucleotide sequence encoding a Cse1 (CasA) polypeptide, a nucleotide sequence encoding a Cse2 (CasB) polypeptide, a nucleotide sequence encoding a Cas7 (CasC) polypeptide, a nucleotide sequence encoding a Cas5 (CasD) polypeptide, a nucleotide sequence encoding a Cas6e (CasE) polypeptide, and a nucleotide sequence encoding a Cas3 polypeptide (Type I-E); and/or (f) a nucleotide sequence encoding a Cys1 polypeptide, a nucleotide sequence encoding a Cys2 polypeptide, a nucleotide sequence encoding a Cas7 (Cys3) polypeptide and a nucleotide sequence encoding a Cas6f polypeptide, and a nucleotide sequence encoding a Cas3 polypeptide (Type I-F). Accordingly, a type I Cas protein may be one or more of the Cas protein described herein.


In an embodiment, the Type 1 Cas protein may be one or more of Cas5, Cas6, Cas7, and Cas8. In an embodiment, the system comprises Cas5. In an embodiment, the system comprises Cas6. In an embodiment, the system comprises Cas. In an embodiment, the system comprises Cas5 and Cas6. In an embodiment, the system comprises Cas5 and Cas7. In an embodiment, the system comprises Cas5 and Cas8. In an embodiment, the system comprises Cas6 and Cas7. In an embodiment, the system comprises Cas6 and Cas8. In an embodiment, the system comprises Cas7 and Cas 8. In an embodiment, the system comprises Cas5, Cas6, and Cas7. In an embodiment, the system comprises Cas5, Cas6, and Cas8. In an embodiment, the system comprises Cas5, Cas7 and Cas8. In an embodiment, the system comprises Cas 6, Cas7, and Cas8. In an embodiment, the system comprises Cas5, Cas6, Cas7, and Cas8. In an embodiment, the system comprises a polynucleotide encoding Cas5. In an embodiment, the system comprises a polynucleotide encoding Cas6. In an embodiment, the system comprises a polynucleotide encoding Cas7. In an embodiment, the system comprises a polynucleotide encoding Cas5 and a polynucleotide encoding Cas6. In an embodiment, the system comprises a polynucleotide encoding Cas5 and a polynucleotide encoding Cas7. In an embodiment, the system comprises a polynucleotide encoding Cas5 and a polynucleotide encoding Cas8. In an embodiment, the system comprises a polynucleotide encoding Cas6 and a polynucleotide encoding Cas7. In an embodiment, the system comprises a polynucleotide encoding Cas6 and a polynucleotide encoding Cas8. In an embodiment, the system comprises a polynucleotide encoding Cas7 and a polynucleotide encoding Cas8. In an embodiment, the system comprises a polynucleotide encoding Cas5, a polynucleotide encoding Cas6, and a polynucleotide encoding Cas7. In an embodiment, the system comprises a polynucleotide encoding Cas5, a polynucleotide encoding Cas6, and a polynucleotide encoding Cas8. In an embodiment, the system comprises a polynucleotide encoding Cas5, a polynucleotide encoding Cas7 and a polynucleotide encoding Cas8. In an embodiment, the system comprises a polynucleotide encoding Cas6, a polynucleotide encoding Cas7, and a polynucleotide encoding Cas8. In an embodiment, the system comprises a polynucleotide encoding Cas5, a polynucleotide encoding Cas6, a polynucleotide encoding Cas7, and a polynucleotide encoding Cas8. The Cas proteins herein (e.g., Cas5, Cas6, Cas7, Cas8) includes the wild type transposases, variants thereof, and functional fragments thereof.


Examples of type I CRISPR components include those described in Makarova et al., Annotation and Classification of CRISPR-Cas Systems, Methods Mol Biol. 2015; 1311: 47-75.


The associated Class 1 Type I CRISPR system may comprise cas5f, cas6f, cas7f, cas8f, along with a CRISPR array. In an embodiment, the type I CRISPR-Cas system comprises one or more of cas5f, cas6f, cas7f, and cas8f. For example, the type I CRISPR-Cas system comprises cas5f, cas6f, cas7f, and cas8f. In certain cases, the type I CRISPR-Cas system comprises one or more of cas8f-cas5f, cas6f and cas7f. For example, the type I CRISPR-Cas system comprises cas8f-cas5f, cas6f and cas7f. As used herein, the term Cas5678f refers to a complex comprising cas5f, cas6f, cas7f, and cas8f.


In an embodiment, the CRISPR-Cas system may be a Class 2 CRISPR-Cas system. A Class 2 CRISPR-Cas system may be of a subtype, e.g., Type II-A, Type II-B, Type II-C, Type V-A, Type V-B, Type V-C, Type V-U, Type VI-A, Type VI-B, or Type VI-C CRISPR-Cas system. The definition and exemplary members of CRISPR-Cas systems include those described in Kira S. Makarova and Eugene V. Koonin, Annotation and Classification of CRISPR-Cas Systems, Methods Mol Biol. 2015; 1311: 47-75; and Sergey Shmakov et al., Diversity and evolution of class 2 CRISPR-Cas systems, Nat Rev Microbiol. 2017 March; 15(3): 169-182.


Non-limiting examples of Cas proteins include Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas10, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx16, CsaX, Csx3, Csx1, Csx15, Csf1, Csf2, Csf3, Csf4, Cas9, Cas 12 (e.g., Cas12a, Cas12b, Cas12c, Cas12d, Cas12k, etc.), Cas13 (e.g., Cas13a, Cas13b (such as Cas13b-t1, Cas13b-t2, Cas13b-t3), Cas13c, Cas13d, etc.), Cas14, CasX, CasY, or an engineered form of the Cas protein (e.g., an invective, dead form, a nickase form).


In an embodiment, the Cas protein may be nuclease-deficient. A nuclease-deficient nuclease may have no nuclease activity. A nuclease-deficient nuclease may have nickase activity.


In an embodiment, the Cas protein may be orthologues or homologues of the above-mentioned Cas proteins. The terms “ortholog” and “homolog” are well known in the art. By means of further guidance, a “homolog” of a protein as used herein is a protein of the same species which performs the same or a similar function as the protein it is a homolog of. Homologous proteins may but need not be structurally related, or are only partially structurally related. An “ortholog” of a protein as used herein is a protein of a different species which performs the same or a similar function as the protein it is an orthologue of. Orthologous proteins may but need not be structurally related, or are only partially structurally related.


In an embodiment, the Cas protein lacks nuclease activity. Such Cas protein may be a naturally existing Cas protein that does not have nuclease activity, or the Cas protein may be an engineered Cas protein with mutations or truncations that reduce or eliminate nuclease activity.


In an embodiment, the CRISPR effector protein may be delivered using a nucleic acid molecule encoding the CRISPR protein. The nucleic acid molecule encoding a CRISPR protein, may advantageously be a codon optimized CRISPR protein. An example of a codon optimized sequence is in this instance a sequence optimized for expression in eukaryote, e.g., humans (i.e. being optimized for expression in humans), or for another eukaryote, animal or mammal as herein discussed; see, e.g., SaCas9 human codon optimized sequence in International Patent Publication No. WO 2014/093622 (PCT/US2013/074667).


In an embodiment, the present disclosure includes a transgenic cell in which one or more nucleic acids encoding one or more guide RNAs are provided or introduced operably connected in the cell with a regulatory element comprising a promoter of one or more gene of interest. As used herein, the term “Cas transgenic cell” refers to a cell, such as a eukaryotic cell, in which a Cas gene has been genomically integrated. The nature, type, or origin of the cell are not particularly limiting according to the present invention. Also the way the Cas transgene is introduced in the cell may vary and can be any method as is known in the art. In an embodiment, the Cas transgenic cell is obtained by introducing the Cas transgene in an isolated cell. In certain other embodiments, the Cas transgenic cell is obtained by isolating cells from a Cas transgenic organism. By means of example, and without limitation, the Cas transgenic cell as referred to herein may be derived from a Cas transgenic eukaryote, such as a Cas knock-in eukaryote. Reference is made to WO 2014/093622 (PCT/US13/74667), incorporated herein by reference. Methods of US Patent Publication Nos. 20120017290 and 20110265198 assigned to Sangamo BioSciences, Inc. directed to targeting the Rosa locus may be modified to utilize the CRISPR Cas system of the present invention. Methods of US Patent Publication No. 20130236946 assigned to Cellectis directed to targeting the Rosa locus may also be modified to utilize the CRISPR Cas system of the present invention. By means of further example reference is made to Platt et. al. (Cell; 159(2):440-455 (2014)), describing a Cas9 knock-in mouse, which is incorporated herein by reference. The Cas transgene can further comprise a Lox-Stop-polyA-Lox(LSL) cassette thereby rendering Cas expression inducible by Cre recombinase. Alternatively, the Cas transgenic cell may be obtained by introducing the Cas transgene in an isolated cell. Delivery systems for transgenes are well known in the art. By means of example, the Cas transgene may be delivered in for instance eukaryotic cell by means of vector (e.g., AAV, adenovirus, lentivirus) and/or particle and/or nanoparticle delivery, as also described herein elsewhere.


It will be understood by the skilled person that the cell, such as the Cas transgenic cell, as referred to herein may comprise further genomic alterations besides having an integrated Cas gene or the mutations arising from the sequence specific action of Cas when complexed with RNA capable of guiding Cas to a target locus.


The guide RNA(s) encoding sequences and/or Cas encoding sequences, can be functionally or operatively linked to regulatory element(s) and hence the regulatory element(s) drive expression. The promoter(s) can be constitutive promoter(s) and/or conditional promoter(s) and/or inducible promoter(s) and/or tissue specific promoter(s). The promoter can be selected from the group consisting of RNA polymerases, pol I, pol II, pol III, T7, U6, H1, retroviral Rous sarcoma virus (RSV) LTR promoter, the cytomegalovirus (CMV) promoter, the SV40 promoter, the dihydrofolate reductase promoter, the β-actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1α promoter. An advantageous promoter is the promoter is U6.


Guide Molecules

The system herein may comprise one or more guide molecules. The guide molecule(s) may be component(s) of the CRISPR-Cas system herein. As used herein, the term “guide sequence” and “guide molecule” in the context of a CRISPR-Cas system, comprises any polynucleotide sequence having sufficient complementarity with a target nucleic acid sequence to hybridize with the target nucleic acid sequence and direct sequence-specific binding of a nucleic acid-targeting complex to the target nucleic acid sequence. The guide sequences made using the methods disclosed herein may be a full-length guide sequence, a truncated guide sequence, a full-length sgRNA sequence, a truncated sgRNA sequence, or an E+F sgRNA sequence. In an embodiment, the degree of complementarity of the guide sequence to a given target sequence, when optimally aligned using a suitable alignment algorithm, is about or more than 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. In an embodiment, the guide molecule comprises a guide sequence that may be designed to have at least one mismatch with the target sequence, such that a RNA duplex formed between the guide sequence and the target sequence. Accordingly, the degree of complementarity is preferably less than 99%. For instance, where the guide sequence consists of 24 nucleotides, the degree of complementarity is more particularly about 96% or less. In particular embodiments, the guide sequence is designed to have a stretch of two or more adjacent mismatching nucleotides, such that the degree of complementarity over the entire guide sequence is further reduced. For instance, where the guide sequence consists of 24 nucleotides, the degree of complementarity is more particularly about 96% or less, more particularly, about 92% or less, more particularly about 88% or less, more particularly about 84% or less, more particularly about 80% or less, more particularly about 76% or less, more particularly about 72% or less, depending on whether the stretch of two or more mismatching nucleotides encompasses 2, 3, 4, 5, 6 or 7 nucleotides, etc. In an embodiment, aside from the stretch of one or more mismatching nucleotides, the degree of complementarity, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting example of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler Transform (e.g., the Burrows Wheeler Aligner), Clustal W, Clustal X, BLAT, Novoalign (Novocraft Technologies; available at www.novocraft.com), ELAND (Illumina, San Diego, CA), SOAP (available at soap.genomics.org.cn), and Maq (available at maq.sourceforge.net). The ability of a guide sequence (within a nucleic acid-targeting guide RNA) to direct sequence-specific binding of a nucleic acid-targeting complex to a target nucleic acid sequence may be assessed by any suitable assay. For example, the components of a nucleic acid-targeting CRISPR system sufficient to form a nucleic acid-targeting complex, including the guide sequence to be tested, may be provided to a host cell having the corresponding target nucleic acid sequence, such as by transfection with vectors encoding the components of the nucleic acid-targeting complex, followed by an assessment of preferential targeting (e.g., cleavage) within the target nucleic acid sequence, such as by Surveyor assay as described herein. Similarly, cleavage of a target nucleic acid sequence (or a sequence in the vicinity thereof) may be evaluated in a test tube by providing the target nucleic acid sequence, components of a nucleic acid-targeting complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at or in the vicinity of the target sequence between the test and control guide sequence reactions. Other assays are possible, and will occur to those skilled in the art. A guide sequence, and hence a nucleic acid-targeting guide RNA may be selected to target any target nucleic acid sequence.


In an embodiment, the guide sequence or spacer length of the guide molecules is from 15 to 50 nt. In an embodiment, the spacer length of the guide RNA is at least 15 nucleotides. In an embodiment, the spacer length is from 15 to 17 nt, e.g., 15, 16, or 17 nt, from 17 to 20 nt, e.g., 17, 18, 19, or 20 nt, from 20 to 24 nt, e.g., 20, 21, 22, 23, or 24 nt, from 23 to 25 nt, e.g., 23, 24, or 25 nt, from 24 to 27 nt, e.g., 24, 25, 26, or 27 nt, from 27 to 30 nt, e.g., 27, 28, 29, or 30 nt, from 30-35 nt, e.g., 30, 31, 32, 33, 34, or 35 nt, or 35 nt or longer. In certain example embodiment, the guide sequence is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 40, 41, 42, 43, 44, 45, 46, 47 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 nt.


In an embodiment, the guide sequence is an RNA sequence of between 10 to 50 nt in length, but more particularly of about 20-30 nt advantageously about 20 nt, 23-25 nt or 24 nt. The guide sequence may be selected so as to ensure that it hybridizes to the target sequence. Selection can encompass further steps which increase efficacy and specificity.


In an embodiment, the guide sequence has a canonical length (e.g., about 15-30 nt) is used to hybridize with the target RNA or DNA. In an embodiment, a guide molecule is longer than the canonical length (e.g., >30 nt) is used to hybridize with the target RNA or DNA, such that a region of the guide sequence hybridizes with a region of the RNA or DNA strand outside of the Cas-guide target complex. This can be of interest where additional modifications, such deamination of nucleotides is of interest. In alternative embodiments, it is of interest to maintain the limitation of the canonical guide sequence length.


In an embodiment, the sequence of the guide molecule (direct repeat and/or spacer) is selected to reduce the degree secondary structure within the guide molecule. In an embodiment, about or less than about 75%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 1%, or fewer of the nucleotides of the nucleic acid-targeting guide RNA participate in self-complementary base pairing when optimally folded. Optimal folding may be determined by any suitable polynucleotide folding algorithm. Some programs are based on calculating the minimal Gibbs free energy. An example of one such algorithm is mFold, as described by Zuker and Stiegler (Nucleic Acids Res. 9 (1981), 133-148). Another example folding algorithm is the online webserver RNAfold, developed at Institute for Theoretical Chemistry at the University of Vienna, using the centroid structure prediction algorithm (see e.g., A. R. Gruber et al., 2008, Cell 106(1): 23-24; and P A Carr and G M Church, 2009, Nature Biotechnology 27(12): 1151-62).


In an embodiment, a guide molecule is designed or selected to modulate intermolecular interactions among guide molecules, such as among stem-loop regions of different guide molecules. It will be appreciated that nucleotides within a guide that base-pair to form a stem-loop are also capable of base-pairing to form an intermolecular duplex with a second guide and that such an intermolecular duplex would not have a secondary structure compatible with CRISPR complex formation. Accordingly, it may be useful to select or design DR sequences in order to modulate stem-loop formation and CRISPR complex formation. In an embodiment, about or less than about 75%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 1%, or fewer of nucleic acid-targeting guides are in intermolecular duplexes. It will be appreciated that stem-loop variation will often be within limits imposed by DR-CRISPR effector interactions. One way to modulate stem-loop formation or change the equilibrium between stem-loop and intermolecular duplex is to vary nucleotide pairs in the stem of the stem-loop of a DR. For example, in one embodiment, a G-C pair is replaced by an A-U or U-A pair. In another embodiment, an A-U pair is substituted for a G-C or a C-G pair. In another embodiment, a naturally occurring nucleotide is replaced by a nucleotide analog. Another way to modulate stem-loop formation or change the equilibrium between stem-loop and intermolecular duplex is to modify the loop of the stem-loop of a DR. Without be bound by theory, the loop can be viewed as an intervening sequence flanked by two sequences that are complementary to each other. When that intervening sequence is not self-complementary, its effect will be to destabilize intermolecular duplex formation. The same principle applies when guides are multiplexed: while the targeting sequences may differ, it may be advantageous to modify the stem-loop region in the DRs of the different guides. Moreover, when guides are multiplexed, the relative activities of the different guides can be modulated by balancing the activity of each individual guide. In an embodiment, the equilibrium between intermolecular stem-loops vs. intermolecular duplexes is determined. The determination may be made by physical or biochemical means and can be in the presence or absence of a CRISPR effector.


In an embodiment, it is of interest to reduce the susceptibility of the guide molecule to RNA cleavage, such as cleavage by a CRISPR system that cleaves RNA. Accordingly, in particular embodiments, the guide molecule is adjusted to avoid cleavage by a CRISPR system or other RNA-cleaving enzymes.


In an embodiment, the guide molecule comprises non-naturally occurring nucleic acids and/or non-naturally occurring nucleotides and/or nucleotide analogs, and/or chemically modifications. Preferably, these non-naturally occurring nucleic acids and non-naturally occurring nucleotides are located outside the guide sequence. Non-naturally occurring nucleic acids can include, for example, mixtures of naturally and non-naturally occurring nucleotides. Non-naturally occurring nucleotides and/or nucleotide analogs may be modified at the ribose, phosphate, and/or base moiety. In an embodiment of the invention, a guide nucleic acid comprises ribonucleotides and non-ribonucleotides. In one such embodiment, a guide comprises one or more ribonucleotides and one or more deoxyribonucleotides. In an embodiment, the guide comprises one or more non-naturally occurring nucleotide or nucleotide analog such as a nucleotide with phosphorothioate linkage, a locked nucleic acid (LNA) nucleotides comprising a methylene bridge between the 2′ and 4′ carbons of the ribose ring, or bridged nucleic acids (BNA). Other examples of modified nucleotides include 2′-O-methyl analogs, 2′-deoxy analogs, or 2′-fluoro analogs. Further examples of modified bases include, but are not limited to, 2-aminopurine, 5-bromo-uridine, pseudouridine, inosine, 7-methylguanosine. Examples of guide RNA chemical modifications include, without limitation, incorporation of 2′-O-methyl (M), 2′-O-methyl 3′phosphorothioate (MS), S-constrained ethyl(cEt), or 2′-O-methyl 3′thioPACE (MSP) at one or more terminal nucleotides. Such chemically modified guides can comprise increased stability and increased activity as compared to unmodified guides, though on-target vs. off-target specificity is not predictable. (See, Hendel, 2015, Nat Biotechnol. 33(9):985-9, doi: 10.1038/nbt.3290, published online 29 Jun. 2015 Ragdarm et al., 0215, PNAS, E7110-E7111; Allerson et al., J. Med. Chem. 2005, 48:901-904; Bramsen et al., Front. Genet., 2012, 3:154; Deng et al., PNAS, 2015, 112:11870-11875; Sharma et al., MedChemComm., 2014, 5:1454-1471; Hendel et al., Nat. Biotechnol. (2015) 33(9): 985-989; Li et al., Nature Biomedical Engineering, 2017, 1, 0066 DOI:10.1038/s41551-017-0066). In an embodiment, the 5′ and/or 3′ end of a guide RNA is modified by a variety of functional moieties including fluorescent dyes, polyethylene glycol, cholesterol, proteins, or detection tags. (See Kelly et al., 2016, J. Biotech. 233:74-83). In an embodiment, a guide comprises ribonucleotides in a region that binds to a target RNA and one or more deoxyribonucleotides and/or nucleotide analogs in a region that binds to a Cas effector. In an embodiment, deoxyribonucleotides and/or nucleotide analogs are incorporated in engineered guide structures, such as, without limitation, stem-loop regions, and the seed region. In an embodiment, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides of a guide is chemically modified. In an embodiment, 3-5 nucleotides at either the 3′ or the 5′ end of a guide is chemically modified. In an embodiment, only minor modifications are introduced in the seed region, such as 2′-F modifications. In an embodiment, 2′-F modification is introduced at the 3′ end of a guide. In an embodiment, three to five nucleotides at the 5′ and/or the 3′ end of the guide are chemically modified with 2′-O-methyl (M), 2′-O-methyl 3′ phosphorothioate (MS), S-constrained ethyl(cEt), or 2′-O-methyl 3′ thioPACE (MSP). Such modification can enhance genome editing efficiency (see Hendel et al., Nat. Biotechnol. (2015) 33(9): 985-989). In an embodiment, all of the phosphodiester bonds of a guide are substituted with phosphorothioates (PS) for enhancing levels of gene disruption. In an embodiment, more than five nucleotides at the 5′ and/or the 3′ end of the guide are chemically modified with 2′-O-Me, 2′-F or S-constrained ethyl(cEt). Such chemically modified guide can mediate enhanced levels of gene disruption (see Ragdarm et al., 0215, PNAS, E7110-E7111). In an embodiment, a guide is modified to comprise a chemical moiety at its 3′ and/or 5′ end. Such moieties include, but are not limited to amine, azide, alkyne, thio, dibenzocyclooctyne (DBCO), or Rhodamine, peptides, nuclear localization sequence (NLS), peptide nucleic acid (PNA), polyethylene glycol (PEG), triethylene glycol, or tetraethyleneglycol (TEG). In certain embodiment, the chemical moiety is conjugated to the guide by a linker, such as an alkyl chain. In certain embodiment, the chemical moiety is conjugated to the guide by a linker, such as an alkyl chain. In an embodiment, the chemical moiety of the modified guide can be used to attach the guide to another molecule, such as DNA, RNA, protein, or nanoparticles. Such chemically modified guide can be used to identify or enrich cells generically edited by a CRISPR system (see Lee et al., eLife, 2017, 6:e25312, DOI:10.7554).


In an embodiment, 3 nucleotides at each of the 3′ and 5′ ends are chemically modified. In a specific embodiment, the modifications comprise 2′-O-methyl or phosphorothioate analogs. In a specific embodiment, 12 nucleotides in the tetraloop and 16 nucleotides in the stem-loop region are replaced with 2′-O-methyl analogs. Such chemical modifications improve in vivo editing and stability (see Finn et al., Cell Reports (2018), 22: 2227-2235). In an embodiment, more than 60 or 70 nucleotides of the guide are chemically modified. In an embodiment, this modification comprises replacement of nucleotides with 2′ O-methyl or 2′-fluoro nucleotide analogs or phosphorothioate (PS) modification of phosphodiester bonds. In an embodiment, the chemical modification comprises 2′-O-methyl or 2′-fluoro modification of guide nucleotides extending outside of the nuclease protein when the CRISPR complex is formed or PS modification of 20 to 30 or more nucleotides of the 3′-terminus of the guide. In a particular embodiment, the chemical modification further comprises 2′-O-methyl analogs at the 5′ end of the guide or 2′-fluoro analogs in the seed and tail regions. Such chemical modifications improve stability to nuclease degradation and maintain or enhance genome-editing activity or efficiency, but modification of all nucleotides may abolish the function of the guide (see Yin et al., Nat. Biotech. (2018), 35(12): 1179-1187). Such chemical modifications may be guided by knowledge of the structure of the CRISPR complex, including knowledge of the limited number of nuclease and RNA 2′-OH interactions (see Yin et al., Nat. Biotech. (2018), 35(12): 1179-1187). In an embodiment, one or more guide RNA nucleotides may be replaced with DNA nucleotides. In an embodiment, up to 2, 4, 6, 8, 10, or 12 RNA nucleotides of the 5′-end tail/seed guide region are replaced with DNA nucleotides. In an embodiment, the majority of guide RNA nucleotides at the 3′ end are replaced with DNA nucleotides. In particular embodiments, 16 guide RNA nucleotides at the 3′ end are replaced with DNA nucleotides. In particular embodiments, 8 guide RNA nucleotides of the 5′-end tail/seed region and 16 RNA nucleotides at the 3′ end are replaced with DNA nucleotides. In particular embodiments, guide RNA nucleotides that extend outside of the nuclease protein when the CRISPR complex is formed are replaced with DNA nucleotides. Such replacement of multiple RNA nucleotides with DNA nucleotides leads to decreased off-target activity but similar on-target activity compared to an unmodified guide; however, replacement of all RNA nucleotides at the 3′ end may abolish the function of the guide (see Yin et al., Nat. Chem. Biol. (2018) 14, 311-316). Such modifications may be guided by knowledge of the structure of the CRISPR complex, including knowledge of the limited number of nuclease and RNA 2′-OH interactions (see Yin et al., Nat. Chem. Biol. (2018) 14, 311-316).


In an embodiment, the guide molecule forms a stemloop with a separate non-covalently linked sequence, which can be DNA or RNA. In particular embodiments, the sequences forming the guide are first synthesized using the standard phosphoramidite synthetic protocol (Herdewijn, P., ed., Methods in Molecular Biology Col 288, Oligonucleotide Synthesis: Methods and Applications, Humana Press, New Jersey (2012)). In an embodiment, these sequences can be functionalized to contain an appropriate functional group for ligation using the standard protocol known in the art (Hermanson, G. T., Bioconjugate Techniques, Academic Press (2013)). Examples of functional groups include, but are not limited to, hydroxyl, amine, carboxylic acid, carboxylic acid halide, carboxylic acid active ester, aldehyde, carbonyl, chlorocarbonyl, imidazolylcarbonyl, hydrozide, semicarbazide, thio semicarbazide, thiol, maleimide, haloalkyl, sulfonyl, ally, propargyl, diene, alkyne, and azide. Once this sequence is functionalized, a covalent chemical bond or linkage can be formed between this sequence and the direct repeat sequence. Examples of chemical bonds include, but are not limited to, those based on carbamates, ethers, esters, amides, imines, amidines, aminotrizines, hydrozone, disulfides, thioethers, thioesters, phosphorothioates, phosphorodithioates, sulfonamides, sulfonates, fulfones, sulfoxides, ureas, thioureas, hydrazide, oxime, triazole, photolabile linkages, C—C bond forming groups such as Diels-Alder cyclo-addition pairs or ring-closing metathesis pairs, and Michael reaction pairs.


In an embodiment, these stem-loop forming sequences can be chemically synthesized. In an embodiment, the chemical synthesis uses automated, solid-phase oligonucleotide synthesis machines with 2′-acetoxyethyl orthoester (2′-ACE) (Scaringe et al., J. Am. Chem. Soc. (1998) 120: 11820-11821; Scaringe, Methods Enzymol. (2000) 317: 3-18) or 2′-thionocarbamate (2′-TC) chemistry (Dellinger et al., J. Am. Chem. Soc. (2011) 133: 11540-11546; Hendel et al., Nat. Biotechnol. (2015) 33:985-989).


In an embodiment, the guide molecule comprises (1) a guide sequence capable of hybridizing to a target locus and (2) a tracr mate or direct repeat sequence whereby the direct repeat sequence is located upstream (i.e., 5′) or downstream (i.e. 3′) from the guide sequence. In a particular embodiment the seed sequence (i.e. the sequence essential critical for recognition and/or hybridization to the sequence at the target locus) of the guide sequence is approximately within the first 10 nucleotides of the guide sequence.


In a particular embodiment, the guide molecule comprises a guide sequence linked to a direct repeat sequence, wherein the direct repeat sequence comprises one or more stem loops or optimized secondary structures. In particular embodiments, the direct repeat has a minimum length of 16 nts and a single stem loop. In further embodiments the direct repeat has a length longer than 16 nts, preferably more than 17 nts, and has more than one stem loops or optimized secondary structures. In particular embodiments the guide molecule comprises or consists of the guide sequence linked to all or part of the natural direct repeat sequence. A CRISPR-cas guide molecule comprises (in 3′ to 5′ direction or in 5′ to 3′ direction): a guide sequence a first complimentary stretch (the “repeat”), a loop (which is typically 4 or 5 nucleotides long), a second complimentary stretch (the “anti-repeat” being complimentary to the repeat), and a poly A (often poly U in RNA) tail (terminator). In an embodiment, the direct repeat sequence retains its natural architecture and forms a single stem loop. In particular embodiments, certain aspects of the guide architecture can be modified, for example by addition, subtraction, or substitution of features, whereas certain other aspects of guide architecture are maintained. Preferred locations for engineered guide molecule modifications, including but not limited to insertions, deletions, and substitutions include guide termini and regions of the guide molecule that are exposed when complexed with the CRISPR-Cas protein and/or target, for example the stemloop of the direct repeat sequence.


In particular embodiments, the stem comprises at least about 4 bp comprising complementary X and Y sequences, although stems of more, e.g., 5, 6, 7, 8, 9, 10, 11 or 12 or fewer, e.g., 3, 2, base pairs are also contemplated. Thus, for example X2-10 and Y2-10 (wherein X and Y represent any complementary set of nucleotides) may be contemplated. In one aspect, the stem made of the X and Y nucleotides, together with the loop will form a complete hairpin in the overall secondary structure; and, this may be advantageous and the amount of base pairs can be any amount that forms a complete hairpin. In one aspect, any complementary X:Y basepairing sequence (e.g., as to length) is tolerated, so long as the secondary structure of the entire guide molecule is preserved. In one aspect, the loop that connects the stem made of X:Y basepairs can be any sequence of the same length (e.g., 4 or 5 nucleotides) or longer that does not interrupt the overall secondary structure of the guide molecule. In one aspect, the stemloop can further comprise, e.g. an MS2 aptamer. In one aspect, the stem comprises about 5-7 bp comprising complementary X and Y sequences, although stems of more or fewer basepairs are also contemplated. In one aspect, non-Watson Crick basepairing is contemplated, where such pairing otherwise generally preserves the architecture of the stemloop at that position.


In particular embodiments, the natural hairpin or stemloop structure of the guide molecule is extended or replaced by an extended stemloop. It has been demonstrated that extension of the stem can enhance the assembly of the guide molecule with the CRISPR-Cas protein (Chen et al. Cell. (2013); 155(7): 1479-1491). In particular embodiments, the stem of the stemloop is extended by at least 1, 2, 3, 4, 5 or more complementary basepairs (i.e. corresponding to the addition of 2, 4, 6, 8, 10 or more nucleotides in the guide molecule). In particular embodiments, these are located at the end of the stem, adjacent to the loop of the stemloop.


In particular embodiments, the susceptibility of the guide molecule to RNases or to decreased expression can be reduced by slight modifications of the sequence of the guide molecule which do not affect its function. For instance, in particular embodiments, premature termination of transcription, such as premature transcription of U6 Pol-III, can be removed by modifying a putative Pol-III terminator (4 consecutive U's) in the guide molecules sequence. Where such sequence modification is required in the stemloop of the guide molecule, it is preferably ensured by a basepair flip.


In a particular embodiment, the direct repeat may be modified to comprise one or more protein-binding RNA aptamers. In a particular embodiment, one or more aptamers may be included such as part of optimized secondary structure. Such aptamers may be capable of binding a bacteriophage coat protein as detailed further herein.


In an embodiment, the guide molecule forms a duplex with a target RNA comprising at least one target cytosine residue to be edited. Upon hybridization of the guide RNA molecule to the target RNA, the cytidine deaminase binds to the single strand RNA in the duplex made accessible by the mismatch in the guide sequence and catalyzes deamination of one or more target cytosine residues comprised within the stretch of mismatching nucleotides.


A guide sequence, and hence a nucleic acid-targeting guide RNA, may be selected to target any target nucleic acid sequence. The target sequence may be mRNA.


In an embodiment, the target sequence should be associated with a PAM (protospacer adjacent motif); that is, a short sequence recognized by the CRISPR complex. Depending on the nature of the CRISPR-Cas protein, the target sequence should be selected such that its complementary sequence in the DNA duplex (also referred to herein as the non-target sequence) is upstream or downstream of the PAM. In the embodiments, the complementary sequence of the target sequence is downstream or 3′ of the PAM or upstream or 5′ of the PAM. The precise sequence and length requirements for the PAM differ depending on the Cas protein used, but PAMs are typically 2-5 base pair sequences adjacent the protospacer (that is, the target sequence).


Further, engineering of the PAM Interacting (PI) domain may allow programing of PAM specificity, improve target site recognition fidelity, and increase the versatility of the CRISPR-Cas protein, for example as described for Cas9 in Kleinstiver B P et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015 Jul. 23; 523(7561):481-5. doi: 10.1038/nature14592. As further detailed herein, the skilled person will understand that Cas proteins may be modified analogously.


In particular embodiments, the guide is an escorted guide. By “escorted” is meant that the CRISPR-Cas system or complex or guide is delivered to a selected time or place within a cell, so that activity of the CRISPR-Cas system or complex or guide is spatially or temporally controlled. For example, the activity and destination of the CRISPR-Cas system or complex or guide may be controlled by an escort RNA aptamer sequence that has binding affinity for an aptamer ligand, such as a cell surface protein or other localized cellular component. Alternatively, the escort aptamer may for example be responsive to an aptamer effector on or in the cell, such as a transient effector, such as an external energy source that is applied to the cell at a particular time.


The escorted CRISPR-Cas systems or complexes have a guide molecule with a functional structure designed to improve guide molecule structure, architecture, stability, genetic expression, or any combination thereof. Such a structure can include an aptamer.


Aptamers are biomolecules that can be designed or selected to bind tightly to other ligands, for example using a technique called systematic evolution of ligands by exponential enrichment (SELEX; Tuerk C, Gold L: “Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase.” Science 1990, 249:505-510). Nucleic acid aptamers can for example be selected from pools of random-sequence oligonucleotides, with high binding affinities and specificities for a wide range of biomedically relevant targets, suggesting a wide range of therapeutic utilities for aptamers (Keefe, Anthony D., Supriya Pai, and Andrew Ellington. “Aptamers as therapeutics.” Nature Reviews Drug Discovery 9.7 (2010): 537-550). These characteristics also suggest a wide range of uses for aptamers as drug delivery vehicles (Levy-Nissenbaum, Etgar, et al. “Nanotechnology and aptamers: applications in drug delivery.” Trends in biotechnology 26.8 (2008): 442-449; and, Hicke B J, Stephens A W. “Escort aptamers: a delivery service for diagnosis and therapy.” J Clin Invest 2000, 106:923-928.). Aptamers may also be constructed that function as molecular switches, responding to a que by changing properties, such as RNA aptamers that bind fluorophores to mimic the activity of green fluorescent protein (Paige, Jeremy S., Karen Y. Wu, and Samie R. Jaffrey. “RNA mimics of green fluorescent protein.” Science 333.6042 (2011): 642-646). It has also been suggested that aptamers may be used as components of targeted siRNA therapeutic delivery systems, for example targeting cell surface proteins (Zhou, Jiehua, and John J. Rossi. “Aptamer-targeted cell-specific RNA interference.” Silence 1.1 (2010): 4).


Accordingly, in particular embodiments, the guide molecule is modified, e.g., by one or more aptamer(s) designed to improve guide molecule delivery, including delivery across the cellular membrane, to intracellular compartments, or into the nucleus. Such a structure can include, either in addition to the one or more aptamer(s) or without such one or more aptamer(s), moiety(ies) so as to render the guide molecule deliverable, inducible or responsive to a selected effector. The systems comprehend a guide molecule that responds to normal or pathological physiological conditions, including without limitation pH, hypoxia, O2 concentration, temperature, protein concentration, enzymatic concentration, lipid structure, light exposure, mechanical disruption (e.g. ultrasound waves), magnetic fields, electric fields, or electromagnetic radiation.


Light responsiveness of an inducible system may be achieved via the activation and binding of cryptochrome-2 and CIB 1. Blue light stimulation induces an activating conformational change in cryptochrome-2, resulting in recruitment of its binding partner CIB 1. This binding may be fast and reversible, achieving saturation in <15 sec following pulsed stimulation and returning to baseline <15 min after the end of stimulation. These rapid binding kinetics result in a system temporally bound only by the speed of transcription/translation and transcript/protein degradation, rather than uptake and clearance of inducing agents. Crytochrome-2 activation is also highly sensitive, allowing for the use of low light intensity stimulation and mitigating the risks of phototoxicity. Further, in a context such as the intact mammalian brain, variable light intensity may be used to control the size of a stimulated region, allowing for greater precision than vector delivery alone may offer.


The energy sources may be electromagnetic radiation, sound energy or thermal energy to induce the guide. Advantageously, the electromagnetic radiation may be a component of visible light. In an embodiment, the light is a blue light with a wavelength of about 450 to about 495 nm. In an embodiment, the wavelength is about 488 nm. In another preferred embodiment, the light stimulation is via pulses. The light power may range from about 0-9 mW/cm2. In a preferred embodiment, a stimulation paradigm of as low as 0.25 sec every 15 sec should result in maximal activation.


The chemical or energy sensitive guide may undergo a conformational change upon induction by the binding of a chemical source or by the energy allowing it act as a guide and have the CRISPR-Cas system or complex function. The disclosure can involve applying the chemical source or energy so as to have the guide function and the CRISPR-Cas system or complex function; and optionally further determining that the expression of the genomic locus is altered.


There are several different designs of this chemical inducible system: 1. ABI-PYL based system inducible by Abscisic Acid (ABA) (see, e.g., stke.sciencemag.org/cgi/content/abstract/sigtrans; 4/164/rs2), 2. FKBP-FRB based system inducible by rapamycin (or related chemicals based on rapamycin) (see, e.g., www.nature.com/nmeth/journal/v2/n6/full/nmeth763.html), 3. GID1-GAI based system inducible by Gibberellin (GA) (see, e.g., www.nature.com/nchembio/journal/v8/n5/full/nchembio.922.html).


A chemical inducible system can be an estrogen receptor (ER) based system inducible by 4-hydroxytamoxifen (4OHT) (see, e.g., www.pnas.org/content/104/3/1027.abstract). A mutated ligand-binding domain of the estrogen receptor called ERT2 translocates into the nucleus of cells upon binding of 4-hydroxytamoxifen. In further embodiments any naturally occurring or engineered derivative of any nuclear receptor, thyroid hormone receptor, retinoic acid receptor, estrogen receptor, estrogen-related receptor, glucocorticoid receptor, progesterone receptor, androgen receptor may be used in inducible systems analogous to the ER based inducible system.


Another inducible system may be based on the design using Transient receptor potential (TRP) ion channel based system inducible by energy, heat or radio-wave (see, e.g., www.sciencemag.org/content/336/6081/604). These TRP family proteins respond to different stimuli, including light and heat. When this protein is activated by light or heat, the ion channel will open and allow the entering of ions such as calcium into the plasma membrane. This influx of ions will bind to intracellular ion interacting partners linked to a polypeptide including the guide and the other components of the CRISPR-Cas complex or system, and the binding will induce the change of sub-cellular localization of the polypeptide, leading to the entire polypeptide entering the nucleus of cells. Once inside the nucleus, the guide protein and the other components of the CRISPR-Cas complex will be active and modulating target gene expression in cells.


While light activation may be an advantageous embodiment, sometimes it may be disadvantageous especially for in vivo applications in which the light may not penetrate the skin or other organs. In this instance, other methods of energy activation are contemplated, in particular, electric field energy and/or ultrasound which have a similar effect.


Electric field energy is preferably administered substantially as described in the art, using one or more electric pulses of from about 1 Volt/cm to about 10 kVolts/cm under in vivo conditions. Instead of or in addition to the pulses, the electric field may be delivered in a continuous manner. The electric pulse may be applied for between 1 μs and 500 milliseconds, preferably between 1 μs and 100 milliseconds. The electric field may be applied continuously or in a pulsed manner for 5 about minutes.


As used herein, ‘electric field energy’ is the electrical energy to which a cell is exposed. Preferably the electric field has a strength of from about 1 Volt/cm to about 10 kVolts/cm or more under in vivo conditions (see International Patent Publication No. WO 97/49450).


As used herein, the term “electric field” includes one or more pulses at variable capacitance and voltage and including exponential and/or square wave and/or modulated wave and/or modulated square wave forms. References to electric fields and electricity should be taken to include reference the presence of an electric potential difference in the environment of a cell. Such an environment may be set up by way of static electricity, alternating current (AC), direct current (DC), etc., as known in the art. The electric field may be uniform, non uniform or otherwise, and may vary in strength and/or direction in a time dependent manner.


Single or multiple applications of electric field, as well as single or multiple applications of ultrasound are also possible, in any order and in any combination. The ultrasound and/or the electric field may be delivered as single or multiple continuous applications, or as pulses (pulsatile delivery).


Electroporation has been used in both in vitro and in vivo procedures to introduce foreign material into living cells. With in vitro applications, a sample of live cells is first mixed with the agent of interest and placed between electrodes such as parallel plates. Then, the electrodes apply an electrical field to the cell/implant mixture. Examples of systems that perform in vitro electroporation include the Electro Cell Manipulator ECM600 product, and the Electro Square Porator T820, both made by the BTX Division of Genetronics, Inc (see U.S. Pat. No. 5,869,326).


The known electroporation techniques (both in vitro and in vivo) function by applying a brief high voltage pulse to electrodes positioned around the treatment region. The electric field generated between the electrodes causes the cell membranes to temporarily become porous, whereupon molecules of the agent of interest enter the cells. In known electroporation applications, this electric field comprises a single square wave pulse on the order of 1000 V/cm, of about 100 .mu·s duration. Such a pulse may be generated, for example, in known applications of the Electro Square Porator T820.


Preferably, the electric field has a strength of from about 1 V/cm to about 10 kV/cm under in vitro conditions. Thus, the electric field may have a strength of 1 V/cm, 2 V/cm, 3 V/cm, 4 V/cm, 5 V/cm, 6 V/cm, 7 V/cm, 8 V/cm, 9 V/cm, 10 V/cm, 20 V/cm, 50 V/cm, 100 V/cm, 200 V/cm, 300 V/cm, 400 V/cm, 500 V/cm, 600 V/cm, 700 V/cm, 800 V/cm, 900 V/cm, 1 kV/cm, 2 kV/cm, 5 kV/cm, 10 kV/cm, 20 kV/cm, 50 kV/cm or more. More preferably from about 0.5 kV/cm to about 4.0 kV/cm under in vitro conditions. Preferably, the electric field has a strength of from about 1 V/cm to about 10 kV/cm under in vivo conditions. However, the electric field strengths may be lowered where the number of pulses delivered to the target site are increased. Thus, pulsatile delivery of electric fields at lower field strengths is envisaged.


Preferably, the application of the electric field is in the form of multiple pulses such as double pulses of the same strength and capacitance or sequential pulses of varying strength and/or capacitance. As used herein, the term “pulse” includes one or more electric pulses at variable capacitance and voltage and including exponential and/or square wave and/or modulated wave/square wave forms.


Preferably, the electric pulse is delivered as a waveform selected from an exponential wave form, a square wave form, a modulated wave form and a modulated square wave form.


A preferred embodiment employs direct current at low voltage. Thus, Applicants disclose the use of an electric field which is applied to the cell, tissue or tissue mass at a field strength of between 1V/cm and 20V/cm, for a period of 100 milliseconds or more, preferably 15 minutes or more.


Ultrasound is advantageously administered at a power level of from about 0.05 W/cm2 to about 100 W/cm2. Diagnostic or therapeutic ultrasound may be used, or combinations thereof.


As used herein, the term “ultrasound” refers to a form of energy which consists of mechanical vibrations the frequencies of which are so high they are above the range of human hearing. Lower frequency limit of the ultrasonic spectrum may generally be taken as about 20 kHz. Most diagnostic applications of ultrasound employ frequencies in the range 1 and 15 MHz′ (From Ultrasonics in Clinical Diagnosis, P. N. T. Wells, ed., 2nd. Edition, Publ. Churchill Livingstone [Edinburgh, London & NY, 1977]).


Ultrasound has been used in both diagnostic and therapeutic applications. When used as a diagnostic tool (“diagnostic ultrasound”), ultrasound is typically used in an energy density range of up to about 100 mW/cm2 (FDA recommendation), although energy densities of up to 750 mW/cm2 have been used. In physiotherapy, ultrasound is typically used as an energy source in a range up to about 3 to 4 W/cm2 (WHO recommendation). In other therapeutic applications, higher intensities of ultrasound may be employed, for example, HIFU at 100 W/cm up to 1 kW/cm2 (or even higher) for short periods of time. The term “ultrasound” as used in this specification is intended to encompass diagnostic, therapeutic and focused ultrasound.


Focused ultrasound (FUS) allows thermal energy to be delivered without an invasive probe (see Morocz et al 1998 Journal of Magnetic Resonance Imaging Vol. 8, No. 1, pp. 136-142. Another form of focused ultrasound is high intensity focused ultrasound (HIFU) which is reviewed by Moussatov et al in Ultrasonics (1998) Vol. 36, No. 8, pp. 893-900 and TranHuuHue et al in Acustica (1997) Vol. 83, No. 6, pp. 1103-1106.


Preferably, a combination of diagnostic ultrasound and a therapeutic ultrasound is employed. This combination is not intended to be limiting, however, and the skilled reader will appreciate that any variety of combinations of ultrasound may be used. Additionally, the energy density, frequency of ultrasound, and period of exposure may be varied.


Preferably, the exposure to an ultrasound energy source is at a power density of from about 0.05 to about 100 Wcm-2. Even more preferably, the exposure to an ultrasound energy source is at a power density of from about 1 to about 15 Wcm-2.


Preferably, the exposure to an ultrasound energy source is at a frequency of from about 0.015 to about 10.0 MHz. More preferably the exposure to an ultrasound energy source is at a frequency of from about 0.02 to about 5.0 MHz or about 6.0 MHz. Most preferably, the ultrasound is applied at a frequency of 3 MHz.


Preferably, the exposure is for periods of from about 10 milliseconds to about 60 minutes. Preferably the exposure is for periods of from about 1 second to about 5 minutes. More preferably, the ultrasound is applied for about 2 minutes. Depending on the particular target cell to be disrupted, however, the exposure may be for a longer duration, for example, for 15 minutes.


Advantageously, the target tissue is exposed to an ultrasound energy source at an acoustic power density of from about 0.05 Wcm-2 to about 10 Wcm-2 with a frequency ranging from about 0.015 to about 10 MHz (see WO 98/52609). However, alternatives are also possible, for example, exposure to an ultrasound energy source at an acoustic power density of above 100 Wcm-2, but for reduced periods of time, for example, 1000 Wcm-2 for periods in the millisecond range or less.


Preferably, the application of the ultrasound is in the form of multiple pulses; thus, both continuous wave and pulsed wave (pulsatile delivery of ultrasound) may be employed in any combination. For example, continuous wave ultrasound may be applied, followed by pulsed wave ultrasound, or vice versa. This may be repeated any number of times, in any order and combination. The pulsed wave ultrasound may be applied against a background of continuous wave ultrasound, and any number of pulses may be used in any number of groups.


Preferably, the ultrasound may comprise pulsed wave ultrasound. In a highly preferred embodiment, the ultrasound is applied at a power density of 0.7 Wcm-2 or 1.25 Wcm-2 as a continuous wave. Higher power densities may be employed if pulsed wave ultrasound is used.


Use of ultrasound is advantageous as, like light, it may be focused accurately on a target. Moreover, ultrasound is advantageous as it may be focused more deeply into tissues unlike light. It is therefore better suited to whole-tissue penetration (such as but not limited to a lobe of the liver) or whole organ (such as but not limited to the entire liver or an entire muscle, such as the heart) therapy. Another important advantage is that ultrasound is a non-invasive stimulus which is used in a wide variety of diagnostic and therapeutic applications. By way of example, ultrasound is well known in medical imaging techniques and, additionally, in orthopedic therapy. Furthermore, instruments suitable for the application of ultrasound to a subject vertebrate are widely available and their use is well known in the art.


In particular embodiments, the guide molecule is modified by a secondary structure to increase the specificity of the CRISPR-Cas system and the secondary structure can protect against exonuclease activity and allow for 5′ additions to the guide sequence also referred to herein as a protected guide molecule.


In one aspect, the disclosure provides for hybridizing a “protector RNA” to a sequence of the guide molecule, wherein the “protector RNA” is an RNA strand complementary to the 3′ end of the guide molecule to thereby generate a partially double-stranded guide RNA. In an embodiment, protecting mismatched bases (i.e. the bases of the guide molecule which do not form part of the guide sequence) with a perfectly complementary protector sequence decreases the likelihood of target RNA binding to the mismatched basepairs at the 3′ end. In particular embodiments, additional sequences comprising an extended length may also be present within the guide molecule such that the guide comprises a protector sequence within the guide molecule. This “protector sequence” ensures that the guide molecule comprises a “protected sequence” in addition to an “exposed sequence” (comprising the part of the guide sequence hybridizing to the target sequence). In particular embodiments, the guide molecule is modified by the presence of the protector guide to comprise a secondary structure such as a hairpin. Advantageously there are three or four to thirty or more, e.g., about 10 or more, contiguous base pairs having complementarity to the protected sequence, the guide sequence or both. It is advantageous that the protected portion does not impede thermodynamics of the CRISPR-Cas system interacting with its target. By providing such an extension including a partially double stranded guide molecule, the guide molecule is considered protected and results in improved specific binding of the CRISPR-Cas complex, while maintaining specific activity.


In particular embodiments, use is made of a truncated guide (tru-guide), i.e. a guide molecule which comprises a guide sequence which is truncated in length with respect to the canonical guide sequence length. As described by Nowak et al. (Nucleic Acids Res (2016) 44 (20): 9555-9564), such guides may allow catalytically active CRISPR-Cas enzyme to bind its target without cleaving the target RNA. In particular embodiments, a truncated guide is used which allows the binding of the target but retains only nickase activity of the CRISPR-Cas enzyme.


The methods and tools provided herein are exemplified for certain Cas effectors. Further nucleases with similar properties can be identified using methods described in the art (Shmakov et al. 2015, 60:385-397; Abudayeh et al. 2016, Science, 5; 353 (6299)). In particular embodiments, such methods for identifying novel CRISPR effector proteins may comprise the steps of selecting sequences from the database encoding a seed which identifies the presence of a CRISPR Cas locus, identifying loci located within 10 kb of the seed comprising Open Reading Frames (ORFs) in the selected sequences, selecting therefrom loci comprising ORFs of which only a single ORF encodes a novel CRISPR effector having greater than 700 amino acids and no more than 90% homology to a known CRISPR effector. In particular embodiments, the seed is a protein that is common to the CRISPR-Cas system, such as Cas1. In further embodiments, the CRISPR array is used as a seed to identify new effector proteins.


Also, “Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing”, Shengdar Q. Tsai, Nicolas Wyvekens, Cyd Khayter, Jennifer A. Foden, Vishal Thapar, Deepak Reyon, Mathew J. Goodwin, Martin J. Aryee, J. Keith Joung Nature Biotechnology 32(6): 569-77 (2014), relates to dimeric RNA-guided FokI Nucleases that recognize extended sequences and can edit endogenous genes with high efficiencies in human cells.


With respect to general information on CRISPR-Cas Systems, components thereof, and delivery of such components, including methods, materials, delivery vehicles, vectors, particles, AAV, and making and using thereof, including as to amounts and formulations, all useful in the practice of the instant invention, reference is made to: U.S. Pat. Nos. 8,697,359, 8,771,945, 8,795,965, 8,865,406, 8,871,445, 8,889,356, 8,889,418, 8,895,308, 8,906,616, 8,932,814, 8,945,839, 8,993,233 and 8,999,641; US Patent Publications US 2014-0310830 A1 (U.S. application Ser. No. 14/105,031), US 2014-0287938 A1 (U.S. application Ser. No. 14/213,991), US 2014-0273234 A1 (U.S. application Ser. No. 14/293,674), US2014-0273232 A1 (U.S. application. Ser. No. 14/290,575), US 2014-027323 A1 (U.S. application Ser. No. 14/259,420), US 2014-0256046 A1 (U.S. application Ser. No. 14/226,274), US 2014-0248702 A1 (U.S. application Ser. No. 14/258,458), US 2014-0242700 A1 (U.S. application Ser. No. 14/222,930), US 2014-0242699 A1 (U.S. application. Ser. No. 14/183,512), US 2014-0242664 A1 (U.S. application Ser. No. 14/104,990), US 2014-0234972 A1 (U.S. application Ser. No. 14/183,471), US 2014-0227787 A1 (U.S. application Ser. No. 14/256,912), US 2014-0189896 A1 (U.S. application Ser. No. 14/105,035), US 2014-0186958 A1 (U.S. application. Ser. No. 14/105,017), US 2014-0186919 A1 (U.S. application Ser. No. 14/104,977), US 2014-0186843 A1 (U.S. application Ser. No. 14/104,900), US 2014-0179770 A1 (U.S. application Ser. No. 14/104,837) and US 2014-0179006 A1 (U.S. application Ser. No. 14/183,486), US 2014-0170753 A1 (U.S. application Ser. No. 14/183,429); US 2015-0184139 (U.S. application Ser. No. 14/324,960); Ser. No. 14/054,414 European Patent Applications EP 2771468 (EP13818570.7), EP 2764103 (EP13824232.6), and EP 2784162 (EP14170383.5); and PCT Patent Publications WO 2014/093661 (PCT/US2013/074743), WO 2014/093694 (PCT/US2013/074790), WO 2014/093595 (PCT/US2013/074611), WO 2014/093718 (PCT/US2013/074825), WO 2014/093709 (PCT/US2013/074812), WO 2014/093622 (PCT/US2013/074667), WO 2014/093635 (PCT/US2013/074691), WO 2014/093655 (PCT/US2013/074736), WO 2014/093712 (PCT/US2013/074819), WO 2014/093701 (PCT/US2013/074800), WO 2014/018423 (PCT/US2013/051418), WO 2014/204723 (PCT/US2014/041790), WO 2014/204724 (PCT/US2014/041800), WO 2014/204725 (PCT/US2014/041803), WO 2014/204726 (PCT/US2014/041804), WO 2014/204727 (PCT/US2014/041806), WO 2014/204728 (PCT/US2014/041808), WO 2014/204729 (PCT/US2014/041809), WO 2015/089351 (PCT/US2014/069897), WO 2015/089354 (PCT/US2014/069902), WO 2015/089364 (PCT/US2014/069925), WO 2015/089427 (PCT/US2014/070068), WO 2015/089462 (PCT/US2014/070127), WO 2015/089419 (PCT/US2014/070057), WO 2015/089465 (PCT/US2014/070135), WO 2015/089486 (PCT/US2014/070175), PCT/US2015/051691, PCT/US2015/051830.


Reference is also made to U.S. Provisional Application Nos. 61/758,468; 61/802,174; 61/806,375; 61/814,263; 61/819,803 and 61/828,130, filed on Jan. 30, 2013; Mar. 15, 2013; Mar. 28, 2013; Apr. 20, 2013; May 6, 2013 and May 28, 2013 respectively. Reference is also made to U.S. Provisional Application No. 61/836,123, filed on Jun. 17, 2013. Reference is additionally made to U.S. Provisional Application Nos. 61/835,931, 61/835,936, 61/835,973, 61/836,080, 61/836,101, and 61/836,127, each filed Jun. 17, 2013. Further reference is made to U.S. Provisional Application Nos. 61/862,468 and 61/862,355 filed on Aug. 5, 2013; 61/871,301 filed on Aug. 28, 2013; 61/960,777 filed on Sep. 25, 2013 and 61/961,980 filed on Oct. 28, 2013. Reference is yet further made to International Patent Application No. PCT/US2014/62558 filed Oct. 28, 2014, and U.S. Provisional Patent Applications Nos. 61/915,148, 61/915,150, 61/915,153, 61/915,203, 61/915,251, 61/915,301, 61/915,267, 61/915,260, and 61/915,397, each filed Dec. 12, 2013; 61/757,972 and 61/768,959, filed on Jan. 29, 2013 and Feb. 25, 2013; 62/010,888 and 62/010,879, both filed Jun. 11, 2014; 62/010,329, 62/010,439 and 62/010,441, each filed Jun. 10, 2014; 61/939,228 and 61/939,242, each filed Feb. 12, 2014; 61/980,012, filed Apr. 15, 2014; 62/038,358, filed Aug. 17, 2014; 62/055,484, 62/055,460 and 62/055,487, each filed Sep. 25, 2014; and 62/069,243, filed Oct. 27, 2014. Reference is made to PCT application designating, inter alia, the United States, application No. PCT/US 14/41806, filed Jun. 10, 2014. Reference is made to U.S. Provisional Application No. 61/930,214 filed on Jan. 22, 2014. Reference is made to PCT application designating, inter alia, the United States, application No. PCT/US 14/41806, filed Jun. 10, 2014.


Mention is also made of U.S. Provisional Application No. 62/180,709, filed 17 Jun. 2015, PROTECTED GUIDE RNAS (PGRNAS); U.S. Provisional Application No. 62/091,455, filed 12 Dec. 2014, PROTECTED GUIDE RNAS (PGRNAS); US Provisional Application No. 62/096,708, filed 24 Dec. 2014, PROTECTED GUIDE RNAS (PGRNAS); US Provisional Application Nos. 62/091,462, filed 12 Dec. 2014, 62/096,324, filed 23 Dec. 2014, 62/180,681, filed 17 Jun. 2015, and 62/237,496, filed 5 Oct. 2015, DEAD GUIDES FOR CRISPR TRANSCRIPTION FACTORS; US Provisional Application Nos. 62/091,456, filed 12 Dec. 2014 and 62/180,692, filed 17 Jun. 2015, ESCORTED AND FUNCTIONALIZED GUIDES FOR CRISPR-CAS SYSTEMS; U.S. Provisional Application No. 62/091,461, filed 12 Dec. 2014, DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS FOR GENOME EDITING AS TO HEMATOPOETIC STEM CELLS (HSCs); U.S. Provisional Application No. 62/094,903, filed 19 Dec. 2014, UNBIASED IDENTIFICATION OF DOUBLE-STRAND BREAKS AND GENOMIC REARRANGEMENT BY GENOME-WISE INSERT CAPTURE SEQUENCING; U.S. Provisional Application No. 62/096,761, filed 24 Dec. 2014, ENGINEERING OF SYSTEMS, METHODS AND OPTIMIZED ENZYME AND GUIDE SCAFFOLDS FOR SEQUENCE MANIPULATION; U.S. Provisional Application No. 62/098,059, filed 30 Dec. 2014, 62/181,641, filed 18 Jun. 2015, and 62/181,667, filed 18 Jun. 2015, RNA-TARGETING SYSTEM; U.S. Provisional Application No. 62/096,656, filed 24 Dec. 2014 and 62/181,151, filed 17 Jun. 2015, CRISPR HAVING OR ASSOCIATED WITH DESTABILIZATION DOMAINS; U.S. Provisional Application No. 62/096,697, filed 24 Dec. 2014, CRISPR HAVING OR ASSOCIATED WITH AAV; U.S. Provisional Application 62/098,158, filed 30-Dec.-2014, ENGINEERED CRISPR COMPLEX INSERTIONAL TARGETING SYSTEMS; U.S. Provisional Application No. 62/151,052, filed 22 Apr. 2015, CELLULAR TARGETING FOR EXTRACELLULAR EXOSOMAL REPORTING; US Provisional Application No. 62/054,490, filed 24 Sep. 2014, DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS FOR TARGETING DISORDERS AND DISEASES USING PARTICLE DELIVERY COMPONENTS; U.S. Provisional Application No. 61/939,154, 12 Feb. 2014, SYSTEMS, METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATION WITH OPTIMIZED FUNCTIONAL CRISPR-CAS SYSTEMS; U.S. Provisional Application No. 62/055,484, filed 25 Sep. 2014, SYSTEMS, METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATION WITH OPTIMIZED FUNCTIONAL CRISPR-CAS SYSTEMS; U.S. Provisional Application No. 62/087,537, filed 4 Dec. 2014, SYSTEMS, METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATION WITH OPTIMIZED FUNCTIONAL CRISPR-CAS SYSTEMS; U.S. Provisional Application No. 62/054,651, filed 24 Sep. 2014, DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS FOR MODELING COMPETITION OF MULTIPLE CANCER MUTATIONS IN VIVO; U.S. Provisional Application No. 62/067,886, filed 23 Oct. 2014, DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS FOR MODELING COMPETITION OF MULTIPLE CANCER MUTATIONS IN VIVO; US Provisional Application Nos. 62/054,675, filed 24 Sep. 2014 and 62/181,002, filed 17 Jun. 2015, DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS IN NEURONAL CELLS/TISSUES; U.S. Provisional Application 62/054,528, filed 24 Sep. 2014, DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS IN IMMUNE DISEASES OR DISORDERS; U.S. Provisional Application No. 62/055,454, filed 25 Sep. 2014, DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS FOR TARGETING DISORDERS AND DISEASES USING CELL PENETRATION PEPTIDES (CPP); U.S. Provisional Application No. 62/055,460, filed 25-Sep.-2014, MULTIFUNCTIONAL-CRISPR COMPLEXES AND/OR OPTIMIZED ENZYME LINKED FUNCTIONAL-CRISPR COMPLEXES; U.S. Provisional Application No. 62/087,475, filed 4 Dec. 2014 and 62/181,690, filed 18 Jun. 2015, FUNCTIONAL SCREENING WITH OPTIMIZED FUNCTIONAL CRISPR-CAS SYSTEMS; U.S. Provisional Application 62/055,487, filed 25 Sep. 2014, FUNCTIONAL SCREENING WITH OPTIMIZED FUNCTIONAL CRISPR-CAS SYSTEMS; US Provisional Application No. 62/087,546, filed 4 Dec. 2014 and 62/181,687, filed 18 Jun. 2015, MULTIFUNCTIONAL CRISPR COMPLEXES AND/OR OPTIMIZED ENZYME LINKED FUNCTIONAL-CRISPR COMPLEXES; and U.S. Provisional Application 62/098,285, filed 30 Dec. 2014, CRISPR MEDIATED IN VIVO MODELING AND GENETIC SCREENING OF TUMOR GROWTH AND METASTASIS.


Mention is made of US Provisional Application Nos. 62/181,659, filed 18 Jun. 2015 and 62/207,318, filed 19 Aug. 2015, ENGINEERING AND OPTIMIZATION OF SYSTEMS, METHODS, ENZYME AND GUIDE SCAFFOLDS OF CAS9 ORTHOLOGS AND VARIANTS FOR SEQUENCE MANIPULATION. Mention is made of US Provisional Applications Nos. 62/181,663, filed 18 Jun. 2015 and 62/245,264, filed 22 Oct. 2015, NOVEL CRISPR ENZYMES AND SYSTEMS, US Provisional Application Nos. 62/181,675, filed 18-Jun.-2015, 62/285,349, filed 22 Oct. 2015, 62/296,522, filed 17 Feb. 2016, and 62/320,231, filed 8 Apr. 2016, NOVEL CRISPR ENZYMES AND SYSTEMS, U.S. Provisional Application No. 62/232,067, filed 24 Sep. 2015, U.S. application Ser. No. 14/975,085, filed 18 Dec. 2015, European Application No. 16150428.7, U.S. Provisional Application 62/205,733, filed 16 Aug. 2015, U.S. Provisional Application 62/201,542, filed 5 Aug. 2015, U.S. Provisional Application No. 62/193,507, filed 16 Jul. 2015, and US Provisional Application No. 62/181,739, filed 18 Jun. 2015, each entitled NOVEL CRISPR ENZYMES AND SYSTEMS, and of U.S. Provisional Application No. 62/245,270, filed 22 Oct. 2015, NOVEL CRISPR ENZYMES AND SYSTEMS. Mention is also made of US Provisional Application No. 61/939,256, filed 12 Feb. 2014, and WO 2015/089473 (PCT/US2014/070152), filed 12 Dec. 2014, each entitled ENGINEERING OF SYSTEMS, METHODS AND OPTIMIZED GUIDE COMPOSITIONS WITH NEW ARCHITECTURES FOR SEQUENCE MANIPULATION. Mention is also made of International Application No. PCT/US2015/045504, filed 15 Aug. 2015, U.S. Provisional Application No. 62/180,699, filed 17 Jun. 2015, and U.S. Provisional Application No. 62/038,358, filed 17 Aug. 2014, each entitled GENOME EDITING USING CAS9 NICKASES.


In addition, mention is made of PCT application PCT/US 14/70057, Attorney Reference 47627.99.2060 and BI-2013/107 entitled “DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS FOR TARGETING DISORDERS AND DISEASES USING PARTICLE DELIVERY COMPONENTS (claiming priority from one or more or all of US Provisional Application Nos. 62/054,490, filed Sep. 24, 2014; 62/010,441, filed Jun. 10, 2014; and 61/915,118, 61/915,215 and 61/915,148, each filed on Dec. 12, 2013) (“the Particle Delivery PCT”), incorporated herein by reference, and of PCT application PCT/US 14/70127, Attorney Reference 47627.99.2091 and BI-2013/101 entitled “DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS FOR GENOME EDITING” (claiming priority from one or more or all of U.S. Provisional Application Nos. 61/915,176; 61/915,192; 61/915,215; 61/915,107, 61/915,145; 61/915,148; and 61/915,153 each filed Dec. 12, 2013) (“the Eye PCT”), incorporated herein by reference, with respect to a method of preparing an sgRNA-and-Cas protein containing particle comprising admixing a mixture comprising an sgRNA and Cas effector protein (and optionally HDR template) with a mixture comprising or consisting essentially of or consisting of surfactant, phospholipid, biodegradable polymer, lipoprotein and alcohol; and particles from such a process. For example, wherein the Cas protein and sgRNA were mixed together at a suitable, e.g., 3:1 to 1:3 or 2:1 to 1:2 or 1:1 molar ratio, at a suitable temperature, e.g., 15-30 C, e.g., 20-25 C, e.g., room temperature, for a suitable time, e.g., 15-45, such as 30 minutes, advantageously in sterile, nuclease free buffer, e.g., 1× PBS. Separately, particle components such as or comprising: a surfactant, e.g., cationic lipid, e.g., 1,2-di oleoyl-3-trim ethylammonium-propane (DOTAP); phospholipid, e.g., dimyristoylphosphatidylcholine (DMPC); biodegradable polymer, such as an ethylene-glycol polymer or PEG, and a lipoprotein, such as a low-density lipoprotein, e.g., cholesterol were dissolved in an alcohol, advantageously a C1-6 alkyl alcohol, such as methanol, ethanol, isopropanol, e.g., 100% ethanol. The two solutions were mixed together to form particles containing the Cas9-sgRNA complexes. Accordingly, sgRNA may be pre-complexed with the Cas protein, before formulating the entire complex in a particle. Formulations may be made with a different molar ratio of different components known to promote delivery of nucleic acids into cells (e.g. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-ditetradecanoyl-sn-glycero-3-phosphocholine (DMPC), polyethylene glycol (PEG), and cholesterol) For example DOTAP:DMPC:PEG:Cholesterol Molar Ratios may be DOTAP 100, DMPC 0, PEG 0, Cholesterol 0; or DOTAP 90, DMPC 0, PEG 10, Cholesterol 0; or DOTAP 90, DMPC 0, PEG 5, Cholesterol 5. DOTAP 100, DMPC 0, PEG 0, Cholesterol 0. Other example nucleotide-binding systems and proteins


Other Exemplary Nucleotide-Binding Molecules and Systems

In an embodiment, the nucleotide-binding molecule may be one or more components of systems that are not CRISPR-Cas system. Examples of the other nucleotide-binding molecules may be components of transcription activator-like effector nuclease (TALEN), Zn finger nucleases, meganucleases, a functional fragment thereof, a variant thereof, of any combination thereof.


TALE Systems

In some embodiment, the nucleotide-binding molecule in the systems may be a transcription activator-like effector nuclease, a functional fragment thereof, or a variant thereof. The present disclosure also includes nucleotide sequences that are or encode one or more components of a TALE system. As disclosed herein editing can be made by way of the transcription activator-like effector nucleases (TALENs) system. Transcription activator-like effectors (TALEs) can be engineered to bind practically any desired DNA sequence. Exemplary methods of genome editing using the TALEN system can be found for example in Cermak T. Doyle E L. Christian M. Wang L. Zhang Y. Schmidt C, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011; 39:e82; Zhang F. Cong L. Lodato S. Kosuri S. Church G M. Arlotta P Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. 2011; 29:149-153 and U.S. Pat. Nos. 8,450,471, 8,440,431 and 8,440,432, all of which are specifically incorporated by reference.


In an embodiment, provided herein include isolated, non-naturally occurring, recombinant or engineered DNA binding proteins that comprise TALE monomers as a part of their organizational structure that enable the targeting of nucleic acid sequences with improved efficiency and expanded specificity.


Naturally occurring TALEs or “wild type TALEs” are nucleic acid binding proteins secreted by numerous species of proteobacteria. TALE polypeptides contain a nucleic acid binding domain composed of tandem repeats of highly conserved monomer polypeptides that are predominantly 33, 34 or 35 amino acids in length and that differ from each other mainly in amino acid positions 12 and 13. In an embodiment the nucleic acid is DNA. As used herein, the term “polypeptide monomers”, or “TALE monomers” will be used to refer to the highly conserved repetitive polypeptide sequences within the TALE nucleic acid binding domain and the term “repeat variable di-residues” or “RVD” will be used to refer to the highly variable amino acids at positions 12 and 13 of the polypeptide monomers. As provided throughout the disclosure, the amino acid residues of the RVD are depicted using the IUPAC single letter code for amino acids. A general representation of a TALE monomer which is comprised within the DNA binding domain is X1-11-(X12X13)-X14-33 or 34 or 35, where the subscript indicates the amino acid position and X represents any amino acid. X12X13 indicate the RVDs. In some polypeptide monomers, the variable amino acid at position 13 is missing or absent and in such polypeptide monomers, the RVD consists of a single amino acid. In such cases the RVD may be alternatively represented as X*, where X represents X12 and (*) indicates that X13 is absent. The DNA binding domain comprises several repeats of TALE monomers and this may be represented as (X1-11-(X12X13)-X14-33 or 34 or 35)z, where in an advantageous embodiment, z is at least 5 to 40. In a further advantageous embodiment, z is at least 10 to 26.


The TALE monomers have a nucleotide binding affinity that is determined by the identity of the amino acids in its RVD. For example, polypeptide monomers with an RVD of NI preferentially bind to adenine (A), polypeptide monomers with an RVD of NG preferentially bind to thymine (T), polypeptide monomers with an RVD of HD preferentially bind to cytosine (C) and polypeptide monomers with an RVD of NN preferentially bind to both adenine (A) and guanine (G). In yet another embodiment of the invention, polypeptide monomers with an RVD of IG preferentially bind to T. Thus, the number and order of the polypeptide monomer repeats in the nucleic acid binding domain of a TALE determines its nucleic acid target specificity. In still further embodiments of the invention, polypeptide monomers with an RVD of NS recognize all four base pairs and may bind to A, T, G or C. The structure and function of TALEs is further described in, for example, Moscou et al., Science 326:1501 (2009); Boch et al., Science 326:1509-1512 (2009); and Zhang et al., Nature Biotechnology 29:149-153 (2011), each of which is incorporated by reference in its entirety.


The TALE polypeptides used in methods are isolated, non-naturally occurring, recombinant or engineered nucleic acid-binding proteins that have nucleic acid or DNA binding regions containing polypeptide monomer repeats that are designed to target specific nucleic acid sequences.


As described herein, polypeptide monomers having an RVD of HN or NH preferentially bind to guanine and thereby allow the generation of TALE polypeptides with high binding specificity for guanine containing target nucleic acid sequences. In a preferred embodiment, polypeptide monomers having RVDs RN, NN, NK, SN, NH, KN, HN, NQ, HH, RG, KH, RH and SS preferentially bind to guanine. In a much more advantageous embodiment, polypeptide monomers having RVDs RN, NK, NQ, HH, KH, RH, SS and SN preferentially bind to guanine and thereby allow the generation of TALE polypeptides with high binding specificity for guanine containing target nucleic acid sequences. In an even more advantageous embodiment, polypeptide monomers having RVDs HH, KH, NH, NK, NQ, RH, RN and SS preferentially bind to guanine and thereby allow the generation of TALE polypeptides with high binding specificity for guanine containing target nucleic acid sequences. In a further advantageous embodiment, the RVDs that have high binding specificity for guanine are RN, NH RH and KH. Furthermore, polypeptide monomers having an RVD of NV preferentially bind to adenine and guanine. In more preferred embodiments, polypeptide monomers having RVDs of H*, HA, KA, N*, NA, NC, NS, RA, and S* bind to adenine, guanine, cytosine and thymine with comparable affinity.


The predetermined N-terminal to C-terminal order of the one or more polypeptide monomers of the nucleic acid or DNA binding domain determines the corresponding predetermined target nucleic acid sequence to which the TALE polypeptides will bind. As used herein the polypeptide monomers and at least one or more half polypeptide monomers are “specifically ordered to target” the genomic locus or gene of interest. In plant genomes, the natural TALE-binding sites always begin with a thymine (T), which may be specified by a cryptic signal within the non-repetitive N-terminus of the TALE polypeptide; In an embodiment this region may be referred to as repeat 0. In animal genomes, TALE binding sites do not necessarily have to begin with a thymine (T) and TALE polypeptides may target DNA sequences that begin with T, A, G or C. The tandem repeat of TALE monomers always ends with a half-length repeat or a stretch of sequence that may share identity with only the first 20 amino acids of a repetitive full length TALE monomer and this half repeat may be referred to as a half-monomer, which is included in the term “TALE monomer”. Therefore, it follows that the length of the nucleic acid or DNA being targeted is equal to the number of full polypeptide monomers plus two.


As described in Zhang et al., Nature Biotechnology 29:149-153 (2011), TALE polypeptide binding efficiency may be increased by including amino acid sequences from the “capping regions” that are directly N-terminal or C-terminal of the DNA binding region of naturally occurring TALEs into the engineered TALEs at positions N-terminal or C-terminal of the engineered TALE DNA binding region. Thus, In an embodiment, the TALE polypeptides described herein further comprise an N-terminal capping region and/or a C-terminal capping region.


An exemplary amino acid sequence of a N-terminal capping region is:










(SEQ ID NO: 1)



M D P I R S R T P S P A R E L L S G P Q P D G V Q P T A D R G V S P






P A G G P L D G L P A R R T M S R T R L P S P P A P S P A F S A D S





F S D L L R Q F D P S L F N T S L F D S L P P F G A H H T E A A T G





E W D E V Q S G L R A A D A P P P T M R V A V T A A R P P R A K P A





P R R R A A Q P S D A S P A A Q V D L R T L G Y S Q Q Q Q E K I K P





K V R S T V A Q H H E A L V G H G F T H A H I V A L S Q H P A A L G





T V A V K Y Q D M I A A L P E A T H E A I V G V G K Q W S G A R A L





E A L L T V A G E L R G P P L Q L D T G Q L L K I A K R G G V T A V





E A V H A W R N A L T G A P L N






An exemplary amino acid sequence of a C-terminal capping region is:










(SEQ ID NO: 2)



R P A L E S I V A Q L S R P D P A L A A L T N D H L V A L A C L G






G R P A L D A V K K G L P H A P A L I K R T N R R I P E R T S H R





V A D H A Q V V R V L G F F Q C H S H P A Q A F D D A M T Q F G M





S R H G L L Q L F R R V G V T E L E A R S G T L P P A S Q R W D R





I L Q A S G M K R A K P S P T S T Q T P D Q A S L H A F A D S L E





R D L D A P S P M H E G D Q T R A S






As used herein the predetermined “N-terminus” to “C terminus” orientation of the N-terminal capping region, the DNA binding domain comprising the repeat TALE monomers and the C-terminal capping region provide structural basis for the organization of different domains in the d-TALEs or polypeptides.


The entire N-terminal and/or C-terminal capping regions are not necessary to enhance the binding activity of the DNA binding region. Therefore, In an embodiment, fragments of the N-terminal and/or C-terminal capping regions are included in the TALE polypeptides described herein.


In an embodiment, the TALE polypeptides described herein contain a N-terminal capping region fragment that included at least 10, 20, 30, 40, 50, 54, 60, 70, 80, 87, 90, 94, 100, 102, 110, 117, 120, 130, 140, 147, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260 or 270 amino acids of an N-terminal capping region. In an embodiment, the N-terminal capping region fragment amino acids are of the C-terminus (the DNA-binding region proximal end) of an N-terminal capping region. As described in Zhang et al., Nature Biotechnology 29:149-153 (2011), N-terminal capping region fragments that include the C-terminal 240 amino acids enhance binding activity equal to the full length capping region, while fragments that include the C-terminal 147 amino acids retain greater than 80% of the efficacy of the full length capping region, and fragments that include the C-terminal 117 amino acids retain greater than 50% of the activity of the full-length capping region.


In an embodiment, the TALE polypeptides described herein contain a C-terminal capping region fragment that included at least 6, 10, 20, 30, 37, 40, 50, 60, 68, 70, 80, 90, 100, 110, 120, 127, 130, 140, 150, 155, 160, 170, 180 amino acids of a C-terminal capping region. In an embodiment, the C-terminal capping region fragment amino acids are of the N-terminus (the DNA-binding region proximal end) of a C-terminal capping region. As described in Zhang et al., Nature Biotechnology 29:149-153 (2011), C-terminal capping region fragments that include the C-terminal 68 amino acids enhance binding activity equal to the full length capping region, while fragments that include the C-terminal 20 amino acids retain greater than 50% of the efficacy of the full length capping region.


In an embodiment, the capping regions of the TALE polypeptides described herein do not need to have identical sequences to the capping region sequences provided herein. Thus, In an embodiment, the capping region of the TALE polypeptides described herein have sequences that are at least 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical or share identity to the capping region amino acid sequences provided herein. Sequence identity is related to sequence homology. Homology comparisons may be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs may calculate percent (%) homology between two or more sequences and may also calculate the sequence identity shared by two or more amino acid or nucleic acid sequences. In some preferred embodiments, the capping region of the TALE polypeptides described herein have sequences that are at least 95% identical or share identity to the capping region amino acid sequences provided herein.


Sequence homologies may be generated by any of a number of computer programs known in the art, which include but are not limited to BLAST or FASTA. Suitable computer program for carrying out alignments like the GCG Wisconsin Bestfit package may also be used. Once the software has produced an optimal alignment, it is possible to calculate % homology, preferably % sequence identity. The software typically does this as part of the sequence comparison and generates a numerical result.


In an embodiment described herein, the TALE polypeptides include a nucleic acid binding domain linked to the one or more effector domains. The terms “effector domain” or “regulatory and functional domain” refer to a polypeptide sequence that has an activity other than binding to the nucleic acid sequence recognized by the nucleic acid binding domain. By combining a nucleic acid binding domain with one or more effector domains, the polypeptides may be used to target the one or more functions or activities mediated by the effector domain to a particular target DNA sequence to which the nucleic acid binding domain specifically binds.


In an embodiment of the TALE polypeptides described herein, the activity mediated by the effector domain is a biological activity. For example, In an embodiment the effector domain is a transcriptional inhibitor (i.e., a repressor domain), such as an mSin interaction domain (SID). SID4X domain or a Krüppel-associated box (KRAB) or fragments of the KRAB domain. In an embodiment the effector domain is an enhancer of transcription (i.e. an activation domain), such as the VP16, VP64 or p65 activation domain. In an embodiment, the nucleic acid binding is linked, for example, with an effector domain that includes but is not limited to a transposase, integrase, recombinase, resolvase, invertase, protease, DNA methyltransferase, DNA demethylase, histone acetylase, histone deacetylase, nuclease, transcriptional repressor, transcriptional activator, transcription factor recruiting, protein nuclear-localization signal or cellular uptake signal.


In an embodiment, the effector domain is a protein domain which exhibits activities which include but are not limited to transposase activity, integrase activity, recombinase activity, resolvase activity, invertase activity, protease activity, DNA methyltransferase activity, DNA demethylase activity, histone acetylase activity, histone deacetylase activity, nuclease activity, nuclear-localization signaling activity, transcriptional repressor activity, transcriptional activator activity, transcription factor recruiting activity, or cellular uptake signaling activity. Other preferred embodiments may include any combination the activities described herein.


Zn-Finger Nucleases

In some embodiment, the nucleotide-binding molecule of the systems may be a Zn-finger nuclease, a functional fragment thereof, or a variant thereof. The composition may comprise one or more Zn-finger nucleases or nucleic acids encoding thereof. In an embodiment, the nucleotide sequences may comprise coding sequences for Zn-Finger nucleases. Other preferred tools for genome editing for use herein include zinc finger systems and TALE systems. One type of programmable DNA-binding domain is provided by artificial zinc-finger (ZF) technology, which involves arrays of ZF modules to target new DNA-binding sites in the genome. Each finger module in a ZF array targets three DNA bases. A customized array of individual zinc finger domains is assembled into a ZF protein (ZFP).


ZFPs can comprise a functional domain. The first synthetic zinc finger nucleases (ZFNs) were developed by fusing a ZF protein to the catalytic domain of the Type IIS restriction enzyme FokI. (Kim, Y. G. et al., 1994, Chimeric restriction endonuclease, Proc. Natl. Acad. Sci. U.S.A. 91, 883-887; Kim, Y. G. et al., 1996, Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. U.S.A. 93, 1156-1160). Increased cleavage specificity can be attained with decreased off target activity by use of paired ZFN heterodimers, each targeting different nucleotide sequences separated by a short spacer. (Doyon, Y. et al., 2011, Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat. Methods 8, 74-79). ZFPs can also be designed as transcription activators and repressors and have been used to target many genes in a wide variety of organisms. Exemplary methods of genome editing using ZFNs can be found for example in U.S. Pat. Nos. 6,534,261, 6,607,882, 6,746,838, 6,794,136, 6,824,978, 6,866,997, 6,933,113, 6,979,539, 7,013,219, 7,030,215, 7,220,719, 7,241,573, 7,241,574, 7,585,849, 7,595,376, 6,903,185, and 6,479,626, all of which are specifically incorporated by reference.


Meganucleases

In an embodiment, the nucleotide-binding domain may be a meganuclease, a functional fragment thereof, or a variant thereof. The composition may comprise one or more meganucleases or nucleic acids encoding thereof. As disclosed herein editing can be made by way of meganucleases, which are endodeoxyribonucleases characterized by a large recognition site (double-stranded DNA sequences of 12 to 40 base pairs). In an embodiment, the nucleotide sequences may comprise coding sequences for meganucleases. Exemplary method for using meganucleases can be found in U.S. Pat. Nos. 8,163,514; 8,133,697; 8,021,867; 8,119,361; 8,119,381; 8,124,369; and 8,129,134, which are specifically incorporated by reference.


In an embodiment, any of the nucleases, including the modified nucleases as described herein, may be used in the methods, compositions, and kits. In particular embodiments, nuclease activity of an unmodified nuclease may be compared with nuclease activity of any of the modified nucleases as described herein, e.g. to compare for instance off-target or on-target effects. Alternatively, nuclease activity (or a modified activity as described herein) of different modified nucleases may be compared, e.g. to compare for instance off-target or on-target effects.


Linkers

The transposase(s) and the Cas protein(s) may be associated via a linker. The term “linker” refers to a molecule which joins the proteins to form a fusion protein. Generally, such molecules have no specific biological activity other than to join or to preserve some minimum distance or other spatial relationship between the proteins. However, In an embodiment, the linker may be selected to influence some property of the linker and/or the fusion protein such as the folding, net charge, or hydrophobicity of the linker.


Suitable linkers for use in the methods herein include straight or branched-chain carbon linkers, heterocyclic carbon linkers, or peptide linkers. However, as used herein the linker may also be a covalent bond (carbon-carbon bond or carbon-heteroatom bond). In particular embodiments, the linker is used to separate the Cas protein and the transposase by a distance sufficient to ensure that each protein retains its required functional property. A peptide linker sequences may adopt a flexible extended conformation and do not exhibit a propensity for developing an ordered secondary structure. In an embodiment, the linker can be a chemical moiety which can be monomeric, dimeric, multimeric or polymeric. Preferably, the linker comprises amino acids. Typical amino acids in flexible linkers include Gly, Asn and Ser. Accordingly, in particular embodiments, the linker comprises a combination of one or more of Gly, Asn and Ser amino acids. Other near neutral amino acids, such as Thr and Ala, also may be used in the linker sequence. Exemplary linkers are disclosed in Maratea et al. (1985), Gene 40: 39-46; Murphy et al. (1986) Proc. Nat'l. Acad. Sci. USA 83: 8258-62; U.S. Pat. Nos. 4,935,233; and 4,751,180.


For example, GlySer linkers GGS, GGGS (SEQ ID NO: 3) or GSG can be used. GGS, GSG, GGGS (SEQ ID NO: 3) or GGGGS (SEQ ID NO: 4) linkers can be used in repeats of 3 (such as (GGS)3 (SEQ ID NO: 5), (GGGGS)3 (SEQ ID NO: 6)) or 5, 6, 7, 9 or even 12 or more, to provide suitable lengths. In an embodiment, the linker may be (GGGGS)3-15 (SEQ ID NO: 6-18), For example, In an embodiment, the linker may be (GGGGS)3-11(SEQ ID NO: 6-14), e.g., GGGGS (SEQ ID NO: 4), (GGGGS)2 (SEQ ID NO: 19), (GGGGS)3 (SEQ ID NO: 6), (GGGGS)4 (SEQ ID NO: 7), (GGGGS)5 (SEQ ID NO: 8), (GGGGS)6 (SEQ ID NO: 9), (GGGGS)7 (SEQ ID NO: 10), (GGGGS)8 (SEQ ID NO: 11), (GGGGS)9 (SEQ ID NO: 12), (GGGGS)10 (SEQ ID NO: 13), or (GGGGS)11 (SEQ ID NO: 14).


In particular embodiments, linkers such as (GGGGS)3 (SEQ ID NO: 6) are preferably used herein. (GGGGS)6 (SEQ ID NO: 9), (GGGGS)9 (SEQ ID NO: 12) or (GGGGS)12 (SEQ ID NO: 15) may be used as alternatives. Other alternatives include (GGGGS)1 (SEQ ID NO: 4), (GGGGS)2 (SEQ ID NO: 19), (GGGGS)4 (SEQ ID NO: 7), (GGGGS)5 (SEQ ID NO: 8), (GGGGS)7 (SEQ ID NO: 10), (GGGGS)8 (SEQ ID NO: 11), (GGGGS)10 (SEQ ID NO: 13), or (GGGGS)11 (SEQ ID NO: 14). In yet a further embodiment, LEPGEKPYKCPECGKSFSQSGALTRHQRTHTR (SEQ ID NO: 20) is used as a linker. In yet an additional embodiment, the linker is an XTEN linker. In particular embodiments, the Cas protein is linked to the deaminase protein or its catalytic domain by means of an LEPGEKPYKCPECGKSFSQSGALTRHQRTHTR (SEQ ID NO: 20) linker. In further particular embodiments, the Cas protein is linked C-terminally to the N-terminus of a deaminase protein or its catalytic domain by means of an LEPGEKPYKCPECGKSFSQSGALTRHQRTHTR (SEQ ID NO: 20) linker. In addition, N and C-terminal NLSs can also function as linker (e.g., PKKKRKVEASSPKKRKVEAS (SEQ ID NO: 21)). Table 1 lists possible linkers of interest in the present disclosure.









TABLE 1







Examples of linkers








Name
Sequence





GGS
GGTGGTAGT





GGSx3 (9)
GGTGGTAGTGGAGGGAGCGGCGGTTCA (SEQ ID NO: 22)





GGSx7 (21)
ggtggaggaggctctggtggaggcggtagcggaggcggagggtcgGGTGGTAGTGGAGGG



AGCGGCGGTTCA (SEQ ID NO: 23)





XTEN
TCGGGATCTGAGACGCCTGGGACCTCGGAATCGGCTACGCCCGAA



AGT (SEQ ID NO: 24)





Z-
Gtggataacaaatttaacaaagaaatgtgggcggcgtgggaagaaattcgtaacctgccgaacctgaacggc


EGFR_Short
tggcagatgaccgcgtttattgcgagcctggtggatgatccgagccagagcgcgaacctgctggcggaagcg



aaaaaactgaacgatgcgcaggcgccgaaaaccggcggtggttctggt (SEQ ID NO: 25)





GSAT
Ggtggttctgccggtggctccggttctggctccagcggtggcagctctggtgcgtccggcacgggtactgcg



ggtggcactggcagcggttccggtactggctctggc (SEQ ID NO: 26)









Linkers may be used between the guide RNAs and the functional domain (activator or repressor), or between the Cas protein and the transposase(s). The linkers may be used to engineer appropriate amounts of “mechanical flexibility”.


In an embodiment, the one or more functional domains are controllable, e.g., inducible.


Nuclear Localization Signals

In an embodiment, the systems and compositions herein further comprise one or more nuclear localization signals (NLSs) capable of driving the accumulation of the components, e.g., Cas and/or transposase(s) to a desired amount in the nucleus of a cell.


In an embodiment, at least one nuclear localization signal (NLS) is attached to the Cas and/or transposase(s), or polynucleotides encoding the proteins. In an embodiment, one or more C-terminal or N-terminal NLSs are attached (and hence nucleic acid molecule(s) coding for the Cas and/or transposase(s) can include coding for NLS(s) so that the expressed product has the NLS(s) attached or connected). In an embodiment a C-terminal NLS is attached for expression and nuclear targeting in eukaryotic cells, e.g., human cells. In an embodiment, the NLS(s) may be at a location that is not at the C-terminus or N-terminus. For example, the NLS(s) may be between two polypeptides (e.g., between a Cas protein and a transposase).


Non-limiting examples of NLSs include an NLS sequence derived from: the NLS of the SV40 virus large T-antigen; the NLS from nucleoplasmin (e.g., the nucleoplasmin bipartite NLS); the c-myc NLS; the hRNPA1 M9 NLS; the NLS of the IBB domain from importin-alpha; the NLS of the myoma T protein; the NLS of human p53; the NLS of mouse c-abl IV; the NLS of the influenza virus NS 1; the NLS of the Hepatitis virus delta antigen; the NLS of the mouse Mx1 protein; the NLS of the human poly(ADP-ribose) polymerase; and the NLS of the steroid hormone receptors (human) glucocorticoid. Exemplary NLS sequences include those described in paragraph [00106] of Feng Zhang et al., (WO2016106236A1).


In an embodiment, a NLS is a heterologous NLS. For example, the NLS is not naturally present in the molecule (e.g., Cas and/or transposase(s)) it attached to.


In general, strength of nuclear localization activity may derive from the number of NLSs in the nucleic acid-targeting effector protein, the particular NLS(s) used, or a combination of these factors. Detection of accumulation in the nucleus may be performed by any suitable technique. For example, a detectable marker may be fused to the nucleic acid-targeting protein, such that location within a cell may be visualized, such as in combination with a means for detecting the location of the nucleus (e.g., a stain specific for the nucleus such as DAPI).


In an embodiment, a vector described herein (e.g., those comprising polynucleotides encoding Cas and/or transposase(s)) comprise one or more nuclear localization sequences (NLSs), such as about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs. More particularly, vector comprises one or more NLSs not naturally present in the Cas and/or transposase(s). Most particularly, the NLS is present in the vector 5′ and/or 3′ of the Cas and/or transposase(s) sequence. In an embodiment, the Cas and/or transposase(s) comprises about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the amino-terminus, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the carboxy-terminus, or a combination of these (e.g., zero or at least one or more NLS at the amino-terminus and zero or at one or more NLS at the carboxy terminus). When more than one NLS is present, each may be selected independently of the others, such that a single NLS may be present in more than one copy and/or in combination with one or more other NLSs present in one or more copies. In an embodiment, an NLS is considered near the N- or C-terminus when the nearest amino acid of the NLS is within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N- or C-terminus.


In an embodiment, other localization tags may be fused to the Cas and/or transposase(s), such as without limitation for localizing to particular sites in a cell, such as to organelles, such as mitochondria, plastids, chloroplasts, vesicles, golgi, (nuclear or cellular) membranes, ribosomes, nucleolus, ER, cytoskeletons, vacuoles, centrosomes, nucleosome, granules, centrioles, etc.


Targeting Moieties

The systems may further comprise one or more targeting moieties. The targeting moieties may bind to specific cells or tissues, e.g., by binding to surface receptor proteins. Likewise, Table 2 provides exemplary targeting moieties that can be used in the practice an as to each an aspect provides a system that comprises such a targeting moiety.









TABLE 2







Targeting moieties, target molecules and target cells or tissues.









Targeting Moiety
Target Molecule
Target Cell or Tissue





folate
folate receptor
cancer cells


transferrin
transferrin receptor
cancer cells


Antibody CC52
rat CC531
rat colon adenocarcinoma CC531


anti- HER2 antibody
HER2
HER2 -overexpressing tumors


anti-GD2
GD2
neuroblastoma, melanoma


anti-EGFR
EGFR
tumor cells overexpressing EGFR


pH-dependent fusogenic

ovarian carcinoma


peptide diINF-7


anti-VEGFR
VEGF Receptor
tumor vasculature


anti-CD19
CD19 (B cell marker)
leukemia, lymphoma


cell-penetrating peptide

blood-brain barrier


cyclic arginine-glycine-aspartic
avβ3
glioblastoma cells, human


acid-tyrosine-cysteine peptide

umbilical vein endothelial cells,


(c(RGDyC)-LP)

tumor angiogenesis


ASSHN peptide

endothelial progenitor cells; anti-cancer


PR_b peptide
α5β1 integrin
cancer cells


AG86 peptide
α6β4 integrin
cancer cells


KCCYSL (P6.1
HER-2 receptor
cancer cells


peptide)


affinity peptide LN
Aminopeptidase N
APN-positive tumor


(YEVGHRC)
(APN/CD13)


synthetic somatostatin
Somatostatin receptor 2
breast cancer


analogue
(SSTR2)


anti-CD20 monoclonal
B-lymphocytes
B cell lymphoma


antibody









Thus, in an embodiment of the systems, the targeting moiety comprises a receptor ligand, such as, for example, hyaluronic acid for CD44 receptor, galactose for hepatocytes, or antibody or fragment thereof such as a binding antibody fragment against a desired surface receptor, and as to each of a targeting moiety comprising a receptor ligand, or an antibody or fragment thereof such as a binding fragment thereof, such as against a desired surface receptor, there is an aspect wherein the system comprises a targeting moiety comprising a receptor ligand, or an antibody or fragment thereof such as a binding fragment thereof, such as against a desired surface receptor, or hyaluronic acid for CD44 receptor, galactose for hepatocytes (see, e.g., Surace et al, “Lipoplexes targeting the CD44 hyaluronic acid receptor for efficient transfection of breast cancer cells,” J. Mol Pharm 6(4):1062-73; doi: 10.1021/mp800215d (2009); Sonoke et al, “Galactose-modified cationic liposomes as a liver-targeting delivery system for small interfering RNA,” Biol Pharm Bull. 34(8):1338-42 (2011); Torchilin, “Antibody-modified liposomes for cancer chemotherapy,” Expert Opin. Drug Deliv. 5 (9), 1003-1025 (2008); Manjappa et al, “Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor,” J. Control. Release 150 (1), 2-22 (2011); Sofou S “Antibody-targeted liposomes in cancer therapy and imaging,” Expert Opin. Drug Deliv. 5 (2): 189-204 (2008); Gao J et al, “Antibody-targeted immunoliposomes for cancer treatment,” Mini. Rev. Med. Chem. 13(14): 2026-2035 (2013); Molavi et al, “Anti-CD30 antibody conjugated liposomal doxorubicin with significantly improved therapeutic efficacy against anaplastic large cell lymphoma,” Biomaterials 34(34):8718-25 (2013), each of which and the documents cited therein are hereby incorporated herein by reference).


Moreover, in view of the teachings herein the skilled artisan can readily select and apply a desired targeting moiety as to a lipid entity. In an embodiment, the system comprises a lipid entity having a targeting moiety.


Polynucleotides and Vectors

The systems herein may comprise one or more polynucleotides. The polynucleotide(s) may comprise coding sequences of Cas protein(s), transposase(s), guide molecule(s), donor polynucleotide(s), or any combination thereof. The present disclosure further provides vectors or vector systems comprising one or more polynucleotides herein. The vectors or vector systems include those described in the delivery sections herein.


The terms “polynucleotide”, “nucleotide”, “nucleotide sequence”, “nucleic acid” and “oligonucleotide” are used interchangeably. They refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof. Polynucleotides may have any three dimensional structure, and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. The term also encompasses nucleic-acid-like structures with synthetic backbones, see, e.g., Eckstein, 1991; Baserga et al., 1992; Milligan, 1993; WO 97/03211; WO 96/39154; Mata, 1997; Strauss-Soukup, 1997; and Samstag, 1996. A polynucleotide may comprise one or more modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component. As used herein the term “wild type” is a term of the art understood by skilled persons and means the typical form of an organism, strain, gene or characteristic as it occurs in nature as distinguished from mutant or variant forms. A “wild type” can be a base line. As used herein the term “variant” should be taken to mean the exhibition of qualities that have a pattern that deviates from what occurs in nature. The terms “non-naturally occurring” or “engineered” are used interchangeably and indicate the involvement of the hand of man. The terms, when referring to nucleic acid molecules or polypeptides mean that the nucleic acid molecule or the polypeptide is at least substantially free from at least one other component with which they are naturally associated in nature and as found in nature. “Complementarity” refers to the ability of a nucleic acid to form hydrogen bond(s) with another nucleic acid sequence by either traditional Watson-Crick base pairing or other non-traditional types. A percent complementarity indicates the percentage of residues in a nucleic acid molecule which can form hydrogen bonds (e.g., Watson-Crick base pairing) with a second nucleic acid sequence (e.g., 5, 6, 7, 8, 9, 10 out of 10 being 50%, 60%, 70%, 80%, 90%, and 100% complementary). “Perfectly complementary” means that all the contiguous residues of a nucleic acid sequence will hydrogen bond with the same number of contiguous residues in a second nucleic acid sequence. “Substantially complementary” as used herein refers to a degree of complementarity that is at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% over a region of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, or more nucleotides, or refers to two nucleic acids that hybridize under stringent conditions. As used herein, “stringent conditions” for hybridization refer to conditions under which a nucleic acid having complementarity to a target sequence predominantly hybridizes with the target sequence, and substantially does not hybridize to non-target sequences. Stringent conditions are generally sequence-dependent, and vary depending on a number of factors. In general, the longer the sequence, the higher the temperature at which the sequence specifically hybridizes to its target sequence. Non-limiting examples of stringent conditions are described in detail in Tijssen (1993), Laboratory Techniques In Biochemistry And Molecular Biology-Hybridization With Nucleic Acid Probes Part I, Second Chapter “Overview of principles of hybridization and the strategy of nucleic acid probe assay”, Elsevier, N.Y. Where reference is made to a polynucleotide sequence, then complementary or partially complementary sequences are also envisaged. These are preferably capable of hybridizing to the reference sequence under highly stringent conditions. Generally, in order to maximize the hybridization rate, relatively low-stringency hybridization conditions are selected: about 20 to 25° C. lower than the thermal melting point (Tm). The Tm is the temperature at which 50% of specific target sequence hybridizes to a perfectly complementary probe in solution at a defined ionic strength and pH. Generally, in order to require at least about 85% nucleotide complementarity of hybridized sequences, highly stringent washing conditions are selected to be about 5 to 15° C. lower than the Tm. A sequence capable of hybridizing with a given sequence is referred to as the “complement” of the given sequence.


As used herein, the term “genomic locus” or “locus” (plural loci) is the specific location of a gene or DNA sequence on a chromosome. A “gene” refers to stretches of DNA or RNA that encode a polypeptide or an RNA chain that has functional role to play in an organism and hence is the molecular unit of heredity in living organisms. It may be considered that genes include regions which regulate the production of the gene product, whether or not such regulatory sequences are adjacent to coding and/or transcribed sequences. Accordingly, a gene includes, but is not necessarily limited to, promoter sequences, terminators, translational regulatory sequences such as ribosome binding sites and internal ribosome entry sites, enhancers, silencers, insulators, boundary elements, replication origins, matrix attachment sites and locus control regions. As used herein, “expression of a genomic locus” or “gene expression” is the process by which information from a gene is used in the synthesis of a functional gene product. The products of gene expression are often proteins, but in non-protein coding genes such as rRNA genes or tRNA genes, the product is functional RNA. The process of gene expression is used by all known life—eukaryotes (including multicellular organisms), prokaryotes (bacteria and archaea) and viruses to generate functional products to survive. As used herein “expression” of a gene or nucleic acid encompasses not only cellular gene expression, but also the transcription and translation of nucleic acid(s) in cloning systems and in any other context. As used herein, “expression” also refers to the process by which a polynucleotide is transcribed from a DNA template (such as into and mRNA or other RNA transcript) and/or the process by which a transcribed mRNA is subsequently translated into peptides, polypeptides, or proteins. Transcripts and encoded polypeptides may be collectively referred to as “gene product.” If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in a eukaryotic cell. The terms “polypeptide”, “peptide” and “protein” are used interchangeably herein to refer to polymers of amino acids of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids. The terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component. As used herein the term “amino acid” includes natural and/or unnatural or synthetic amino acids, including glycine and both the D or L optical isomers, and amino acid analogs and peptidomimetics. As used herein, the term “domain” or “protein domain” refers to a part of a protein sequence that may exist and function independently of the rest of the protein chain. As described in aspects, sequence identity is related to sequence homology. Homology comparisons may be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs may calculate percent (%) homology between two or more sequences and may also calculate the sequence identity shared by two or more amino acid or nucleic acid sequences.


In an embodiment, the polynucleotide sequence is recombinant DNA. In further embodiments, the polynucleotide sequence further comprises additional sequences as described elsewhere herein. In an embodiment, the nucleic acid sequence is synthesized in vitro.


Aspects of the disclosure relate to polynucleotide molecules that encode one or more components of the systems as referred to in any embodiment herein. In an embodiment, the polynucleotide molecules may comprise further regulatory sequences. By means of guidance and not limitation, the polynucleotide sequence can be part of an expression plasmid, a minicircle, a lentiviral vector, a retroviral vector, an adenoviral or adeno-associated viral vector, a piggyback vector, or a tol2 vector. In an embodiment, the polynucleotide sequence may be a bicistronic expression construct. In further embodiments, the isolated polynucleotide sequence may be incorporated in a cellular genome. In yet further embodiments, the isolated polynucleotide sequence may be part of a cellular genome. In further embodiments, the isolated polynucleotide sequence may be comprised in an artificial chromosome. In an embodiment, the 5′ and/or 3′ end of the isolated polynucleotide sequence may be modified to improve the stability of the sequence of actively avoid degradation. In an embodiment, the isolated polynucleotide sequence may be comprised in a bacteriophage. In other embodiments, the isolated polynucleotide sequence may be contained in agrobacterium species. In an embodiment, the isolated polynucleotide sequence is lyophilized.


Codon Optimization

Aspects of the disclosure relate to polynucleotide molecules that encode one or more components of the systems as described in any of the embodiments herein, wherein at least one or more regions of the polynucleotide molecule may be codon optimized for expression in a eukaryotic cell. In an embodiment, the polynucleotide molecules that encode one or more components of the systems as described in any of the embodiments herein are optimized for expression in a mammalian cell or a plant cell.


An example of a codon optimized sequence, is in this instance a sequence optimized for expression in a eukaryote, e.g., humans (i.e. being optimized for expression in humans), or for another eukaryote, animal or mammal as herein discussed; see, e.g., SaCas9 human codon optimized sequence in International Patent Publication No. WO 2014/093622 (PCT/US2013/074667) as an example of a codon optimized sequence (from knowledge in the art and this disclosure, codon optimizing coding nucleic acid molecule(s), especially as to effector protein is within the ambit of the skilled artisan). Whilst this is preferred, it will be appreciated that other examples are possible and codon optimization for a host species other than human, or for codon optimization for specific organs is known. In an embodiment, an enzyme coding sequence encoding a Cas protein and/or transposase is codon optimized for expression in particular cells, such as eukaryotic cells. The eukaryotic cells may be those of or derived from a particular organism, such as a plant or a mammal, including but not limited to human, or non-human eukaryote or animal or mammal as herein discussed, e.g., mouse, rat, rabbit, dog, livestock, or non-human mammal or primate. In an embodiment, processes for modifying the germ line genetic identity of human beings and/or processes for modifying the genetic identity of animals which are likely to cause them suffering without any substantial medical benefit to man or animal, and also animals resulting from such processes, may be excluded. In general, codon optimization refers to a process of modifying a nucleic acid sequence for enhanced expression in the host cells of interest by replacing at least one codon (e.g., about or more than about 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more codons) of the native sequence with codons that are more frequently or most frequently used in the genes of that host cell while maintaining the native amino acid sequence.


Various species exhibit particular bias for certain codons of a particular amino acid. Codon bias (differences in codon usage between organisms) often correlates with the efficiency of translation of messenger RNA (mRNA), which is in turn believed to be dependent on, among other things, the properties of the codons being translated and the availability of particular transfer RNA (tRNA) molecules. The predominance of selected tRNAs in a cell is generally a reflection of the codons used most frequently in peptide synthesis. Accordingly, genes can be tailored for optimal gene expression in a given organism based on codon optimization. Codon usage tables are readily available, for example, at the “Codon Usage Database” available at www.kazusa.orjp/codon/and these tables can be adapted in a number of ways. See Nakamura, Y., et al. “Codon usage tabulated from the international DNA sequence databases: status for the year 2000” Nucl. Acids Res. 28:292 (2000). Computer algorithms for codon optimizing a particular sequence for expression in a particular host cell are also available, such as Gene Forge (Aptagen; Jacobus, PA), are also available. In an embodiment, one or more codons (e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more, or all codons) in a sequence encoding a DNA/RNA-targeting Cas protein corresponds to the most frequently used codon for a particular amino acid.


Method of Inserting Polynucleotides

The present disclosure further provides methods of inserting a polynucleotide into a target nucleic acid in a cell, which comprises introducing into a cell: (a) one or more transposases (e.g., CRISPR-associated transposases) or functional fragments thereof, (b) a nucleotide-binding systems, e.g., Cas protein and guide, (c) one or more donor polynucleotides.


The one or more of components (a), (b), and (c) may be expressed from a nucleic acid operably linked to a regulatory sequence that is expressed in the cell. In an embodiment, the one or more of components (a), (b), (c) may be introduced in a particle. The particle may comprise a ribonucleoprotein (RNP). The cell may be a prokaryotic cell. The cell may be a eukaryotic cell. For example, the cell may be a mammalian cell, a cell of a non-human primate, or a human cell. The cell may be a plant cell.


In an embodiment, methods of inserting a donor polynucleotide into a target polynucleotide are provided. Methods of inserting a donor polynucleotide into a target polynucleotide are performed in vitro or in vivo, for example, in a cell. Components of the system that are introduced to the target polynucleotide comprise one or more CRISPR-associated transposases (or functional fragments thereof), one or more Type I-F Cas proteins as detailed herein and a guide molecule capable of complexing with the Type I-F Cas protein and a donor polynucleotide are introduced to the target polynucleotide. In one embodiment, the target polynucleotide is comprised in a cell, e.g. prokaryotic or eukaryotic cell. In an example embodiment, the donor polynucleotide: introduces one or more mutations to the target polynucleotide, corrects a premature stop codon in the target polynucleotide, disrupts a splicing site, restores a splicing site, or a combination thereof. The mutations can be as described elsewhere herein, for example, and may comprise substitutions, deletions, and/or insertions relative to the target polynucleotide. Shifts in an open reading frame relative to the target polynucleotide is an example embodiment of the methods inserting the donor polynucleotide. In a preferred embodiment, one or more components introduced to a target polynucleotide are expressed from a nucleic acid operably linked to a regulator sequence, as described further elsewhere herein. Introduction of the one or more components in the methods may be introduced in a particle, which may comprise a ribonucleoprotein (RNP).


In an embodiment, the method of inserting a donor polynucleotide into a target polynucleotide in a cell, which comprises introducing into the cell: one or more transposases (e.g., CRISPR-associated transposases), a Cas protein; and a guide molecule capable of complexing with the Cas protein and directing sequence specific binding of the guide-Cas protein complex to a target sequence of the target nucleic acid. The one or more CRISPR-associated transposons may comprise one or more transposases and a donor polynucleotide to be inserted.


Immune Orthogonal Orthologs

In an embodiment, when one or more components of the systems (e.g., transposases, nucleotide-binding molecules) herein need to be expressed or administered in a subject, immunogenicity of the components may be reduced by sequentially expressing or administering immune orthogonal orthologs of the components of the transposon complexes to the subject. As used herein, the term “immune orthogonal orthologs” refer to orthologous proteins that have similar or substantially the same function or activity, but have no or low cross-reactivity with the immune response generated by one another. In an embodiment, sequential expression or administration of such orthologs elicits low or no secondary immune response. The immune orthogonal orthologs can avoid being neutralized by antibodies (e.g., existing antibodies in the host before the orthologs are expressed or administered). Cells expressing the orthologs can avoid being cleared by the host's immune system (e.g., by activated CTLs). In an embodiment, CRISPR enzyme and/or transposase orthologs from different species may be immune orthogonal orthologs.


Immune orthogonal orthologs may be identified by analyzing the sequences, structures, and/or immunogenicity of a set of candidates orthologs. In an example method, a set of immune orthogonal orthologs may be identified by a) comparing the sequences of a set of candidate orthologs (e.g., orthologs from different species) to identify a subset of candidates that have low or no sequence similarity; b) assessing immune overlap among the members of the subset of candidates to identify candidates that have no or low immune overlap. In an embodiment, immune overlap among candidates may be assessed by determining the binding (e.g., affinity) between a candidate ortholog and MHC (e.g., MHC type I and/or MHC II) of the host. Alternatively or additionally, immune overlap among candidates may be assessed by determining B-cell epitopes for the candidate orthologs. In one example, immune orthogonal orthologs may be identified using the method described in Moreno A M et al., BioRxiv, published online Jan. 10, 2018, doi: doi.org/10.1101/245985.


Methods of Delivery and Administration

The present disclosure also provides delivery systems for introducing components of the systems and compositions herein to cells, tissues, organs, or organisms. A delivery system may comprise one or more delivery vehicles and/or cargos. Exemplary delivery systems and methods include those described in paragraphs [00117] to [00278] of Feng Zhang et al., (WO2016106236A1), and pages 1241-1251 and Table 1 of Lino C A et al., Delivering CRISPR: a review of the challenges and approaches, DRUG DELIVERY, 2018, VOL. 25, NO. 1, 1234-1257, which are incorporated by reference herein in their entireties.


In an embodiment, the delivery systems may be used to introduce the components of the systems and compositions to plant cells. For example, the components may be delivered to plant using electroporation, microinjection, aerosol beam injection of plant cell protoplasts, biolistic methods, DNA particle bombardment, and/or Agrobacterium-mediated transformation. Examples of methods and delivery systems for plants include those described in Fu et al., Transgenic Res. 2000 February; 9(1):11-9; Klein R M, et al., Biotechnology. 1992; 24:384-6; Casas A M et al., Proc Natl Acad Sci USA. 1993 Dec. 1; 90(23): 11212-11216; and U.S. Pat. No. 5,563,055, Davey M R et al., Plant Mol Biol. 1989 September; 13(3):273-85, which are incorporated by reference herein in their entireties.


Cargos

The delivery systems may comprise one or more cargos. The cargos may comprise one or more components of the systems and compositions herein. A cargo may comprise one or more of the following: i) a plasmid encoding one or more Cas proteins; ii) a plasmid encoding one or more guide RNAs, iii) mRNA of one or more Cas proteins; iv) one or more guide RNAs; v) one or more Cas proteins; vi) any combination thereof. In an embodiment, a cargo may comprise a plasmid encoding one or more Cas protein and one or more (e.g., a plurality of) guide RNAs. In an embodiment, the plasmid may also encode a recombination template (e.g., for HDR). In an embodiment, a cargo may comprise mRNA encoding one or more Cas proteins and one or more guide RNAs.


In an embodiment, a cargo may comprise one or more Cas proteins and one or more guide RNAs, e.g., in the form of ribonucleoprotein complexes (RNP). The ribonucleoprotein complexes may be delivered by methods and systems herein. In an embodiment, the ribonucleoprotein may be delivered by way of a polypeptide-based shuttle agent. In one example, the ribonucleoprotein may be delivered using synthetic peptides comprising an endosome leakage domain (ELD) operably linked to a cell penetrating domain (CPD), to a histidine-rich domain and a CPD, e.g., as describe in WO2016161516. RNP may also be used for delivering the compositions and systems to plant cells, e.g., as described in Wu J W, et al., Nat Biotechnol. 2015 November; 33(11):1162-4.


Physical Delivery

In an embodiment, the cargos may be introduced to cells by physical delivery methods. Examples of physical methods include microinjection, electroporation, and hydrodynamic delivery. Both nucleic acid and proteins may be delivered using such methods. For example, Cas protein may be prepared in vitro, isolated, (refolded, purified if needed), and introduced to cells.


Microinjection

Microinjection of the cargo directly to cells can achieve high efficiency, e.g., above 90% or about 100%. In an embodiment, microinjection may be performed using a microscope and a needle (e.g., with 0.5-5.0 μm in diameter) to pierce a cell membrane and deliver the cargo directly to a target site within the cell. Microinjection may be used for in vitro and ex vivo delivery.


Plasmids comprising coding sequences for Cas proteins and/or guide RNAs, mRNAs, and/or guide RNAs, may be microinjected. In an embodiment, microinjection may be used i) to deliver DNA directly to a cell nucleus, and/or ii) to deliver mRNA (e.g., in vitro transcribed) to a cell nucleus or cytoplasm. In an example embodiment, microinjection may be used to delivery sgRNA directly to the nucleus and Cas-encoding mRNA to the cytoplasm, e.g., facilitating translation and shuttling of Cas to the nucleus.


Microinjection may be used to generate genetically modified animals. For example, gene editing cargos may be injected into zygotes to allow for efficient germline modification. Such approach can yield normal embryos and full-term mouse pups harboring the desired modification(s). Microinjection can also be used to provide transiently up- or down-regulate a specific gene within the genome of a cell, e.g., using CRISPRa and CRISPRi.


Electroporation

In an embodiment, the cargos and/or delivery vehicles may be delivered by electroporation. Electroporation may use pulsed high-voltage electrical currents to transiently open nanometer-sized pores within the cellular membrane of cells suspended in buffer, allowing for components with hydrodynamic diameters of tens of nanometers to flow into the cell. In an embodiment, electroporation may be used on various cell types and efficiently transfer cargo into cells. Electroporation may be used for in vitro and ex vivo delivery.


Electroporation may also be used to deliver the cargo to into the nuclei of mammalian cells by applying specific voltage and reagents, e.g., by nucleofection. Such approaches include those described in Wu Y, et al. (2015). Cell Res 25:67-79; Ye L, et al. (2014). Proc Natl Acad Sci USA 111:9591-6; Choi P S, Meyerson M. (2014). Nat Commun 5:3728; Wang J, Quake S R. (2014). Proc Natl Acad Sci 111:13157-62. Electroporation may also be used to deliver the cargo in vivo, e.g., with methods described in Zuckermann M, et al. (2015). Nat Commun 6:7391.


Hydrodynamic Delivery

Hydrodynamic delivery may also be used for delivering the cargos, e.g., for in vivo delivery. In an embodiment, hydrodynamic delivery may be performed by rapidly pushing a large volume (8-10% body weight) solution containing the gene editing cargo into the bloodstream of a subject (e.g., an animal or human), e.g., for mice, via the tail vein. As blood is incompressible, the large bolus of liquid may result in an increase in hydrodynamic pressure that temporarily enhances permeability into endothelial and parenchymal cells, allowing for cargo not normally capable of crossing a cellular membrane to pass into cells. This approach may be used for delivering naked DNA plasmids and proteins. The delivered cargos may be enriched in liver, kidney, lung, muscle, and/or heart.


Transfection

The cargos, e.g., nucleic acids, may be introduced to cells by transfection methods for introducing nucleic acids into cells. Examples of transfection methods include calcium phosphate-mediated transfection, cationic transfection, liposome transfection, dendrimer transfection, heat shock transfection, magnetofection, lipofection, impalefection, optical transfection, proprietary agent-enhanced uptake of nucleic acid.


Delivery Vehicles

The delivery systems may comprise one or more delivery vehicles. The delivery vehicles may deliver the cargo into cells, tissues, organs, or organisms (e.g., animals or plants). The cargos may be packaged, carried, or otherwise associated with the delivery vehicles. The delivery vehicles may be selected based on the types of cargo to be delivered, and/or the delivery is in vitro and/or in vivo. Examples of delivery vehicles include vectors, viruses, non-viral vehicles, and other delivery reagents described herein.


Delivery, as described elsewhere herein, may comprise delivery of one or more subunits or CRISPR-associated proteins separately, as one or more fusion proteins, or as polynucleotides encoding the proteins. As described above, delivery of multimeric Class I complexes, including Type I systems, is known in the art, e.g. Pickar-Oliver et al., Nat Biotechnol. 2019 December; 37(12): 1493-1501; doi: 10.1038/s41587-019-0235-7. Pickar-Oliver utilized a CMV promoter for each subunit of the system and further included N-terminal Flag epitope tags and nuclear localization systems. While Pickar-Olivier delivered each subunit of the complex on a separate vector delivery of more than one subunit on the same construct. Dolan et al. delivered T. fusca Type I-E for genome editing in hESCs via RNP electroporation utilizing C-terminal NLSs on Cas3 and to the C-terminus of each of the six Cas7 subunits delivered via electroporation. Dolan et al., Mot Cell, (2019); 74(5): 936-950.e5; doi: 10.1016/j.molcel.2019.03.014; see also Morisaka, et al. Nat. Commun. 10, 5302 (2019); Cameron et al, Nat Biotechnol. 2019 December; 37(12):1471-147; doi: 10.1038/s41587-019-0310-0 (fusion of multi-subunit cascade to Fok1 nuclease domain for delivery via polycistronic vector with guide RNA delivered on separate plasmid for eukaryotic application); and Young et al., Commun Biol. (Oct. 18, 2019); 2:383. doi: 10.1038/s42003-019-0637-6 (delivery of class 1 type 1-E S. thermophilus system in Zea mays by tethering a plant transcriptional activation domain to 3 different subunits of the Cascade complex). Codon optimization based on human codon usage and/or further codon optimization by optimization tools such as ATUM/DNA2.0 can be performed to further optimize expression.


In an embodiment, the delivery of the engineered vectors and compositions disclosed herein may comprise delivering into a cell one or more engineered compositions comprising one or more CRISPR-associated Tn7 transposases or functional fragments thereof; one or more Type 1-F Cas proteins; a guide molecule capable of complexing with the one or more Type 1-F Cas proteins and directing binding of the guide-Cas protein complex to a target polynucleotide; and the donor polynucleotide. In an example embodiment, the delivery of the donor polynucleotide introduces one or more mutations to the target polynucleotide; corrects a premature stop codon in the target polynucleotide; disrupts a splicing site; restores a splicing site; or a combination thereof.


The delivery vehicles in accordance with the present disclosure may have a greatest dimension (e.g. diameter) of less than 100 microns (μm). In an embodiment, the delivery vehicles have a greatest dimension of less than 10 μm. In an embodiment, the delivery vehicles may have a greatest dimension of less than 2000 nanometers (nm). In an embodiment, the delivery vehicles may have a greatest dimension of less than 1000 nanometers (nm). In an embodiment, the delivery vehicles may have a greatest dimension (e.g., diameter) of less than 900 nm, less than 800 nm, less than 700 nm, less than 600 nm, less than 500 nm, less than 400 nm, less than 300 nm, less than 200 nm, less than 150 nm, or less than 100 nm, less than 50 nm. In an embodiment, the delivery vehicles may have a greatest dimension ranging between 25 nm and 200 nm.


In an embodiment, the delivery vehicles may be or comprise particles. For example, the delivery vehicle may be or comprise nanoparticles (e.g., particles with a greatest dimension (e.g., diameter) no greater than 1000 nm. The particles may be provided in different forms, e.g., as solid particles (e.g., metal such as silver, gold, iron, titanium), non-metal, lipid-based solids, polymers), suspensions of particles, or combinations thereof. Metal, dielectric, and semiconductor particles may be prepared, as well as hybrid structures (e.g., core-shell particles). Nanoparticles may also be used to deliver the compositions and systems to plant cells, e.g., as described in International Patent Publication No. WO 2008042156, US Publication Application No. US 20130185823, and International Patent Publication No WO 2015/089419.


Vectors

The present disclosure provides vector systems comprising one or more vectors. A vector may comprise one or more polynucleotides encoding components in the Cas associated transposases systems herein, or combination thereof. In a particular example, the present disclosure provides a single vector comprising all components of the Cas-associated transposase system or polynucleotides encoding the components. The vector may comprise a single promoter. In other embodiments, the system may comprise a plurality of vectors, each comprising one or some components the Cas-associated transposase system or polynucleotides encoding the components.


The one or more polynucleotides in the vector systems may comprise one or more regulatory elements operably configures to express the polypeptide(s) and/or the nucleic acid component(s), optionally wherein the one or more regulatory elements comprise inducible promoters. The polynucleotide molecule encoding the Cas polypeptide is codon optimized for expression in a eukaryotic cell.


Polynucleotides encoding the Cas and/or transposase(s) may be mutated to reduce or prevent early or pre-mature termination of translation. In an embodiment, the polynucleotides encode RNA with poly-U stretches (e.g., in the 5′ end). Such polynucleotides may be mutated, e.g., in the sequences encoding the poly-U stretches, to reduce or prevent early or pre-mature termination.


A vector may have one or more restriction endonuclease recognition sites (e.g., type I, II or III) at which the sequences may be cut in a determinable fashion without loss of an essential biological function of the vector, and into which a nucleic acid fragment may be spliced or inserted in order to bring about its replication and cloning. Vectors may also comprise one or more recombination sites that permit exchange of nucleic acid sequences between two nucleic acid molecules. Vectors may further provide primer sites, e.g., for PCR, transcriptional and/or translational initiation and/or regulation sites, recombinational signals, replicons, selectable markers, etc. A vector may further contain one or more selectable markers suitable for use in the identification of cells transformed with the vector.


As mentioned previously, vectors capable of directing the expression of genes and/or nucleic acid sequence to which they are operatively linked, in an appropriate host cell (e.g., a prokaryotic cell, eukaryotic cell, or mammalian cell), are referred to herein as “expression vectors.” If translation of the desired nucleic acid sequence is required, the vector also typically may comprise sequences required for proper translation of the nucleotide sequence. The term “expression” as used herein with regards to expression vectors, refers to the biosynthesis of a nucleic acid sequence product, i.e., to the transcription and/or translation of a nucleotide sequence. Expression also refers to biosynthesis of a microRNA or RNAi molecule, which refers to expression and transcription of an RNAi agent such as siRNA, shRNA, and antisense DNA, that do not require translation to polypeptide sequences.


In general, expression vectors of utility in the methods of generating and compositions which may comprise polypeptides described herein are often in the form of “plasmids,” which refer to circular double-stranded DNA loops which, in their vector form, are not bound to a chromosome. In an embodiment of the aspects described herein, all components of a given polypeptide may be encoded in a single vector. For example, In an embodiment, a vector may be constructed that contains or may comprise all components necessary for a functional polypeptide as described herein. In an embodiment, individual components (e.g., one or more monomer units and one or more effector domains) may be separately encoded in different vectors and introduced into one or more cells separately. Moreover, any vector described herein may itself comprise predetermined Cas and/or retrotransposon polypeptides encoding component sequences, such as an effector domain and/or other polypeptides, at any location or combination of locations, such as 5′ to, 3′ to, or both 5′ and 3′ to the exogenous nucleic acid molecule which may comprise one or more component Cas and/or retrotransposon polypeptides encoding sequences to be cloned in. Such expression vectors are termed herein as which may comprise “backbone sequences.”


The systems, compositions, and/or delivery systems may comprise one or more vectors. The present disclosure also include vector systems. A vector system may comprise one or more vectors. In an embodiment, a vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. Vectors include nucleic acid molecules that are single-stranded, double-stranded, or partially double-stranded; nucleic acid molecules that comprise one or more free ends, no free ends (e.g., circular); nucleic acid molecules that comprise DNA, RNA, or both; and other varieties of polynucleotides known in the art. A vector may be a plasmid, e.g., a circular double stranded DNA loop into which additional DNA segments can be inserted, such as by standard molecular cloning techniques. Certain vectors may be capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Some vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. In an example embodiment, vectors may be expression vectors, e.g., capable of directing the expression of genes to which they are operatively-linked. In an embodiment, the expression vectors may be for expression in eukaryotic cells. Common expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.


Examples of vectors include pGEX, pMAL, pRIT5, E. coli expression vectors (e.g., pTrc, pET 11d, yeast expression vectors (e.g., pYepSec1, pMFa, pJRY88, pYES2, and picZ, Baculovirus vectors (e.g., for expression in insect cells such as SF9 cells) (e.g., pAc series and the pVL series), mammalian expression vectors (e.g., pCDM8 and pMT2PC.


A vector may comprise i) Cas encoding sequence(s), and/or ii) a single, or at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 12, at least 14, at least 16, at least 32, at least 48, at least 50 guide RNA(s) encoding sequences. In a single vector there can be a promoter for each RNA coding sequence. Alternatively or additionally, in a single vector, there may be a promoter controlling (e.g., driving transcription and/or expression) multiple RNA encoding sequences.


Furthermore, that compositions or systems may be delivered via a vector, e.g., a separate vector or the same vector that is encoding the components of the compositions and systems herein. When provided by a separate vector, the CRISPR RNA that targets Cas expression can be administered sequentially or simultaneously. When administered sequentially, the CRISPR RNA that targets Cas expression is to be delivered after the CRISPR RNA that is intended for e.g. gene editing or gene engineering. This period may be a period of minutes (e.g. 5 minutes, 10 minutes, 20 minutes, 30 minutes, 45 minutes, 60 minutes). This period may be a period of hours (e.g. 2 hours, 4 hours, 6 hours, 8 hours, 12 hours, 24 hours). This period may be a period of days (e.g. 2 days, 3 days, 4 days, 7 days). This period may be a period of weeks (e.g. 2 weeks, 3 weeks, 4 weeks). This period may be a period of months (e.g. 2 months, 4 months, 8 months, 12 months). This period may be a period of years (2 years, 3 years, 4 years). In this fashion, the Cas enzyme associates with a first gRNA capable of hybridizing to a first target, such as a genomic locus or loci of interest and undertakes the function(s) desired of the composition or system (e.g., gene engineering); and subsequently the Cas enzyme may then associate with the second gRNA capable of hybridizing to the sequence comprising at least part of the Cas or CRISPR cassette. Where the guide RNA targets the sequences encoding expression of the Cas protein, the enzyme becomes impeded and the system becomes self-inactivating. In the same manner, CRISPR RNA that targets Cas expression applied via, for example liposome, lipofection, particles, microvesicles as explained herein, may be administered sequentially or simultaneously. Similarly, self-inactivation may be used for inactivation of one or more guide RNA used to target one or more targets.


Regulatory Elements

A vector may comprise one or more regulatory elements. The regulatory element(s) may be operably linked to coding sequences of Cas proteins, accessary proteins, guide RNAs (e.g., a single guide RNA, crRNA, and/or tracrRNA), or combination thereof. The term “operably linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory element(s) in a manner that allows for expression of the nucleotide sequence (e.g. in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). In an example embodiment, a vector may comprise: a first regulatory element operably linked to a nucleotide sequence encoding a Cas protein, and a second regulatory element operably linked to a nucleotide sequence encoding a guide RNA. In an embodiment, the vector may further comprise a third regulatory element operably linked to a nucleotide sequence encoding a transposase. In an example embodiment, the vector may further comprise a third regulatory element operably linked to a nucleotide sequence that is or encode a donor polynucleotide.


Examples of regulatory elements include promoters, enhancers, internal ribosomal entry sites (IRES), and other expression control elements (e.g., transcription termination signals, such as polyadenylation signals and poly-U sequences). Such regulatory elements are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif (1990). Regulatory elements include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). A tissue-specific promoter may direct expression primarily in a desired tissue of interest, such as muscle, neuron, bone, skin, blood, specific organs (e.g., liver, pancreas), or particular cell types (e.g., lymphocytes). Regulatory elements may also direct expression in a temporal-dependent manner, such as in a cell-cycle dependent or developmental stage-dependent manner, which may or may not also be tissue or cell-type specific.


Examples of promoters include one or more pol III promoter (e.g., 1, 2, 3, 4, 5, or more pol III promoters), one or more pol II promoters (e.g., 1, 2, 3, 4, 5, or more pol II promoters), one or more pol I promoters (e.g., 1, 2, 3, 4, 5, or more pol I promoters), or combinations thereof. Examples of pol III promoters include, but are not limited to, U6 and H1 promoters. Examples of pol II promoters include, but are not limited to, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer), the SV40 promoter, the dihydrofolate reductase promoter, the β-actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1α promoter.


Viral Vectors

The cargos may be delivered by viruses. In an embodiment, viral vectors are used. A viral vector may comprise virally-derived DNA or RNA sequences for packaging into a virus (e.g., retroviruses, replication defective retroviruses, adenoviruses, replication defective adenoviruses, and adeno-associated viruses). Viral vectors also include polynucleotides carried by a virus for transfection into a host cell. Viruses and viral vectors may be used for in vitro, ex vivo, and/or in vivo deliveries.


Adeno Associated Virus (AAV)

The systems and compositions herein may be delivered by adeno associated virus (AAV). AAV vectors may be used for such delivery. AAV, of the Dependovirus genus and Parvoviridae family, is a single stranded DNA virus. In an embodiment, AAV may provide a persistent source of the provided DNA, as AAV delivered genomic material can exist indefinitely in cells, e.g., either as exogenous DNA or, with some modification, be directly integrated into the host DNA. In an embodiment, AAV do not cause or relate with any diseases in humans. The virus itself is able to efficiently infect cells while provoking little to no innate or adaptive immune response or associated toxicity.


Examples of AAV that can be used herein include AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-8, and AAV-9. The type of AAV may be selected with regard to the cells to be targeted; e.g., one can select AAV serotypes 1, 2, 5 or a hybrid capsid AAV1, AAV2, AAV5 or any combination thereof for targeting brain or neuronal cells; and one can select AAV4 for targeting cardiac tissue. AAV8 is useful for delivery to the liver. AAV-2-based vectors were originally proposed for CFTR delivery to CF airways, other serotypes such as AAV-1, AAV-5, AAV-6, and AAV-9 exhibit improved gene transfer efficiency in a variety of models of the lung epithelium. Examples of cell types targeted by AAV are described in Grimm, D. et al, J. Virol. 82: 5887-5911 (2008)), and shown in Table 3 as follows:









TABLE 3







Adeno-associated viruses and cell lines.
















AAV-
AAV-
AAV-
AAV-
AAV-
AAV-
AAV-
AAV-


Cell Line
1
2
3
4
5
6
8
9


















Huh-7
13
100
2.5
0.0
0.1
10
0.7
0.0


HEK293
25
100
2.5
0.1
0.1
5
0.7
0.1


HeLa
3
100
2.0
0.1
6.7
1
0.2
0.1


HepG2
3
100
16.7
0.3
1.7
5
0.3
ND


Hep1A
20
100
0.2
1.0
0.1
1
0.2
0.0


911
17
100
11
0.2
0.1
17
0.1
ND


CHO
100
100
14
1.4
333
50
10
1.0


COS
33
100
33
3.3
5.0
14
2.0
0.5


MeWo
10
100
20
0.3
6.7
10
1.0
0.2


NIH3T3
10
100
2.9
2.9
0.3
10
0.3
ND


A549
14
100
20
ND
0.5
10
0.5
0.1


HT1180
20
100
10
0.1
0.3
33
0.5
0.1


Monocytes
1111
100
ND
ND
125
1429
ND
ND


Immature
2500
100
ND
ND
222
2857
ND
ND


DC










Mature DC
2222
100
ND
ND
333
3333
ND
ND









AAV particles may be created in HEK 293 T cells. Once particles with specific tropism have been created, they are used to infect the target cell line much in the same way that native viral particles do. This may allow for persistent presence of components in the infected cell type, and what makes this version of delivery particularly suited to cases where long-term expression is desirable. Examples of doses and formulations for AAV that can be used include those describe in U.S. Pat. Nos. 8,454,972 and 8,404,658.


Various strategies may be used for delivery the systems and compositions herein with AAVs. In an embodiment, coding sequences of Cas and gRNA may be packaged directly onto one DNA plasmid vector and delivered via one AAV particle. In an embodiment, AAVs may be used to deliver gRNAs into cells that have been previously engineered to express Cas. In an embodiment, coding sequences of Cas and gRNA may be made into two separate AAV particles, which are used for co-transfection of target cells. In an embodiment, markers, tags, and other sequences may be packaged in the same AAV particles as coding sequences of Cas and/or gRNAs.


Lentiviruses

The systems and compositions herein may be delivered by lentiviruses. Lentiviral vectors may be used for such delivery. Lentiviruses are complex retroviruses that have the ability to infect and express their genes in both mitotic and post-mitotic cells.


Examples of lentiviruses include human immunodeficiency virus (HIV), which may use its envelope glycoproteins of other viruses to target a broad range of cell types; minimal non-primate lentiviral vectors based on the equine infectious anemia virus (EIAV), which may be used for ocular therapies. In an embodiment, self-inactivating lentiviral vectors with an siRNA targeting a common exon shared by HIV tat/rev, a nucleolar-localizing TAR decoy, and an anti-CCR5-specific hammerhead ribozyme (see, e.g., DiGiusto et al. (2010) Sci Transl Med 2:36ra43) may be used/and or adapted to the nucleic acid-targeting system herein.


Lentiviruses may be pseudo-typed with other viral proteins, such as the G protein of vesicular stomatitis virus. In doing so, the cellular tropism of the lentiviruses can be altered to be as broad or narrow as desired. In an embodiment, to improve safety, second- and third-generation lentiviral systems may split essential genes across three plasmids, which may reduce the likelihood of accidental reconstitution of viable viral particles within cells.


In an embodiment, leveraging the integration ability, lentiviruses may be used to create libraries of cells comprising various genetic modifications, e.g., for screening and/or studying genes and signaling pathways.


Adenoviruses

The systems and compositions herein may be delivered by adenoviruses. Adenoviral vectors may be used for such delivery. Adenoviruses include nonenveloped viruses with an icosahedral nucleocapsid containing a double stranded DNA genome. Adenoviruses may infect dividing and non-dividing cells. In an embodiment, adenoviruses do not integrate into the genome of host cells, which may be used for limiting off-target effects of composition and systems in gene editing applications.


Viral Vehicles for Delivery to Plants

The systems and compositions may be delivered to plant cells using viral vehicles. In particular embodiments, the compositions and systems may be introduced in the plant cells using a plant viral vector (e.g., as described in Scholthof et al. 1996, Annu Rev Phytopathol. 1996; 34:299-323). Such viral vector may be a vector from a DNA virus, e.g., geminivirus (e.g., cabbage leaf curl virus, bean yellow dwarf virus, wheat dwarf virus, tomato leaf curl virus, maize streak virus, tobacco leaf curl virus, or tomato golden mosaic virus) or nanovirus (e.g., Faba bean necrotic yellow virus). The viral vector may be a vector from an RNA virus, e.g., tobravirus (e.g., tobacco rattle virus, tobacco mosaic virus), potexvirus (e.g., potato virus X), or hordeivirus (e.g., barley stripe mosaic virus). The replicating genomes of plant viruses may be non-integrative vectors.


Non-Viral Vehicles

The delivery vehicles may comprise non-viral vehicles. In general, methods and vehicles capable of delivering nucleic acids and/or proteins may be used for delivering the systems compositions herein. Examples of non-viral vehicles include lipid nanoparticles, cell-penetrating peptides (CPPs), DNA nanoclews, gold nanoparticles, streptolysin O, multifunctional envelope-type nanodevices (MENDs), lipid-coated mesoporous silica particles, and other inorganic nanoparticles.


Lipid Particles

The delivery vehicles may comprise lipid particles, e.g., lipid nanoparticles (LNPs) and liposomes.


Lipid Nanoparticles (LNPs)

LNPs may encapsulate nucleic acids within cationic lipid particles (e.g., liposomes), and may be delivered to cells with relative ease. In an embodiment, lipid nanoparticles do not contain any viral components, which helps minimize safety and immunogenicity concerns. Lipid particles may be used for in vitro, ex vivo, and in vivo deliveries. Lipid particles may be used for various scales of cell populations.


In an embodiment. LNPs may be used for delivering DNA molecules (e.g., those comprising coding sequences of Cas and/or gRNA) and/or RNA molecules (e.g., mRNA of Cas, gRNAs). In certain cases, LNPs may be use for delivering RNP complexes of Cas/gRNA.


Components in LNPs may comprise cationic lipids 1,2-dilineoyl-3-dimethylammonium-propane (DLinDAP), 1,2-dilinoleyloxy-3-N,N-dimethylaminopropane (DLinDMA), 1,2-dilinoleyloxyketo-N,N-dimethyl-3-aminopropane (DLinK-DMA), 1,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLinKC2-DMA), (3-o-[2″-(methoxypolyethyleneglycol 2000) succinoyl]-1,2-dimyristoyl-sn-glycol (PEG-S-DMG), R-3-[(ro-methoxy-poly(ethylene glycol)2000) carbamoyl]-1,2-dimyristyloxlpropyl-3-amine (PEG-C-DOMG, and any combination thereof. Preparation of LNPs and encapsulation may be adapted from Rosin et al, Molecular Therapy, vol. 19, no. 12, pages 1286-2200, December 2011).


Liposomes

In an embodiment, a lipid particle may be liposome. Liposomes are spherical vesicle structures composed of a uni- or multilamellar lipid bilayer surrounding internal aqueous compartments and a relatively impermeable outer lipophilic phospholipid bilayer. In an embodiment, liposomes are biocompatible, nontoxic, can deliver both hydrophilic and lipophilic drug molecules, protect their cargo from degradation by plasma enzymes, and transport their load across biological membranes and the blood brain barrier (BBB).


Liposomes can be made from several different types of lipids, e.g., phospholipids. A liposome may comprise natural phospholipids and lipids such as 1,2-distearoryl-sn-glycero-3-phosphatidyl choline (DSPC), sphingomyelin, egg phosphatidylcholines, monosialoganglioside, or any combination thereof.


Several other additives may be added to liposomes in order to modify their structure and properties. For instance, liposomes may further comprise cholesterol, sphingomyelin, and/or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), e.g., to increase stability and/or to prevent the leakage of the liposomal inner cargo.


Stable Nucleic-Acid-Lipid Particles (SNALPs)

In an embodiment, the lipid particles may be stable nucleic acid lipid particles (SNALPs). SNALPs may comprise an ionizable lipid (DLinDMA) (e.g., cationic at low pH), a neutral helper lipid, cholesterol, a diffusible polyethylene glycol (PEG)-lipid, or any combination thereof. In an embodiment, SNALPs may comprise synthetic cholesterol, dipalmitoylphosphatidylcholine, 3-N-[(w-methoxy polyethylene glycol)2000)carbamoyl]-1,2-dimyrestyloxypropylamine, and cationic 1,2-dilinoleyloxy-3-N,Ndimethylaminopropane. In an embodiment, SNALPs may comprise synthetic cholesterol, 1,2-di stearoyl-sn-glycero-3-phosphocholine, PEG-cDMA, and 1,2-dilinoleyloxy-3-(N;N-dimethyl)aminopropane (DLinDMA)


Other Lipids

The lipid particles may also comprise one or more other types of lipids, e.g., cationic lipids, such as amino lipid 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), DLin-KC2-DMA4, C12-200 and colipids disteroylphosphatidyl choline, cholesterol, and PEG-DMG.


Lipoplexes/Polyplexes

In an embodiment, the delivery vehicles comprise lipoplexes and/or polyplexes. Lipoplexes may bind to negatively charged cell membrane and induce endocytosis into the cells. Examples of lipoplexes may be complexes comprising lipid(s) and non-lipid components. Examples of lipoplexes and polyplexes include FuGENE-6 reagent, a non-liposomal solution containing lipids and other components, zwitterionic amino lipids (ZALs), Ca2custom-character (e.g., forming DNA/Ca2+ microcomplexes), polyethenimine (PEI) (e.g., branched PEI), and poly(L-lysine) (PLL).


Cell Penetrating Peptides

In an embodiment, the delivery vehicles comprise cell penetrating peptides (CPPs). CPPs are short peptides that facilitate cellular uptake of various molecular cargo (e.g., from nanosized particles to small chemical molecules and large fragments of DNA).


CPPs may be of different sizes, amino acid sequences, and charges. In an embodiment, CPPs can translocate the plasma membrane and facilitate the delivery of various molecular cargoes to the cytoplasm or an organelle. CPPs may be introduced into cells via different mechanisms, e.g., direct penetration in the membrane, endocytosis-mediated entry, and translocation through the formation of a transitory structure.


CPPs may have an amino acid composition that either contains a high relative abundance of positively charged amino acids such as lysine or arginine or has sequences that contain an alternating pattern of polar/charged amino acids and non-polar, hydrophobic amino acids. These two types of structures are referred to as polycationic or amphipathic, respectively. A third class of CPPs are the hydrophobic peptides, containing only apolar residues, with low net charge or have hydrophobic amino acid groups that are crucial for cellular uptake. Another type of CPPs is the trans-activating transcriptional activator (Tat) from Human Immunodeficiency Virus 1 (HIV-1). Examples of CPPs include to Penetratin, Tat (48-60), Transportan, and (R-AhX-R4) (Ahx refers to aminohexanoyl), Kaposi fibroblast growth factor (FGF) signal peptide sequence, integrin β3 signal peptide sequence, polyarginine peptide Args sequence, Guanine rich-molecular transporters, and sweet arrow peptide. Examples of CPPs and related applications also include those described in U.S. Pat. No. 8,372,951.


CPPs can be used for in vitro and ex vivo work quite readily, and extensive optimization for each cargo and cell type may be needed. In an embodiment, CPPs may be covalently attached to the Cas protein directly, which is then complexed with the gRNA and delivered to cells. In an embodiment, separate delivery of CPP-Cas and CPP-gRNA to multiple cells may be performed. CPP may also be used to delivery RNPs.


CPPs may be used to deliver the compositions and systems to plants. In an embodiment, CPPs may be used to deliver the components to plant protoplasts, which are then regenerated to plant cells and further to plants.


DNA Nanoclews

In an embodiment, the delivery vehicles comprise DNA nanoclews. A DNA nanoclew refers to a sphere-like structure of DNA (e.g., with a shape of a ball of yarn). The nanoclew may be synthesized by rolling circle amplification with palindromic sequences that aide in the self-assembly of the structure. The sphere may then be loaded with a payload. An example of DNA nanoclew is described in Sun W et al, J Am Chem Soc. 2014 Oct. 22; 136(42):14722-5; and Sun W et al, Angew Chem Int Ed Engl. 2015 Oct. 5; 54(41):12029-33. DNA nanoclew may have a palindromic sequences to be partially complementary to the gRNA within the Cas:gRNA ribonucleoprotein complex. A DNA nanoclew may be coated, e.g., coated with PEI to induce endosomal escape.


Gold Nanoparticles

In an embodiment, the delivery vehicles comprise gold nanoparticles (also referred to AuNPs or colloidal gold). Gold nanoparticles may form complex with cargos, e.g., Cas:gRNA RNP. Gold nanoparticles may be coated, e.g., coated in a silicate and an endosomal disruptive polymer, PAsp(DET). Examples of gold nanoparticles include AuraSense Therapeutics' Spherical Nucleic Acid (SNA™) constructs, and those described in Mout R, et al. (2017). ACS Nano 11:2452-8; Lee K, et al. (2017). Nat Biomed Eng 1:889-901.


iTOP


In an embodiment, the delivery vehicles comprise iTOP. iTOP refers to a combination of small molecules that drive the highly efficient intracellular delivery of native proteins, independent of any transduction peptide. iTOP may be used for induced transduction by osmocytosis and propanebetaine, using NaCl-mediated hyperosmolality together with a transduction compound (propanebetaine) to trigger macropinocytotic uptake into cells of extracellular macromolecules. Examples of iTOP methods and reagents include those described in D'Astolfo D S, Pagliero R J, Pras A, et al. (2015). Cell 161:674-690.


Polymer-Based Particles

In an embodiment, the delivery vehicles may comprise polymer-based particles (e.g., nanoparticles). In an embodiment, the polymer-based particles may mimic a viral mechanism of membrane fusion. The polymer-based particles may be a synthetic copy of Influenza virus machinery and form transfection complexes with various types of nucleic acids ((siRNA, miRNA, plasmid DNA or shRNA, mRNA) that cells take up via the endocytosis pathway, a process that involves the formation of an acidic compartment. The low pH in late endosomes acts as a chemical switch that renders the particle surface hydrophobic and facilitates membrane crossing. Once in the cytosol, the particle releases its payload for cellular action. This Active Endosome Escape technology is safe and maximizes transfection efficiency as it is using a natural uptake pathway. In an embodiment, the polymer-based particles may comprise alkylated and carboxyalkylated branched polyethylenimine. In an embodiment, the polymer-based particles are VIROMER, e.g., VIROMER RNAi, VIROMER RED, VIROMER mRNA, VIROMER CRISPR. Example methods of delivering the systems and compositions herein include those described in Bawage S S et al., Synthetic mRNA expressed Cas13a mitigates RNA virus infections, www.biorxiv.org/content/10.1101/370460v1.full doi: doi.org/10.1101/370460, Viromer® RED, a powerful tool for transfection of keratinocytes. doi: 10.13140/RG.2.2.16993.61281, Viromer® Transfection—Factbook 2018: technology, product overview, users' data, doi: 10.13140/RG.2.2.23912.16642.


Streptolysin O (SLO)

The delivery vehicles may be streptolysin O (SLO). SLO is a toxin produced by Group A streptococci that works by creating pores in mammalian cell membranes. SLO may act in a reversible manner, which allows for the delivery of proteins (e.g., up to 100 kDa) to the cytosol of cells without compromising overall viability. Examples of SLO include those described in Sierig G, et al. (2003). Infect Immun 71:446-55; Walev I, et al. (2001). Proc Natl Acad Sci USA 98:3185-90; Teng K W, et al. (2017). Elife 6:e25460.


Multifunctional Envelope-Type Nanodevice (MEND)

The delivery vehicles may comprise multifunctional envelope-type nanodevice (MENDs). MENDs may comprise condensed plasmid DNA, a PLL core, and a lipid film shell. A MEND may further comprise cell-penetrating peptide (e.g., stearyl octaarginine). The cell penetrating peptide may be in the lipid shell. The lipid envelope may be modified with one or more functional components, e.g., one or more of: polyethylene glycol (e.g., to increase vascular circulation time), ligands for targeting of specific tissues/cells, additional cell-penetrating peptides (e.g., for greater cellular delivery), lipids to enhance endosomal escape, and nuclear delivery tags. In an embodiment, the MEND may be a tetra-lamellar MEND (T-MEND), which may target the cellular nucleus and mitochondria. In an example embodiment, a MEND may be a PEG-peptide-DOPE-conjugated MEND (PPD-MEND), which may target bladder cancer cells. Examples of MENDs include those described in Kogure K, et al. (2004). J Control Release 98:317-23; Nakamura T, et al. (2012). Acc Chem Res 45:1113-21.


Lipid-Coated Mesoporous Silica Particles

The delivery vehicles may comprise lipid-coated mesoporous silica particles. Lipid-coated mesoporous silica particles may comprise a mesoporous silica nanoparticle core and a lipid membrane shell. The silica core may have a large internal surface area, leading to high cargo loading capacities. In an embodiment, pore sizes, pore chemistry, and overall particle sizes may be modified for loading different types of cargos. The lipid coating of the particle may also be modified to maximize cargo loading, increase circulation times, and provide precise targeting and cargo release. Examples of lipid-coated mesoporous silica particles include those described in Du X, et al. (2014). Biomaterials 35:5580-90; Durfee P N, et al. (2016). ACS Nano 10:8325-45.


Inorganic Nanoparticles

The delivery vehicles may comprise inorganic nanoparticles. Examples of inorganic nanoparticles include carbon nanotubes (CNTs) (e.g., as described in Bates K and Kostarelos K. (2013). Adv Drug Deliv Rev 65:2023-33.), bare mesoporous silica nanoparticles (MSNPs) (e.g., as described in Luo G F, et al. (2014). Sci Rep 4:6064), and dense silica nanoparticles (SiNPs) (as described in Luo D and Saltzman W M. (2000). Nat Biotechnol 18:893-5).


Exosomes

The delivery vehicles may comprise exosomes. Exosomes include membrane bound extracellular vesicles, which can be used to contain and deliver various types of biomolecules, such as proteins, carbohydrates, lipids, and nucleic acids, and complexes thereof (e.g., RNPs). Examples of exosomes include those described in Schroeder A, et al., J Intern Med. 2010 January; 267(1):9-21; El-Andaloussi S, et al., Nat Protoc. 2012 December; 7(12):2112-26; Uno Y, et al., Hum Gene Ther. 2011 June; 22(6):711-9; Zou W, et al., Hum Gene Ther. 2011 April; 22(4):465-75.


In an embodiment, the exosome may form a complex (e.g., by binding directly or indirectly) to one or more components of the cargo. In an example embodiment, a molecule of an exosome may be fused with first adapter protein and a component of the cargo may be fused with a second adapter protein. The first and the second adapter protein may specifically bind each other, thus associating the cargo with the exosome. Examples of such exosomes include those described in Ye Y, et al., Biomater Sci. 2020 Apr. 28. doi: 10.1039/d0bm00427h.


Applications in Non-Animal Organisms

The compositions, systems, and methods described herein can be used to perform gene or genome interrogation or editing or manipulation in plants and fungi. For example, the applications include investigation and/or selection and/or interrogations and/or comparison and/or manipulations and/or transformation of plant genes or genomes; e.g., to create, identify, develop, optimize, or confer trait(s) or characteristic(s) to plant(s) or to transform a plant or fungus genome. There can accordingly be improved production of plants, new plants with new combinations of traits or characteristics or new plants with enhanced traits. The compositions, systems, and methods can be used with regard to plants in Site-Directed Integration (SDI) or Gene Editing (GE) or any Near Reverse Breeding (NRB) or Reverse Breeding (RB) techniques.


The compositions, systems, and methods herein may be used to confer desired traits (e.g., enhanced nutritional quality, increased resistance to diseases and resistance to biotic and abiotic stress, and increased production of commercially valuable plant products or heterologous compounds) on essentially any plants and fungi, and their cells and tissues. The compositions, systems, and methods may be used to modify endogenous genes or to modify their expression without the permanent introduction into the genome of any foreign gene.


In an embodiment, compositions, systems, and methods may be used in genome editing in plants or where RNAi or similar genome editing techniques have been used previously; see, e.g., Nekrasov, “Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR-Cas system,” Plant Methods 2013, 9:39 (doi:10.1186/1746-4811-9-39); Brooks, “Efficient gene editing in tomato in the first generation using the CRISPR-Cas9 system,” Plant Physiology September 2014 pp 114.247577; Shan, “Targeted genome modification of crop plants using a CRISPR-Cas system,” Nature Biotechnology 31, 686-688 (2013); Feng, “Efficient genome editing in plants using a CRISPR/Cas system,” Cell Research (2013) 23:1229-1232. doi:10.1038/cr.2013.114; published online 20 Aug. 2013; Xie, “RNA-guided genome editing in plants using a CRISPR-Cas system,” Mol Plant. 2013 November; 6(6):1975-83. doi: 10.1093/mp/sst119. Epub 2013 Aug. 17; Xu, “Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice,” Rice 2014, 7:5 (2014), Zhou et al., “Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and Redundancy,” New Phytologist (2015) (Forum) 1-4 (available online only at www.newphytologist.com); Caliando et al, “Targeted DNA degradation using a CRISPR device stably carried in the host genome, NATURE COMMUNICATIONS 6:6989, DOI: 10.1038/ncomms7989, www.nature.com/naturecommunications DOI: 10.1038/ncomms7989; U.S. Pat. No. 6,603,061—Agrobacterium-Mediated Plant Transformation Method; U.S. Pat. No. 7,868,149—Plant Genome Sequences and Uses Thereof and US 2009/0100536—Transgenic Plants with Enhanced Agronomic Traits, Morrell et al “Crop genomics: advances and applications,” Nat Rev Genet. 2011 Dec. 29; 13(2):85-96, all the contents and disclosure of each of which are herein incorporated by reference in their entirety. Aspects of utilizing the compositions, systems, and methods may be analogous to the use of the composition and system in plants, and mention is made of the University of Arizona website “CRISPR-PLANT” (www.genome.arizona.edu/crispr/) (supported by Penn State and AGI).


The compositions, systems, and methods may also be used on protoplasts. A “protoplast” refers to a plant cell that has had its protective cell wall completely or partially removed using, for example, mechanical or enzymatic means resulting in an intact biochemical competent unit of living plant that can reform their cell wall, proliferate and regenerate grow into a whole plant under proper growing conditions.


The compositions, systems, and methods may be used for screening genes (e.g., endogenous, mutations) of interest. In an embodiment, genes of interest include those encoding enzymes involved in the production of a component of added nutritional value or generally genes affecting agronomic traits of interest, across species, phyla, and plant kingdom. By selectively targeting e.g. genes encoding enzymes of metabolic pathways, the genes responsible for certain nutritional aspects of a plant can be identified. Similarly, by selectively targeting genes which may affect a desirable agronomic trait, the relevant genes can be identified. Accordingly, the present disclosure encompasses screening methods for genes encoding enzymes involved in the production of compounds with a particular nutritional value and/or agronomic traits.


It is also understood that reference herein to animal cells may also apply, mutatis mutandis, to plant or fungal cells unless otherwise apparent; and, the enzymes herein having reduced off-target effects and systems employing such enzymes can be used in plant applications, including those mentioned herein.


In an embodiment, nucleic acids introduced to plants and fungi may be codon optimized for expression in the plants and fungi. Methods of codon optimization include those described in Kwon K C, et al., Codon Optimization to Enhance Expression Yields Insights into Chloroplast Translation, Plant Physiol. 2016 September; 172(1):62-77.


The components (e.g., Cas proteins) in the compositions and systems may further comprise one or more functional domains described herein. In an embodiment, the functional domains may be an exonuclease. Such exonuclease may increase the efficiency of the Cas proteins' function, e.g., mutagenesis efficiency. An example of the functional domain is Trex2, as described in Weiss T et al., www.biorxiv.org/content/10.1101/2020.04.11.037572v1, doi: doi.org/10.1101/2020.04.11.037572.


Examples of Plants

The compositions, systems, and methods herein can be used to confer desired traits on essentially any plant. A wide variety of plants and plant cell systems may be engineered for the desired physiological and agronomic characteristics. In general, the term “plant” relates to any various photosynthetic, eukaryotic, unicellular or multicellular organism of the kingdom Plantae characteristically growing by cell division, containing chloroplasts, and having cell walls comprised of cellulose. The term plant encompasses monocotyledonous and dicotyledonous plants.


The compositions, systems, and methods may be used over a broad range of plants, such as for example with dicotyledonous plants belonging to the orders Magniolales, Illiciales, Laurales, Piperales, Aristochiales, Nymphaeales, Ranunculales, Papeverales, Sarraceniaceae, Trochodendrales, Hamamelidales, Eucomiales, Leitneriales, Myricales, Fagales, Casuarinales, Caryophyllales, Batales, Polygonales, Plumbaginales, Dilleniales, Theales, Malvales, Urticales, Lecythidales, Violates, Salicales, Capparales, Ericales, Diapensales, Ebenales, Primulales, Rosales, Fabales, Podostemales, Haloragales, Myrtales, Cornales, Proteales, San tales, Rafflesiales, Celastrales, Euphorbiales, Rhamnales, Sapindales, Juglandales, Geraniales, Polygalales, Umbellales, Gentianales, Polemoniales, Lamiales, Plantaginales, Scrophulariales, Campanulales, Rubiales, Dipsacales, and Asterales, monocotyledonous plants such as those belonging to the orders Alismatales, Hydrocharitales, Najadales, Triuridales, Commelinales, Eriocaulales, Restionales, Poales, Juncales, Cyperales, Typhales, Bromeliales, Zingiberales, Arecales, Cyclanthales, Pandanales, Arales, Lilliales, and Orchid ales, or with plants belonging to Gymnospermae, e.g., those belonging to the orders Pinales, Ginkgoales, Cycadales, Araucariales, Cupressales and Gnetales.


The compositions, systems, and methods herein can be used over a broad range of plant species, included in the non-limitative list of dicot, monocot or gymnosperm genera hereunder: Atropa, Alseodaphne, Anacardium, Arachis, Beilschmiedia, Brassica, Carthamus, Cocculus, Croton, Cucumis, Citrus, Citrullus, Capsicum, Catharanthus, Cocos, Coffea, Cucurbita, Daucus, Duguetia, Eschscholzia, Ficus, Fragaria, Glaucium, Glycine, Gossypium, Helianthus, Hevea, Hyoscyamus, Lactuca, Landolphia, Linum, Litsea, Lycopersicon, Lupinus, Manihot, Majorana, Malus, Medicago, Nicotiana, Olea, Parthenium, Papaver, Persea, Phaseolus, Pistacia, Pisum, Pyrus, Prunus, Raphanus, Ricinus, Senecio, Sinomenium, Stephania, Sinapis, Solanum, Theobroma, Trifolium, Trigonella, Vicia, Vinca, Vilis, and Vigna; and the genera Allium, Andropogon, Aragrostis, Asparagus, Avena, Cynodon, Elaeis, Festuca, Festulolium, Heterocallis, Hordeum, Lemna, Lolium, Musa, Oryza, Panicum, Pannesetum, Phleum, Poa, Secale, Sorghum, Triticum, Zea, Abies, Cunninghamia, Ephedra, Picea, Pinus, and Pseudotsuga.


In an embodiment, target plants and plant cells for engineering include those monocotyledonous and dicotyledonous plants, such as crops including grain crops (e.g., wheat, maize, rice, millet, barley), fruit crops (e.g., tomato, apple, pear, strawberry, orange), forage crops (e.g., alfalfa), root vegetable crops (e.g., carrot, potato, sugar beets, yam), leafy vegetable crops (e.g., lettuce, spinach); flowering plants (e.g., petunia, rose, chrysanthemum), conifers and pine trees (e.g., pine fir, spruce); plants used in phytoremediation (e.g., heavy metal accumulating plants); oil crops (e.g., sunflower, rape seed) and plants used for experimental purposes (e.g., Arabidopsis). Specifically, the plants are intended to comprise without limitation angiosperm and gymnosperm plants such as acacia, alfalfa, amaranth, apple, apricot, artichoke, ash tree, asparagus, avocado, banana, barley, beans, beet, birch, beech, blackberry, blueberry, broccoli, Brussel's sprouts, cabbage, canola, cantaloupe, carrot, cassava, cauliflower, cedar, a cereal, celery, chestnut, cherry, Chinese cabbage, citrus, clementine, clover, coffee, corn, cotton, cowpea, cucumber, cypress, eggplant, elm, endive, eucalyptus, fennel, figs, fir, geranium, grape, grapefruit, groundnuts, ground cherry, gum hemlock, hickory, kale, kiwifruit, kohlrabi, larch, lettuce, leek, lemon, lime, locust, pine, maidenhair, maize, mango, maple, melon, millet, mushroom, mustard, nuts, oak, oats, oil palm, okra, onion, orange, an ornamental plant or flower or tree, papaya, palm, parsley, parsnip, pea, peach, peanut, pear, peat, pepper, persimmon, pigeon pea, pine, pineapple, plantain, plum, pomegranate, potato, pumpkin, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, safflower, sallow, soybean, spinach, spruce, squash, strawberry, sugar beet, sugarcane, sunflower, sweet potato, sweet corn, tangerine, tea, tobacco, tomato, trees, triticale, turf grasses, turnips, vine, walnut, watercress, watermelon, wheat, yams, yew, and zucchini.


The term plant also encompasses Algae, which are mainly photoautotrophs unified primarily by their lack of roots, leaves and other organs that characterize higher plants. The compositions, systems, and methods can be used over a broad range of “algae” or “algae cells.” Examples of algae include eukaryotic phyla, including the Rhodophyta (red algae), Chlorophyta (green algae), Phaeophyta (brown algae), Bacillariophyta (diatoms), Eustigmatophyta and dinoflagellates as well as the prokaryotic phylum Cyanobacteria (blue-green algae). Examples of algae species include those of Amphora, Anabaena, Anikstrodesmis, Botryococcus, Chaetoceros, Chlamydomonas, Chlorella, Chlorococcum, Cyclotella, Cylindrotheca, Dunaliella, Emiliana, Euglena, Hematococcus, Isochrysis, Monochrysis, Monoraphidium, Nannochloris, Nannnochloropsis, Navicula, Nephrochloris, Nephroselmis, Nitzschia, Nodularia, Nostoc, Oochromonas, Oocystis, Oscillartoria, Pavlova, Phaeodactylum, Playtmonas, Pleurochrysis, Porhyra, Pseudoanabaena, Pyramimonas, Stichococcus, Synechococcus, Synechocystis, Tetraselmis, Thalassiosira, and Trichodesmium.


Plant Promoters

In order to ensure appropriate expression in a plant cell, the components of the components and systems herein may be placed under control of a plant promoter. A plant promoter is a promoter operable in plant cells. A plant promoter is capable of initiating transcription in plant cells, whether or not its origin is a plant cell. The use of different types of promoters is envisaged.


In an embodiment, the plant promoter is a constitutive plant promoter, which is a promoter that is able to express the open reading frame (ORF) that it controls in all or nearly all of the plant tissues during all or nearly all developmental stages of the plant (referred to as “constitutive expression”). One example of a constitutive promoter is the cauliflower mosaic virus 35S promoter. In an embodiment, the plant promoter is a regulated promoter, which directs gene expression not constitutively, but in a temporally- and/or spatially-regulated manner, and includes tissue-specific, tissue-preferred and inducible promoters. Different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. In an embodiment, the plant promoter is a tissue-preferred promoters, which can be utilized to target enhanced expression in certain cell types within a particular plant tissue, for instance vascular cells in leaves or roots or in specific cells of the seed.


Exemplary plant promoters include those obtained from plants, plant viruses, and bacteria such as Agrobacterium or Rhizobium which comprise genes expressed in plant cells. Additional examples of promoters include those described in Kawamata et al., (1997) Plant Cell Physiol 38:792-803; Yamamoto et al., (1997) Plant J 12:255-65; Hire et al, (1992) Plant Mol Biol 20:207-18, Kuster et al, (1995) Plant Mol Biol 29:759-72, and Capana et al., (1994) Plant Mol Biol 25:681-91.


In an embodiment, a plant promoter may be an inducible promoter, which is inducible and allows for spatiotemporal control of gene editing or gene expression may use a form of energy. The form of energy may include sound energy, electromagnetic radiation, chemical energy and/or thermal energy. Examples of inducible systems include tetracycline inducible promoters (Tet-On or Tet-Off), small molecule two-hybrid transcription activations systems (FKBP, ABA, etc.), or light inducible systems (Phytochrome, LOV domains, or cryptochrome), such as a Light Inducible Transcriptional Effector (LITE) that direct changes in transcriptional activity in a sequence-specific manner. In a particular example, of the components of a light inducible system include a Cas protein, a light-responsive cytochrome heterodimer (e.g. from Arabidopsis thaliana), and a transcriptional activation/repression domain.


In an embodiment, the promoter may be a chemical-regulated promotor (where the application of an exogenous chemical induces gene expression) or a chemical-repressible promoter (where application of the chemical represses gene expression). Examples of chemical-inducible promoters include maize 1n2-2 promoter (activated by benzene sulfonamide herbicide safeners), the maize GST promoter (activated by hydrophobic electrophilic compounds used as pre-emergent herbicides), the tobacco PR-1 a promoter (activated by salicylic acid), promoters regulated by antibiotics (such as tetracycline-inducible and tetracycline-repressible promoters).


Stable Integration in the Genome of Plants

In an embodiment, polynucleotides encoding the components of the compositions and systems may be introduced for stable integration into the genome of a plant cell. In an embodiment, vectors or expression systems may be used for such integration. The design of the vector or the expression system can be adjusted depending on for when, where and under what conditions the guide RNA and/or the Cas gene are expressed. In an embodiment, the polynucleotides may be integrated into an organelle of a plant, such as a plastid, mitochondrion or a chloroplast. The elements of the expression system may be on one or more expression constructs which are either circular such as a plasmid or transformation vector, or non-circular such as linear double stranded DNA.


In an embodiment, the method of integration generally comprises the steps of selecting a suitable host cell or host tissue, introducing the construct(s) into the host cell or host tissue, and regenerating plant cells or plants therefrom. In an embodiment, the expression system for stable integration into the genome of a plant cell may contain one or more of the following elements: a promoter element that can be used to express the RNA and/or Cas enzyme in a plant cell; a 5′ untranslated region to enhance expression; an intron element to further enhance expression in certain cells, such as monocot cells; a multiple-cloning site to provide convenient restriction sites for inserting the guide RNA and/or the Cas gene sequences and other desired elements; and a 3′ untranslated region to provide for efficient termination of the expressed transcript.


Transient Expression in Plants

In an embodiment, the components of the compositions and systems may be transiently expressed in the plant cell. In an embodiment, the compositions and systems may modify a target nucleic acid only when both the guide RNA and the Cas protein are present in a cell, such that genomic modification can further be controlled. As the expression of the Cas protein is transient, plants regenerated from such plant cells typically contain no foreign DNA. In an example embodiment, the Cas protein is stably expressed and the guide sequence is transiently expressed.


DNA and/or RNA (e.g., mRNA) may be introduced to plant cells for transient expression. In such cases, the introduced nucleic acid may be provided in sufficient quantity to modify the cell but do not persist after a contemplated period of time has passed or after one or more cell divisions.


The transient expression may be achieved using suitable vectors. Exemplary vectors that may be used for transient expression include a pEAQ vector (may be tailored for Agrobacterium-mediated transient expression) and Cabbage Leaf Curl virus (CaLCuV), and vectors described in Sainsbury F. et al., Plant Biotechnol J. 2009 September; 7(7):682-93; and Yin K et al., Scientific Reports volume 5, Article number: 14926 (2015).


Combinations of the different methods described above are also envisaged.


Translocation to and/or Expression in Specific Plant Organelles


The compositions and systems herein may comprise elements for translocation to and/or expression in a specific plant organelle.


Chloroplast Targeting

In an embodiment, it is envisaged that the compositions and systems are used to specifically modify chloroplast genes or to ensure expression in the chloroplast. The compositions and systems (e.g., Cas proteins, guide molecules, or their encoding polynucleotides) may be transformed, compartmentalized, and/or targeted to the chloroplast. In an example, the introduction of genetic modifications in the plastid genome can reduce biosafety issues such as gene flow through pollen.


Examples of methods of chloroplast transformation include Particle bombardment, PEG treatment, and microinjection, and the translocation of transformation cassettes from the nuclear genome to the plastid. In an embodiment, targeting of chloroplasts may be achieved by incorporating in chloroplast localization sequence, and/or the expression construct a sequence encoding a chloroplast transit peptide (CTP) or plastid transit peptide, operably linked to the 5′ region of the sequence encoding the components of the compositions and systems. Additional examples of transforming, targeting and localization of chloroplasts include those described in WO2010061186, Protein Transport into Chloroplasts, 2010, Annual Review of Plant Biology, Vol. 61: 157-180, and US 20040142476, which are incorporated by reference herein in their entireties.


Exemplary Applications in Plants

The compositions, systems, and methods may be used to generate genetic variation(s) in a plant (e.g., crop) of interest. One or more, e.g., a library of, guide molecules targeting one or more locations in a genome may be provided and introduced into plant cells together with the Cas effector protein. For example, a collection of genome-scale point mutations and gene knock-outs can be generated. In an embodiment, the compositions, systems, and methods may be used to generate a plant part or plant from the cells so obtained and screening the cells for a trait of interest. The target genes may include both coding and non-coding regions. In an embodiment, the trait is stress tolerance and the method is a method for the generation of stress-tolerant crop varieties.


In an embodiment, the compositions, systems, and methods are used to modify endogenous genes or to modify their expression. The expression of the components may induce targeted modification of the genome, either by direct activity of the Cas nuclease and optionally introduction of recombination template DNA, or by modification of genes targeted. The different strategies described herein above allow Cas-mediated targeted genome editing without requiring the introduction of the components into the plant genome.


In an embodiment, the modification may be performed without the permanent introduction into the genome of the plant of any foreign gene, including those encoding components, so as to avoid the presence of foreign DNA in the genome of the plant. This can be of interest as the regulatory requirements for non-transgenic plants are less rigorous. Components which are transiently introduced into the plant cell are typically removed upon crossing.


For example, the modification may be performed by transient expression of the components of the compositions and systems. The transient expression may be performed by delivering the components of the compositions and systems with viral vectors, delivery into protoplasts, with the aid of particulate molecules such as nanoparticles or CPPs.


Generation of Plants with Desired Traits


The compositions, systems, and methods herein may be used to introduce desired traits to plants. The approaches include introduction of one or more foreign genes to confer a trait of interest, editing or modulating endogenous genes to confer a trait of interest.


Agronomic Traits

In an embodiment, crop plants can be improved by influencing specific plant traits. Examples of the traits include improved agronomic traits such as herbicide resistance, disease resistance, abiotic stress tolerance, high yield, and superior quality, pesticide-resistance, disease resistance, insect and nematode resistance, resistance against parasitic weeds, drought tolerance, nutritional value, stress tolerance, self-pollination voidance, forage digestibility biomass, and grain yield.


In an embodiment, genes that confer resistance to pests or diseases may be introduced to plants. In cases there are endogenous genes that confer such resistance in a plants, their expression and function may be enhanced (e.g., by introducing extra copies, modifications that enhance expression and/or activity).


Examples of genes that confer resistance include plant disease resistance genes (e.g., Cf-9, Pto, RSP2, S1DMR6-1), genes conferring resistance to a pest (e.g., those described in International Patent Publication No. WO96/30517), Bacillus thuringiensis proteins, lectins, Vitamin-binding proteins (e.g., avidin), enzyme inhibitors (e.g., protease or proteinase inhibitors or amylase inhibitors), insect-specific hormones or pheromones (e.g., ecdysteroid or a juvenile hormone, variant thereof, a mimetic based thereon, or an antagonist or agonist thereof) or genes involved in the production and regulation of such hormone and pheromones, insect-specific peptides or neuropeptide, Insect-specific venom (e.g., produced by a snake, a wasp, etc., or analog thereof), Enzymes responsible for a hyperaccumulation of a monoterpene, a sesquiterpene, a steroid, hydroxamic acid, a phenylpropanoid derivative or another nonprotein molecule with insecticidal activity, Enzymes involved in the modification of biologically active molecule (e.g., a glycolytic enzyme, a proteolytic enzyme, a lipolytic enzyme, a nuclease, a cyclase, a transaminase, an esterase, a hydrolase, a phosphatase, a kinase, a phosphorylase, a polymerase, an elastase, a chitinase and a glucanase, whether natural or synthetic), molecules that stimulates signal transduction, Viral-invasive proteins or a complex toxin derived therefrom, Developmental-arrestive proteins produced in nature by a pathogen or a parasite, a developmental-arrestive protein produced in nature by a plant, or any combination thereof.


The compositions, systems, and methods may be used to identify, screen, introduce or remove mutations or sequences lead to genetic variability that give rise to susceptibility to certain pathogens, e.g., host specific pathogens. Such approach may generate plants that are non-host resistance, e.g., the host and pathogen are incompatible or there can be partial resistance against all races of a pathogen, typically controlled by many genes and/or also complete resistance to some races of a pathogen but not to other races.


In an embodiment, the compositions, systems, and methods may be used to modify genes involved in plant diseases. Such genes may be removed, inactivated, or otherwise regulated or modified. Examples of plant diseases include those described in [0045]-[0080] of US20140213619A1, which is incorporated by reference herein in its entirety.


In an embodiment, genes that confer resistance to herbicides may be introduced to plants. Examples of genes that confer resistance to herbicides include genes conferring resistance to herbicides that inhibit the growing point or meristem, such as an imidazolinone or a sulfonylurea, genes conferring glyphosate tolerance (e.g., resistance conferred by, e.g., mutant 5-enolpyruvylshikimate-3-phosphate synthase genes, aroA genes and glyphosate acetyl transferase (GAT) genes, respectively), or resistance to other phosphono compounds such as by glufosinate (phosphinothricin acetyl transferase (PAT) genes from Streptomyces species, including Streptomyces hygroscopicus and Streptomyces viridichromogenes), and to pyridinoxy or phenoxy proprionic acids and cyclohexones by ACCase inhibitor-encoding genes), genes conferring resistance to herbicides that inhibit photosynthesis (such as a triazine (psbA and gs+ genes) or a benzonitrile (nitrilase gene), and glutathione S-transferase), genes encoding enzymes detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition, genes encoding a detoxifying enzyme is an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from Streptomyces species), genes encoding hydroxyphenylpyruvatedioxygenases (HPPD) inhibitors, e.g., naturally occurring HPPD resistant enzymes, and genes encoding a mutated or chimeric HPPD enzyme.


In an embodiment, genes involved in Abiotic stress tolerance may be introduced to plants. Examples of genes include those capable of reducing the expression and/or the activity of poly(ADP-ribose) polymerase (PARP) gene, transgenes capable of reducing the expression and/or the activity of the PARG encoding genes, genes coding for a plant-functional enzyme of the nicotineamide adenine dinucleotide salvage synthesis pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyl transferase, nicotinamide adenine dinucleotide synthetase or nicotine amide phosphorybosyltransferase, enzymes involved in carbohydrate biosynthesis, enzymes involved in the production of polyfructose (e.g., the inulin and levan-type), the production of alpha-1,6 branched alpha-1,4-glucans, the production of alternan, the production of hyaluronan.


In an embodiment, genes that improve drought resistance may be introduced to plants. Examples of genes Ubiquitin Protein Ligase protein (UPL) protein (UPL3), DR02, DR03, ABC transporter, and DREB1A.


Nutritionally Improved Plants

In an embodiment, the compositions, systems, and methods may be used to produce nutritionally improved plants. In an embodiment, such plants may provide functional foods, e.g., a modified food or food ingredient that may provide a health benefit beyond the traditional nutrients it contains. In an example embodiment, such plants may provide nutraceuticals foods, e.g., substances that may be considered a food or part of a food and provides health benefits, including the prevention and treatment of disease. The nutraceutical foods may be useful in the prevention and/or treatment of diseases in animals and humans, e.g., cancers, diabetes, cardiovascular disease, and hypertension.


An improved plant may naturally produce one or more desired compounds and the modification may enhance the level or activity or quality of the compounds. In an embodiment, the improved plant may not naturally produce the compound(s), while the modification enables the plant to produce such compound(s). In an embodiment, the compositions, systems, and methods used to modify the endogenous synthesis of these compounds indirectly, e.g. by modifying one or more transcription factors that controls the metabolism of this compound.


Examples of nutritionally improved plants include plants comprising modified protein quality, content and/or amino acid composition, essential amino acid contents, oils and fatty acids, carbohydrates, vitamins and carotenoids, functional secondary metabolites, and minerals. In an embodiment, the improved plants may comprise or produce compounds with health benefits. Examples of nutritionally improved plants include those described in Newell-McGloughlin, Plant Physiology, July 2008, Vol. 147, pp. 939-953.


Examples of compounds that can be produced include carotenoids (e.g., α-Carotene or β-Carotene), lutein, lycopene, Zeaxanthin, Dietary fiber (e.g., insoluble fibers, β-Glucan, soluble fibers, fatty acids (e.g., ω-3 fatty acids, Conjugated linoleic acid, GLA,), Flavonoids (e.g., Hydroxycinnamates, flavonols, catechins and tannins), Glucosinolates, indoles, isothiocyanates (e.g., Sulforaphane), Phenolics (e.g., stilbenes, caffeic acid and ferulic acid, epicatechin), Plant stanols/sterols, Fructans, inulins, fructo-oligosaccharides, Saponins, Soybean proteins, Phytoestrogens (e.g., isoflavones, lignans), Sulfides and thiols such as diallyl sulphide, Allyl methyl trisulfide, dithiolthiones, Tannins, such as proanthocyanidins, or any combination thereof.


The compositions, systems, and methods may also be used to modify protein/starch functionality, shelf life, taste/aesthetics, fiber quality, and allergen, antinutrient, and toxin reduction traits.


Examples of genes and nucleic acids that can be modified to introduce the traits include stearyl-ACP desaturase, DNA associated with the single allele which may be responsible for maize mutants characterized by low levels of phytic acid, Tf RAP2.2 and its interacting partner SINAT2, Tf Dof1, and DOF Tf AtDof1.1 (OBP2).


Modification of Polyploid Plants

The compositions, systems, and methods may be used to modify polyploid plants. Polyploid plants carry duplicate copies of their genomes (e.g. as many as six, such as in wheat). In an embodiment, the compositions, systems, and methods may be can be multiplexed to affect all copies of a gene, or to target dozens of genes at once. For instance, the compositions, systems, and methods may be used to simultaneously ensure a loss of function mutation in different genes responsible for suppressing defenses against a disease. The modification may be simultaneous suppression the expression of the TaMLO-A1, TaMLO-B1 and TaMLO-D1 nucleic acid sequence in a wheat plant cell and regenerating a wheat plant therefrom, in order to ensure that the wheat plant is resistant to powdery mildew (e.g., as described in International Patent Publication No. WO 2015109752).


Regulation of Fruit-Ripening

The compositions, systems, and methods may be used to regulate ripening of fruits. Ripening is a normal phase in the maturation process of fruits and vegetables. Only a few days after it starts it may render a fruit or vegetable inedible, which can bring significant losses to both farmers and consumers.


In an embodiment, the compositions, systems, and methods are used to reduce ethylene production. In an embodiment, the compositions, systems, and methods may be used to suppress the expression and/or activity of ACC synthase, insert a ACC deaminase gene or a functional fragment thereof, insert a SAM hydrolase gene or functional fragment thereof, suppress ACC oxidase gene expression


Alternatively or additionally, the compositions, systems, and methods may be used to modify ethylene receptors (e.g., suppressing ETR1) and/or Polygalacturonase (PG). Suppression of a gene may be achieved by introducing a mutation, an antisense sequence, and/or a truncated copy of the gene to the genome.


Increasing Storage Life of Plants

In an embodiment, the compositions, systems, and methods are used to modify genes involved in the production of compounds which affect storage life of the plant or plant part. The modification may be in a gene that prevents the accumulation of reducing sugars in potato tubers. Upon high-temperature processing, these reducing sugars react with free amino acids, resulting in brown, bitter-tasting products and elevated levels of acrylamide, which is a potential carcinogen. In particular embodiments, the methods provided herein are used to reduce or inhibit expression of the vacuolar invertase gene (VInv), which encodes a protein that breaks down sucrose to glucose and fructose.


Reducing Allergens in Plants

In an embodiment, the compositions, systems, and methods are used to generate plants with a reduced level of allergens, making them safer for consumers. To this end, the compositions, systems, and methods may be used to identify and modify (e.g., suppress) one or more genes responsible for the production of plant allergens. Examples of such genes include Lol p5, as well as those in peanuts, soybeans, lentils, peas, lupin, green beans, mung beans, such as those described in Nicolaou et al., Current Opinion in Allergy and Clinical Immunology 2011; 11(3):222), which is incorporated by reference herein in its entirety.


Generation of Male Sterile Plants

The compositions, systems, and methods may be used to generate male sterile plants. Hybrid plants typically have advantageous agronomic traits compared to inbred plants. However, for self-pollinating plants, the generation of hybrids can be challenging. In different plant types (e.g., maize and rice), genes have been identified which are important for plant fertility, more particularly male fertility. Plants that are as such genetically altered can be used in hybrid breeding programs.


The compositions, systems, and methods may be used to modify genes involved male fertility, e.g., inactivating (such as by introducing mutations to) genes required for male fertility. Examples of the genes involved in male fertility include cytochrome P450-like gene (MS26) or the meganuclease gene (MS45), and those described in Wan X et al., Mol Plant. 2019 Mar. 4; 12(3):321-342; and Kim Y J, et al., Trends Plant Sci. 2018 January; 23(1):53-65.


Increasing the Fertility Stage in Plants

In an embodiment, the compositions, systems, and methods may be used to prolong the fertility stage of a plant such as of a rice. For instance, a rice fertility stage gene such as Ehd3 can be targeted in order to generate a mutation in the gene and plantlets can be selected for a prolonged regeneration plant fertility stage.


Production of Early Yield of Products

In an embodiment, the compositions, systems, and methods may be used to produce early yield of the product. For example, flowering process may be modulated, e.g., by mutating flowering repressor gene such as SP5G. Examples of such approaches include those described in Soyk S, et al., Nat Genet. 2017 January; 49(1):162-168.


Oil and Biofuel Production

The compositions, systems, and methods may be used to generate plants for oil and biofuel production. Biofuels include fuels made from plant and plant-derived resources. Biofuels may be extracted from organic matter whose energy has been obtained through a process of carbon fixation or are made through the use or conversion of biomass. This biomass can be used directly for biofuels or can be converted to convenient energy containing substances by thermal conversion, chemical conversion, and biochemical conversion. This biomass conversion can result in fuel in solid, liquid, or gas form. Biofuels include bioethanol and biodiesel. Bioethanol can be produced by the sugar fermentation process of cellulose (starch), which may be derived from maize and sugar cane. Biodiesel can be produced from oil crops such as rapeseed, palm, and soybean. Biofuels can be used for transportation.


Generation of Plants for Production of Vegetable Oils and Biofuels

The compositions, systems, and methods may be used to generate algae (e.g., diatom) and other plants (e.g., grapes) that express or overexpress high levels of oil or biofuels.


In an embodiment, the compositions, systems, and methods may be used to modify genes involved in the modification of the quantity of lipids and/or the quality of the lipids. Examples of such genes include those involved in the pathways of fatty acid synthesis, e.g., acetyl-CoA carboxylase, fatty acid synthase, 3-ketoacyl acyl-carrier protein synthase III, glycerol-3-phospate deshydrogenase (G3PDH), Enoyl-acyl carrier protein reductase (Enoyl-ACP-reductase), glycerol-3-phosphate acyltransferase, lysophosphatidic acyl transferase or diacylglycerol acyltransferase, phospholipid:diacylglycerol acyltransferase, phoshatidate phosphatase, fatty acid thioesterase such as palmitoyi protein thioesterase, or malic enzyme activities.


In further embodiments, it is envisaged to generate diatoms that have increased lipid accumulation. This can be achieved by targeting genes that decrease lipid catabolization. Examples of genes include those involved in the activation of triacylglycerol and free fatty acids, β-oxidation of fatty acids, such as genes of acyl-CoA synthetase, 3-ketoacyl-CoA thiolase, acyl-CoA oxidase activity and phosphoglucomutase.


In an embodiment, algae may be modified for production of oil and biofuels, including fatty acids (e.g., fatty esters such as acid methyl esters (FAME) and fatty acid ethyl esters (FAEE)). Examples of methods of modifying microalgae include those described in Stovicek et al. Metab. Eng. Comm., 2015; 2:1; U.S. Pat. No. 8,945,839; and International Patent Publication No. WO 2015/086795.


In an embodiment, one or more genes may be introduced (e.g., overexpressed) to the plants (e.g., algae) to produce oils and biofuels (e.g., fatty acids) from a carbon source (e.g., alcohol). Examples of the genes include genes encoding acyl-CoA synthases, ester synthases, thioesterases (e.g., tesA, ′tesA, tesB, fatB, fatB2, fatB3, fatA1, or fatA), acyl-CoA synthases (e.g., fadD, JadK, BH3103, pfl-4354, EAV15023, fadD1, fadD2, RPC_4074, fadDD35, fadDD22, faa39), ester synthases (e.g., synthase/acyl-CoA:diacylglycerl acyltransferase from Simmondsia chinensis, Acinetobacter sp. ADP, Alcanivorax borkumensis, Pseudomonas aeruginosa, Fundibacter jadensis, Arabidopsis thaliana, or Alkaligenes eutrophus, or variants thereof).


Additionally or alternatively, one or more genes in the plants (e.g., algae) may be inactivated (e.g., expression of the genes is decreased). For examples, one or more mutations may be introduced to the genes. Examples of such genes include genes encoding acyl-CoA dehydrogenases (e.g., fade), outer membrane protein receptors, and transcriptional regulator (e.g., repressor) of fatty acid biosynthesis (e.g., fabR), pyruvate formate lyases (e.g., pflB), lactate dehydrogenases (e.g., IdhA).


Organic Acid Production

In an embodiment, plants may be modified to produce organic acids such as lactic acid. The plants may produce organic acids using sugars, pentose or hexose sugars. To this end, one or more genes may be introduced (e.g., and overexpressed) in the plants. An example of such genes include LDH gene.


In an embodiment, one or more genes may be inactivated (e.g., expression of the genes is decreased). For examples, one or more mutations may be introduced to the genes. The genes may include those encoding proteins involved an endogenous metabolic pathway which produces a metabolite other than the organic acid of interest and/or wherein the endogenous metabolic pathway consumes the organic acid.


Examples of genes that can be modified or introduced include those encoding pyruvate decarboxylases (pdc), fumarate reductases, alcohol dehydrogenases (adh), acetaldehyde dehydrogenases, phosphoenolpyruvate carboxylases (ppc), D-lactate dehydrogenases (d-ldh), L-lactate dehydrogenases (1-ldh), lactate 2-monooxygenases, lactate dehydrogenase, cytochrome-dependent lactate dehydrogenases (e.g., cytochrome B2-dependent L-lactate dehydrogenases).


Enhancing Plant Properties for Biofuel Production

In an embodiment, the compositions, systems, and methods are used to alter the properties of the cell wall of plants to facilitate access by key hydrolyzing agents for a more efficient release of sugars for fermentation. By reducing the proportion of lignin in a plant the proportion of cellulose can be increased. In particular embodiments, lignin biosynthesis may be downregulated in the plant so as to increase fermentable carbohydrates.


In an embodiment, one or more lignin biosynthesis genes may be down regulated. Examples of such genes include 4-coumarate 3-hydroxylases (C3H), phenylalanine ammonia-lyases (PAL), cinnamate 4-hydroxylases (C4H), hydroxycinnamoyl transferases (HCT), caffeic acid O-methyltransferases (COMT), caffeoyl CoA 3-O-methyltransferases (CCoAOMT), ferulate 5-hydroxylases (F5H), cinnamyl alcohol dehydrogenases (CAD), cinnamoyl CoA-reductases (CCR), 4-coumarate-CoA ligases (4CL), monolignol-lignin-specific glycosyltransferases, and aldehyde dehydrogenases (ALDH), and those described in WO 2008064289.


In an embodiment, plant mass that produces lower level of acetic acid during fermentation may be reduced. To this end, genes involved in polysaccharide acetylation (e.g., Cas1L and those described in International Patent Publication No. WO 2010096488) may be inactivated.


Other Microorganisms for Oils and Biofuel Production

In an embodiment, microorganisms other than plants may be used for production of oils and biofuels using the compositions, systems, and methods herein. Examples of the microorganisms include those of the genus of Escherichia, Bacillus, Lactobacillus, Rhodococcus, Synechococcus, Synechoystis, Pseudomonas, Aspergillus, Trichoderma, Neurospora, Fusarium, Humicola, Rhizomucor, Kluyveromyces, Pichia, Mucor, Myceliophtora, Penicillium, Phanerochaete, Pleurotus, Trametes, Chrysosporium, Saccharomyces, Stenotrophamonas, Schizosaccharomyces, Yarrowia, or Streptomyces.


Plant Cultures and Regeneration

In an embodiment, the modified plants or plant cells may be cultured to regenerate a whole plant which possesses the transformed or modified genotype and thus the desired phenotype. Examples of regeneration techniques include those relying on manipulation of certain phytohormones in a tissue culture growth medium, relying on a biocide and/or herbicide marker which has been introduced together with the desired nucleotide sequences, obtaining from cultured protoplasts, plant callus, explants, organs, pollens, embryos or parts thereof.


Detecting Modifications in the Plant Genome-Selectable Markers

When the compositions, systems, and methods are used to modify a plant, suitable methods may be used to confirm and detect the modification made in the plant. In an embodiment, when a variety of modifications are made, one or more desired modifications or traits resulting from the modifications may be selected and detected. The detection and confirmation may be performed by biochemical and molecular biology techniques such as Southern analysis, PCR, Northern blot, S1 RNase protection, primer-extension or reverse transcriptase-PCR, enzymatic assays, ribozyme activity, gel electrophoresis, Western blot, immunoprecipitation, enzyme-linked immunoassays, in situ hybridization, enzyme staining, and immunostaining.


In an embodiment, one or more markers, such as selectable and detectable markers, may be introduced to the plants. Such markers may be used for selecting, monitoring, isolating cells and plants with desired modifications and traits. A selectable marker can confer positive or negative selection and is conditional or non-conditional on the presence of external substrates. Examples of such markers include genes and proteins that confer resistance to antibiotics, such as hygromycin (hpt) and kanamycin (nptII), and genes that confer resistance to herbicides, such as phosphinothricin (bar) and chlorosulfuron (als), enzyme capable of producing or processing a colored substances (e.g., the β-glucuronidase, luciferase, B or C1 genes).


Applications in Fungi

The compositions, systems, and methods described herein can be used to perform efficient and cost-effective gene or genome interrogation or editing or manipulation in fungi or fungal cells, such as yeast. The approaches and applications in plants may be applied to fungi as well.


A fungal cell may be any type of eukaryotic cell within the kingdom of fungi, such as phyla of Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Glomeromycota, Microsporidia, and Neocallimastigomycota. Examples of fungi or fungal cells in include yeasts, molds, and filamentous fungi.


In an embodiment, the fungal cell is a yeast cell. A yeast cell refers to any fungal cell within the phyla Ascomycota and Basidiomycota. Examples of yeasts include budding yeast, fission yeast, and mold, S. cerervisiae, Kluyveromyces marxianus, Issatchenkia orientalis, Candida spp. (e.g., Candida albicans), Yarrowia spp. (e.g., Yarrowia lipolytica), Pichia spp. (e.g., Pichia pastoris), Kluyveromyces spp. (e.g., Kluyveromyces lactis and Kluyveromyces marxianus), Neurospora spp. (e.g., Neurospora crassa), Fusarium spp. (e.g., Fusarium oxysporum), and Issatchenkia spp. (e.g., Issatchenkia orientalis, Pichia kudriavzevii and Candida acidothermophilum).


In an embodiment, the fungal cell is a filamentous fungal cell, which grow in filaments, e.g., hyphae or mycelia. Examples of filamentous fungal cells include Aspergillus spp. (e.g., Aspergillus niger), Trichoderma spp. (e.g., Trichoderma reesei), Rhizopus spp. (e.g., Rhizopus oryzae), and Mortierella spp. (e.g., Mortierella isabellina).


In an embodiment, the fungal cell is of an industrial strain. Industrial strains include any strain of fungal cell used in or isolated from an industrial process, e.g., production of a product on a commercial or industrial scale. Industrial strain may refer to a fungal species that is typically used in an industrial process, or it may refer to an isolate of a fungal species that may be also used for non-industrial purposes (e.g., laboratory research). Examples of industrial processes include fermentation (e.g., in production of food or beverage products), distillation, biofuel production, production of a compound, and production of a polypeptide. Examples of industrial strains include, without limitation, JAY270 and ATCC4124.


In an embodiment, the fungal cell is a polyploid cell whose genome is present in more than one copy. Polyploid cells include cells naturally found in a polyploid state, and cells that has been induced to exist in a polyploid state (e.g., through specific regulation, alteration, inactivation, activation, or modification of meiosis, cytokinesis, or DNA replication). A polyploid cell may be a cell whose entire genome is polyploid, or a cell that is polyploid in a particular genomic locus of interest. In an embodiment, the abundance of guide RNA may more often be a rate-limiting component in genome engineering of polyploid cells than in haploid cells, and thus the methods using the composition and system described herein may take advantage of using certain fungal cell types.


In an embodiment, the fungal cell is a diploid cell, whose genome is present in two copies. Diploid cells include cells naturally found in a diploid state, and cells that have been induced to exist in a diploid state (e.g., through specific regulation, alteration, inactivation, activation, or modification of meiosis, cytokinesis, or DNA replication). A diploid cell may refer to a cell whose entire genome is diploid, or it may refer to a cell that is diploid in a particular genomic locus of interest.


In an embodiment, the fungal cell is a haploid cell, whose genome is present in one copy. Haploid cells include cells naturally found in a haploid state, or cells that have been induced to exist in a haploid state (e.g., through specific regulation, alteration, inactivation, activation, or modification of meiosis, cytokinesis, or DNA replication). A haploid cell may refer to a cell whose entire genome is haploid, or it may refer to a cell that is haploid in a particular genomic locus of interest.


The compositions and systems, and nucleic acid encoding thereof may be introduced to fungi cells using the delivery systems and methods herein. Examples of delivery systems include lithium acetate treatment, bombardment, electroporation, and those described in Kawai et al., 2010, Bioeng Bugs. 2010 November-December; 1(6): 395-403.


In an embodiment, a yeast expression vector (e.g., those with one or more regulatory elements) may be used. Examples of such vectors include a centromeric (CEN) sequence, an autonomous replication sequence (ARS), a promoter, such as an RNA Polymerase III promoter, operably linked to a sequence or gene of interest, a terminator such as an RNA polymerase III terminator, an origin of replication, and a marker gene (e.g., auxotrophic, antibiotic, or other selectable markers). Examples of expression vectors for use in yeast may include plasmids, yeast artificial chromosomes, 2μ plasmids, yeast integrative plasmids, yeast replicative plasmids, shuttle vectors, and episomal plasmids.


Biofuel and Materials Production by Fungi

In an embodiment, the compositions, systems, and methods may be used for generating modified fungi for biofuel and material productions. For instance, the modified fungi for production of biofuel or biopolymers from fermentable sugars and optionally to be able to degrade plant-derived lignocellulose derived from agricultural waste as a source of fermentable sugars. Foreign genes required for biofuel production and synthesis may be introduced in to fungi In an embodiment, the genes may encode enzymes involved in the conversion of pyruvate to ethanol or another product of interest, degrade cellulose (e.g., cellulase), endogenous metabolic pathways which compete with the biofuel production pathway.


In an embodiment, the compositions, systems, and methods may be used for generating and/or selecting yeast strains with improved xylose or cellobiose utilization, isoprenoid biosynthesis, and/or lactic acid production. One or more genes involved in the metabolism and synthesis of these compounds may be modified and/or introduced to yeast cells. Examples of the methods and genes include lactate dehydrogenase, PDC1 and PDC5, and those described in Ha, S. J., et al. (2011) Proc. Natl. Acad. Sci. USA 108(2):504-9 and Galazka, J. M., et al. (2010) Science 330(6000):84-6; Jakociunas T et al., Metab Eng. 2015 March; 28:213-222; Stovicek V, et al., FEMS Yeast Res. 2017 Aug. 1; 17(5).


Improved Plants and Yeast Cells

The present disclosure further provides improved plants and fungi. The improved and fungi may comprise one or more genes introduced, and/or one or more genes modified by the compositions, systems, and methods herein. The improved plants and fungi may have increased food or feed production (e.g., higher protein, carbohydrate, nutrient or vitamin levels), oil and biofuel production (e.g., methanol, ethanol), tolerance to pests, herbicides, drought, low or high temperatures, excessive water, etc.


The plants or fungi may have one or more parts that are improved, e.g., leaves, stems, roots, tubers, seeds, endosperm, ovule, and pollen. The parts may be viable, nonviable, regeneratable, and/or non-regeneratable.


The improved plants and fungi may include gametes, seeds, embryos, either zygotic or somatic, progeny and/or hybrids of improved plants and fungi. The progeny may be a clone of the produced plant or fungi, or may result from sexual reproduction by crossing with other individuals of the same species to introgress further desirable traits into their offspring. The cell may be in vivo or ex vivo in the cases of multicellular organisms, particularly plants.


Further Applications in Plants

Further applications of the compositions, systems, and methods on plants and fungi include visualization of genetic element dynamics (e.g., as described in Chen B, et al., Cell. 2013 Dec. 19; 155(7):1479-91), targeted gene disruption positive-selection in vitro and in vivo (as described in Malina A et al., Genes Dev. 2013 Dec. 1; 27(23):2602-14), epigenetic modification such as using fusion of Cas and histone-modifying enzymes (e.g., as described in Rusk N, Nat Methods. 2014 January; 11(1):28), identifying transcription regulators (e.g., as described in Waldrip Z J, Epigenetics. 2014 September; 9(9):1207-11), anti-virus treatment for both RNA and DNA viruses (e.g., as described in Price A A, et al., Proc Natl Acad Sci USA. 2015 May 12; 112(19):6164-9; Ramanan V et al., Sci Rep. 2015 Jun. 2; 5:10833), alteration of genome complexity such as chromosome numbers (e.g., as described in Karimi-Ashtiyani R et al., Proc Natl Acad Sci USA. 2015 Sep. 8; 112(36):11211-6; Anton T, et al., Nucleus. 2014 March-April; 5(2): 163-72), self-cleavage of the CRISPR system for controlled inactivation/activation (e.g., as described Sugano S S et al., Plant Cell Physiol. 2014 March; 55(3):475-81), multiplexed gene editing (as described in Kabadi A M et al., Nucleic Acids Res. 2014 Oct. 29; 42(19):e147), development of kits for multiplex genome editing (as described in Xing H L et al., BMC Plant Biol. 2014 Nov. 29; 14:327), starch production (as described in Hebelstrup K H et al., Front Plant Sci. 2015 Apr. 23; 6:247), targeting multiple genes in a family or pathway (e.g., as described in Ma X et al., Mol Plant. 2015 August; 8(8):1274-84), regulation of non-coding genes and sequences (e.g., as described in Lowder L G, et al., Plant Physiol. 2015 October; 169(2):971-85), editing genes in trees (e.g., as described in Belhaj K et al., Plant Methods. 2013 Oct. 11; 9(1):39; Harrison M M, et al., Genes Dev. 2014 Sep. 1; 28(17):1859-72; Zhou X et al., New Phytol. 2015 October; 208(2):298-301), introduction of mutations for resistance to host-specific pathogens and pests.


Additional examples of modifications of plants and fungi that may be performed using the compositions, systems, and methods include those described in International Patent Publication Nos. WO2016/099887, WO2016/025131, WO2016/073433, WO2017/066175, WO2017/100158, WO 2017/105991, WO2017/106414, WO2016/100272, WO2016/100571, WO 2016/100568, WO 2016/100562, and WO 2017/019867.


Applications in Non-Human Animals

The compositions, systems, and methods may be used to study and modify non human animals, e.g., introducing desirable traits and disease resilience, treating diseases, facilitating breeding, etc. In an embodiment, the compositions, systems, and methods may be used to improve breeding and introducing desired traits, e.g., increasing the frequency of trait-associated alleles, introgression of alleles from other breeds/species without linkage drag, and creation of de novo favorable alleles. Genes and other genetic elements that can be targeted may be screened and identified. Examples of application and approaches include those described in Tait-Burkard C, et al., Livestock 2.0—genome editing for fitter, healthier, and more productive farmed animals. Genome Biol. 2018 Nov. 26; 19(1):204; Lillico S, Agricultural applications of genome editing in farmed animals. Transgenic Res. 2019 August; 28 (Suppl 2):57-60; Houston R D, et al., Harnessing genomics to fast-track genetic improvement in aquaculture. Nat Rev Genet. 2020 Apr. 16. doi: 10.1038/s41576-020-0227-y, which are incorporated herein by reference in their entireties. Applications described in other sections such as therapeutic, diagnostic, etc. can also be used on the animals herein.


The compositions, systems, and methods may be used on animals such as fish, amphibians, reptiles, mammals, and birds. The animals may be farm and agriculture animals, or pets. Examples of farm and agriculture animals include horses, goats, sheep, swine, cattle, llamas, alpacas, and birds, e.g., chickens, turkeys, ducks, and geese. The animals may be a non human primate, e.g., baboons, capuchin monkeys, chimpanzees, lemurs, macaques, marmosets, tamarins, spider monkeys, squirrel monkeys, and vervet monkeys. Examples of pets include dogs, cats horses, wolfs, rabbits, ferrets, gerbils, hamsters, chinchillas, fancy rats, guinea pigs, canaries, parakeets, and parrots.


In an embodiment, one or more genes may be introduced (e.g., overexpressed) in the animals to obtain or enhance one or more desired traits. Growth hormones, insulin-like growth factors (IGF-1) may be introduced to increase the growth of the animals, e.g., pigs or salmon (such as described in Pursel V G et al., J Reprod Fertil Suppl. 1990; 40:235-45; Waltz E, Nature. 2017; 548:148). Fat-1 gene (e.g., from C. elegans) may be introduced for production of larger ratio of n-3 to n-6 fatty acids may be induced, e.g. in pigs (such as described in Li M, et al., Genetics. 2018; 8:1747-54). Phytase (e.g., from E. coli) xylanase (e.g., from Aspergillus niger), beta-glucanase (e.g., from Bacillus lichenformis) may be introduced to reduce the environmental impact through phosphorous and nitrogen release reduction, e.g. in pigs (such as described in Golovan S P, et al., Nat Biotechnol. 2001; 19:741-5; Zhang X et al., elife. 2018). shRNA decoy may be introduced to induce avian influenza resilience e.g. in chicken (such as described in Lyall et al., Science. 2011; 331:223-6). Lysozyme or lysostaphin may be introduced to induce mastitis resilience e.g., in goat and cow (such as described in Maga E A et al., Foodborne Pathog Dis. 2006; 3:384-92; Wall R J, et al., Nat Biotechnol. 2005; 23:445-51). Histone deacetylase such as HDAC6 may be introduced to induce PRRSV resilience, e.g., in pig (such as described in Lu T., et al., PLoS One. 2017; 12:e0169317). CD163 may be modified (e.g., inactivated or removed) to introduce PRRSV resilience in pigs (such as described in Prather R S et al., Sci Rep. 2017 Oct. 17; 7(1):13371). Similar approaches may be used to inhibit or remove viruses and bacteria (e.g., Swine Influenza Virus (SIV) strains which include influenza C and the subtypes of influenza A known as H1N1, H1N2, H2N1, H3N1, H3N2, and H2N3, as well as pneumonia, meningitis and oedema) that may be transmitted from animals to humans.


In an embodiment, one or more genes may be modified or edited for disease resistance and production traits. Myostatin (e.g., GDF8) may be modified to increase muscle growth, e.g., in cow, sheep, goat, catfish, and pig (such as described in Crispo M et al., PLoS One. 2015; 10:e0136690; Wang X, et al., Anim Genet. 2018; 49:43-51; Khalil K, et al., Sci Rep. 2017; 7:7301; Kang J-D, et al., RSC Adv. 2017; 7:12541-9). Pc POLLED may be modified to induce horlessness, e.g., in cow (such as described in Carlson D F et al., Nat Biotechnol. 2016; 34:479-81). KISS1R may be modified to induce boretaint (hormone release during sexual maturity leading to undesired meat taste), e.g., in pigs. Dead end protein (dnd) may be modified to induce sterility, e.g., in salmon (such as described in Wargelius A, et al., Sci Rep. 2016; 6:21284). Nano2 and DDX may be modified to induce sterility (e.g., in surrogate hosts), e.g., in pigs and chicken (such as described Park K-E, et al., Sci Rep. 2017; 7:40176; Taylor L et al., Development. 2017; 144:928-34). CD163 may be modified to induce PRRSV resistance, e.g., in pigs (such as described in Whitworth K M, et al., Nat Biotechnol. 2015; 34:20-2) RELA may be modified to induce ASFV resilience, e.g., in pigs (such as described in Lillico S G, et al., Sci Rep. 2016; 6:21645). CD18 may be modified to induce Mannheimia (Pasteurella) haemolytica resilience, e.g., in cows (such as described in Shanthalingam S, et al., roc Natl Acad Sci USA. 2016; 113:13186-90). NRAMP1 may be modified to induce tuberculosis resilience, e.g., in cows (such as described in Gao Y et al., Genome Biol. 2017; 18:13). Endogenous retrovirus genes may be modified or removed for xenotransplantation such as described in Yang L, et al. Science. 2015; 350:1101-4; Niu D et al., Science. 2017; 357:1303-7). Negative regulators of muscle mass (e.g., Myostatin) may be modified (e.g., inactivated) to increase muscle mass, e.g., in dogs (as described in Zou Q et al., J Mol Cell Biol. 2015 December; 7(6):580-3).


Animals such as pigs with severe combined immunodeficiency (SCID) may generated (e.g., by modifying RAG2) to provide useful models for regenerative medicine, xenotransplantation (discussed also elsewhere herein), and tumor development. Examples of methods and approaches include those described Lee K, et al., Proc Natl Acad Sci USA. 2014 May 20; 111(20):7260-5; and Schomberg et al. FASEB Journal, April 2016; 30(1): Suppl 571.1.


SNPs in the animals may be modified. Examples of methods and approaches include those described Tan W. et al., Proc Natl Acad Sci USA. 2013 Oct. 8; 110(41):16526-31; Mali P, et al., Science. 2013 Feb. 15; 339(6121):823-6.


Stem cells (e.g., induced pluripotent stem cells) may be modified and differentiated into desired progeny cells, e.g., as described in Heo Y T et al., Stem Cells Dev. 2015 Feb. 1; 24(3):393-402.


Profile analysis (such as Igenity) may be performed on animals to screen and identify genetic variations related to economic traits. The genetic variations may be modified to introduce or improve the traits, such as carcass composition, carcass quality, maternal and reproductive traits and average daily gain.


Models of Genetic and Epigenetic Conditions

A method disclosed herein may be used to create a plant, an animal or cell that may be used to model and/or study genetic or epigenetic conditions of interest, such as a through a model of mutations of interest or a disease model. As used herein, “disease” refers to a disease, disorder, or indication in a subject. For example, a method may be used to create an animal or cell that comprises a modification in one or more nucleic acid sequences associated with a disease, or a plant, animal or cell in which the expression of one or more nucleic acid sequences associated with a disease are altered. Such a nucleic acid sequence may encode a disease associated protein sequence or may be a disease associated control sequence. Accordingly, it is understood that in embodiments, a plant, subject, patient, organism or cell can be a non human subject, patient, organism or cell. Thus, the disclosure provides a plant, animal or cell, produced by the present methods, or a progeny thereof. The progeny may be a clone of the produced plant or animal, or may result from sexual reproduction by crossing with other individuals of the same species to introgress further desirable traits into their offspring. The cell may be in vivo or ex vivo in the cases of multicellular organisms, particularly animals or plants. In the instance where the cell is in cultured, a cell line may be established if appropriate culturing conditions are met and preferably if the cell is suitably adapted for this purpose (for instance a stem cell). Bacterial cell lines produced are also envisaged. Hence, cell lines are also envisaged.


In some methods, the disease model can be used to study the effects of mutations on the animal or cell and development and/or progression of the disease using measures commonly used in the study of the disease. Alternatively, such a disease model is useful for studying the effect of a pharmaceutically active compound on the disease.


In some methods, the disease model can be used to assess the efficacy of a potential gene therapy strategy. That is, a disease-associated gene or polynucleotide can be modified such that the disease development and/or progression is inhibited or reduced. In particular, the method comprises modifying a disease-associated gene or polynucleotide such that an altered protein is produced and, as a result, the animal or cell has an altered response. Accordingly, in some methods, a genetically modified animal may be compared with an animal predisposed to development of the disease such that the effect of the gene therapy event may be assessed.


In another embodiment, this disclosure provides a method of developing a biologically active agent that modulates a cell signaling event associated with a disease gene. The method comprises contacting a test compound with a cell comprising one or more vectors that drive expression of one or more of components of the system; and detecting a change in a readout that is indicative of a reduction or an augmentation of a cell signaling event associated with, e.g., a mutation in a disease gene contained in the cell.


A cell model or animal model can be constructed in combination with the method of the disclosure for screening a cellular function change. Such a model may be used to study the effects of a genome sequence modified by the systems and methods herein on a cellular function of interest. For example, a cellular function model may be used to study the effect of a modified genome sequence on intracellular signaling or extracellular signaling. Alternatively, a cellular function model may be used to study the effects of a modified genome sequence on sensory perception. In some such models, one or more genome sequences associated with a signaling biochemical pathway in the model are modified.


Several disease models have been specifically investigated. These include de novo autism risk genes CHD8, KATNAL2, and SCN2A; and the syndromic autism (Angelman Syndrome) gene UBE3A. These genes and resulting autism models are of course preferred, but serve to show the broad applicability of the disclosure across genes and corresponding models. An altered expression of one or more genome sequences associated with a signaling biochemical pathway can be determined by assaying for a difference in the mRNA levels of the corresponding genes between the test model cell and a control cell, when they are contacted with a candidate agent. Alternatively, the differential expression of the sequences associated with a signaling biochemical pathway is determined by detecting a difference in the level of the encoded polypeptide or gene product.


To assay for an agent-induced alteration in the level of mRNA transcripts or corresponding polynucleotides, nucleic acid contained in a sample is first extracted according to standard methods in the art. For instance, mRNA can be isolated using various lytic enzymes or chemical solutions according to the procedures set forth in Sambrook et al. (1989), or extracted by nucleic-acid-binding resins following the accompanying instructions provided by the manufacturers. The mRNA contained in the extracted nucleic acid sample is then detected by amplification procedures or conventional hybridization assays (e.g. Northern blot analysis) according to methods widely known in the art or based on the methods exemplified herein.


Amplification means any method employing a primer and a polymerase capable of replicating a target sequence with reasonable fidelity. Amplification may be carried out by natural or recombinant DNA polymerases such as TagGold™, T7 DNA polymerase, Klenow fragment of E. coli DNA polymerase, and reverse transcriptase. A preferred amplification method is PCR. In particular, the isolated RNA can be subjected to a reverse transcription assay that is coupled with a quantitative polymerase chain reaction (RT-PCR) in order to quantify the expression level of a sequence associated with a signaling biochemical pathway.


Detection of the gene expression level can be conducted in real time in an amplification assay. In one aspect, the amplified products can be directly visualized with fluorescent DNA-binding agents including but not limited to DNA intercalators and DNA groove binders. Because the amount of the intercalators incorporated into the double-stranded DNA molecules is typically proportional to the amount of the amplified DNA products, one can conveniently determine the amount of the amplified products by quantifying the fluorescence of the intercalated dye using conventional optical systems in the art. DNA-binding dye suitable for this application include SYBR green, SYBR blue, DAPI, propidium iodine, Hoeste, SYBR gold, ethidium bromide, acridines, proflavine, acridine orange, acriflavine, fluorcoumanin, ellipticine, daunomycin, chloroquine, distamycin D, chromomycin, homidium, mithramycin, ruthenium polypyridyls, anthramycin, and the like.


In another aspect, other fluorescent labels such as sequence specific probes can be employed in the amplification reaction to facilitate the detection and quantification of the amplified products. Probe-based quantitative amplification relies on the sequence-specific detection of a desired amplified product. It utilizes fluorescent, target-specific probes (e.g., TaqMan® probes) resulting in increased specificity and sensitivity. Methods for performing probe-based quantitative amplification are well established in the art and are taught in U.S. Pat. No. 5,210,015.


In yet another aspect, conventional hybridization assays using hybridization probes that share sequence homology with sequences associated with a signaling biochemical pathway can be performed. Typically, probes are allowed to form stable complexes with the sequences associated with a signaling biochemical pathway contained within the biological sample derived from the test subject in a hybridization reaction. It will be appreciated by one of skill in the art that where antisense is used as the probe nucleic acid, the target polynucleotides provided in the sample are chosen to be complementary to sequences of the antisense nucleic acids. Conversely, where the nucleotide probe is a sense nucleic acid, the target polynucleotide is selected to be complementary to sequences of the sense nucleic acid.


Hybridization can be performed under conditions of various stringency. Suitable hybridization conditions for the practice of the present disclosure are such that the recognition interaction between the probe and sequences associated with a signaling biochemical pathway is both sufficiently specific and sufficiently stable. Conditions that increase the stringency of a hybridization reaction are widely known and published in the art. See, for example, (Sambrook, et al., (1989); Nonradioactive In Situ Hybridization Application Manual, Boehringer Mannheim, second edition). The hybridization assay can be formed using probes immobilized on any solid support, including but are not limited to nitrocellulose, glass, silicon, and a variety of gene arrays. A preferred hybridization assay is conducted on high-density gene chips as described in U.S. Pat. No. 5,445,934.


For a convenient detection of the probe-target complexes formed during the hybridization assay, the nucleotide probes are conjugated to a detectable label. Detectable labels suitable for use in the present disclosure include any composition detectable by photochemical, biochemical, spectroscopic, immunochemical, electrical, optical or chemical means. A wide variety of appropriate detectable labels are known in the art, which include fluorescent or chemiluminescent labels, radioactive isotope labels, enzymatic or other ligands. In preferred embodiments, one will likely desire to employ a fluorescent label or an enzyme tag, such as digoxigenin, β-galactosidase, urease, alkaline phosphatase or peroxidase, avidin/biotin complex.


The detection methods used to detect or quantify the hybridization intensity will typically depend upon the label selected above. For example, radiolabels may be detected using photographic film or a phosphoimager. Fluorescent markers may be detected and quantified using a photodetector to detect emitted light. Enzymatic labels are typically detected by providing the enzyme with a substrate and measuring the reaction product produced by the action of the enzyme on the substrate; and finally colorimetric labels are detected by simply visualizing the colored label.


An agent-induced change in expression of sequences associated with a signaling biochemical pathway can also be determined by examining the corresponding gene products. Determining the protein level typically involves a) contacting the protein contained in a biological sample with an agent that specifically bind to a protein associated with a signaling biochemical pathway; and (b) identifying any agent:protein complex so formed. In one aspect of this embodiment, the agent that specifically binds a protein associated with a signaling biochemical pathway is an antibody, preferably a monoclonal antibody.


The reaction is performed by contacting the agent with a sample of the proteins associated with a signaling biochemical pathway derived from the test samples under conditions that will allow a complex to form between the agent and the proteins associated with a signaling biochemical pathway. The formation of the complex can be detected directly or indirectly according to standard procedures in the art. In the direct detection method, the agents are supplied with a detectable label and unreacted agents may be removed from the complex; the amount of remaining label thereby indicating the amount of complex formed. For such method, it is preferable to select labels that remain attached to the agents even during stringent washing conditions. It is preferable that the label does not interfere with the binding reaction. In the alternative, an indirect detection procedure may use an agent that contains a label introduced either chemically or enzymatically. A desirable label generally does not interfere with binding or the stability of the resulting agent:polypeptide complex. However, the label is typically designed to be accessible to an antibody for an effective binding and hence generating a detectable signal.


A wide variety of labels suitable for detecting protein levels are known in the art. Non-limiting examples include radioisotopes, enzymes, colloidal metals, fluorescent compounds, bioluminescent compounds, and chemiluminescent compounds.


The amount of agent:polypeptide complexes formed during the binding reaction can be quantified by standard quantitative assays. As illustrated above, the formation of agent:polypeptide complex can be measured directly by the amount of label remained at the site of binding. In an alternative, the protein associated with a signaling biochemical pathway is tested for its ability to compete with a labeled analog for binding sites on the specific agent. In this competitive assay, the amount of label captured is inversely proportional to the amount of protein sequences associated with a signaling biochemical pathway present in a test sample.


A number of techniques for protein analysis based on the general principles outlined above are available in the art. They include but are not limited to radioimmunoassays, ELISA (enzyme linked immunoradiometric assays), “sandwich” immunoassays, immunoradiometric assays, in situ immunoassays (using e.g., colloidal gold, enzyme or radioisotope labels), western blot analysis, immunoprecipitation assays, immunofluorescent assays, and SDS-PAGE.


Antibodies that specifically recognize or bind to proteins associated with a signaling biochemical pathway are preferable for conducting the aforementioned protein analyses. Where desired, antibodies that recognize a specific type of post-translational modifications (e.g., signaling biochemical pathway inducible modifications) can be used. Post-translational modifications include but are not limited to glycosylation, lipidation, acetylation, and phosphorylation. These antibodies may be purchased from commercial vendors. For example, anti-phosphotyrosine antibodies that specifically recognize tyrosine-phosphorylated proteins are available from a number of vendors including Invitrogen and Perkin Elmer. Anti-phosphotyrosine antibodies are particularly useful in detecting proteins that are differentially phosphorylated on their tyrosine residues in response to an ER stress. Such proteins include but are not limited to eukaryotic translation initiation factor 2 alpha (eIF-2α). Alternatively, these antibodies can be generated using conventional polyclonal or monoclonal antibody technologies by immunizing a host animal or an antibody-producing cell with a target protein that exhibits the desired post-translational modification.


In practicing the subject method, it may be desirable to discern the expression pattern of a protein associated with a signaling biochemical pathway in different bodily tissue, in different cell types, and/or in different subcellular structures. These studies can be performed with the use of tissue-specific, cell-specific or subcellular structure specific antibodies capable of binding to protein markers that are preferentially expressed in certain tissues, cell types, or subcellular structures.


An altered expression of a gene associated with a signaling biochemical pathway can also be determined by examining a change in activity of the gene product relative to a control cell. The assay for an agent-induced change in the activity of a protein associated with a signaling biochemical pathway will depend on the biological activity and/or the signal transduction pathway that is under investigation. For example, where the protein is a kinase, a change in its ability to phosphorylate the downstream substrate(s) can be determined by a variety of assays known in the art. Representative assays include but are not limited to immunoblotting and immunoprecipitation with antibodies such as anti-phosphotyrosine antibodies that recognize phosphorylated proteins. In addition, kinase activity can be detected by high throughput chemiluminescent assays such as AlphaScreen™ (available from Perkin Elmer) and eTag™ assay (Chan-Hui, et al. (2003) Clinical Immunology 111: 162-174).


Where the protein associated with a signaling biochemical pathway is part of a signaling cascade leading to a fluctuation of intracellular pH condition, pH sensitive molecules such as fluorescent pH dyes can be used as the reporter molecules. In another example where the protein associated with a signaling biochemical pathway is an ion channel, fluctuations in membrane potential and/or intracellular ion concentration can be monitored. A number of commercial kits and high-throughput devices are particularly suited for a rapid and robust screening for modulators of ion channels. Representative instruments include FLIPR™ (Molecular Devices, Inc.) and VIPR (Aurora Biosciences). These instruments are capable of detecting reactions in over 1000 sample wells of a microplate simultaneously, and providing real-time measurement and functional data within a second or even a millisecond.


In practicing any of the methods disclosed herein, a suitable vector can be introduced to a cell or an embryo via one or more methods known in the art, including without limitation, microinjection, electroporation, sonoporation, biolistics, calcium phosphate-mediated transfection, cationic transfection, liposome transfection, dendrimer transfection, heat shock transfection, nucleofection transfection, magnetofection, lipofection, impalefection, optical transfection, proprietary agent-enhanced uptake of nucleic acids, and delivery via liposomes, immunoliposomes, virosomes, or artificial virions. In some methods, the vector is introduced into an embryo by microinjection. The vector or vectors may be microinjected into the nucleus or the cytoplasm of the embryo. In some methods, the vector or vectors may be introduced into a cell by nucleofection.


The target polynucleotide of the composition and system can be any polynucleotide endogenous or exogenous to the eukaryotic cell. For example, the target polynucleotide can be a polynucleotide residing in the nucleus of the eukaryotic cell. The target polynucleotide can be a sequence coding a gene product (e.g., a protein) or a non-coding sequence (e.g., a regulatory polynucleotide or a junk DNA).


Examples of target polynucleotides include a sequence associated with a signaling biochemical pathway, e.g., a signaling biochemical pathway-associated gene or polynucleotide. Examples of target polynucleotides include a disease associated gene or polynucleotide. A “disease-associated” gene or polynucleotide refers to any gene or polynucleotide which is yielding transcription or translation products at an abnormal level or in an abnormal form in cells derived from a disease-affected tissues compared with tissues or cells of a non-disease control. It may be a gene that becomes expressed at an abnormally high level; it may be a gene that becomes expressed at an abnormally low level, where the altered expression correlates with the occurrence and/or progression of the disease. As such, measurement of altered expression levels (e.g. increase or decrease) may be relative to time points in a particular subject or cell, for example, prior or subsequent to administration of a modulating agent or treatment, over a course of time points, or relative to a baseline measurement in the subject or cell. In an embodiment, the altered expression level is relative to a control, normal range, or standard set or measured. A disease-associated gene also refers to a gene possessing mutation(s) or genetic variation that is directly responsible or is in linkage disequilibrium with a gene(s) that is responsible for the etiology of a disease. The transcribed or translated products may be known or unknown, and may be at a normal or abnormal level.


The target polynucleotide of the system herein can be any polynucleotide endogenous or exogenous to the eukaryotic cell. For example, the target polynucleotide can be a polynucleotide residing in the nucleus of the eukaryotic cell. The target polynucleotide can be a sequence coding a gene product (e.g., a protein) or a non-coding sequence (e.g., a regulatory polynucleotide or a junk DNA). Without wishing to be bound by theory, it is believed that the target sequence should be associated with a PAM (protospacer adjacent motif); that is, a short sequence recognized by the complex. The precise sequence and length requirements for the PAM differ depending on the CRISPR enzyme used, but PAMs are typically 2-5 base pair sequences adjacent the protospacer (that is, the target sequence) Examples of PAM sequences are given in the examples section below, and the skilled person will be able to identify further PAM sequences for use with a given CRISPR enzyme. Further, engineering of the PAM Interacting (PI) domain may allow programing of PAM specificity, improve target site recognition fidelity, and increase the versatility of the Cas, e.g. Cas9, genome engineering platform. Cas proteins, such as Cas9 proteins may be engineered to alter their PAM specificity, for example as described in Kleinstiver B P et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015 Jul. 23; 523(7561):481-5. doi: 10.1038/nature14592.


The target polynucleotide of the system may include a number of disease-associated genes and polynucleotides as well as signaling biochemical pathway-associated genes and polynucleotides as listed in U.S. provisional patent applications 61/736,527 and 61/748,427 having Broad reference BI-2011/008/WSGR Docket No. 44063-701.101 and BI-2011/008/WSGR Docket No. 44063-701.102 respectively, both entitled SYSTEMS METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATION filed on Dec. 12, 2012 and Jan. 2, 2013, respectively, and PCT Application PCT/US2013/074667, entitled DELIVERY, ENGINEERING AND OPTIMIZATION OF SYSTEMS, METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATION AND THERAPEUTIC APPLICATIONS, filed Dec. 12, 2013, the contents of all of which are herein incorporated by reference in their entirety.


Examples of target polynucleotides include a sequence associated with a signaling biochemical pathway, e.g., a signaling biochemical pathway-associated gene or polynucleotide. Examples of target polynucleotides include a disease associated gene or polynucleotide. A “disease-associated” gene or polynucleotide refers to any gene or polynucleotide which is yielding transcription or translation products at an abnormal level or in an abnormal form in cells derived from a disease-affected tissues compared with tissues or cells of a non-disease control. It may be a gene that becomes expressed at an abnormally high level; it may be a gene that becomes expressed at an abnormally low level, where the altered expression correlates with the occurrence and/or progression of the disease. A disease-associated gene also refers to a gene possessing mutation(s) or genetic variation that is directly responsible or is in linkage disequilibrium with a gene(s) that is responsible for the etiology of a disease. The transcribed or translated products may be known or unknown, and may be at a normal or abnormal level.


Therapeutic Applications

Also provided herein are methods of diagnosing, prognosing, treating, and/or preventing a disease, disorder, state, or condition in or of a subject. Generally, the methods of diagnosing, prognosing, treating, and/or preventing a disease, state, or condition in or of a subject can include modifying a polynucleotide in a subject or cell thereof using a composition, system, or component thereof described herein and/or include detecting a diseased or healthy polynucleotide in a subject or cell thereof using a composition, system, or component thereof described herein. In an embodiment, the method of treatment or prevention can include using a composition, system, or component thereof to modify a polynucleotide of an infectious organism (e.g. bacterial or virus) within a subject or cell thereof. In an embodiment, the method of treatment or prevention can include using a composition, system, or component thereof to modify a polynucleotide of an infectious organism or symbiotic organism within a subject. The composition, system, and components thereof can be used to develop models of diseases, states, or conditions. The composition, system, and components thereof can be used to detect a disease state or correction thereof, such as by a method of treatment or prevention described herein. The composition, system, and components thereof can be used to screen and select cells that can be used, for example, as treatments or preventions described herein. The composition, system, and components thereof can be used to develop biologically active agents that can be used to modify one or more biologic functions or activities in a subject or a cell thereof.


In general, the method can include delivering a composition, system, and/or component thereof to a subject or cell thereof, or to an infectious or symbiotic organism by a suitable delivery technique and/or composition. Once administered the components can operate as described elsewhere herein to elicit a nucleic acid modification event. In some aspects, the nucleic acid modification event can occur at the genomic, epigenomic, and/or transcriptomic level. DNA and/or RNA cleavage, gene activation, and/or gene deactivation can occur. Additional features, uses, and advantages are described in greater detail below. On the basis of this concept, several variations are appropriate to elicit a genomic locus event, including DNA cleavage, gene activation, or gene deactivation. Using the provided compositions, the person skilled in the art can advantageously and specifically target single or multiple loci with the same or different functional domains to elicit one or more genomic locus events. In addition to treating and/or preventing a disease in a subject, the compositions may be applied in a wide variety of methods for screening in libraries in cells and functional modeling in vivo (e.g. gene activation of lincRNA and identification of function; gain-of-function modeling; loss-of-function modeling; the use the compositions to establish cell lines and transgenic animals for optimization and screening purposes).


The composition, system, and components thereof described elsewhere herein can be used to treat and/or prevent a disease, such as a genetic and/or epigenetic disease, in a subject. The composition, system, and components thereof described elsewhere herein can be used to treat and/or prevent genetic infectious diseases in a subject, such as bacterial infections, viral infections, fungal infections, parasite infections, and combinations thereof. The composition, system, and components thereof described elsewhere herein can be used to modify the composition or profile of a microbiome in a subject, which can in turn modify the health status of the subject. The composition, system, described herein can be used to modify cells ex vivo, which can then be administered to the subject whereby the modified cells can treat or prevent a disease or symptom thereof. This is also referred to in some contexts as adoptive therapy. The composition, system, described herein can be used to treat mitochondrial diseases, where the mitochondrial disease etiology involves a mutation in the mitochondrial DNA.


Also provided is a method of treating a subject, e.g., a subject in need thereof, comprising inducing gene editing by transforming the subject with the polynucleotide encoding one or more components of the composition, system, or complex or any of polynucleotides or vectors described herein and administering them to the subject. A suitable repair template may also be provided, for example delivered by a vector comprising said repair template. The repair template may be a recombination template herein. Also provided is a method of treating a subject, e.g., a subject in need thereof, comprising inducing transcriptional activation or repression of multiple target gene loci by transforming the subject with the polynucleotides or vectors described herein, wherein said polynucleotide or vector encodes or comprises one or more components of composition, system, complex or component thereof comprising multiple Cas effectors. Where any treatment is occurring ex vivo, for example in a cell culture, then it will be appreciated that the term ‘subject’ may be replaced by the phrase “cell or cell culture.”


Also provided is a method of treating a subject, e.g., a subject in need thereof, comprising inducing gene editing by transforming the subject with the Cas effector(s), advantageously encoding and expressing in vivo the remaining portions of the composition, system, (e.g., RNA, guides). A suitable repair template may also be provided, for example delivered by a vector comprising said repair template. Also provided is a method of treating a subject, e.g., a subject in need thereof, comprising inducing transcriptional activation or repression by transforming the subject with the Cas effector(s) advantageously encoding and expressing in vivo the remaining portions of the composition, system, (e.g., RNA, guides); advantageously In an embodiment the CRISPR enzyme is a catalytically inactive Cas effector and includes one or more associated functional domains. Where any treatment is occurring ex vivo, for example in a cell culture, then it will be appreciated that the term ‘subject’ may be replaced by the phrase “cell or cell culture.”


One or more components of the composition and system described herein can be included in a composition, such as a pharmaceutical composition, and administered to a host individually or collectively. Alternatively, these components may be provided in a single composition for administration to a host. Administration to a host may be performed via viral vectors known to the skilled person or described herein for delivery to a host (e.g. lentiviral vector, adenoviral vector, AAV vector). As explained herein, use of different selection markers (e.g. for lentiviral gRNA selection) and concentration of gRNA (e.g. dependent on whether multiple gRNAs are used) may be advantageous for eliciting an improved effect.


Thus, also described herein are methods of inducing one or more polynucleotide modifications in a eukaryotic or prokaryotic cell or component thereof (e.g. a mitochondria) of a subject, infectious organism, and/or organism of the microbiome of the subject. The modification can include the introduction, deletion, or substitution of one or more nucleotides at a target sequence of a polynucleotide of one or more cell(s). The modification can occur in vitro, ex vivo, in situ, or in vivo.


In an embodiment, the method of treating or inhibiting a condition or a disease caused by one or more mutations in a genomic locus in a eukaryotic organism or a non-human organism can include manipulation of a target sequence within a coding, non-coding or regulatory element of said genomic locus in a target sequence in a subject or a non-human subject in need thereof comprising modifying the subject or a non-human subject by manipulation of the target sequence and wherein the condition or disease is susceptible to treatment or inhibition by manipulation of the target sequence including providing treatment comprising delivering a composition comprising the particle delivery system or the delivery system or the virus particle of any one of the above embodiment or the cell of any one of the above embodiment.


Also provided herein is the use of the particle delivery system or the delivery system or the virus particle of any one of the above embodiment or the cell of any one of the above embodiment in ex vivo or in vivo gene or genome editing; or for use in in vitro, ex vivo or in vivo gene therapy. Also provided herein are particle delivery systems, non-viral delivery systems, and/or the virus particle of any one of the above embodiments or the cell of any one of the above embodiments used in the manufacture of a medicament for in vitro, ex vivo or in vivo gene or genome editing or for use in in vitro, ex vivo or in vivo gene therapy or for use in a method of modifying an organism or a non-human organism by manipulation of a target sequence in a genomic locus associated with a disease or in a method of treating or inhibiting a condition or disease caused by one or more mutations in a genomic locus in a eukaryotic organism or a non-human organism.


In an embodiment, polynucleotide modification can include the introduction, deletion, or substitution of 1-75 nucleotides at each target sequence of said polynucleotide of said cell(s). The modification can include the introduction, deletion, or substitution of at least 1, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides at each target sequence. The modification can include the introduction, deletion, or substitution of at least 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides at each target sequence of said cell(s). The modification can include the introduction, deletion, or substitution of at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides at each target sequence of said cell(s). The modification can include the introduction, deletion, or substitution of at least 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides at each target sequence of said cell(s). The modification can include the introduction, deletion, or substitution of at least 40, 45, 50, 75, 100, 200, 300, 400 or 500 nucleotides at each target sequence of said cell(s). The modification can include the introduction, deletion, or substitution of at least 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000, 5100, 5200, 5300, 5400, 5500, 5600, 5700, 5800, 5900, 6000, 6100, 6200, 6300, 6400, 6500, 6600, 6700, 6800, 6900, 7000, 7100, 7200, 7300, 7400, 7500, 7600, 7700, 7800, 7900, 8000, 8100, 8200, 8300, 8400, 8500, 8600, 8700, 8800, 8900, 9000, 9100, 9200, 9300, 9400, 9500, 9600, 9700, 9800, or 9900 to 10000 nucleotides at each target sequence of said cell(s).


In an embodiment, the modifications can include the introduction, deletion, or substitution of nucleotides at each target sequence of said cell(s) via nucleic acid components (e.g. guide(s) RNA(s) or sgRNA(s)), such as those mediated by a composition, system, or a component thereof described elsewhere herein. In an embodiment, the modifications can include the introduction, deletion, or substitution of nucleotides at a target or random sequence of said cell(s) via a composition, system, or technique.


In an embodiment, the composition, system, or component thereof can promote Non-Homologous End-Joining (NHEJ). Thus, modification of a polynucleotide by a composition, system, or a component thereof, such as a diseased polynucleotide, can include NHEJ. Promotion of this repair pathway by the composition, system, or a component thereof can be used to target gene or polynucleotide specific knock-outs and/or knock-ins. Promotion of this repair pathway by the composition, system, or a component thereof can be used to generate NHEJ-mediated indels. Nuclease-induced NHEJ can also be used to remove (e.g., delete) sequence in a gene of interest. Generally, NHEJ repairs a double-strand break in the DNA by joining together the two ends; however, generally, the original sequence is restored only if two compatible ends, exactly as they were formed by the double-strand break, are perfectly ligated. The DNA ends of the double-strand break are frequently the subject of enzymatic processing, resulting in the addition or removal of nucleotides, at one or both strands, prior to rejoining of the ends. This results in the presence of insertion and/or deletion (indel) mutations in the DNA sequence at the site of the NHEJ repair. The indel can range in size from 1-50 or more base pairs. In an embodiment the indel can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, or 500 base pairs or more. If a double-strand break is targeted near to a short target sequence, the deletion mutations caused by the NHEJ repair often span, and therefore remove, the unwanted nucleotides. For the deletion of larger DNA segments, introducing two double-strand breaks, one on each side of the sequence, can result in NHEJ between the ends with removal of the entire intervening sequence. Both of these approaches can be used to delete specific DNA sequences.


In an embodiment, the composition, system, or component thereof mediating NHEJ can be used in the method to delete small sequence motifs. The composition, system, or component thereof-mediated NHEJ can be used in the method to generate NHEJ-mediated indels that can be targeted to the gene, e.g., a coding region, e.g., an early coding region of a gene of interest can be used to knockout (i.e., eliminate expression of) a gene of interest. For example, early coding region of a gene of interest includes sequence immediately following a transcription start site, within a first exon of the coding sequence, or within 500 bp of the transcription start site (e.g., less than 500, 450, 400, 350, 300, 250, 200, 150, 100 or 50 bp). In an embodiment, in which a guide RNA and Cas effector generate a double strand break for the purpose of inducing NHEJ-mediated indels, a guide RNA may be configured to position one double-strand break in close proximity to a nucleotide of the target position. In an embodiment, the cleavage site may be between 0-500 bp away from the target position (e.g., less than 500, 400, 300, 200, 100, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 bp from the target position). In an exemplary embodiment, in which two guide RNAs complexing with one or more Cas nickases induce two single strand breaks for the purpose of inducing NHEJ-mediated indels, two guide RNAs may be configured to position two single-strand breaks to provide for NHEJ repair a nucleotide of the target position.


For minimization of toxicity and off-target effect, it may be important to control the concentration of Cas mRNA and guide RNA delivered. Optimal concentrations of Cas mRNA and guide RNA can be determined by testing different concentrations in a cellular or non human eukaryote animal model and using deep sequencing the analyze the extent of modification at potential off-target genomic loci. Alternatively, to minimize the level of toxicity and off-target effect, Cas nickase mRNA (for example S. pyogenes Cas9 with the D10A mutation) can be delivered with a pair of guide RNAs targeting a site of interest. Guide sequences and strategies to minimize toxicity and off-target effects can be as in International Patent Publication No. WO 2014/093622 (PCT/US2013/074667); or, via mutation. Others are as described elsewhere herein.


Typically, in the context of an endogenous CRISPR or system, formation of a CRISPR or complex (comprising a guide sequence hybridized to a target sequence and complexed with one or more Cas proteins) results in cleavage, nicking, and/or another modification of one or both strands in or near (e.g. within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, or more base pairs from) the target sequence. In an embodiment, the tracr sequence, which may comprise or consist of all or a portion of a wild-type tracr sequence (e.g. about or more than about 20, 26, 32, 45, 48, 54, 63, 67, 85, or more nucleotides of a wild-type tracr sequence), can also form part of a CRISPR complex, such as by hybridization along at least a portion of the tracr sequence to all or a portion of a tracr mate sequence that is operably linked to the guide sequence.


A method of modifying a target polynucleotide in a cell to treat or prevent a disease can include allowing a composition, system, or component thereof to bind to the target polynucleotide, e.g., to effect cleavage, nicking, or other modification as the composition, system, is capable of said target polynucleotide, thereby modifying the target polynucleotide, wherein the composition, system, or component thereof, complex with a guide sequence, and hybridize said guide sequence to a target sequence within the target polynucleotide, wherein said guide sequence is optionally linked to a tracr mate sequence, which in turn can hybridize to a tracr sequence. In some of these embodiments, the composition, system, or component thereof can be or include a CRISPR-Cas effector complexed with a guide sequence. Modification can include cleaving or nicking one or two strands at the location of the target sequence by one or more components of the composition, system, or component thereof.


The cleavage, nicking, or other modification capable of being performed by the composition, system, can modify transcription of a target polynucleotide. In an embodiment, modification of transcription can include decreasing transcription of a target polynucleotide. In an embodiment, modification can include increasing transcription of a target polynucleotide. The method may repairing said cleaved target polynucleotide by homologous recombination with an recombination template polynucleotide, wherein said repair results in a modification such as, but not limited to, an insertion, deletion, or substitution of one or more nucleotides of said target polynucleotide. In an embodiment, said modification results in one or more amino acid changes in a protein expressed from a gene comprising the target sequence. In an embodiment, the modification imparted by the composition, system, or component thereof provides a transcript and/or protein that can correct a disease or a symptom thereof, including but not limited to, any of those described in greater detail elsewhere herein.


The method of treating or preventing a disease can include delivering one or more vectors or vector systems to a cell, such as a eukaryotic or prokaryotic cell, wherein one or more vectors or vector systems include the composition, system, or component thereof. In an embodiment, the vector(s) or vector system(s) can be a viral vector or vector system, such as an AAV or lentiviral vector system, which are described in greater detail elsewhere herein. In an embodiment, the method of treating or preventing a disease can include delivering one or more viral particles, such as an AAV or lentiviral particle, containing the composition, system, or component thereof. In an embodiment, the viral particle has a tissue specific tropism. In an embodiment, the viral particle has a liver, muscle, eye, heart, pancreas, kidney, neuron, epithelial cell, endothelial cell, astrocyte, glial cell, immune cell, or red blood cell specific tropism.


It will be understood that the composition and system, such as the composition and system, for use in the methods as described herein, may be suitably used for any type of application known for composition, system, preferably in eukaryotes. In certain aspects, the application is therapeutic, preferably therapeutic in a eukaryote organism, such as including but not limited to animals (including human), plants, algae, fungi (including yeasts), etc. Alternatively, or in addition, in certain aspects, the application may involve accomplishing or inducing one or more particular traits or characteristics, such as genotypic and/or phenotypic traits or characteristics, as also described elsewhere herein.


Treating Diseases of the Circulatory System

In an embodiment, the composition, system, and/or component thereof described herein can be used to treat and/or prevent a circulatory system disease. In an embodiment the plasma exosomes of Wahlgren et al. (Nucleic Acids Research, 2012, Vol. 40, No. 17 e130) can be used to deliver the composition, system, and/or component thereof described herein to the blood. In an embodiment, the circulatory system disease can be treated by using a lentivirus to deliver the composition, system, described herein to modify hematopoietic stem cells (HSCs) in vivo or ex vivo (see e.g. Drakopoulou, “Review Article, The Ongoing Challenge of Hematopoietic Stem Cell-Based Gene Therapy for β-Thalassemia,” Stem Cells International, Volume 2011, Article ID 987980, 10 pages, doi:10.4061/2011/987980, which can be adapted for use with the composition, system, herein in view of the description herein). In an embodiment, the circulatory system disorder can be treated by correcting HSCs as to the disease using a composition, system, herein or a component thereof, wherein the composition, system, optionally includes a suitable HDR repair template (see e.g. Cavazzana, “Outcomes of Gene Therapy for β-Thalassemia Major via Transplantation of Autologous Hematopoietic Stem Cells Transduced Ex Vivo with a Lentiviral βA-T87Q-Globin Vector.”; Cavazzana-Calvo, “Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia”, Nature 467, 318-322 (16 Sep. 2010) doi:10.1038/nature09328; Nienhuis, “Development of Gene Therapy for Thalassemia, Cold Spring Harbor Perspectives in Medicine, doi: 10.1101/cshperspect.a011833 (2012), LentiGlobin BB305, a lentiviral vector containing an engineered β-globin gene (βA-T87Q); and Xie et al., “Seamless gene correction of β-thalassaemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyback” Genome Research gr.173427.114 (2014) www.genome.org/cgi/doi/10.1101/gr.173427.114 (Cold Spring Harbor Laboratory Press; Watts, “Hematopoietic Stem Cell Expansion and Gene Therapy” Cytotherapy 13(10):1164-1171. doi:10.3109/14653249.2011.620748 (2011), which can be adapted for use with the composition, system, herein in view of the description herein). In an embodiment, iPSCs can be modified using a composition, system, described herein to correct a disease polynucleotide associated with a circulatory disease. In this regard, the teachings of Xu et al. (Sci Rep. 2015 Jul. 9; 5:12065. doi: 10.1038/srep12065) and Song et al. (Stem Cells Dev. 2015 May 1; 24(9):1053-65. doi: 10.1089/scd.2014.0347. Epub 2015 Feb. 5) with respect to modifying iPSCs can be adapted for use in view of the description herein with the composition, system, described herein.


The term “Hematopoietic Stem Cell” or “HSC” refers broadly those cells considered to be an HSC, e.g., blood cells that give rise to all the other blood cells and are derived from mesoderm; located in the red bone marrow, which is contained in the core of most bones. HSCs herein may include cells having a phenotype of hematopoietic stem cells, identified by small size, lack of lineage (lin) markers, and markers that belong to the cluster of differentiation series, like: CD34, CD38, CD90, CD133, CD105, CD45, and also c-kit, - the receptor for stem cell factor. Hematopoietic stem cells are negative for the markers that are used for detection of lineage commitment, and are, thus, called Lin-; and, during their purification by FACS, a number of up to 14 different mature blood-lineage markers, e.g., CD13 & CD33 for myeloid, CD71 for erythroid, CD19 for B cells, CD61 for megakaryocytic, etc. for humans; and, B220 (murine CD45) for B cells, Mac-1 (CD11b/CD18) for monocytes, Gr-1 for Granulocytes, Ter119 for erythroid cells, Il7Ra, CD3, CD4, CD5, CD8 for T cells, etc. Mouse HSC markers: CD34lo/−, SCA-1+, Thy1.1+/lo, CD38+, C-kit+, lin−, and Human HSC markers: CD34+, CD59+, Thy1/CD90+, CD38lo/−, C-kit/CD117+, and lin−. HSCs are identified by markers. Hence in embodiments discussed herein, the HSCs can be CD34+ cells. HSCs can also be hematopoietic stem cells that are CD34−/CD38−. Stem cells that may lack c-kit on the cell surface that are considered in the art as HSCs, as well as CD133+ cells likewise considered HSCs in the art.


In an embodiment, the treatment or prevention for treating a circulatory system or blood disease can include modifying a human cord blood cell with any modification described herein. In an embodiment, the treatment or prevention for treating a circulatory system or blood disease can include modifying a granulocyte colony-stimulating factor-mobilized peripheral blood cell (mPB) with any modification described herein. In an embodiment, the human cord blood cell or mPB can be CD34+. In an embodiment, the cord blood cell(s) or mPB cell(s) modified can be autologous. In an embodiment, the cord blood cell(s) or mPB cell(s) can be allogenic. In addition to the modification of the disease gene(s), allogenic cells can be further modified using the composition, system, described herein to reduce the immunogenicity of the cells when delivered to the recipient. Such techniques are described elsewhere herein and e.g. Cartier, “MINI-SYMPOSIUM: X-Linked Adrenoleukodystrophypa, Hematopoietic Stem Cell Transplantation and Hematopoietic Stem Cell Gene Therapy in X-Linked Adrenoleukodystrophy,” Brain Pathology 20 (2010) 857-862, which can be adapted for use with the composition, system, herein. The modified cord blood cell(s) or mPB cell(s) can be optionally expanded in vitro. The modified cord blood cell(s) or mPB cell(s) can be derived to a subject in need thereof using any suitable delivery technique.


The composition and system may be engineered to target genetic locus or loci in HSCs. In an embodiment, the Cas effector(s) can be codon-optimized for a eukaryotic cell and especially a mammalian cell, e.g., a human cell, for instance, HSC, or iPSC and sgRNA targeting a locus or loci in HSC, such as circulatory disease, can be prepared. These may be delivered via particles. The particles may be formed by the Cas effector protein and the gRNA being admixed. The gRNA and Cas effector protein mixture can be, for example, admixed with a mixture comprising or consisting essentially of or consisting of surfactant, phospholipid, biodegradable polymer, lipoprotein and alcohol, whereby particles containing the gRNA and Cas effector protein may be formed. The disclosure comprehends so making particles and particles from such a method as well as uses thereof. Particles suitable delivery of the CRISRP-Cas systems in the context of blood or circulatory system or HSC delivery to the blood or circulatory system are described in greater detail elsewhere herein.


In an embodiment, after ex vivo modification the HSCs or iPCS can be expanded prior to administration to the subject. Expansion of HSCs can be via any suitable method such as that described by, Lee, “Improved ex vivo expansion of adult hematopoietic stem cells by overcoming CUL4-mediated degradation of HOXB4.” Blood. 2013 May 16; 121(20):4082-9. doi: 10.1182/blood-2012-09-455204. Epub 2013 Mar. 21.


In an embodiment, the HSCs or iPSCs modified can be autologous. In an embodiment, the HSCs or iPSCs can be allogenic. In addition to the modification of the disease gene(s), allogenic cells can be further modified using the composition, system, described herein to reduce the immunogenicity of the cells when delivered to the recipient. Such techniques are described elsewhere herein and e.g. Cartier, “MINI-SYMPOSIUM: X-Linked Adrenoleukodystrophypa, Hematopoietic Stem Cell Transplantation and Hematopoietic Stem Cell Gene Therapy in X-Linked Adrenoleukodystrophy,” Brain Pathology 20 (2010) 857-862, which can be adapted for use with the composition, system, herein.


Treating Neurological Diseases

In an embodiment, the compositions, systems, described herein can be used to treat diseases of the brain and CNS. Delivery options for the brain include encapsulation of CRISPR enzyme, transposase, and/or guide RNA in the form of either DNA or RNA into liposomes and conjugating to molecular Trojan horses for trans-blood brain barrier (BBB) delivery. Molecular Trojan horses have been shown to be effective for delivery of β-gal expression vectors into the brain of non-human primates. The same approach can be used to delivery vectors containing CRISPR enzyme, transposase, and/or guide RNA. For instance, Xia C F and Boado R J, Pardridge W M (“Antibody-mediated targeting of siRNA via the human insulin receptor using avidin-biotin technology.” Mol Pharm. 2009 May-June; 6(3):747-51. doi: 10.1021/mp800194) describes how delivery of short interfering RNA (siRNA) to cells in culture, and in vivo, is possible with combined use of a receptor-specific monoclonal antibody (mAb) and avidin-biotin technology. The authors also report that because the bond between the targeting mAb and the siRNA is stable with avidin-biotin technology, and RNAi effects at distant sites such as brain are observed in vivo following an intravenous administration of the targeted siRNA, the teachings of which can be adapted for use with the compositions, systems, herein. In other embodiments, an artificial virus can be generated for CNS and/or brain delivery. See e.g. Zhang et al. (Mol Ther. 2003 January; 7(1):11-8.)), the teachings of which can be adapted for use with the compositions, systems, herein.


Treating Hearing Diseases

In an embodiment, the composition and system described herein can be used to treat a hearing disease or hearing loss in one or both ears. Deafness is often caused by lost or damaged hair cells that cannot relay signals to auditory neurons. In such cases, cochlear implants may be used to respond to sound and transmit electrical signals to the nerve cells. But these neurons often degenerate and retract from the cochlea as fewer growth factors are released by impaired hair cells.


In an embodiment, the composition, system, or modified cells can be delivered to one or both ears for treating or preventing hearing disease or loss by any suitable method or technique. Suitable methods and techniques include, but are not limited to those set forth in US Patent Publication No. 20120328580 describes injection of a pharmaceutical composition into the ear (e.g., auricular administration), such as into the luminae of the cochlea (e.g., the Scala media, Sc vestibulae, and Sc tympani), e.g., using a syringe, e.g., a single-dose syringe. For example, one or more of the compounds described herein can be administered by intratympanic injection (e.g., into the middle ear), and/or injections into the outer, middle, and/or inner ear; administration in situ, via a catheter or pump (see e.g. McKenna et al., (U.S. Patent Publication No. 2006/0030837) and Jacobsen et al., (U.S. Pat. No. 7,206,639); administration in combination with a mechanical device such as a cochlear implant or a hearing aid, which is worn in the outer ear (see e.g. U.S. Patent Publication No. 2007/0093878, which provides an exemplary cochlear implant suitable for delivery of the compositions, systems, described herein to the ear). Such methods are routinely used in the art, for example, for the administration of steroids and antibiotics into human ears. Injection can be, for example, through the round window of the ear or through the cochlear capsule. Other inner ear administration methods are known in the art (see, e.g., Salt and Plontke, Drug Discovery Today, 10:1299-1306, 2005). In an embodiment, a catheter or pump can be positioned, e.g., in the ear (e.g., the outer, middle, and/or inner ear) of a patient during a surgical procedure. In an embodiment, a catheter or pump can be positioned, e.g., in the ear (e.g., the outer, middle, and/or inner ear) of a patient without the need for a surgical procedure.


In general, the cell therapy methods described in US Patent Publication No. 20120328580 can be used to promote complete or partial differentiation of a cell to or towards a mature cell type of the inner ear (e.g., a hair cell) in vitro. Cells resulting from such methods can then be transplanted or implanted into a patient in need of such treatment. The cell culture methods required to practice these methods, including methods for identifying and selecting suitable cell types, methods for promoting complete or partial differentiation of selected cells, methods for identifying complete or partially differentiated cell types, and methods for implanting complete or partially differentiated cells are described below.


Cells suitable for use in the present disclosure include, but are not limited to, cells that are capable of differentiating completely or partially into a mature cell of the inner ear, e.g., a hair cell (e.g., an inner and/or outer hair cell), when contacted, e.g., in vitro, with one or more of the compounds described herein. Exemplary cells that are capable of differentiating into a hair cell include, but are not limited to stem cells (e.g., inner ear stem cells, adult stem cells, bone marrow derived stem cells, embryonic stem cells, mesenchymal stem cells, skin stem cells, iPS cells, and fat derived stem cells), progenitor cells (e.g., inner ear progenitor cells), support cells (e.g., Deiters' cells, pillar cells, inner phalangeal cells, tectal cells and Hensen's cells), and/or germ cells. The use of stem cells for the replacement of inner ear sensory cells is described in Li et al., (U.S. Patent Publication No. 2005/0287127) and Li et al., (U.S. Patent application Ser. No. 11/953,797). The use of bone marrow derived stem cells for the replacement of inner ear sensory cells is described in Edge et al., PCT/US2007/084654. iPS cells are described, e.g., at Takahashi et al., Cell, Volume 131, Issue 5, Pages 861-872 (2007); Takahashi and Yamanaka, Cell 126, 663-76 (2006); Okita et al., Nature 448, 260-262 (2007); Yu, J. et al., Science 318(5858):1917-1920 (2007); Nakagawa et al., Nat. Biotechnol. 26:101-106 (2008); and Zaehres and Scholer, Cell 131(5):834-835 (2007). Such suitable cells can be identified by analyzing (e.g., qualitatively or quantitatively) the presence of one or more tissue specific genes. For example, gene expression can be detected by detecting the protein product of one or more tissue-specific genes. Protein detection techniques involve staining proteins (e.g., using cell extracts or whole cells) using antibodies against the appropriate antigen. In this case, the appropriate antigen is the protein product of the tissue-specific gene expression. Although, in principle, a first antibody (i.e., the antibody that binds the antigen) can be labeled, it is more common (and improves the visualization) to use a second antibody directed against the first (e.g., an anti-IgG). This second antibody is conjugated either with fluorochromes, or appropriate enzymes for colorimetric reactions, or gold beads (for electron microscopy), or with the biotin-avidin system, so that the location of the primary antibody, and thus the antigen, can be recognized.


The composition and system may be delivered to the ear by direct application of pharmaceutical composition to the outer ear, with compositions modified from US Patent Publication No. 20110142917. In an embodiment the pharmaceutical composition is applied to the ear canal. Delivery to the ear may also be referred to as aural or otic delivery.


In an embodiment, the compositions, systems, or components thereof and/or vectors or vector systems can be delivered to ear via a transfection to the inner ear through the intact round window by a novel proteidic delivery technology which may be applied to the nucleic acid-targeting system (see, e.g., Qi et al., Gene Therapy (2013), 1-9). About 40 μl of 10 mM RNA may be contemplated as the dosage for administration to the ear.


According to Rejali et al. (Hear Res. 2007 June; 228(1-2):180-7), cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant and brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Rejali et al. tested a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, Rejali et al. transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF and then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. Rejali et al. determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes and demonstrated the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival. Such a system may be applied to the nucleic acid-targeting system for delivery to the ear.


In an embodiment, the system set forth in Mukherjea et al. (Antioxidants & Redox Signaling, Volume 13, Number 5, 2010) can be adapted for transtympanic administration of the composition, system, or component thereof to the ear. In an embodiment, a dosage of about 2 mg to about 4 mg of CRISPR Cas for administration to a human.


In an embodiment, the system set forth in [Jung et al. (Molecular Therapy, vol. 21 no. 4, 834-841 April 2013) can be adapted for vestibular epithelial delivery of the composition, system, or component thereof to the ear. In an embodiment, a dosage of about 1 to about 30 mg of CRISPR Cas for administration to a human.


Treating Diseases in Non-Dividing Cells

In an embodiment, the gene or transcript to be corrected is in a non-dividing cell. Exemplary non-dividing cells are muscle cells or neurons. Non-dividing (especially non-dividing, fully differentiated) cell types present issues for gene targeting or genome engineering, for example because homologous recombination (HR) is generally suppressed in the GI cell-cycle phase. However, while studying the mechanisms by which cells control normal DNA repair systems, Durocher discovered a previously unknown switch that keeps HR “off” in non-dividing cells and devised a strategy to toggle this switch back on. Orthwein et al. (Daniel Durocher's lab at the Mount Sinai Hospital in Ottawa, Canada) recently reported (Nature 16142, published online 9 Dec. 2015) have shown that the suppression of HR can be lifted and gene targeting successfully concluded in both kidney (293T) and osteosarcoma (U2OS) cells. Tumor suppressors, BRCA1, PALB2 and BRAC2 are known to promote DNA DSB repair by HR. They found that formation of a complex of BRCA1 with PALB2-BRAC2 is governed by a ubiquitin site on PALB2, such that action on the site by an E3 ubiquitin ligase. This E3 ubiquitin ligase is composed of KEAP1 (a PALB2-interacting protein) in complex with cullin-3 (CUL3)-RBX1. PALB2 ubiquitylation suppresses its interaction with BRCA1 and is counteracted by the deubiquitylase USP11, which is itself under cell cycle control. Restoration of the BRCA1-PALB2 interaction combined with the activation of DNA-end resection is sufficient to induce homologous recombination in G1, as measured by a number of methods including a CRISPR-Cas-based gene-targeting assay directed at USP11 or KEAP1 (expressed from a pX459 vector). However, when the BRCA1-PALB2 interaction was restored in resection-competent GI cells using either KEAP1 depletion or expression of the PALB2-KR mutant, a robust increase in gene-targeting events was detected. These teachings can be adapted for and/or applied to the Cas compositions, systems, described herein.


Thus, reactivation of HR in cells, especially non-dividing, fully differentiated cell types is preferred, In an embodiment. In an embodiment, promotion of the BRCA1-PALB2 interaction is preferred In an embodiment. In an embodiment, the target ell is a non-dividing cell. In an embodiment, the target cell is a neuron or muscle cell. In an embodiment, the target cell is targeted in vivo. In an embodiment, the cell is in G1 and HR is suppressed. In an embodiment, use of KEAP1 depletion, for example inhibition of expression of KEAP1 activity, is preferred. KEAP1 depletion may be achieved through siRNA, for example as shown in Orthwein et al. Alternatively, expression of the PALB2-KR mutant (lacking all eight Lys residues in the BRCA1-interaction domain is preferred, either in combination with KEAP1 depletion or alone. PALB2-KR interacts with BRCA1 irrespective of cell cycle position. Thus, promotion or restoration of the BRCA1-PALB2 interaction, especially in G1 cells, is preferred In an embodiment, especially where the target cells are non-dividing, or where removal and return (ex vivo gene targeting) is problematic, for example neuron or muscle cells. KEAP1 siRNA is available from ThermoFischer. In an embodiment, a BRCA1-PALB2 complex may be delivered to the G1 cell. In an embodiment, PALB2 deubiquitylation may be promoted for example by increased expression of the deubiquitylase USP11, so it is envisaged that a construct may be provided to promote or up-regulate expression or activity of the deubiquitylase USP11.


Treating Diseases of the Eye

In an embodiment, the disease to be treated is a disease that affects the eyes. Thus, In an embodiment, the composition, system, or component thereof described herein is delivered to one or both eyes.


The composition, system can be used to correct ocular defects that arise from several genetic mutations further described in Genetic Diseases of the Eye, Second Edition, edited by Elias I. Traboulsi, Oxford University Press, 2012.


In an embodiment, the condition to be treated or targeted is an eye disorder. In an embodiment, the eye disorder may include glaucoma. In an embodiment, the eye disorder includes a retinal degenerative disease. In an embodiment, the retinal degenerative disease is selected from Stargardt disease, Bardet-Biedl Syndrome, Best disease, Blue Cone Monochromacy, Choroidermia, Cone-rod dystrophy, Congenital Stationary Night Blindness, Enhanced S-Cone Syndrome, Juvenile X-Linked Retinoschisis, Leber Congenital Amaurosis, Malattia Leventinesse, Norrie Disease or X-linked Familial Exudative Vitreoretinopathy, Pattern Dystrophy, Sorsby Dystrophy, Usher Syndrome, Retinitis Pigmentosa, Achromatopsia or Macular dystrophies or degeneration, Retinitis Pigmentosa, Achromatopsia, and age related macular degeneration. In an embodiment, the retinal degenerative disease is Leber Congenital Amaurosis (LCA) or Retinitis Pigmentosa. Other exemplary eye diseases are described in greater detail elsewhere herein.


In an embodiment, the composition, system is delivered to the eye, optionally via intravitreal injection or subretinal injection. Intraocular injections may be performed with the aid of an operating microscope. For subretinal and intravitreal injections, eyes may be prolapsed by gentle digital pressure and fundi visualized using a contact lens system consisting of a drop of a coupling medium solution on the cornea covered with a glass microscope slide coverslip. For subretinal injections, the tip of a 10-mm 34-gauge needle, mounted on a 5-μ1 Hamilton syringe may be advanced under direct visualization through the superior equatorial sclera tangentially towards the posterior pole until the aperture of the needle was visible in the subretinal space. Then, 2 μl of vector suspension may be injected to produce a superior bullous retinal detachment, thus confirming subretinal vector administration. This approach creates a self-sealing sclerotomy allowing the vector suspension to be retained in the subretinal space until it is absorbed by the RPE, usually within 48 h of the procedure. This procedure may be repeated in the inferior hemisphere to produce an inferior retinal detachment. This technique results in the exposure of approximately 70% of neurosensory retina and RPE to the vector suspension. For intravitreal injections, the needle tip may be advanced through the sclera 1 mm posterior to the corneoscleral limbus and 2 μl of vector suspension injected into the vitreous cavity. For intracameral injections, the needle tip may be advanced through a corneoscleral limbal paracentesis, directed towards the central cornea, and 2 μl of vector suspension may be injected. For intracameral injections, the needle tip may be advanced through a corneoscleral limbal paracentesis, directed towards the central cornea, and 2 μl of vector suspension may be injected. These vectors may be injected at titers of either 1.0-1.4×1010 or 1.0-1.4×109 transducing units (TU)/ml.


In an embodiment, for administration to the eye, lentiviral vectors can be used. In an embodiment, the lentiviral vector is an equine infectious anemia virus (EIAV) vector. Exemplary EIAV vectors for eye delivery are described in Balagaan, J Gene Med 2006; 8: 275-285, Published online 21 Nov. 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jgm.845; Binley et al., HUMAN GENE THERAPY 23:980-991 (September 2012), which can be adapted for use with the composition, system, described herein. In an embodiment, the dosage can be 1.1×105 transducing units per eye (TU/eye) in a total volume of 100 μl.


Other viral vectors can also be used for delivery to the eye, such as AAV vectors, such as those described in Campochiaro et al., Human Gene Therapy 17:167-176 (February 2006), Millington-Ward et al. (Molecular Therapy, vol. 19 no. 4, 642-649 April 2011; Dalkara et al. (Sci Transl Med 5, 189ra76 (2013)), which can be adapted for use with the composition, system, described herein. In an embodiment, the dose can range from about 106 to 109.5 particle units. In the context of the Millington-Ward AAV vectors, a dose of about 2×1011 to about 6×1013 virus particles can be administered. In the context of Dalkara vectors, a dose of about 1×1015 to about 1×1016 vg/ml administered to a human.


In an embodiment, the sd-rxRNA® system of RXi Pharmaceuticals may be used/and or adapted for delivering composition, system, to the eye. In this system, a single intravitreal administration of 3 μg of sd-rxRNA results in sequence-specific reduction of PPIB mRNA levels for 14 days. The sd-rxRNA® system may be applied to the nucleic acid-targeting system, contemplating a dose of about 3 to 20 mg of CRISPR administered to a human.


In other embodiments, the methods of US Patent Publication No. 20130183282, which is directed to methods of cleaving a target sequence from the human rhodopsin gene, may also be modified to the nucleic acid-targeting system.


In other embodiments, the methods of US Patent Publication No. 20130202678 for treating retinopathies and sight-threatening ophthalmologic disorders relating to delivering of the Puf-A gene (which is expressed in retinal ganglion and pigmented cells of eye tissues and displays a unique anti-apoptotic activity) to the sub-retinal or intravitreal space in the eye may be used or adapted. In particular, desirable targets are zgc:193933, prdm1a, spata2, tex10, rbb4, ddx3, zp2.2, Blimp-1 and HtrA2, all of which may be targeted by the composition, system.


Wu (Cell Stem Cell, 13:659-62, 2013) designed a guide RNA that led Cas9 to a single base pair mutation that causes cataracts in mice, where it induced DNA cleavage. Then using either the other wild-type allele or oligos given to the zygotes repair mechanisms corrected the sequence of the broken allele and corrected the cataract-causing genetic defect in mutant mouse. This approach can be adapted to and/or applied to the compositions, systems, described herein.


US Patent Publication No. 20120159653 describes use of zinc finger nucleases to genetically modify cells, animals and proteins associated with macular degeneration (MD), the teachings of which can be applied to and/or adapted for the compositions, systems, described herein.


One aspect of US Patent Publication No. 20120159653 relates to editing of any chromosomal sequences that encode proteins associated with MD which may be applied to the nucleic acid-targeting system.


Treating Muscle Diseases and Cardiovascular Diseases

In an embodiment, the composition, system can be used to treat and/or prevent a muscle disease and associated circulatory or cardiovascular disease or disorder. The present disclosure also contemplates delivering the composition, system, described herein, e.g. Cas effector protein systems, to the heart. For the heart, a myocardium tropic adeno-associated virus (AAVM) is preferred, in particular AAVM41 which showed preferential gene transfer in the heart (see, e.g., Lin-Yanga et al., PNAS, Mar. 10, 2009, vol. 106, no. 10). Administration may be systemic or local. A dosage of about 1-10×1014 vector genomes are contemplated for systemic administration. See also, e.g., Eulalio et al. (2012) Nature 492: 376 and Somasuntharam et al. (2013) Biomaterials 34: 7790, the teachings of which can be adapted for and/or applied to the compositions, systems, described herein.


For example, US Patent Publication No. 20110023139, the teachings of which can be adapted for and/or applied to the compositions, systems, described herein describes use of zinc finger nucleases to genetically modify cells, animals and proteins associated with cardiovascular disease. Cardiovascular diseases generally include high blood pressure, heart attacks, heart failure, and stroke and TIA. Any chromosomal sequence involved in cardiovascular disease or the protein encoded by any chromosomal sequence involved in cardiovascular disease may be utilized in the methods described in this disclosure. The cardiovascular-related proteins are typically selected based on an experimental association of the cardiovascular-related protein to the development of cardiovascular disease. For example, the production rate or circulating concentration of a cardiovascular-related protein may be elevated or depressed in a population having a cardiovascular disorder relative to a population lacking the cardiovascular disorder. Differences in protein levels may be assessed using proteomic techniques including but not limited to Western blot, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), and mass spectrometry. Alternatively, the cardiovascular-related proteins may be identified by obtaining gene expression profiles of the genes encoding the proteins using genomic techniques including but not limited to DNA microarray analysis, serial analysis of gene expression (SAGE), and quantitative real-time polymerase chain reaction (Q-PCR). Exemplary chromosomal sequences can be found in Table 2.


The compositions, systems, herein can be used for treating diseases of the muscular system. The present disclosure also contemplates delivering the composition, system, described herein, effector protein systems, to muscle(s).


In an embodiment, the muscle disease to be treated is a muscle dystrophy such as DMD. In an embodiment, the composition, system, such as a system capable of RNA modification, described herein can be used to achieve exon skipping to achieve correction of the diseased gene. As used herein, the term “exon skipping” refers to the modification of pre-mRNA splicing by the targeting of splice donor and/or acceptor sites within a pre-mRNA with one or more complementary antisense oligonucleotide(s) (AONs). By blocking access of a spliceosome to one or more splice donor or acceptor site, an AON may prevent a splicing reaction thereby causing the deletion of one or more exons from a fully-processed mRNA. Exon skipping may be achieved in the nucleus during the maturation process of pre-mRNAs. In an embodiment, exon skipping may include the masking of key sequences involved in the splicing of targeted exons by using a composition, system, described herein capable of RNA modification. In an embodiment, exon skipping can be achieved in dystrophin mRNA. In an embodiment, the composition, system, can induce exon skipping at exon 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 45, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or any combination thereof of the dystrophin mRNA. In an embodiment, the composition, system, can induce exon skipping at exon 43, 44, 50, 51, 52, 55, or any combination thereof of the dystrophin mRNA. Mutations in these exons, can also be corrected using non-exon skipping polynucleotide modification methods.


In an embodiment, for treatment of a muscle disease, the method of Bortolanza et al. Molecular Therapy vol. 19 no. 11, 2055-264 November 2011) may be applied to an AAV expressing CRISPR Cas and injected into humans at a dosage of about 2×1015 or 2×1016 vg of vector. The teachings of Bortolanza et al., can be adapted for and/or applied to the compositions, systems, described herein.


In an embodiment, the method of Dumonceaux et al. (Molecular Therapy vol. 18 no. 5, 881-887 May 2010) may be applied to an AAV expressing CRISPR Cas and injected into humans, for example, at a dosage of about 1014 to about 1015 vg of vector. The teachings of Dumonceaux described herein can be adapted for and/or applied to the compositions, systems, described herein.


In an embodiment, the method of Kinouchi et al. (Gene Therapy (2008) 15, 1126-1130) may be applied to CRISPR Cas systems described herein and injected into a human, for example, at a dosage of about 500 to 1000 ml of a 40 μM solution into the muscle.


In an embodiment, the method of Hagstrom et al. (Molecular Therapy Vol. 10, No. 2, August 2004) can be adapted for and/or applied to the compositions, systems, herein and injected at a dose of about 15 to about 50 mg into the great saphenous vein of a human.


In an embodiment, the method comprise treating a sickle cell related disease, e.g., sickle cell trait, sickle cell disease such as sickle cell anemia, β-thalassaemia. For example, the method and system may be used to modify the genome of the sickle cell, e.g., by correcting one or more mutations of the β-globin gene. In the case of β-thalassaemia, sickle cell anemia can be corrected by modifying HSCs with the systems. The system allows the specific editing of the cell's genome by cutting its DNA and then letting it repair itself. The Cas protein is inserted and directed by a RNA guide to the mutated point and then it cuts the DNA at that point. Simultaneously, a healthy version of the sequence is inserted. This sequence is used by the cell's own repair system to fix the induced cut. In this way, the CRISPR-Cas allows the correction of the mutation in the previously obtained stem cells. The methods and systems may be used to correct HSCs as to sickle cell anemia using a systems that targets and corrects the mutation (e.g., with a suitable HDR template that delivers a coding sequence for β-globin, advantageously non-sickling β-globin); specifically, the guide RNA can target mutation that give rise to sickle cell anemia, and the HDR can provide coding for proper expression of β-globin. An guide RNA that targets the mutation-and-Cas protein containing particle is contacted with HSCs carrying the mutation. The particle also can contain a suitable HDR template to correct the mutation for proper expression of β-globin; or the HSC can be contacted with a second particle or a vector that contains or delivers the HDR template. The so contacted cells can be administered; and optionally treated/expanded; cf. Cartier. The HDR template can provide for the HSC to express an engineered β-globin gene (e.g., βA-T87Q), or β-globin.


Treating Diseases of the Liver and Kidney

In an embodiment, the composition, system, or component thereof described herein can be used to treat a disease of the kidney or liver. Thus, In an embodiment, delivery of the CRISRP-Cas system or component thereof described herein is to the liver or kidney.


Delivery strategies to induce cellular uptake of the therapeutic nucleic acid include physical force or vector systems such as viral-, lipid- or complex-based delivery, or nanocarriers. From the initial applications with less possible clinical relevance, when nucleic acids were addressed to renal cells with hydrodynamic high-pressure injection systemically, a wide range of gene therapeutic viral and non-viral carriers have been applied already to target posttranscriptional events in different animal kidney disease models in vivo (Csaba Révész and Peter Hamar (2011). Delivery Methods to Target RNAs in the Kidney, Gene Therapy Applications, Prof. Chunsheng Kang (Ed.), ISBN: 978-953-307-541-9, InTech, Available from: www.intechopen.com/books/gene-therapy-applications/delivery-methods-to-target-rnas-inthe-kidney). Delivery methods to the kidney may include those in Yuan et al. (Am J Physiol Renal Physiol 295: F605-F617, 2008). The method of Yuang et al. may be applied to the CRISPR Cas system contemplating a 1-2 g subcutaneous injection of CRISPR Cas conjugated with cholesterol to a human for delivery to the kidneys. In an embodiment, the method of Molitoris et al. (J Am Soc Nephrol 20: 1754-1764, 2009) can be adapted to the CRISRP-Cas system of and a cumulative dose of 12-20 mg/kg to a human can be used for delivery to the proximal tubule cells of the kidneys. In an embodiment, the methods of Thompson et al. (Nucleic Acid Therapeutics, Volume 22, Number 4, 2012) can be adapted to the CRISRP-Cas system and a dose of up to 25 mg/kg can be delivered via i.v. administration. In an embodiment, the method of Shimizu et al. (J Am Soc Nephrol 21: 622-633, 2010) can be adapted to the CRISRP-Cas system and a dose of about of 10-20 μmol CRISPR Cas complexed with nanocarriers in about 1-2 liters of a physiologic fluid for i.p. administration can be used.


Other various delivery vehicles can be used to deliver the composition, system to the kidney such as viral, hydrodynamic, lipid, polymer nanoparticles, aptamers and various combinations thereof (see e.g. Larson et al., Surgery, (August 2007), Vol. 142, No. 2, pp. (262-269); Hamar et al., Proc Natl Acad Sci, (October 2004), Vol. 101, No. 41, pp. (14883-14888); Zheng et al., Am J Pathol, (October 2008), Vol. 173, No. 4, pp. (973-980); Feng et al., Transplantation, (May 2009), Vol. 87, No. 9, pp. (1283-1289); Q. Zhang et al., PloS ONE, (July 2010), Vol. 5, No. 7, e11709, pp. (1-13); Kushibikia et al., J Controlled Release, (July 2005), Vol. 105, No. 3, pp. (318-331); Wang et al., Gene Therapy, (July 2006), Vol. 13, No. 14, pp. (1097-1103); Kobayashi et al., Journal of Pharmacology and Experimental Therapeutics, (February 2004), Vol. 308, No. 2, pp. (688-693); Wolfrum et al., Nature Biotechnology, (September 2007), Vol. 25, No. 10, pp. (1149-1157); Molitoris et al., J Am Soc Nephrol, (August 2009), Vol. 20, No. 8 pp. (1754-1764); Mikhaylova et al., Cancer Gene Therapy, (March 2011), Vol. 16, No. 3, pp. (217-226); Y. Zhang et al., J Am Soc Nephrol, (April 2006), Vol. 17, No. 4, pp. (1090-1101); Singhal et al., Cancer Res, (May 2009), Vol. 69, No. 10, pp. (4244-4251); Malek et al., Toxicology and Applied Pharmacology, (April 2009), Vol. 236, No. 1, pp. (97-108); Shimizu et al., J Am Soc Nephrology, (April 2010), Vol. 21, No. 4, pp. (622-633); Jiang et al., Molecular Pharmaceutics, (May-June 2009), Vol. 6, No. 3, pp. (727-737); Cao et al, J Controlled Release, (June 2010), Vol. 144, No. 2, pp. (203-212); Ninichuk et al., Am J Pathol, (March 2008), Vol. 172, No. 3, pp. (628-637); Purschke et al., Proc Natl Acad Sci, (March 2006), Vol. 103, No. 13, pp. (5173-5178).


In an embodiment, delivery is to liver cells. In an embodiment, the liver cell is a hepatocyte. Delivery of the composition and system herein may be via viral vectors, especially AAV (and in particular AAV2/6) vectors. These can be administered by intravenous injection. A preferred target for the liver, whether in vitro or in vivo, is the albumin gene. This is a so-called ‘safe harbor” as albumin is expressed at very high levels and so some reduction in the production of albumin following successful gene editing is tolerated. It is also preferred as the high levels of expression seen from the albumin promoter/enhancer allows for useful levels of correct or transgene production (from the inserted recombination template) to be achieved even if only a small fraction of hepatocytes are edited. See sites identified by Wechsler et al. (reported at the 57th Annual Meeting and Exposition of the American Society of Hematology—abstract available online at ash.confex.com/ash/2015/webprogram/Paper86495.html and presented on 6th December 2015) which can be adapted for use with the compositions, systems, herein.


Exemplary liver and kidney diseases that can be treated and/or prevented are described elsewhere herein.


Treating Epithelial and Lung Diseases

In an embodiment, the disease treated or prevented by the composition and system described herein can be a lung or epithelial disease. The compositions and systems described herein can be used for treating epithelial and/or lung diseases. The present disclosure also contemplates delivering the composition, system, described herein, to one or both lungs.


In an embodiment, a viral vector can be used to deliver the composition, system, or component thereof to the lungs. In an embodiment, the AAV is an AAV-1, AAV-2, AAV-5, AAV-6, and/or AAV-9 for delivery to the lungs. (see, e.g., Li et al., Molecular Therapy, vol. 17 no. 12, 2067-277 December 2009). In an embodiment, the MOI can vary from 1×103 to 4×105 vector genomes/cell. In an embodiment, the delivery vector can be an RSV vector as in Zamora et al. (Am J Respir Crit Care Med Vol 183. pp 531-538, 2011. The method of Zamora et al. may be applied to the nucleic acid-targeting system and an aerosolized CRISPR Cas, for example with a dosage of 0.6 mg/kg, may be contemplated.


Subjects treated for a lung disease may for example receive pharmaceutically effective amount of aerosolized AAV vector system per lung endobronchially delivered while spontaneously breathing. As such, aerosolized delivery is preferred for AAV delivery in general. An adenovirus or an AAV particle may be used for delivery. Suitable gene constructs, each operably linked to one or more regulatory sequences, may be cloned into the delivery vector. In this instance, the following constructs are provided as examples: Cbh or EF1a promoter for Cas, U6 or H1 promoter for guide RNA), A preferred arrangement is to use a CFTRdelta508 targeting guide, a repair template for deltaF508 mutation and a codon optimized Cas enzyme, with optionally one or more nuclear localization signal or sequence(s) (NLS(s)), e.g., two (2) NLSs.


Treating Diseases of the Skin

The compositions and systems described herein can be used for the treatment of skin diseases. The present disclosure also contemplates delivering the composition and system, described herein, to the skin.


In an embodiment, delivery to the skin (intradermal delivery) of the composition, system, or component thereof can be via one or more microneedles or microneedle containing device. For example, In an embodiment the device and methods of Hickerson et al. (Molecular Therapy-Nucleic Acids (2013) 2, e129) can be used and/or adapted to deliver the composition, system, described herein, for example, at a dosage of up to 300 μl of 0.1 mg/ml CRISPR-Cas system to the skin.


In an embodiment, the methods and techniques of Leachman et al. (Molecular Therapy, vol. 18 no. 2, 442-446 February 2010) can be used and/or adapted for delivery of a CIRPSR-Cas system described herein to the skin.


In an embodiment, the methods and techniques of Zheng et al. (PNAS, Jul. 24, 2012, vol. 109, no. 30, 11975-11980) can be used and/or adapted for nanoparticle delivery of a CIRPSR-Cas system described herein to the skin. In an embodiment, as dosage of about 25 nM applied in a single application can achieve gene knockdown in the skin.


Treating Cancer

The compositions, systems, described herein can be used for the treatment of cancer. The present disclosure also contemplates delivering the composition, system, described herein, to a cancer cell. Also, as is described elsewhere herein the compositions, systems, can be used to modify an immune cell, such as a CAR or CAR T cell, which can then in turn be used to treat and/or prevent cancer. This is also described in International Patent Publication No. WO 2015/161276, the disclosure of which is hereby incorporated by reference and described herein below.


Target genes suitable for the treatment or prophylaxis of cancer can include those set forth in Tables 2 and 3. In an embodiment, target genes for cancer treatment and prevention can also include those described in International Patent Publication No. WO 2015/048577 the disclosure of which is hereby incorporated by reference and can be adapted for and/or applied to the composition, system, described herein.


Adoptive Cell Therapy

The compositions, systems, and components thereof described herein can be used to modify cells for an adoptive cell therapy. In an aspect, methods and compositions which involve editing a target nucleic acid sequence, or modulating expression of a target nucleic acid sequence, and applications thereof in connection with cancer immunotherapy are comprehended by adapting the composition, system. In an embodiment, the compositions, systems, and methods may be used to modify a stem cell (e.g., induced pluripotent cell) to derive modified natural killer cells, gamma delta T cells, and alpha beta T cells, which can be used for the adoptive cell therapy. In an example embodiment, the compositions, systems, and methods may be used to modify modified natural killer cells, gamma delta T cells, and alpha beta T cells.


As used herein, “ACT”, “adoptive cell therapy” and “adoptive cell transfer” may be used interchangeably. In an embodiment, Adoptive cell therapy (ACT) can refer to the transfer of cells to a patient with the goal of transferring the functionality and characteristics into the new host by engraftment of the cells (see, e.g., Mettananda et al., Editing an α-globin enhancer in primary human hematopoietic stem cells as a treatment for β-thalassemia, Nat Commun. 2017 Sep. 4; 8(1):424). As used herein, the term “engraft” or “engraftment” refers to the process of cell incorporation into a tissue of interest in vivo through contact with existing cells of the tissue. Adoptive cell therapy (ACT) can refer to the transfer of cells, most commonly immune-derived cells, back into the same patient or into a new recipient host with the goal of transferring the immunologic functionality and characteristics into the new host. If possible, use of autologous cells helps the recipient by minimizing GVHD issues. The adoptive transfer of autologous tumor infiltrating lymphocytes (TIL) (Zacharakis et al., (2018) Nat Med. 2018 June; 24(6):724-730; Besser et al., (2010) Clin. Cancer Res 16 (9) 2646-55; Dudley et al., (2002) Science 298 (5594): 850-4; and Dudley et al., (2005) Journal of Clinical Oncology 23 (10): 2346-57.) or genetically re-directed peripheral blood mononuclear cells (Johnson et al., (2009) Blood 114 (3): 535-46; and Morgan et al., (2006) Science 314(5796) 126-9) has been used to successfully treat patients with advanced solid tumors, including melanoma, metastatic breast cancer and colorectal carcinoma, as well as patients with CD19-expressing hematologic malignancies (Kalos et al., (2011) Science Translational Medicine 3 (95): 95ra73). In an embodiment, allogenic cells immune cells are transferred (see, e.g., Ren et al., (2017) Clin Cancer Res 23 (9) 2255-2266). As described further herein, allogenic cells can be edited to reduce alloreactivity and prevent graft-versus-host disease. Thus, use of allogenic cells allows for cells to be obtained from healthy donors and prepared for use in patients as opposed to preparing autologous cells from a patient after diagnosis.


Aspects involve the adoptive transfer of immune system cells, such as T cells, specific for selected antigens, such as tumor associated antigens or tumor specific neoantigens (see, e.g., Maus et al., 2014, Adoptive Immunotherapy for Cancer or Viruses, Annual Review of Immunology, Vol. 32: 189-225; Rosenberg and Restifo, 2015, Adoptive cell transfer as personalized immunotherapy for human cancer, Science Vol. 348 no. 6230 pp. 62-68; Restifo et al., 2015, Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12(4): 269-281; and Jenson and Riddell, 2014, Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev. 257(1): 127-144; and Rajasagi et al., 2014, Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood. 2014 Jul. 17; 124(3):453-62).


In an embodiment, an antigen (such as a tumor antigen) to be targeted in adoptive cell therapy (such as particularly CAR or TCR T-cell therapy) of a disease (such as particularly of tumor or cancer) may be selected from a group consisting of: MR1 (see, e.g., Crowther, et al., 2020, Genome-wide CRISPR-Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1, Nature Immunology volume 21, pages 178-185), B cell maturation antigen (BCMA) (see, e.g., Friedman et al., Effective Targeting of Multiple BCMA-Expressing Hematological Malignancies by Anti-BCMA CAR T Cells, Hum Gene Ther. 2018 Mar. 8; Berdeja J G, et al. Durable clinical responses in heavily pretreated patients with relapsed/refractory multiple myeloma: updated results from a multicenter study of bb2121 anti-Bcma CAR T cell therapy. Blood. 2017; 130:740; and Mouhieddine and Ghobrial, Immunotherapy in Multiple Myeloma: The Era of CAR T Cell Therapy, Hematologist, May-June 2018, Volume 15, issue 3); PSA (prostate-specific antigen); prostate-specific membrane antigen (PSMA); PSCA (Prostate stem cell antigen); Tyrosine-protein kinase transmembrane receptor ROR1; fibroblast activation protein (FAP); Tumor-associated glycoprotein 72 (TAG72); Carcinoembryonic antigen (CEA); Epithelial cell adhesion molecule (EPCAM); Mesothelin; Human Epidermal growth factor Receptor 2 (ERBB2 (Her2/neu)); Prostase; Prostatic acid phosphatase (PAP); elongation factor 2 mutant (ELF2M); Insulin-like growth factor 1 receptor (IGF-1R); gplOO; BCR-ABL (breakpoint cluster region-Abelson); tyrosinase; New York esophageal squamous cell carcinoma 1 (NY-ESO-1); κ-light chain, LAGE (L antigen); MAGE (melanoma antigen); Melanoma-associated antigen 1 (MAGE-A1); MAGE A3; MAGE A6; legumain; Human papillomavirus (HPV) E6; HPV E7; prostein; survivin; PCTA1 (Galectin 8); Melan-A/MART-1; Ras mutant; TRP-1 (tyrosinase related protein 1, or gp75); Tyrosinase-related Protein 2 (TRP2); TRP-2/INT2 (TRP-2/intron 2); RAGE (renal antigen); receptor for advanced glycation end products 1 (RAGE1); Renal ubiquitous 1, 2 (RU1, RU2); intestinal carboxyl esterase (iCE); Heat shock protein 70-2 (HSP70-2) mutant; thyroid stimulating hormone receptor (TSHR); CD123; CD171; CD19; CD20; CD22; CD26; CD30; CD33; CD44v7/8 (cluster of differentiation 44, exons 7/8); CD53; CD92; CD100; CD148; CD150; CD200; CD261; CD262; CD362; CS-1 (CD2 subset 1, CRACC, SLAMF7, CD319, and 19A24); C-type lectin-like molecule-1 (CLL-1); ganglioside GD3 (aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); Tn antigen (Tn Ag); Fms-Like Tyrosine Kinase 3 (FLT3); CD38; CD138; CD44v6; B7H3 (CD276); KIT (CD117); Interleukin-13 receptor subunit alpha-2 (IL-13Ra2); Interleukin 11 receptor alpha (IL-11Ra); prostate stem cell antigen (PSCA); Protease Serine 21 (PRSS21); vascular endothelial growth factor receptor 2 (VEGFR2); Lewis(Y) antigen; CD24; Platelet-derived growth factor receptor beta (PDGFR-beta); stage-specific embryonic antigen-4 (SSEA-4); Mucin 1, cell surface associated (MUC1); mucin 16 (MUC16); epidermal growth factor receptor (EGFR); epidermal growth factor receptor variant III (EGFRvIII); neural cell adhesion molecule (NCAM); carbonic anhydrase IX (CAIX); Proteasome (Prosome, Macropain) Subunit, Beta Type, 9 (LMP2); ephrin type-A receptor 2 (EphA2); Ephrin B2; Fucosyl GM1; sialyl Lewis adhesion molecule (sLe); ganglioside GM3 (aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); TGS5; high molecular weight-melanoma-associated antigen (HMWMAA); o-acetyl-GD2 ganglioside (OAcGD2); Folate receptor alpha; Folate receptor beta; tumor endothelial marker 1 (TEM1/CD248); tumor endothelial marker 7-related (TEM7R); claudin 6 (CLDN6); G protein-coupled receptor class C group 5, member D (GPRC5D); chromosome X open reading frame 61 (CXORF61); CD97; CD179a; anaplastic lymphoma kinase (ALK); Polysialic acid; placenta-specific 1 (PLAC1); hexasaccharide portion of globoH glycoceramide (GloboH); mammary gland differentiation antigen (NY-BR-1); uroplakin 2 (UPK2); Hepatitis A virus cellular receptor 1 (HAVCR1); adrenoceptor beta 3 (ADRB3); pannexin 3 (PANX3); G protein-coupled receptor 20 (GPR20); lymphocyte antigen 6 complex, locus K 9 (LY6K); Olfactory receptor 51E2 (OR51E2); TCR Gamma Alternate Reading Frame Protein (TARP); Wilms tumor protein (WT1); ETS translocation-variant gene 6, located on chromosome 12p (ETV6-AML); sperm protein 17 (SPA17); X Antigen Family, Member 1A (XAGE1); angiopoietin-binding cell surface receptor 2 (Tie 2); CT (cancer/testis (antigen)); melanoma cancer testis antigen-1 (MAD-CT-1); melanoma cancer testis antigen-2 (MAD-CT-2); Fos-related antigen 1; p53; p53 mutant; human Telomerase reverse transcriptase (hTERT); sarcoma translocation breakpoints; melanoma inhibitor of apoptosis (ML-IAP); ERG (transmembrane protease, serine 2 (TMPRSS2) ETS fusion gene); N-Acetyl glucosaminyl-transferase V (NA17); paired box protein Pax-3 (PAX3); Androgen receptor; Cyclin B1; Cyclin Dl; v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN); Ras Homolog Family Member C (RhoC); Cytochrome P450 1B1 (CYP1B1); CCCTC-Binding Factor (Zinc Finger Protein)-Like (BORIS); Squamous Cell Carcinoma Antigen Recognized By T Cells-1 or 3 (SART1, SART3); Paired box protein Pax-5 (PAX5); proacrosin binding protein sp32 (OY-TES1); lymphocyte-specific protein tyrosine kinase (LCK); A kinase anchor protein 4 (AKAP-4); synovial sarcoma, X breakpoint-1, -2, -3 or -4 (SSX1, SSX2, SSX3, SSX4); CD79a; CD79b; CD72; Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1); Fc fragment of IgA receptor (FCAR); Leukocyte immunoglobulin-like receptor subfamily A member 2 (LILRA2); CD300 molecule-like family member f (CD300LF); C-type lectin domain family 12 member A (CLECI2A); bone marrow stromal cell antigen 2 (BST2); EGF-like module-containing mucin-like hormone receptor-like 2 (EMR2); lymphocyte antigen 75 (LY75); Glypican-3 (GPC3); Fc receptor-like 5 (FCRL5); mouse double minute 2 homolog (MDM2); livin; alphafetoprotein (AFP); transmembrane activator and CAML Interactor (TACI); B-cell activating factor receptor (BAFF-R); V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS); immunoglobulin lambda-like polypeptide 1 (IGLL1); 707-AP (707 alanine proline); ART-4 (adenocarcinoma antigen recognized by T4 cells); BAGE (B antigen; b-catenin/m, b-catenin/mutated); CAMEL (CTL-recognized antigen on melanoma); CAP1 (carcinoembryonic antigen peptide 1); CASP-8 (caspase-8); CDC27m (cell-division cycle 27 mutated); CDK4/m (cycline-dependent kinase 4 mutated); Cyp-B (cyclophilin B); DAM (differentiation antigen melanoma); EGP-2 (epithelial glycoprotein 2); EGP-40 (epithelial glycoprotein 40); Erbb2, 3, 4 (erythroblastic leukemia viral oncogene homolog-2, -3, 4); FBP (folate binding protein); fAchR (Fetal acetylcholine receptor); G250 (glycoprotein 250); GAGE (G antigen); GnT-V (N-acetylglucosaminyltransferase V); HAGE (helicose antigen); ULA-A (human leukocyte antigen-A); HST2 (human signet ring tumor 2); KIAA0205; KDR (kinase insert domain receptor); LDLR/FUT (low density lipid receptor/GDP L-fucose: b-D-galactosidase 2-a-L fucosyltransferase); L1CAM (L1 cell adhesion molecule); MC1R (melanocortin 1 receptor); Myosin/m (myosin mutated); MUM-1, -2, -3 (melanoma ubiquitous mutated 1, 2, 3); NA88-A (NA cDNA clone of patient M88); KG2D (Natural killer group 2, member D) ligands; oncofetal antigen (h5T4); p190 minor bcr-abl (protein of 190KD bcr-abl); Pml/RARa (promyelocytic leukemia/retinoic acid receptor a); PRAME (preferentially expressed antigen of melanoma); SAGE (sarcoma antigen); TEL/AML1 (translocation Ets-family leukemia/acute myeloid leukemia 1); TPI/m (triosephosphate isomerase mutated); CD70; and any combination thereof.


In an embodiment, an antigen to be targeted in adoptive cell therapy (such as particularly CAR or TCR T-cell therapy) of a disease (such as particularly of tumor or cancer) is a tumor-specific antigen (TSA).


In an embodiment, an antigen to be targeted in adoptive cell therapy (such as particularly CAR or TCR T-cell therapy) of a disease (such as particularly of tumor or cancer) is a neoantigen.


In an embodiment, an antigen to be targeted in adoptive cell therapy (such as particularly CAR or TCR T-cell therapy) of a disease (such as particularly of tumor or cancer) is a tumor-associated antigen (TAA).


In an embodiment, an antigen to be targeted in adoptive cell therapy (such as particularly CAR or TCR T-cell therapy) of a disease (such as particularly of tumor or cancer) is a universal tumor antigen. In certain preferred embodiments, the universal tumor antigen is selected from the group consisting of: a human telomerase reverse transcriptase (hTERT), survivin, mouse double minute 2 homolog (MDM2), cytochrome P450 1B 1 (CYP1B), HER2/neu, Wilms' tumor gene 1 (WT1), livin, alphafetoprotein (AFP), carcinoembryonic antigen (CEA), mucin 16 (MUC16), MUC1, prostate-specific membrane antigen (PSMA), p53, cyclin (Dl), and any combinations thereof.


In an embodiment, an antigen (such as a tumor antigen) to be targeted in adoptive cell therapy (such as particularly CAR or TCR T-cell therapy) of a disease (such as particularly of tumor or cancer) may be selected from a group consisting of: CD19, BCMA, CD70, CLL-1, MAGE A3, MAGE A6, HPV E6, HPV E7, WT1, CD22, CD171, ROR1, MUC16, and SSX2. In certain preferred embodiments, the antigen may be CD19. For example, CD19 may be targeted in hematologic malignancies, such as in lymphomas, more particularly in B-cell lymphomas, such as without limitation in diffuse large B-cell lymphoma, primary mediastinal b-cell lymphoma, transformed follicular lymphoma, marginal zone lymphoma, mantle cell lymphoma, acute lymphoblastic leukemia including adult and pediatric ALL, non-Hodgkin lymphoma, indolent non-Hodgkin lymphoma, or chronic lymphocytic leukemia. For example, BCMA may be targeted in multiple myeloma or plasma cell leukemia (see, e.g., 2018 American Association for Cancer Research (AACR) Annual meeting Poster: Allogeneic Chimeric Antigen Receptor T Cells Targeting B Cell Maturation Antigen). For example, CLL1 may be targeted in acute myeloid leukemia. For example, MAGE A3, MAGE A6, SSX2, and/or KRAS may be targeted in solid tumors. For example, HPV E6 and/or HPV E7 may be targeted in cervical cancer or head and neck cancer. For example, WT1 may be targeted in acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), chronic myeloid leukemia (CIVIL), non-small cell lung cancer, breast, pancreatic, ovarian or colorectal cancers, or mesothelioma. For example, CD22 may be targeted in B cell malignancies, including non-Hodgkin lymphoma, diffuse large B-cell lymphoma, or acute lymphoblastic leukemia. For example, CD171 may be targeted in neuroblastoma, glioblastoma, or lung, pancreatic, or ovarian cancers. For example, ROR1 may be targeted in ROR1+ malignancies, including non-small cell lung cancer, triple negative breast cancer, pancreatic cancer, prostate cancer, ALL, chronic lymphocytic leukemia, or mantle cell lymphoma. For example, MUC16 may be targeted in MUC16ecto+ epithelial ovarian, fallopian tube or primary peritoneal cancer. For example, CD70 may be targeted in both hematologic malignancies as well as in solid cancers such as renal cell carcinoma (RCC), gliomas (e.g., GBM), and head and neck cancers (HNSCC). CD70 is expressed in both hematologic malignancies as well as in solid cancers, while its expression in normal tissues is restricted to a subset of lymphoid cell types (see, e.g., 2018 American Association for Cancer Research (AACR) Annual meeting Poster: Allogeneic CRISPR Engineered Anti-CD70 CAR-T Cells Demonstrate Potent Preclinical Activity Against Both Solid and Hematological Cancer Cells).


Various strategies may for example be employed to genetically modify T cells by altering the specificity of the T cell receptor (TCR) for example by introducing new TCR a and β chains with selected peptide specificity (see U.S. Pat. No. 8,697,854; PCT Patent Publications: WO2003020763, WO2004033685, WO2004044004, WO2005114215, WO2006000830, WO2008038002, WO2008039818, WO2004074322, WO2005113595, WO2006125962, WO2013166321, WO2013039889, WO2014018863, WO2014083173; U.S. Pat. No. 8,088,379).


As an alternative to, or addition to, TCR modifications, chimeric antigen receptors (CARs) may be used in order to generate immunoresponsive cells, such as T cells, specific for selected targets, such as malignant cells, with a wide variety of receptor chimera constructs having been described (see U.S. Pat. Nos. 5,843,728; 5,851,828; 5,912,170; 6,004,811; 6,284,240; 6,392,013; 6,410,014; 6,753,162; 8,211,422; and, PCT Publication WO 9215322).


In general, CARs are comprised of an extracellular domain, a transmembrane domain, and an intracellular domain, wherein the extracellular domain comprises an antigen-binding domain that is specific for a predetermined target. While the antigen-binding domain of a CAR is often an antibody or antibody fragment (e.g., a single chain variable fragment, scFv), the binding domain is not particularly limited so long as it results in specific recognition of a target. For example, In an embodiment, the antigen-binding domain may comprise a receptor, such that the CAR is capable of binding to the ligand of the receptor. Alternatively, the antigen-binding domain may comprise a ligand, such that the CAR is capable of binding the endogenous receptor of that ligand.


The antigen-binding domain of a CAR is generally separated from the transmembrane domain by a hinge or spacer. The spacer is also not particularly limited, and it is designed to provide the CAR with flexibility. For example, a spacer domain may comprise a portion of a human Fc domain, including a portion of the CH3 domain, or the hinge region of any immunoglobulin, such as IgA, IgD, IgE, IgG, or IgM, or variants thereof. Furthermore, the hinge region may be modified so as to prevent off-target binding by FcRs or other potential interfering objects. For example, the hinge may comprise an IgG4 Fc domain with or without a S228P, L235E, and/or N297Q mutation (according to Kabat numbering) in order to decrease binding to FcRs. Additional spacers/hinges include, but are not limited to, CD4, CD8, and CD28 hinge regions.


The transmembrane domain of a CAR may be derived either from a natural or from a synthetic source. Where the source is natural, the domain may be derived from any membrane bound or transmembrane protein. Transmembrane regions of particular use in this disclosure may be derived from CD8, CD28, CD3, CD45, CD4, CD5, CDS, CD9, CD 16, CD22, CD33, CD37, CD64, CD80, CD86, CD 134, CD137, CD 154, TCR. Alternatively, the transmembrane domain may be synthetic, in which case it will comprise predominantly hydrophobic residues such as leucine and valine. Preferably a triplet of phenylalanine, tryptophan and valine will be found at each end of a synthetic transmembrane domain. Optionally, a short oligo- or polypeptide linker, preferably between 2 and 10 amino acids in length may form the linkage between the transmembrane domain and the cytoplasmic signaling domain of the CAR. A glycine-serine doublet provides a particularly suitable linker.


Alternative CAR constructs may be characterized as belonging to successive generations. First-generation CARs typically consist of a single-chain variable fragment of an antibody specific for an antigen, for example comprising a VL linked to a VH of a specific antibody, linked by a flexible linker, for example by a CD8a hinge domain and a CD8a transmembrane domain, to the transmembrane and intracellular signaling domains of either CD3 t or FcRy (scFv-CD3ζ or scFv-FcRγ; see U.S. Pat. Nos. 7,741,465; 5,912,172; 5,906,936). Second-generation CARs incorporate the intracellular domains of one or more costimulatory molecules, such as CD28, OX40 (CD134), or 4-1BB (CD137) within the endodomain (for example scFv-CD28/OX40/4-1BB-CD3ζ; see U.S. Pat. Nos. 8,911,993; 8,916,381; 8,975,071; 9,101,584; 9,102,760; 9,102,761). Third-generation CARs include a combination of costimulatory endodomains, such a CD3-chain, CD97, GDI la-CD18, CD2, ICOS, CD27, CD154, CDS, OX40, 4-1BB, CD2, CD7, LIGHT, LFA-1, NKG2C, B7-H3, CD30, CD40, PD-1, or CD28 signaling domains (for example scFv-CD28-4-1BB-CD3ζ or scFv-CD28-OX40-CD3ζ; see U.S. Pat. Nos. 8,906,682; 8,399,645; 5,686,281; PCT Publication No. WO 2014/134165; PCT Publication No. WO 2012/079000). In an embodiment, the primary signaling domain comprises a functional signaling domain of a protein selected from the group consisting of CD3 zeta, CD3 gamma, CD3 delta, CD3 epsilon, common FcR gamma (FCERIG), FcR beta (Fc Epsilon Rib), CD79a, CD79b, Fc gamma RIIa, DAP10, and DAP12. In certain preferred embodiments, the primary signaling domain comprises a functional signaling domain of CD3ζ or FcRγ. In an embodiment, the one or more costimulatory signaling domains comprise a functional signaling domain of a protein selected, each independently, from the group consisting of: CD27, CD28, 4-1BB (CD137), OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83, CDS, ICAM-1, GITR, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), CD160, CD19, CD4, CD8 alpha, CD8 beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, ITGB7, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, NKp44, NKp30, NKp46, and NKG2D. In an embodiment, the one or more costimulatory signaling domains comprise a functional signaling domain of a protein selected, each independently, from the group consisting of: 4-1BB, CD27, and CD28. In an embodiment, a chimeric antigen receptor may have the design as described in U.S. Pat. No. 7,446,190, comprising an intracellular domain of CD3 chain (such as amino acid residues 52-163 of the human CD3 zeta chain, as shown in SEQ ID NO: 14 of U.S. Pat. No. 7,446,190), a signaling region from CD28 and an antigen-binding element (or portion or domain; such as scFv). The CD28 portion, when between the zeta chain portion and the antigen-binding element, may suitably include the transmembrane and signaling domains of CD28 (such as amino acid residues 114-220 of SEQ ID NO: 10, full sequence shown in SEQ ID NO: 6 of U.S. Pat. No. 7,446,190; these can include the following portion of CD28 as set forth in Genbank identifier NM 006139. Alternatively, when the zeta sequence lies between the CD28 sequence and the antigen-binding element, intracellular domain of CD28 can be used alone (such as amino sequence set forth in SEQ ID NO: 9 of U.S. Pat. No. 7,446,190). Hence, certain embodiments employ a CAR comprising (a) a zeta chain portion comprising the intracellular domain of human CD3ζ chain, (b) a costimulatory signaling region, and (c) an antigen-binding element (or portion or domain), wherein the costimulatory signaling region comprises the amino acid sequence encoded by SEQ ID NO: 6 of U.S. Pat. No. 7,446,190.


Alternatively, costimulation may be orchestrated by expressing CARs in antigen-specific T cells, chosen so as to be activated and expanded following engagement of their native αβTCR, for example by antigen on professional antigen-presenting cells, with attendant costimulation. In addition, additional engineered receptors may be provided on the immunoresponsive cells, for example to improve targeting of a T-cell attack and/or minimize side effects


By means of an example and without limitation, Kochenderfer et al., (2009) J Immunother. 32 (7): 689-702 described anti-CD19 chimeric antigen receptors (CAR). FMC63-28Z CAR contained a single chain variable region moiety (scFv) recognizing CD19 derived from the FMC63 mouse hybridoma (described in Nicholson et al., (1997) Molecular Immunology 34: 1157-1165), a portion of the human CD28 molecule, and the intracellular component of the human TCR-ζ molecule. FMC63-CD828BBZ CAR contained the FMC63 scFv, the hinge and transmembrane regions of the CD8 molecule, the cytoplasmic portions of CD28 and 4-1BB, and the cytoplasmic component of the TCR-ζ molecule. The exact sequence of the CD28 molecule included in the FMC63-28Z CAR corresponded to Genbank identifier NM_006139; the sequence included all amino acids starting with the amino acid sequence IEVMYPPPY (SEQ. I.D. No. 2) and continuing all the way to the carboxy-terminus of the protein. To encode the anti-CD19 scFv component of the vector, the authors designed a DNA sequence which was based on a portion of a previously published CAR (Cooper et al., (2003) Blood 101: 1637-1644). This sequence encoded the following components in frame from the 5′ end to the 3′ end: an XhoI site, the human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor α-chain signal sequence, the FMC63 light chain variable region (as in Nicholson et al., supra), a linker peptide (as in Cooper et al., supra), the FMC63 heavy chain variable region (as in Nicholson et al., supra), and a NotI site. A plasmid encoding this sequence was digested with XhoI and NotI. To form the MSGV-FMC63-28Z retroviral vector, the XhoI and NotI-digested fragment encoding the FMC63 scFv was ligated into a second XhoI and NotI-digested fragment that encoded the MSGV retroviral backbone (as in Hughes et al., (2005) Human Gene Therapy 16: 457-472) as well as part of the extracellular portion of human CD28, the entire transmembrane and cytoplasmic portion of human CD28, and the cytoplasmic portion of the human TCR-ζ molecule (as in Maher et al., 2002) Nature Biotechnology 20: 70-75). The FMC63-28Z CAR is included in the KTE-C19 (axicabtagene ciloleucel) anti-CD19 CAR-T therapy product in development by Kite Pharma, Inc. for the treatment of inter alia patients with relapsed/refractory aggressive B-cell non-Hodgkin lymphoma (NHL). Accordingly, In an embodiment, cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may express the FMC63-28Z CAR as described by Kochenderfer et al. (supra). Hence, In an embodiment, cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may comprise a CAR comprising an extracellular antigen-binding element (or portion or domain; such as scFv) that specifically binds to an antigen, an intracellular signaling domain comprising an intracellular domain of a CD3ζ chain, and a costimulatory signaling region comprising a signaling domain of CD28. Preferably, the CD28 amino acid sequence is as set forth in Genbank identifier NM_006139 (sequence version 1, 2 or 3) starting with the amino acid sequence IEVMYPPPY and continuing all the way to the carboxy-terminus of the protein. Preferably, the antigen is CD19, more preferably the antigen-binding element is an anti-CD19 scFv, even more preferably the anti-CD19 scFv as described by Kochenderfer et al. (supra).


Additional anti-CD19 CARs are further described in International Patent Publication No. WO 2015/187528. More particularly Example 1 and Table 1 of WO2015187528, incorporated by reference herein, demonstrate the generation of anti-CD19 CARs based on a fully human anti-CD19 monoclonal antibody (47G4, as described in US20100104509) and murine anti-CD19 monoclonal antibody (as described in Nicholson et al. and explained above). Various combinations of a signal sequence (human CD8-alpha or GM-CSF receptor), extracellular and transmembrane regions (human CD8-alpha) and intracellular T-cell signaling domains (CD28-CD3ζ; 4-1BB-CD3ζ; CD27-CD3ζ; CD28-CD27-CD3ζ 4-1BB-CD27-CD3ζ; CD27-4-1BB-CD3ζ; CD28-CD27-FcεRI gamma chain; or CD28-FcεRI gamma chain) were disclosed. Hence, In an embodiment, cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may comprise a CAR comprising an extracellular antigen-binding element that specifically binds to an antigen, an extracellular and transmembrane region as set forth in Table 1 of WO2015187528 and an intracellular T-cell signaling domain as set forth in Table 1 of No. WO 2015/187528. Preferably, the antigen is CD19, more preferably the antigen-binding element is an anti-CD19 scFv, even more preferably the mouse or human anti-CD19 scFv as described in Example 1 of. WO 2015/187528. In an embodiment, the CAR comprises, consists essentially of or consists of an amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, or SEQ ID NO: 13 as set forth in Table 1 of WO2015187528.


By means of an example and without limitation, chimeric antigen receptor that recognizes the CD70 antigen is described in WO2012058460A2 (see also, Park et al., CD70 as a target for chimeric antigen receptor T cells in head and neck squamous cell carcinoma, Oral Oncol. 2018 March; 78:145-150; and Jin et al., CD70, a novel target of CAR T-cell therapy for gliomas, Neuro Oncol. 2018 Jan. 10; 20(1):55-65). CD70 is expressed by diffuse large B-cell and follicular lymphoma and also by the malignant cells of Hodgkin's lymphoma, Waldenstrom's macroglobulinemia and multiple myeloma, and by HTLV-1- and EBV-associated malignancies. (Agathanggelou et al. Am.J.Pathol. 1995; 147: 1152-1160; Hunter et al., Blood 2004; 104:4881. 26; Lens et al., J Immunol. 2005; 174:6212-6219; Baba et al., J Virol. 2008; 82:3843-3852.) In addition, CD70 is expressed by non-hematological malignancies such as renal cell carcinoma and glioblastoma. (Junker et al., J Urol. 2005; 173:2150-2153; Chahlavi et al., Cancer Res 2005; 65:5428-5438) Physiologically, CD70 expression is transient and restricted to a subset of highly activated T, B, and dendritic cells.


By means of an example and without limitation, chimeric antigen receptor that recognizes BCMA has been described (see, e.g., US20160046724A1; WO2016014789A2; WO2017211900A1; WO2015158671A1; US20180085444A1; WO2018028647A1; US20170283504A1; and WO2013154760A1).


In an embodiment, the immune cell may, in addition to a CAR or exogenous TCR as described herein, further comprise a chimeric inhibitory receptor (inhibitory CAR) that specifically binds to a second target antigen and is capable of inducing an inhibitory or immunosuppressive or repressive signal to the cell upon recognition of the second target antigen. In an embodiment, the chimeric inhibitory receptor comprises an extracellular antigen-binding element (or portion or domain) configured to specifically bind to a target antigen, a transmembrane domain, and an intracellular immunosuppressive or repressive signaling domain. In an embodiment, the second target antigen is an antigen that is not expressed on the surface of a cancer cell or infected cell or the expression of which is downregulated on a cancer cell or an infected cell. In an embodiment, the second target antigen is an MHC-class I molecule. In an embodiment, the intracellular signaling domain comprises a functional signaling portion of an immune checkpoint molecule, such as for example PD-1 or CTLA4. Advantageously, the inclusion of such inhibitory CAR reduces the chance of the engineered immune cells attacking non-target (e.g., non-cancer) tissues.


Alternatively, T-cells expressing CARs may be further modified to reduce or eliminate expression of endogenous TCRs in order to reduce off-target effects. Reduction or elimination of endogenous TCRs can reduce off-target effects and increase the effectiveness of the T cells (U.S. Pat. No. 9,181,527). T cells stably lacking expression of a functional TCR may be produced using a variety of approaches. T cells internalize, sort, and degrade the entire T cell receptor as a complex, with a half-life of about 10 hours in resting T cells and 3 hours in stimulated T cells (von Essen, M. et al. 2004. J. Immunol. 173:384-393). Proper functioning of the TCR complex requires the proper stoichiometric ratio of the proteins that compose the TCR complex. TCR function also requires two functioning TCR zeta proteins with ITAM motifs. The activation of the TCR upon engagement of its MHC-peptide ligand requires the engagement of several TCRs on the same T cell, which all must signal properly. Thus, if a TCR complex is destabilized with proteins that do not associate properly or cannot signal optimally, the T cell will not become activated sufficiently to begin a cellular response.


Accordingly, In an embodiment, TCR expression may eliminated using RNA interference (e.g., shRNA, siRNA, miRNA, etc.), CRISPR, or other methods that target the nucleic acids encoding specific TCRs (e.g., TCR-α and TCR-β) and/or CD3 chains in primary T cells. By blocking expression of one or more of these proteins, the T cell will no longer produce one or more of the key components of the TCR complex, thereby destabilizing the TCR complex and preventing cell surface expression of a functional TCR.


In an embodiment, CAR may also comprise a switch mechanism for controlling expression and/or activation of the CAR. For example, a CAR may comprise an extracellular, transmembrane, and intracellular domain, in which the extracellular domain comprises a target-specific binding element that comprises a label, binding domain, or tag that is specific for a molecule other than the target antigen that is expressed on or by a target cell. In such embodiments, the specificity of the CAR is provided by a second construct that comprises a target antigen binding domain (e.g., an scFv or a bispecific antibody that is specific for both the target antigen and the label or tag on the CAR) and a domain that is recognized by or binds to the label, binding domain, or tag on the CAR. See, e.g., International Patent Publication Nos. WO 2013/044225, WO 2016/000304, WO 2015/057834, WO 2015/057852, and WO 2016/070061, U.S. Pat. No. 9,233,125, and US 2016/0129109. In this way, a T-cell that expresses the CAR can be administered to a subject, but the CAR cannot bind its target antigen until the second composition comprising an antigen-specific binding domain is administered.


Alternative switch mechanisms include CARs that require multimerization in order to activate their signaling function (see, e.g., US Patent Publication Nos. US 2015/0368342, US 2016/0175359, US 2015/0368360) and/or an exogenous signal, such as a small molecule drug (US 2016/0166613, Yung et al., Science, 2015), in order to elicit a T-cell response. Some CARs may also comprise a “suicide switch” to induce cell death of the CAR T-cells following treatment (Buddee et al., PLoS One, 2013) or to downregulate expression of the CAR following binding to the target antigen (International Patent Publication No. WO 2016/011210).


Alternative techniques may be used to transform target immunoresponsive cells, such as protoplast fusion, lipofection, transfection or electroporation. A wide variety of vectors may be used, such as retroviral vectors, lentiviral vectors, adenoviral vectors, adeno-associated viral vectors, plasmids or transposons, such as a Sleeping Beauty transposon (see U.S. Pat. Nos. 6,489,458; 7,148,203; 7,160,682; 7,985,739; 8,227,432), may be used to introduce CARs, for example using 2nd generation antigen-specific CARs signaling through CD3ζ and either CD28 or CD137. Viral vectors may for example include vectors based on HIV, SV40, EBV, HSV or BPV.


Cells that are targeted for transformation may for example include T cells, Natural Killer (NK) cells, cytotoxic T lymphocytes (CTL), regulatory T cells, human embryonic stem cells, tumor-infiltrating lymphocytes (TIL) or a pluripotent stem cell from which lymphoid cells may be differentiated. T cells expressing a desired CAR may for example be selected through co-culture with γ-irradiated activating and propagating cells (AaPC), which co-express the cancer antigen and co-stimulatory molecules. The engineered CAR T-cells may be expanded, for example by co-culture on AaPC in presence of soluble factors, such as IL-2 and IL-21. This expansion may for example be carried out so as to provide memory CAR+ T cells (which may for example be assayed by non-enzymatic digital array and/or multi-panel flow cytometry). In this way, CAR T cells may be provided that have specific cytotoxic activity against antigen-bearing tumors (optionally in conjunction with production of desired chemokines such as interferon-γ). CAR T cells of this kind may for example be used in animal models, for example to treat tumor xenografts.


In an embodiment, ACT includes co-transferring CD4+ Th1 cells and CD8+ CTLs to induce a synergistic antitumor response (see, e.g., Li et al., Adoptive cell therapy with CD4+ T helper 1 cells and CD8+ cytotoxic T cells enhances complete rejection of an established tumor, leading to generation of endogenous memory responses to non-targeted tumor epitopes. Clin Transl Immunology. 2017 October; 6(10): e160).


In an embodiment, Th17 cells are transferred to a subject in need thereof. Th17 cells have been reported to directly eradicate melanoma tumors in mice to a greater extent than Th1 cells (Muranski P, et al., Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood. 2008 Jul. 15; 112(2):362-73; and Martin-Orozco N, et al., T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity. 2009 Nov. 20; 31(5):787-98). Those studies involved an adoptive T cell transfer (ACT) therapy approach, which takes advantage of CD4+ T cells that express a TCR recognizing tyrosinase tumor antigen. Exploitation of the TCR leads to rapid expansion of Th17 populations to large numbers ex vivo for reinfusion into the autologous tumor-bearing hosts.


In an embodiment, ACT may include autologous iPSC-based vaccines, such as irradiated iPSCs in autologous anti-tumor vaccines (see e.g., Kooreman, Nigel G. et al., Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo, Cell Stem Cell 22, 1-13, 2018, doi.org/10.1016/j.stem.2018.01.016).


Unlike T-cell receptors (TCRs) that are MHC restricted, CARs can potentially bind any cell surface-expressed antigen and can thus be more universally used to treat patients (see Irving et al., Engineering Chimeric Antigen Receptor T-Cells for Racing in Solid Tumors: Don't Forget the Fuel, Front. Immunol., 3 Apr. 2017, doi.org/10.3389/fimmu.2017.00267). In an embodiment, in the absence of endogenous T-cell infiltrate (e.g., due to aberrant antigen processing and presentation), which precludes the use of TIL therapy and immune checkpoint blockade, the transfer of CAR T-cells may be used to treat patients (see, e.g., Hinrichs C S, Rosenberg S A. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev (2014) 257(1):56-71. doi:10.1111/imr.12132).


Approaches such as the foregoing may be adapted to provide methods of treating and/or increasing survival of a subject having a disease, such as a neoplasia, for example by administering an effective amount of an immunoresponsive cell comprising an antigen recognizing receptor that binds a selected antigen, wherein the binding activates the immunoresponsive cell, thereby treating or preventing the disease (such as a neoplasia, a pathogen infection, an autoimmune disorder, or an allogeneic transplant reaction).


In an embodiment, the treatment can be administered after lymphodepleting pretreatment in the form of chemotherapy (typically a combination of cyclophosphamide and fludarabine) or radiation therapy. Initial studies in ACT had short lived responses and the transferred cells did not persist in vivo for very long (Houot et al., T-cell-based immunotherapy: adoptive cell transfer and checkpoint inhibition. Cancer Immunol Res (2015) 3(10):1115-22; and Kamta et al., Advancing Cancer Therapy with Present and Emerging Immuno-Oncology Approaches. Front. Oncol. (2017) 7:64). Immune suppressor cells like Tregs and MDSCs may attenuate the activity of transferred cells by outcompeting them for the necessary cytokines. Not being bound by a theory lymphodepleting pretreatment may eliminate the suppressor cells allowing the TILs to persist.


In one embodiment, the treatment can be administrated into patients undergoing an immunosuppressive treatment (e.g., glucocorticoid treatment). The cells or population of cells, may be made resistant to at least one immunosuppressive agent due to the inactivation of a gene encoding a receptor for such immunosuppressive agent. In an embodiment, the immunosuppressive treatment provides for the selection and expansion of the immunoresponsive T cells within the patient.


In an embodiment, the treatment can be administered before primary treatment (e.g., surgery or radiation therapy) to shrink a tumor before the primary treatment. In another embodiment, the treatment can be administered after primary treatment to remove any remaining cancer cells.


In an embodiment, immunometabolic barriers can be targeted therapeutically prior to and/or during ACT to enhance responses to ACT or CAR T-cell therapy and to support endogenous immunity (see, e.g., Irving et al., Engineering Chimeric Antigen Receptor T-Cells for Racing in Solid Tumors: Don't Forget the Fuel, Front. Immunol., 3 Apr. 2017, doi.org/10.3389/fimmu.2017.00267).


The administration of cells or population of cells, such as immune system cells or cell populations, such as more particularly immunoresponsive cells or cell populations, as disclosed herein may be carried out in any convenient manner, including by aerosol inhalation, injection, ingestion, transfusion, implantation or transplantation. The cells or population of cells may be administered to a patient subcutaneously, intradermally, intratumorally, intranodally, intramedullary, intramuscularly, intrathecally, by intravenous or intralymphatic injection, or intraperitoneally. In an embodiment, the disclosed CARs may be delivered or administered into a cavity formed by the resection of tumor tissue (i.e. intracavity delivery) or directly into a tumor prior to resection (i.e. intratumoral delivery). In one embodiment, the cell compositions are administered by intravenous injection.


The administration of the cells or population of cells can consist of the administration of 104-109 cells per kg body weight, preferably 105 to 106 cells/kg body weight including all integer values of cell numbers within those ranges. Dosing in CART cell therapies may for example involve administration of from 106 to 109 cells/kg, with or without a course of lymphodepletion, for example with cyclophosphamide. The cells or population of cells can be administrated in one or more doses. In another embodiment, the effective amount of cells are administrated as a single dose. In another embodiment, the effective amount of cells are administrated as more than one dose over a period time. Timing of administration is within the judgment of managing physician and depends on the clinical condition of the patient. The cells or population of cells may be obtained from any source, such as a blood bank or a donor. While individual needs vary, determination of optimal ranges of effective amounts of a given cell type for a particular disease or conditions are within the skill of one in the art. An effective amount means an amount which provides a therapeutic or prophylactic benefit. The dosage administrated will be dependent upon the age, health and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment and the nature of the effect desired.


In another embodiment, the effective amount of cells or composition comprising those cells are administrated parenterally. The administration can be an intravenous administration. The administration can be directly done by injection within a tumor.


To guard against possible adverse reactions, engineered immunoresponsive cells may be equipped with a transgenic safety switch, in the form of a transgene that renders the cells vulnerable to exposure to a specific signal. For example, the herpes simplex viral thymidine kinase (TK) gene may be used in this way, for example by introduction into allogeneic T lymphocytes used as donor lymphocyte infusions following stem cell transplantation (Greco, et al., Improving the safety of cell therapy with the TK-suicide gene. Front. Pharmacol. 2015; 6: 95). In such cells, administration of a nucleoside prodrug such as ganciclovir or acyclovir causes cell death. Alternative safety switch constructs include inducible caspase 9, for example triggered by administration of a small-molecule dimerizer that brings together two nonfunctional icasp9 molecules to form the active enzyme. A wide variety of alternative approaches to implementing cellular proliferation controls have been described (see U.S. Patent Publication No. 20130071414; International Patent Publication WO 2011/146862; International Patent Publication WO 2014/011987; International Patent Publication WO 2013/040371; Zhou et al. BLOOD, 2014, 123/25:3895-3905; Di Stasi et al., The New England Journal of Medicine 2011; 365:1673-1683; Sadelain M, The New England Journal of Medicine 2011; 365:1735-173; Ramos et al., Stem Cells 28(6):1107-15 (2010)).


In a further refinement of adoptive therapies, genome editing may be used to tailor immunoresponsive cells to alternative implementations, for example providing edited CAR T cells (see Poirot et al., 2015, Multiplex genome edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies, Cancer Res 75 (18): 3853; Ren et al., 2017, Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition, Clin Cancer Res. 2017 May 1; 23(9):2255-2266. doi: 10.1158/1078-0432.CCR-16-1300. Epub 2016 Nov. 4; Qasim et al., 2017, Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells, Sci Transl Med. 2017 Jan. 25; 9(374); Legut, et al., 2018, CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood, 131(3), 311-322; and Georgiadis et al., Long Terminal Repeat CRISPR-CAR-Coupled “Universal” T Cells Mediate Potent Anti-leukemic Effects, Molecular Therapy, In Press, Corrected Proof, Available online 6 Mar. 2018). Cells may be edited using any CRISPR system and method of use thereof as described herein. The composition and systems may be delivered to an immune cell by any method described herein. In preferred embodiments, cells are edited ex vivo and transferred to a subject in need thereof. Immunoresponsive cells, CAR T cells or any cells used for adoptive cell transfer may be edited. Editing may be performed for example to insert or knock-in an exogenous gene, such as an exogenous gene encoding a CAR or a TCR, at a preselected locus in a cell (e.g. TRAC locus); to eliminate potential alloreactive T-cell receptors (TCR) or to prevent inappropriate pairing between endogenous and exogenous TCR chains, such as to knock-out or knock-down expression of an endogenous TCR in a cell; to disrupt the target of a chemotherapeutic agent in a cell; to block an immune checkpoint, such as to knock-out or knock-down expression of an immune checkpoint protein or receptor in a cell; to knock-out or knock-down expression of other gene or genes in a cell, the reduced expression or lack of expression of which can enhance the efficacy of adoptive therapies using the cell; to knock-out or knock-down expression of an endogenous gene in a cell, said endogenous gene encoding an antigen targeted by an exogenous CAR or TCR; to knock-out or knock-down expression of one or more MHC constituent proteins in a cell; to activate a T cell; to modulate cells such that the cells are resistant to exhaustion or dysfunction; and/or increase the differentiation and/or proliferation of functionally exhausted or dysfunctional CD8+ T-cells (see International Patent Publication Nos. WO 2013/176915, WO 2014/059173, WO 2014/172606, WO 2014/184744, and WO 2014/191128).


In an embodiment, editing may result in inactivation of a gene. By inactivating a gene, it is intended that the gene of interest is not expressed in a functional protein form. In a particular embodiment, the system specifically catalyzes cleavage in one targeted gene thereby inactivating said targeted gene. The nucleic acid strand breaks caused are commonly repaired through the distinct mechanisms of homologous recombination or non-homologous end joining (NHEJ). However, NHEJ is an imperfect repair process that often results in changes to the DNA sequence at the site of the cleavage. Repair via non-homologous end joining (NHEJ) often results in small insertions or deletions (Indel) and can be used for the creation of specific gene knockouts. Cells in which a cleavage induced mutagenesis event has occurred can be identified and/or selected by well-known methods in the art. In an embodiment, homology directed repair (HDR) is used to concurrently inactivate a gene (e.g., TRAC) and insert an endogenous TCR or CAR into the inactivated locus.


Hence, In an embodiment, editing of cells, particularly cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may be performed to insert or knock-in an exogenous gene, such as an exogenous gene encoding a CAR or a TCR, at a preselected locus in a cell. Conventionally, nucleic acid molecules encoding CARs or TCRs are transfected or transduced to cells using randomly integrating vectors, which, depending on the site of integration, may lead to clonal expansion, oncogenic transformation, variegated transgene expression and/or transcriptional silencing of the transgene. Directing of transgene(s) to a specific locus in a cell can minimize or avoid such risks and advantageously provide for uniform expression of the transgene(s) by the cells. Without limitation, suitable ‘safe harbor’ loci for directed transgene integration include CCR5 or AAVS1. Homology-directed repair (HDR) strategies are known and described elsewhere in this specification allowing to insert transgenes into desired loci (e.g., TRAC locus).


Further suitable loci for insertion of transgenes, in particular CAR or exogenous TCR transgenes, include without limitation loci comprising genes coding for constituents of endogenous T-cell receptor, such as T-cell receptor alpha locus (TRA) or T-cell receptor beta locus (TRB), for example T-cell receptor alpha constant (TRAC) locus, T-cell receptor beta constant 1 (TRBC1) locus or T-cell receptor beta constant 2 (TRBC1) locus. Advantageously, insertion of a transgene into such locus can simultaneously achieve expression of the transgene, potentially controlled by the endogenous promoter, and knock-out expression of the endogenous TCR. This approach has been exemplified in Eyquem et al., (2017) Nature 543: 113-117, wherein the authors used CRISPR/Cas9 gene editing to knock-in a DNA molecule encoding a CD19-specific CAR into the TRAC locus downstream of the endogenous promoter; the CAR-T cells obtained by CRISPR were significantly superior in terms of reduced tonic CAR signaling and exhaustion.


T cell receptors (TCR) are cell surface receptors that participate in the activation of T cells in response to the presentation of antigen. The TCR is generally made from two chains, a and β, which assemble to form a heterodimer and associates with the CD3-transducing subunits to form the T cell receptor complex present on the cell surface. Each a and β chain of the TCR consists of an immunoglobulin-like N-terminal variable (V) and constant (C) region, a hydrophobic transmembrane domain, and a short cytoplasmic region. As for immunoglobulin molecules, the variable region of the α and β chains are generated by V(D)J recombination, creating a large diversity of antigen specificities within the population of T cells. However, in contrast to immunoglobulins that recognize intact antigen, T cells are activated by processed peptide fragments in association with an MHC molecule, introducing an extra dimension to antigen recognition by T cells, known as MHC restriction. Recognition of MHC disparities between the donor and recipient through the T cell receptor leads to T cell proliferation and the potential development of graft versus host disease (GVHD). The inactivation of TCRα or TCRβ can result in the elimination of the TCR from the surface of T cells preventing recognition of alloantigen and thus GVHD. However, TCR disruption generally results in the elimination of the CD3 signaling component and alters the means of further T cell expansion.


Hence, In an embodiment, editing of cells, particularly cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may be performed to knock-out or knock-down expression of an endogenous TCR in a cell. For example, NHEJ-based or HDR-based gene editing approaches can be employed to disrupt the endogenous TCR alpha and/or beta chain genes. For example, gene editing system or systems, such as CRISPR/Cas system or systems, can be designed to target a sequence found within the TCR beta chain conserved between the beta 1 and beta 2 constant region genes (TRBC1 and TRBC2) and/or to target the constant region of the TCR alpha chain (TRAC) gene.


Allogeneic cells are rapidly rejected by the host immune system. It has been demonstrated that, allogeneic leukocytes present in non-irradiated blood products will persist for no more than 5 to 6 days (Boni, Muranski et al. 2008 Blood 1; 112(12):4746-54). Thus, to prevent rejection of allogeneic cells, the host's immune system usually has to be suppressed to some extent. However, in the case of adoptive cell transfer the use of immunosuppressive drugs also have a detrimental effect on the introduced therapeutic T cells. Therefore, to effectively use an adoptive immunotherapy approach in these conditions, the introduced cells would need to be resistant to the immunosuppressive treatment. Thus, in a particular embodiment, the present disclosure further comprises a step of modifying T cells to make them resistant to an immunosuppressive agent, preferably by inactivating at least one gene encoding a target for an immunosuppressive agent. An immunosuppressive agent is an agent that suppresses immune function by one of several mechanisms of action. An immunosuppressive agent can be, but is not limited to a calcineurin inhibitor, a target of rapamycin, an interleukin-2 receptor α-chain blocker, an inhibitor of inosine monophosphate dehydrogenase, an inhibitor of dihydrofolic acid reductase, a corticosteroid or an immunosuppressive antimetabolite. The present disclosure allows conferring immunosuppressive resistance to T cells for immunotherapy by inactivating the target of the immunosuppressive agent in T cells. As non-limiting examples, targets for an immunosuppressive agent can be a receptor for an immunosuppressive agent such as: CD52, glucocorticoid receptor (GR), a FKBP family gene member and a cyclophilin family gene member.


In an embodiment, editing of cells, particularly cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may be performed to block an immune checkpoint, such as to knock-out or knock-down expression of an immune checkpoint protein or receptor in a cell. Immune checkpoints are inhibitory pathways that slow down or stop immune reactions and prevent excessive tissue damage from uncontrolled activity of immune cells. In an embodiment, the immune checkpoint targeted is the programmed death-1 (PD-1 or CD279) gene (PDCD1). In other embodiments, the immune checkpoint targeted is cytotoxic T-lymphocyte-associated antigen (CTLA-4). In additional embodiments, the immune checkpoint targeted is another member of the CD28 and CTLA4 Ig superfamily such as BTLA, LAG3, ICOS, PDL1 or KIR. In further additional embodiments, the immune checkpoint targeted is a member of the TNFR superfamily such as CD40, OX40, CD137, GITR, CD27 or TIM-3.


Additional immune checkpoints include Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) (Watson H A, et al., SHP-1: the next checkpoint target for cancer immunotherapy? Biochem Soc Trans. 2016 Apr. 15; 44(2):356-62). SHP-1 is a widely expressed inhibitory protein tyrosine phosphatase (PTP). In T-cells, it is a negative regulator of antigen-dependent activation and proliferation. It is a cytosolic protein, and therefore not amenable to antibody-mediated therapies, but its role in activation and proliferation makes it an attractive target for genetic manipulation in adoptive transfer strategies, such as chimeric antigen receptor (CAR) T cells. Immune checkpoints may also include T cell immunoreceptor with Ig and ITIM domains (TIGIT/Vstm3/WUCAM/VSIG9) and VISTA (Le Mercier I, et al., (2015) Beyond CTLA-4 and PD-1, the generation Z of negative checkpoint regulators. Front. Immunol. 6:418).


International Patent Publication No. WO 2014/172606 relates to the use of MT1 and/or MT2 inhibitors to increase proliferation and/or activity of exhausted CD8+ T-cells and to decrease CD8+ T-cell exhaustion (e.g., decrease functionally exhausted or unresponsive CD8+ immune cells). In an embodiment, metallothioneins are targeted by gene editing in adoptively transferred T cells.


In an embodiment, targets of gene editing may be at least one targeted locus involved in the expression of an immune checkpoint protein. Such targets may include, but are not limited to CTLA4, PPP2CA, PPP2CB, PTPN6, PTPN22, PDCD1, ICOS (CD278), PDL1, KIR, LAG3, HAVCR2, BTLA, CD160, TIGIT, CD96, CRTAM, LAIR1, SIGLEC7, SIGLEC9, CD244 (2B4), TNFRSF 10B, TNFRSF 10A, CASP8, CASP10, CASP3, CASP6, CASP7, FADD, FAS, TGFBRII, TGFRBRI, SMAD2, SMAD3, SMAD4, SMAD10, SKI, SKIL, TGIF1, IL10RA, IL10RB, HMOX2, IL6R, IL6ST, EIF2AK4, CSK, PAG1, SIT1, FOXP3, PRDM1, BATF, VISTA, GUCY1A2, GUCY1A3, GUCY1B2, GUCY1B3, MT1, MT2, CD40, OX40, CD137, GITR, CD27, SHP-1, TIM-3, CEACAM-1, CEACAM-3, or CEACAM-5. In preferred embodiments, the gene locus involved in the expression of PD-1 or CTLA-4 genes is targeted. In other preferred embodiments, combinations of genes are targeted, such as but not limited to PD-1 and TIGIT.


By means of an example and without limitation, International Patent Publication No. WO 2016/196388 concerns an engineered T cell comprising (a) a genetically engineered antigen receptor that specifically binds to an antigen, which receptor may be a CAR; and (b) a disrupted gene encoding a PD-L1, an agent for disruption of a gene encoding a PD-L1, and/or disruption of a gene encoding PD-L1, wherein the disruption of the gene may be mediated by a gene editing nuclease, a zinc finger nuclease (ZFN), CRISPR/Cas9 and/or TALEN. WO2015142675 relates to immune effector cells comprising a CAR in combination with an agent (such as the composition or system herein) that increases the efficacy of the immune effector cells in the treatment of cancer, wherein the agent may inhibit an immune inhibitory molecule, such as PD1, PD-L1, CTLA-4, TIM-3, LAG-3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, TGFR beta, CEACAM-1, CEACAM-3, or CEACAM-5. Ren et al., (2017) Clin Cancer Res 23 (9) 2255-2266 performed lentiviral delivery of CAR and electro-transfer of Cas9 mRNA and gRNAs targeting endogenous TCR, β-2 microglobulin (B2M) and PD1 simultaneously, to generate gene-disrupted allogeneic CAR T cells deficient of TCR, HLA class I molecule and PD1.


In an embodiment, cells may be engineered to express a CAR, wherein expression and/or function of methylcytosine dioxygenase genes (TET1, TET2 and/or TET3) in the cells has been reduced or eliminated, (such as the composition or system herein) (for example, as described in WO201704916).


In an embodiment, editing of cells, particularly cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may be performed to knock-out or knock-down expression of an endogenous gene in a cell, said endogenous gene encoding an antigen targeted by an exogenous CAR or TCR, thereby reducing the likelihood of targeting of the engineered cells. In an embodiment, the targeted antigen may be one or more antigen selected from the group consisting of CD38, CD138, CS-1, CD33, CD26, CD30, CD53, CD92, CD100, CD148, CD150, CD200, CD261, CD262, CD362, human telomerase reverse transcriptase (hTERT), survivin, mouse double minute 2 homolog (MDM2), cytochrome P450 1B1 (CYP1B), HER2/neu, Wilms' tumor gene 1 (WT1), livin, alphafetoprotein (AFP), carcinoembryonic antigen (CEA), mucin 16 (MUC16), MUC1, prostate-specific membrane antigen (PSMA), p53, cyclin (D1), B cell maturation antigen (BCMA), transmembrane activator and CAML Interactor (TACI), and B-cell activating factor receptor (BAFF-R) (for example, as described in International Patent Publication Nos. WO 2016/011210 and WO 2017/011804).


In an embodiment, editing of cells, particularly cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may be performed to knock-out or knock-down expression of one or more MHC constituent proteins, such as one or more HLA proteins and/or beta-2 microglobulin (B2M), in a cell, whereby rejection of non-autologous (e.g., allogeneic) cells by the recipient's immune system can be reduced or avoided. In preferred embodiments, one or more HLA class I proteins, such as HLA-A, B and/or C, and/or B2M may be knocked-out or knocked-down. Preferably, B2M may be knocked-out or knocked-down. By means of an example, Ren et al., (2017) Clin Cancer Res 23 (9) 2255-2266 performed lentiviral delivery of CAR and electro-transfer of Cas mRNA and gRNAs targeting endogenous TCR, β-2 microglobulin (B2M) and PD1 simultaneously, to generate gene-disrupted allogeneic CART cells deficient of TCR, HLA class I molecule and PD1.


In other embodiments, at least two genes are edited. Pairs of genes may include, but are not limited to PD1 and TCRα, PD1 and TCRβ, CTLA-4 and TCRα, CTLA-4 and TCRβ, LAG3 and TCRα, LAG3 and TCRβ, Tim3 and TCRα, Tim3 and TCRβ, BTLA and TCRα, BTLA and TCRβ, BY55 and TCRα, BY55 and TCRβ, TIGIT and TCRα, TIGIT and TCRβ, B7H5 and TCRα, B7H5 and TCRβ, LAIR1 and TCRα, LAIR1 and TCRβ, SIGLEC10 and TCRα, SIGLEC10 and TCRβ, 2B4 and TCRα, 2B4 and TCRβ, B2M and TCRα, B2M and TCRβ.


In an embodiment, a cell may be multiplied edited (multiplex genome editing) as taught herein to (1) knock-out or knock-down expression of an endogenous TCR (for example, TRBC1, TRBC2 and/or TRAC), (2) knock-out or knock-down expression of an immune checkpoint protein or receptor (for example PD1, PD-L1 and/or CTLA4); and (3) knock-out or knock-down expression of one or more MHC constituent proteins (for example, HLA-A, B and/or C, and/or B2M, preferably B2M).


Whether prior to or after genetic modification of the T cells, the T cells can be activated and expanded generally using methods as described, for example, in U.S. Pat. Nos. 6,352,694; 6,534,055; 6,905,680; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041; and 7,572,631. T cells can be expanded in vitro or in vivo.


Immune cells may be obtained using any method known in the art. In one embodiment, allogenic T cells may be obtained from healthy subjects. In one embodiment T cells that have infiltrated a tumor are isolated. T cells may be removed during surgery. T cells may be isolated after removal of tumor tissue by biopsy. T cells may be isolated by any means known in the art. In one embodiment, T cells are obtained by apheresis. In one embodiment, the method may comprise obtaining a bulk population of T cells from a tumor sample by any suitable method known in the art. For example, a bulk population of T cells can be obtained from a tumor sample by dissociating the tumor sample into a cell suspension from which specific cell populations can be selected. Suitable methods of obtaining a bulk population of T cells may include, but are not limited to, any one or more of mechanically dissociating (e.g., mincing) the tumor, enzymatically dissociating (e.g., digesting) the tumor, and aspiration (e.g., as with a needle).


The bulk population of T cells obtained from a tumor sample may comprise any suitable type of T cell. Preferably, the bulk population of T cells obtained from a tumor sample comprises tumor infiltrating lymphocytes (TILs).


The tumor sample may be obtained from any mammal. Unless stated otherwise, as used herein, the term “mammal” refers to any mammal including, but not limited to, mammals of the order Logomorpha, such as rabbits; the order Carnivora, including Felines (cats) and Canines (dogs); the order Artiodactyla, including Bovines (cows) and Swines (pigs); or of the order Perssodactyla, including Equines (horses). The mammals may be non-human primates, e.g., of the order Primates, Ceboids, or Simoids (monkeys) or of the order Anthropoids (humans and apes). The mammal may be a mammal of the order Rodentia, such as mice and hamsters. Preferably, the mammal is a non-human primate or a human. An especially preferred mammal is the human.


T cells can be obtained from a number of sources, including peripheral blood mononuclear cells (PBMC), bone marrow, lymph node tissue, spleen tissue, and tumors. In an embodiment of the present disclosure, T cells can be obtained from a unit of blood collected from a subject using any number of techniques known to the skilled artisan, such as Ficoll separation. In one preferred embodiment, cells from the circulating blood of an individual are obtained by apheresis or leukapheresis. The apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets. In one embodiment, the cells collected by apheresis may be washed to remove the plasma fraction and to place the cells in an appropriate buffer or media for subsequent processing steps. In one embodiment, the cells are washed with phosphate buffered saline (PBS). In an alternative embodiment, the wash solution lacks calcium and may lack magnesium or may lack many if not all divalent cations. Initial activation steps in the absence of calcium lead to magnified activation. As those of ordinary skill in the art would readily appreciate a washing step may be accomplished by methods known to those in the art, such as by using a semi-automated “flow-through” centrifuge (for example, the Cobe 2991 cell processor) according to the manufacturer's instructions. After washing, the cells may be resuspended in a variety of biocompatible buffers, such as, for example, Ca-free, Mg-free PBS. Alternatively, the undesirable components of the apheresis sample may be removed and the cells directly resuspended in culture media.


In another embodiment, T cells are isolated from peripheral blood lymphocytes by lysing the red blood cells and depleting the monocytes, for example, by centrifugation through a PERCOLL™ gradient. A specific subpopulation of T cells, such as CD28+, CD4+, CDC, CD45RA+, and CD45RO+ T cells, can be further isolated by positive or negative selection techniques. For example, in one preferred embodiment, T cells are isolated by incubation with anti-CD3/anti-CD28 (i.e., 3×28)-conjugated beads, such as DYNABEADS® M-450 CD3/CD28 T, or XCYTE DYNABEADS™ for a time period sufficient for positive selection of the desired T cells. In one embodiment, the time period is about 30 minutes. In a further embodiment, the time period ranges from 30 minutes to 36 hours or longer and all integer values there between. In a further embodiment, the time period is at least 1, 2, 3, 4, 5, or 6 hours. In yet another preferred embodiment, the time period is 10 to 24 hours. In one preferred embodiment, the incubation time period is 24 hours. For isolation of T cells from patients with leukemia, use of longer incubation times, such as 24 hours, can increase cell yield. Longer incubation times may be used to isolate T cells in any situation where there are few T cells as compared to other cell types, such in isolating tumor infiltrating lymphocytes (TIL) from tumor tissue or from immunocompromised individuals. Further, use of longer incubation times can increase the efficiency of capture of CD8+ T cells.


Enrichment of a T cell population by negative selection can be accomplished with a combination of antibodies directed to surface markers unique to the negatively selected cells. A preferred method is cell sorting and/or selection via negative magnetic immunoadherence or flow cytometry that uses a cocktail of monoclonal antibodies directed to cell surface markers present on the cells negatively selected. For example, to enrich for CD4+ cells by negative selection, a monoclonal antibody cocktail typically includes antibodies to CD14, CD20, CD11b, CD16, HLA-DR, and CD8.


Further, monocyte populations (e.g., CD14+ cells) may be depleted from blood preparations by a variety of methodologies, including anti-CD14 coated beads or columns, or utilization of the phagocytotic activity of these cells to facilitate removal. Accordingly, in one embodiment, paramagnetic particles of a size sufficient to be engulfed by phagocytotic monocytes is used. In an embodiment, the paramagnetic particles are commercially available beads, for example, those produced by Life Technologies under the trade name Dynabeads™ In one embodiment, other non-specific cells are removed by coating the paramagnetic particles with “irrelevant” proteins (e.g., serum proteins or antibodies). Irrelevant proteins and antibodies include those proteins and antibodies or fragments thereof that do not specifically target the T cells to be isolated. In an embodiment, the irrelevant beads include beads coated with sheep anti-mouse antibodies, goat anti-mouse antibodies, and human serum albumin.


In brief, such depletion of monocytes is performed by preincubating T cells isolated from whole blood, apheresed peripheral blood, or tumors with one or more varieties of irrelevant or non-antibody coupled paramagnetic particles at any amount that allows for removal of monocytes (approximately a 20:1 bead:cell ratio) for about 30 minutes to 2 hours at 22 to 37 degrees C., followed by magnetic removal of cells which have attached to or engulfed the paramagnetic particles. Such separation can be performed using standard methods available in the art. For example, any magnetic separation methodology may be used including a variety of which are commercially available, (e.g., DYNAL® Magnetic Particle Concentrator (DYNAL MPC®)). Assurance of requisite depletion can be monitored by a variety of methodologies known to those of ordinary skill in the art, including flow cytometric analysis of CD14 positive cells, before and after depletion.


For isolation of a desired population of cells by positive or negative selection, the concentration of cells and surface (e.g., particles such as beads) can be varied. In an embodiment, it may be desirable to significantly decrease the volume in which beads and cells are mixed together (i.e., increase the concentration of cells), to ensure maximum contact of cells and beads. For example, in one embodiment, a concentration of 2 billion cells/ml is used. In one embodiment, a concentration of 1 billion cells/ml is used. In a further embodiment, greater than 100 million cells/ml is used. In a further embodiment, a concentration of cells of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/ml is used. In yet another embodiment, a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/ml is used. In further embodiments, concentrations of 125 or 150 million cells/ml can be used. Using high concentrations can result in increased cell yield, cell activation, and cell expansion. Further, use of high cell concentrations allows more efficient capture of cells that may weakly express target antigens of interest, such as CD28-negative T cells, or from samples where there are many tumor cells present (i.e., leukemic blood, tumor tissue, etc). Such populations of cells may have therapeutic value and would be desirable to obtain. For example, using high concentration of cells allows more efficient selection of CD8+ T cells that normally have weaker CD28 expression.


In a related embodiment, it may be desirable to use lower concentrations of cells. By significantly diluting the mixture of T cells and surface (e.g., particles such as beads), interactions between the particles and cells is minimized. This selects for cells that express high amounts of desired antigens to be bound to the particles. For example, CD4+ T cells express higher levels of CD28 and are more efficiently captured than CD8+ T cells in dilute concentrations. In one embodiment, the concentration of cells used is 5×106/ml. In other embodiments, the concentration used can be from about 1×105/ml to 1×106/ml, and any integer value in between.


T cells can also be frozen. Wishing not to be bound by theory, the freeze and subsequent thaw step provides a more uniform product by removing granulocytes and to some extent monocytes in the cell population. After a washing step to remove plasma and platelets, the cells may be suspended in a freezing solution. While many freezing solutions and parameters are known in the art and will be useful in this context, one method involves using PBS containing 20% DMSO and 8% human serum albumin, or other suitable cell freezing media, the cells then are frozen to −80° C. at a rate of 1° per minute and stored in the vapor phase of a liquid nitrogen storage tank. Other methods of controlled freezing may be used as well as uncontrolled freezing immediately at −20° C. or in liquid nitrogen.


T cells may also be antigen-specific T cells. For example, tumor-specific T cells can be used. Antigen-specific T cells may be isolated from a patient of interest, such as a patient afflicted with a cancer or an infectious disease. In one embodiment, neoepitopes are determined for a subject and T cells specific to these antigens are isolated. Antigen-specific cells for use in expansion may also be generated in vitro using any number of methods known in the art, for example, as described in U.S. Patent Publication No. US 20040224402 entitled, Generation and Isolation of Antigen-Specific T Cells, or in U.S. Pat. No. 6,040,177. Antigen-specific cells for use herein may also be generated using any number of methods known in the art, for example, as described in Current Protocols in Immunology, or Current Protocols in Cell Biology, both published by John Wiley & Sons, Inc., Boston, Mass.


In a related embodiment, it may be desirable to sort or otherwise positively select (e.g. via magnetic selection) the antigen specific cells prior to or following one or two rounds of expansion. Sorting or positively selecting antigen-specific cells can be carried out using peptide-MHC tetramers (Altman, et al., Science. 1996 Oct. 4; 274(5284):94-6). In another embodiment, the adaptable tetramer technology approach is used (Andersen et al., 2012 Nat Protoc. 7:891-902). Tetramers are limited by the need to utilize predicted binding peptides based on prior hypotheses, and the restriction to specific HLAs. Peptide-MHC tetramers can be generated using techniques known in the art and can be made with any MHC molecule of interest and any antigen of interest as described herein. Specific epitopes to be used in this context can be identified using numerous assays known in the art. For example, the ability of a polypeptide to bind to MHC class I may be evaluated indirectly by monitoring the ability to promote incorporation of 125I labeled β2-microglobulin (β2m) into MHC class I/β2m/peptide heterotrimeric complexes (see Parker et al., J. Immunol. 152:163, 1994).


In one embodiment cells are directly labeled with an epitope-specific reagent for isolation by flow cytometry followed by characterization of phenotype and TCRs. In one embodiment, T cells are isolated by contacting with T cell specific antibodies. Sorting of antigen-specific T cells, or generally any cells, can be carried out using any of a variety of commercially available cell sorters, including, but not limited to, MoFlo sorter (DakoCytomation, Fort Collins, Colo.), FACSAria™, FACSArray™, FACSVantage™, BD™ LSR II, and FACSCalibur™ (BD Biosciences, San Jose, Calif.).


In a preferred embodiment, the method comprises selecting cells that also express CD3. The method may comprise specifically selecting the cells in any suitable manner. Preferably, the selecting is carried out using flow cytometry. The flow cytometry may be carried out using any suitable method known in the art. The flow cytometry may employ any suitable antibodies and stains. Preferably, the antibody is chosen such that it specifically recognizes and binds to the particular biomarker being selected. For example, the specific selection of CD3, CD8, TIM-3, LAG-3, 4-1BB, or PD-1 may be carried out using anti-CD3, anti-CD8, anti-TIM-3, anti-LAG-3, anti-4-1BB, or anti-PD-1 antibodies, respectively. The antibody or antibodies may be conjugated to a bead (e.g., a magnetic bead) or to a fluorochrome. Preferably, the flow cytometry is fluorescence-activated cell sorting (FACS). TCRs expressed on T cells can be selected based on reactivity to autologous tumors. Additionally, T cells that are reactive to tumors can be selected for based on markers using the methods described in patent publication Nos. WO2014133567 and WO2014133568, herein incorporated by reference in their entirety. Additionally, activated T cells can be selected for based on surface expression of CD107a.


In one embodiment, the method further comprises expanding the numbers of T cells in the enriched cell population. Such methods are described in U.S. Pat. No. 8,637,307 and is herein incorporated by reference in its entirety. The numbers of T cells may be increased at least about 3-fold (or 4-, 5-, 6-, 7-, 8-, or 9-fold), more preferably at least about 10-fold (or 20-, 30-, 40-, 50-, 60-, 70-, 80-, or 90-fold), more preferably at least about 100-fold, more preferably at least about 1,000 fold, or most preferably at least about 100,000-fold. The numbers of T cells may be expanded using any suitable method known in the art. Exemplary methods of expanding the numbers of cells are described in patent publication No. WO 2003/057171, U.S. Pat. No. 8,034,334, and U.S. Patent Publication No. 2012/0244133, each of which is incorporated herein by reference.


In one embodiment, ex vivo T cell expansion can be performed by isolation of T cells and subsequent stimulation or activation followed by further expansion. In one embodiment, the T cells may be stimulated or activated by a single agent. In another embodiment, T cells are stimulated or activated with two agents, one that induces a primary signal and a second that is a co-stimulatory signal. Ligands useful for stimulating a single signal or stimulating a primary signal and an accessory molecule that stimulates a second signal may be used in soluble form. Ligands may be attached to the surface of a cell, to an Engineered Multivalent Signaling Platform (EMSP), or immobilized on a surface. In a preferred embodiment both primary and secondary agents are co-immobilized on a surface, for example a bead or a cell. In one embodiment, the molecule providing the primary activation signal may be a CD3 ligand, and the co-stimulatory molecule may be a CD28 ligand or 4-1BB ligand.


In an embodiment, T cells comprising a CAR or an exogenous TCR, may be manufactured as described in International Patent Publication No. WO 2015/120096, by a method comprising enriching a population of lymphocytes obtained from a donor subject; stimulating the population of lymphocytes with one or more T-cell stimulating agents to produce a population of activated T cells, wherein the stimulation is performed in a closed system using serum-free culture medium; transducing the population of activated T cells with a viral vector comprising a nucleic acid molecule which encodes the CAR or TCR, using a single cycle transduction to produce a population of transduced T cells, wherein the transduction is performed in a closed system using serum-free culture medium; and expanding the population of transduced T cells for a predetermined time to produce a population of engineered T cells, wherein the expansion is performed in a closed system using serum-free culture medium. In an embodiment, T cells comprising a CAR or an exogenous TCR, may be manufactured as described in WO 2015/120096, by a method comprising: obtaining a population of lymphocytes; stimulating the population of lymphocytes with one or more stimulating agents to produce a population of activated T cells, wherein the stimulation is performed in a closed system using serum-free culture medium; transducing the population of activated T cells with a viral vector comprising a nucleic acid molecule which encodes the CAR or TCR, using at least one cycle transduction to produce a population of transduced T cells, wherein the transduction is performed in a closed system using serum-free culture medium; and expanding the population of transduced T cells to produce a population of engineered T cells, wherein the expansion is performed in a closed system using serum-free culture medium. The predetermined time for expanding the population of transduced T cells may be 3 days. The time from enriching the population of lymphocytes to producing the engineered T cells may be 6 days. The closed system may be a closed bag system. Further provided is population of T cells comprising a CAR or an exogenous TCR obtainable or obtained by said method, and a pharmaceutical composition comprising such cells.


In an embodiment, T cell maturation or differentiation in vitro may be delayed or inhibited by the method as described in International Patent Publication No. WO 2017/070395, comprising contacting one or more T cells from a subject in need of a T cell therapy with an AKT inhibitor (such as, e.g., one or a combination of two or more AKT inhibitors disclosed in claim 8 of WO2017070395) and at least one of exogenous Interleukin-7 (IL-7) and exogenous Interleukin-15 (IL-15), wherein the resulting T cells exhibit delayed maturation or differentiation, and/or wherein the resulting T cells exhibit improved T cell function (such as, e.g., increased T cell proliferation; increased cytokine production; and/or increased cytolytic activity) relative to a T cell function of a T cell cultured in the absence of an AKT inhibitor.


A patient in need of a T cell therapy may be conditioned by a method as described in International Patent Publication No. WO 2016/191756 comprising administering to the patient a dose of cyclophosphamide between 200 mg/m2/day and 2000 mg/m2/day and a dose of fludarabine between 20 mg/m2/day and 900 mg/m2/day.


Diseases

Genetic Diseases and Diseases with a Genetic and/or Epigenetic Aspect


The compositions, systems, or components thereof can be used to treat and/or prevent a genetic disease or a disease with a genetic and/or epigenetic aspect. The genes and conditions exemplified herein are not exhaustive. In an embodiment, a method of treating and/or preventing a genetic disease can include administering a composition, system, and/or one or more components thereof to a subject, where the composition, system, and/or one or more components thereof is capable of modifying one or more copies of one or more genes associated with the genetic disease or a disease with a genetic and/or epigenetic aspect in one or more cells of the subject. In an embodiment, modifying one or more copies of one or more genes associated with a genetic disease or a disease with a genetic and/or epigenetic aspect in the subject can eliminate a genetic disease or a symptom thereof in the subject. In an embodiment, modifying one or more copies of one or more genes associated with a genetic disease or a disease with a genetic and/or epigenetic aspect in the subject can decrease the severity of a genetic disease or a symptom thereof in the subject. In an embodiment, the compositions, systems, or components thereof can modify one or more genes or polynucleotides associated with one or more diseases, including genetic diseases and/or those having a genetic aspect and/or epigenetic aspect, including but not limited to, any one or more set forth in Table 4. It will be appreciated that those diseases and associated genes listed herein are non-exhaustive and non-limiting. Further some genes play roles in the development of multiple diseases.









TABLE 4







Exemplary Genetic and Other Diseases and Associated Genes.











Primary
Additional




Tissues or
Tissues/



System
Systems


Disease Name
Affected
Affected
Genes





Achondroplasia
Bone and

fibroblast growth factor receptor 3



Muscle

(FGFR3)


Achromatopsia
eye

CNGA3, CNGB3, GNAT2, PDE6C,





PDE6H, ACHM2, ACHM3,


Acute Renal Injury
kidney

NFkappaB, AATF, p85alpha, FAS,





Apoptosis cascade elements (e.g.





FASR, Caspase 2, 3, 4, 6, 7, 8, 9, 10,





AKT, TNF alpha, IGF1, IGF1R,





RIPK1), p53


Age Related Macular
eye

Abcr; CCL2; CC2; CP


Degeneration


(ceruloplasmin); Timp3; cathepsinD;





VLDLR, CCR2


AIDS
Immune System

KIR3DL1, NKAT3, NKB1, AMB11,





KIR3DS1, IFNG, CXCL12, SDF1


Albinism (including
Skin, hair, eyes,

TYR, OCA2, TYRP1, and SLC45A2,


oculocutaneous albinism (types


SLC24A5 and C10orf11


1-7) and ocular albinism)


Alkaptonuria
Metabolism of
Tissues/organs
HGD



amino acids
where




homogentisic




acid




accumulates,




particularly




cartilage (joints),




heart valves,




kidneys


alpha-1 antitrypsin deficiency
Lung
Liver, skin,
SERPINA1, those set forth in


(AATD or A1AD)

vascular system,
WO2017165862, PiZ allele




kidneys, GI


ALS
CNS

SOD1; ALS2; ALS3; ALS5;





ALS7; STEX; FUS; TARDBP; VEGF





(VEGF-a;





VEGF-b; VEGF-c); DPP6; NEFH,





PTGS1, SLC1A2, TNFRSF10B,





PRPH, HSP90AA1, CRIA2, IFNG,





AMPA2 S100B, FGF2, AOX1, CS,





TXN, RAPHJ1, MAP3K5, NBEAL1,





GPX1, ICA1L, RAC1, MAPT, ITPR2,





ALS2CR4, GLS, ALS2CR8, CNTFR,





ALS2CR11, FOLH1, FAM117B,





P4HB, CNTF, SQSTM1, STRADB,





NAIP, NLR, YWHAQ, SLC33A1,





TRAK2, SCA1, NIF3L1, NIF3,





PARD3B, COX8A, CDK15, HECW1,





HECT, C2, WW 15, NOS1, MET,





SOD2, HSPB1, NEFL, CTSB, ANG,





HSPA8, RNase A, VAPB, VAMP,





SNCA, alpha HGF, CAT, ACTB,





NEFM, TH, BCL2, FAS, CASP3,





CLU, SMN1, G6PD, BAX, HSF1,





RNF19A, JUN, ALS2CR12, HSPA5,





MAPK14, APEX1, TXNRD1, NOS2,





TIMP1, CASP9, XIAP, GLG1, EPO,





VEGFA, ELN, GDNF, NFE2L2,





SLC6A3, HSPA4, APOE, PSMB8,





DCTN2, TIMP3, KIFAP3, SLC1A1,





SMN2, CCNC, STUB1, ALS2,





PRDX6, SYP, CABIN1, CASP1,





GART, CDK5, ATXN3, RTN4,





C1QB, VEGFC, HTT, PARK7, XDH,





GFAP, MAP2, CYCS, FCGR3B, CCS,





UBL5, MMP9m SLC18A3, TRPM7,





HSPB2, AKT1, DEERL1, CCL2,





NGRN, GSR, TPPP3, APAF1,





BTBD10, GLUD1, CXCR4, S:C1A3,





FLT1, PON1, AR, LIF, ERBB3, :GA:S1,





CD44, TP53, TLR3, GRIA1,





GAPDH, AMPA, GRIK1, DES,





CHAT, FLT4, CHMP2B, BAG1,





CHRNA4, GSS, BAK1, KDR, GSTP1,





OGG1, IL6


Alzheimer's Disease
Brain

E1; CHIP; UCH; UBB; Tau; LRP;





PICALM; CLU; PS1;





SORL1; CR1; VLDLR; UBA1;





UBA3; CHIP28; AQP1; UCHL1;





UCHL3; APP, AAA, CVAP, AD1,





APOE, AD2, DCP1, ACE1, MPO,





PACIP1, PAXIP1L, PTIP, A2M,





BLMH, BMH, PSEN1, AD3, ALAS2,





ABCA1, BIN1, BDNF, BTNL8,





C1ORF49, CDH4, CHRNB2,





CKLFSF2, CLEC4E, CR1L, CSF3R,





CST3, CYP2C, DAPK1, ESR1,





FCAR, FCGR3B, FFA2, FGA, GAB2,





GALP, GAPDHS, GMPB, HP, HTR7,





IDE, IF127, IFI6, IFIT2, IL1RN, IL-





1RA, IL8RA, IL8RB, JAG1, KCNJ15,





LRP6, MAPT, MARK4, MPHOSPH1,





MTHFR, NBN, NCSTN, NIACR2,





NMNAT3, NTM, ORM1, P2RY13,





PBEF1, PCK1, PICALM, PLAU,





PLXNC1, PRNP, PSEN1, PSEN2,





PTPRA, RALGPS2, RGSL2,





SELENBP1, SLC25A37, SORL1,





Mitoferrin-1, TF, TFAM, TNF,





TNFRSF10C, UBE1C


Amyloidosis


APOA1, APP, AAA, CVAP, AD1,





GSN, FGA, LYZ, TTR, PALB


Amyloid neuropathy


TTR, PALB


Anemia
Blood

CDAN1, CDA1, RPS19, DBA, PKLR,





PK1, NT5C3, UMPH1, PSN1, RHAG,





RH50A, NRAMP2, SPTB, ALAS2,





ANH1, ASB, ABCB7, ABC7, ASAT


Angelman Syndrome
Nervous system,

UBE3A



brain


Attention Deficit Hyperactivity
Brain

PTCHD1


Disorder (ADHD)


Autoimmune lymphoproliferative
Immune system

TNFRSF6, APT1, FAS, CD95,


syndrome


ALPS1A


Autism, Autism spectrum
Brain

PTCHD1; Mecp2; BZRAP1; MDGA2;


disorders (ASDs), including


Sema5A; Neurexin 1; GLO1, RTT,


Asperger's and a general


PPMX, MRX16, RX79, NLGN3,


diagnostic category called


NLGN4, KIAA1260, AUTSX2,


Pervasive Developmental


FMRI, FMR2; FXR1; FXR2;


Disorders (PDDs)


MGLUR5, ATP10C, CDH10, GRM6,





MGLUR6, CDH9, CNTN4, NLGN2,





CNTNAP2, SEMA5A, DHCR7,





NLGN4X, NLGN4Y, DPP6, NLGN5,





EN2, NRCAM, MDGA2, NRXN1,





FMR2, AFF2, FOXP2, OR4M2,





OXTR, FXR1, FXR2, PAH,





GABRA1, PTEN, GABRA5, PTPRZ1,





GABRB3, GABRG1, HIRIP3,





SEZ6L2, HOXA1, SHANK3, IL6,





SHBZRAP1, LAMB1, SLC6A4,





SERT, MAPK3, TAS2R1, MAZ,





TSC1, MDGA2, TSC2, MECP2,





UBE3A, WNT2, see also





20110023145


autosomal dominant polycystic
kidney
liver
PKD1, PKD2


kidney disease (ADPKD) -


(includes diseases such as von


Hippel-Lindau disease and


tubreous sclerosis complex


disease)


Autosomal Recessive Polycystic
kidney
liver
PKDH1


Kidney Disease (ARPKD)


Ataxia-Telangiectasia (a.k.a
Nervous system,
various
ATM


Louis Bar syndrome)
immune system


B-Cell Non-Hodgkin Lymphoma


BCL7A, BCL7


Bardet-Biedl syndrome
Eye,
Liver, ear,
ARL6, BBS1, BBS2, BBS4, BBS5,



musculoskeletal
gastrointestinal
BBS7, BBS9, BBS10, BBS12,



system, kidney,
system, brain
CEP290, INPP5E, LZTFL1, MKKS,



reproductive

MKS1, SDCCAG8, TRIM32, TTC8



organs


Bare Lymphocyte Syndrome
blood

TAPBP, TPSN, TAP2, ABCB3, PSF2,





RING11, MHC2TA, C2TA, RFX5,





RFXAP, RFX5


Barter's Syndrome (types I, II,
kidney

SLC12A1 (type I), KCNJ1 (type II),


III, IVA and B, and V)


CLCNKB (type III), BSND (type IV





A), or both the CLCNKA CLCNKB





genes (type IV B), CASR (type V).


Becker muscular dystrophy
Muscle

DMD, BMD, MYF6


Best Disease (Vitelliform
eye

VMD2


Macular Dystrophy type 2)


Bleeding Disorders
blood

TBXA2R, P2RX1, P2X1


Blue Cone Monochromacy
eye

OPN1LW, OPN1MW, and LCR


Breast Cancer
Breast tissue

BRCA1, BRCA2, COX-2


Bruton's Disease (aka X-linked
Immune system,

BTK


Agammglobulinemia)
specifically B



cells


Cancers (e.g., lymphoma, chronic
Various

FAS, BID, CTLA4, PDCD1, CBLB,


lymphocytic leukemia (CLL), B


PTPN6, TRAC, TRBC, those


cell acute lymphocytic leukemia


described in WO2015048577


(B-ALL), acute lymphoblastic


leukemia, acute myeloid


leukemia, non-Hodgkin's


lymphoma (NHL), diffuse large


cell lymphoma (DLCL), multiple


myeloma, renal cell carcinoma


(RCC), neuroblastoma, colorectal


cancer, breast cancer, ovarian


cancer, melanoma, sarcoma,


prostate cancer, lung cancer,


esophageal cancer, hepatocellular


carcinoma, pancreatic cancer,


astrocytoma, mesothelioma, head


and neck cancer, and


medulloblastoma


Cardiovascular Diseases
heart
Vascular system
IL1B, XDH, TP53, PTGS, MB, IL4,





ANGPT1, ABCGu8, CTSK, PTGIR,





KCNJ11, INS, CRP, PDGFRB,





CCNA2, PDGFB, KCNJ5, KCNN3,





CAPN10, ADRA2B, ABCG5,





PRDX2, CPAN5, PARP14, MEX3C,





ACE, RNF, IL6, TNF, STN,





SERPINE1, ALB, ADIPOQ, APOB,





APOE, LEP, MTHFR, APOA1,





EDN1, NPPB, NOS3, PPARG, PLAT,





PTGS2, CETP, AGTR1, HMGCR,





IGF1, SELE, REN, PPARA, PON1,





KNG1, CCL2, LPL, VWF, F2,





ICAM1, TGFB, NPPA, IL10, EPO,





SOD1, VCAM1, IFNG, LPA, MPO,





ESR1, MAPK, HP, F3, CST3, COG2,





MMP9, SERPINC1, F8, HMOX1,





APOC3, IL8, PROL1, CBS, NOS2,





TLR4, SELP, ABCA1, AGT, LDLR,





GPT, VEGFA, NR3C2, IL18, NOS1,





NR3C1, FGB, HGF, ILIA, AKT1,





LIPC, HSPD1, MAPK14, SPP1,





ITGB3, CAT, UTS2, THBD, F10, CP,





TNFRSF11B, EGFR, MMP2, PLG,





NPY, RHOD, MAPK8, MYC, FN1,





CMA1, PLAU, GNB3, ADRB2,





SOD2, F5, VDR, ALOX5, HLA-





DRB1, PARP1, CD40LG, PON2,





AGER, IRS1, PTGS1, ECE1, F7,





IRMN, EPHX2, IGFBP1, MAPK10,





FAS, ABCB1, JUN, IGFBP3, CD14,





PDE5A, AGTR2, CD40, LCAT,





CCR5, MMP1, TIMP1, ADM,





DYT10, STAT3, MMP3, ELN, USF1,





CFH, HSPA4, MMP12, MME, F2R,





SELL, CTSB, ANXA5, ADRB1,





CYBA, FGA, GGT1, LIPG, HIF1A,





CXCR4, PROC, SCARB1, CD79A,





PLTP, ADD1, FGG, SAA1, KCNH2,





DPP4, NPR1, VTN, KIAA0101, FOS,





TLR2, PPIG, IL1R1, AR, CYP1A1,





SERPINA1, MTR, RBP4, APOA4,





CDKN2A, FGF2, EDNRB, ITGA2,





VLA-2, CABIN1, SHBG, HMGB1,





HSP90B2P, CYP3A4, GJA1, CAV1,





ESR2, LTA, GDF15, BDNF,





CYP2D6, NGF, SP1, TGIF1, SRC,





EGF, PIK3CG, HLA-A, KCNQ1,





CNR1, FBN1, CHKA, BEST1,





CTNNB1, IL2, CD36, PRKAB1, TPO,





ALDH7A1, CX3CR1, TH, F9, CH1,





TF, HFE, IL17A, PTEN, GSTM1,





DMD, GATA4, F13A1, TTR, FABP4,





PON3, APOC1, INSR, TNFRSF1B,





HTR2A, CSF3, CYP2C9, TXN,





CYP11B2, PTH, CSF2, KDR,





PLA2G2A, THBS1, GCG, RHOA,





ALDH2, TCF7L2, NFE2L2,





NOTCH1, UGT1A1, IFNA1, PPARD,





SIRT1, GNHR1, PAPPA, ARR3,





NPPC, AHSP, PTK2, IL13, MTOR,





ITGB2, GSTT1, IL6ST, CPB2,





CYP1A2, HNF4A, SLC64A,





PLA2G6, TNFSF11, SLC8A1, F2RL1,





AKR1A1, ALDH9A1, BGLAP,





MTTP, MTRR, SULT1A3, RAGE,





C4B, P2RY12, RNLS, CREB1,





POMC, RAC1, LMNA, CD59,





SCM5A, CYP1B1, MIF, MMP13,





TIMP2, CYP19A1, CUP21A2,





PTPN22, MYH14, MBL2, SELPLG,





AOC3, CTSL1, PCNA, IGF2, ITGB1,





CAST, CXCL12, IGHE, KCNE1,





TFRC, COL1A1, COL1A2, IL2RB,





PLA2G10, ANGPT2, PROCR, NOX4,





HAMP, PTPN11, SLCA1, IL2RA,





CCL5, IRF1, CF:AR, CA:CA, EIF4E,





GSTP1, JAK2, CYP3A5, HSPG2,





CCL3, MYD88, VIP, SOAT1,





ADRBK1, NR4A2, MMP8, NPR2,





GCH1, EPRS, PPARGC1A, F12,





PECAM1, CCL4, CERPINA34,





CASR, FABP2, TTF2, PROS1, CTF1,





SGCB, YME1L1, CAMP, ZC3H12A,





AKR1B1, MMP7, AHR, CSF1,





HDAC9, CTGF, KCNMA1, UGT1A,





PRKCA, COMT, S100B, EGR1, PRL,





IL15, DRD4, CAMK2G, SLC22A2,





CCL11, PGF, THPO, GP6, TACR1,





NTS, HNF1A, SST, KCDN1,





LOC646627, TBXAS1, CUP2J2,





TBXA2R, ADH1C, ALOX12, AHSG,





BHMT, GJA4, SLC25A4, ACLY,





ALOX5AP, NUMA1, CYP27B1,





CYSLTR2, SOD3, LTC4S, UCN,





GHRL, APOC2, CLEC4A,





KBTBD10, TNC, TYMS, SHC1,





LRP1, SOCS3, ADH1B, KLK3,





HSD11B1, VKORC1, SERPINB2,





TNS1, RNF19A, EPOR, ITGAM,





PITX2, MAPK7, FCGR3A, LEEPR,





ENG, GPX1, GOT2, HRH1, NR112,





CRH, HTR1A, VDAC1, HPSE,





SFTPD, TAP2, RMF123, PTK2Bm





NTRK2, IL6R, ACHE, GLP1R, GHR,





GSR, NQO1, NR5A1, GJB2,





SLC9A1, MAOA, PCSK9, FCGR2A,





SERPINF1, EDN3, UCP2, TFAP2A,





C4BPA, SERPINF2, TYMP, ALPP,





CXCR2, SLC3A3, ABCG2, ADA,





JAK3, HSPA1A, FASN, FGF1, F11,





ATP7A, CR1, GFPA, ROCK1,





MECP2, MYLK, BCHE, LIPE,





ADORA1, WRN, CXCR3, CD81,





SMAD7, LAMC2, MAP3K5, CHGA,





IAPP, RHO, ENPP1, PTHLH, NRG1,





VEGFC, ENPEP, CEBPB, NAGLU,.





F2RL3, CX3CL1, BDKRB1,





ADAMTS13, ELANE, ENPP2, CISH,





GAST, MYOC, ATP1A2, NF1, GJB1,





MEF2A, VCL, BMPR2, TUBB,





CDC42, KRT18, HSF1, MYB,





PRKAA2, ROCK2, TFP1, PRKG1,





BMP2, CTNND1, CTH, CTSS,





VAV2, NPY2R, IGFBP2, CD28,





GSTA1, PPIA, APOH, S100A8, IL11,





ALOX15, FBLN1, NR1H3, SCD, GIP,





CHGB, PRKCB, SRD5A1,HSD11B2,





CALCRL, GALNT2, ANGPTL4,





KCNN4, PIK3C2A, HBEGF,





CYP7A1, HLA-DRB5, BNIP3,





GCKR, S100A12, PADI4, HSPA14,





CXCR1, H19, KRTAP19-3, IDDM2,





RAC2, YRY1, CLOCK, NGFR, DBH,





CHRNA4, CACNA1C, PRKAG2,





CHAT, PTGDS, NR1H2, TEK,





VEGFB, MEF2C, MAPKAPK2,





TNFRSF11A, HSPA9, CYSLTR1,





MATIA, OPRL1, IMPA1, CLCN2,





DLD, PSMA6, PSMB8, CHI3L1,





ALDH1B1, PARP2,STAR, LBP,





ABCC6, RGS2, EFNB2, GJB6,





APOA2, AMPD1, DYSF,





FDFT1, EMD2, CCR6, GJB3, IL1RL1,





ENTPD1, BBS4, CELSR2, F11R,





RAPGEF3, HYAL1, ZNF259,





ATOX1, ATF6, KHK, SAT1, GGH,





TIMP4, SLC4A4, PDE2A, PDE3B,





FADS1, FADS2, TMSB4X, TXNIP,





LIMS1, RHOB, LY96, FOXO1,





PNPLA2,TRH, GJC1, S:C17A5, FTO,





GJD2, PRSC1, CASP12, GPBAR1,





PXK, IL33, TRIB1, PBX4, NUPR1,





15-SEP, CILP2, TERC, GGT2,





MTCO1, UOX, AVP


Cataract
eye

CRYAA, CRYA1, CRYBB2, CRYB2,





PITX3, BFSP2, CP49, CP47, CRYAA,





CRYA1, PAX6, AN2, MGDA,





CRYBA1, CRYB1, CRYGC, CRYG3,





CCL, LIM2, MP19, CRYGD, CRYG4,





BFSP2, CP49, CP47, HSF4, CTM,





HSF4, CTM, MIP, AQP0, CRYAB,





CRYA2, CTPP2, CRYBB1, CRYGD,





CRYG4, CRYBB2, CRYB2, CRYGC,





CRYG3, CCL, CRYAA, CRYA1,





GJA8, CX50, CAE1, GJA3, CX46,





CZP3, CAE3, CCM1, CAM, KRIT1


CDKL-5 Deficiencies or
Brain, CNS

CDKL5


Mediated Diseases


Charcot-Marie-Tooth (CMT)
Nervous system
Muscles
PMP22 (CMT1A and E), MPZ


disease (Types 1, 2, 3, 4,)

(dystrophy)
(CMT1B), LITAF (CMT1C), EGR2





(CMT1D), NEFL (CMT1F), GJB1





(CMT1X), MFN2 (CMT2A), KIF1B





(CMT2A2B), RAB7A (CMT2B),





TRPV4 (CMT2C), GARS (CMT2D),





NEFL (CMT2E), GAPD1 (CMT2K),





HSPB8 (CMT2L), DYNC1H1,





CMT20), LRSAM1 (CMT2P),





IGHMBP2 (CMT2S), MORC2





(CMT2Z), GDAP1 (CMT4A),





MTMR2 or SBF2/MTMR13





(CMT4B), SH3TC2 (CMT4C),





NDRG1 (CMT4D), PRX (CMT4F),





FIG4 (CMT4J), NT-3


Chédiak-Higashi Syndrome
Immune system
Skin, hair, eyes,
LYST




neurons


Choroidermia


CHM, REP1,


Chorioretinal atrophy
eye

PRDM13, RGR, TEAD1


Chronic Granulomatous Disease
Immune system

CYBA, CYBB, NCF1, NCF2, NCF4


Chronic Mucocutaneous
Immune system

AIRE, CARD9, CLEC7A IL12B,


Candidiasis


IL12B1, IL1F, IL17RA, IL17RC,





RORC, STAT1, STAT3, TRAF31P2


Cirrhosis
liver

KRT18, KRT8, CIRH1A, NAIC,





TEX292, KIAA1988


Colon cancer (Familial
Gastrointestinal

FAP: APC HNPCC:


adenomatous polyposis (FAP)


MSH2, MLH1, PMS2, SH6, PMS1


and hereditary nonpolyposis


colon cancer (HNPCC))


Combined Immunodeficiency
Immune System

IL2RG, SCIDX1, SCIDX, IMD4);





HIV-1 (CCL5, SCYA5, D17S136E,





TCP228


Cone(-rod) dystrophy
eye

AIPL1, CRX, GUA1A, GUCY2D,





PITPM3, PROM1, PRPH2, RIMS1,





SEMA4A, ABCA4, ADAM9, ATF6,





C21ORF2, C8ORF37, CACNA2D4,





CDHR1, CERKL, CNGA3, CNGB3,





CNNM4, CNAT2, IFT81, KCNV2,





PDE6C, PDE6H, POC1B, RAX2,





RDH5, RPGRIP1, TTLL5, RetCG1,





GUCY2E


Congenital Stationary Night
eye

CABP4, CACNA1F, CACNA2D4,


Blindness


GNAT1, CPR179, GRK1, GRM6,





LRIT3, NYX, PDE6B, RDH5, RHO,





RLBP1, RPE65, SAG, SLC24A1,





TRPM1,


Congenital Fructose Intolerance
Metabolism

ALDOB


Cori's Disease (Glycogen Storage
Various-

AGL


Disease Type III)
wherever



glycogen



accumulates,



particularly



liver, heart,



skeletal muscle


Corneal clouding and dystrophy
eye

APOA1, TGFBI, CSD2, CDGG1,





CSD, BIGH3, CDG2, TACSTD2,





TROP2, M1S1, VSX1, RINX, PPCD,





PPD, KTCN, COL8A2, FECD,





PPCD2, PIP5K3, CFD


Cornea plana congenital


KERA, CNA2


Cri du chat Syndrome, also


Deletions involving only band 5p15.2


known as 5p syndrome and cat


to the entire short arm of chromosome


cry syndrome


5, e.g. CTNND2, TERT,


Cystic Fibrosis (CF)
Lungs and
Pancreas, liver,
CTFR, ABCC7, CF, MRP7, SCNN1A,



respiratory
digestive
those described in WO2015157070



system
system,




reproductive




system,




exocrine, glands,


Diabetic nephropathy
kidney

Gremlin, 12/15- lipoxygenase, TIM44,


Dent Disease (Types 1 and 2)
Kidney

Type 1: CLCN5, Type 2: ORCL


Dentatorubro-Pallidoluysian
CNS, brain,

Atrophin-1 and Atn1


Atrophy (DRPLA) (aka Haw
muscle


River and Naito-Oyanagi


Disease)


Down Syndrome
various

Chromosome 21 trisomy


Drug Addiction
Brain

Prkce; Drd2; Drd4; ABAT;





GRIA2; Grm5; Grin1; Htr1b; Grin2a;





Drd3; Pdyn; Gria1


Duane syndrome (Types 1, 2, and
eye

CHN1, indels on chromosomes 4 and 8


3, including subgroups A, B and


C). Other names for this


condition include: Duane's


Retraction Syndrome (or DR


syndrome), Eye Retraction


Syndrome, Retraction Syndrome,


Congenital retraction syndrome


and Stilling-Turk-Duane


Syndrome


Duchenne muscular dystrophy
muscle
Cardiovascular,
DMD, BMD, dystrophin gene, intron


(DMD)

respiratory
flanking exon 51 of DMD gene, exon





51 mutations in DMD gene, see also





WO2013163628 and US Pat. Pub.





20130145487


Edward's Syndrome


Complete or partial trisomy of


(Trisomy 18)


chromosome 18


Ehlers-Danlos Syndrome (Types
Various

COL5A1, COL5A2, COL1A1,


I-VI)
depending on

COL3A1, TNXB, PLOD1, COL1A2,



type: including

FKBP14 and ADAMTS2



musculoskeletal,



eye, vasculature,



immune, and



skin


Emery-Dreifuss muscular
muscle

LMNA, LMN1, EMD2, FPLD,


dystrophy


CMD1A, HGPS, LGMD1B, LMNA,





LMN1, EMD2, FPLD, CMD1A


Enhanced S-Cone Syndrome
eye

NR2E3, NRL


Fabry's Disease
Various -

GLA



including skin,



eyes, and



gastrointestinal



system, kidney,



heart, brain,



nervous system


Facioscapulohumeral muscular
muscles

FSHMD1A, FSHD1A, FRG1,


dystrophy


Factor H and Factor H-like 1
blood

HF1, CFH, HUS


Factor V Leiden thrombophilia
blood

Factor V (F5)


and Factor V deficiency


Factor V and Factor VII
blood

MCFD2


deficiency


Factor VII deficiency
blood

F7


Factor X deficiency
blood

F10


Factor XI deficiency
blood

F11


Factor XII deficiency
blood

F12, HAF


Factor XIIIA deficiency
blood

F13A1, F13A


Factor XIIIB deficiency
blood

F13B


Familial Hypercholestereolemia
Cardiovascular

APOB, LDLR, PCSK9



system


Familial Mediterranean Fever
Various-
Heart, kidney,
MEFV


(FMF) also called recurrent
organs/tissues
brain/CNS,


polyserositis or familial
with serous or
reproductive


paroxysmal polyserositis
synovial
organs



membranes,



skin, joints


Fanconi Anemia
Various - blood

FANCA, FACA, FA1, FA, FAA,



(anemia),

FAAP95, FAAP90, FLJ34064,



immune system,

FANCC, FANCG, RAD51, BRCA1,



cognitive,

BRCA2, BRIP1, BACH1, FANCJ,



kidneys, eyes,

FANCB, FANCD1, FANCD2,



musculoskeletal

FANCD, FAD, FANCE, FACE,





FANCF, FANCI, ERCC4, FANCL,





FANCM, PALB2, RAD51C, SLX4,





UBE2T, FANCB, XRCC9, PHF9,





KIAA1596


Fanconi Syndrome Types I
kidneys

FRTS1, GATM


(Childhood onset) and II (Adult


Onset)


Fragile X syndrome and related
brain

FMR1, FMR2; FXR1; FXR2;


disorders


mGLUR5


Fragile XE Mental Retardation
Brain, nervous

FMR1


(aka Martin Bell syndrome)
system


Friedreich Ataxia (FRDA)
Brain, nervous
heart
FXN/X25



system


Fuchs endothelial corneal
Eye

TCF4; COL8A2


dystrophy


Galactosemia
Carbohydrate
Various-where
GALT, GALK1, and GALE



metabolism
galactose



disorder
accumulates -




liver, brain, eyes


Gastrointestinal Epithelial


CISH


Cancer, GI cancer


Gaucher Disease (Types 1, 2, and
Fat metabolism
Various-liver,
GBA


3, as well as other unusual forms
disorder
spleen, blood,


that may not fit into these types)

CNS, skeletal




system


Griscelli syndrome


Glaucoma
eye

MYOC, TIGR, GLC1A, JOAG,





GPOA, OPTN, GLC1E, FIP2, HYPL,





NRP, CYP1B1, GLC3A, OPA1, NTG,





NPG, CYP1B1, GLC3A, those





described in WO2015153780


Glomerulo sclerosis
kidney

CC chemokine ligand 2


Glycogen Storage Diseases
Metabolism

SLC2A2, GLUT2, G6PC, G6PT,


Types I-VI -See also Cori's
Diseases

G6PT1, GAA, LAMP2, LAMPB,


Disease, Pompe's Disease,


AGL, GDE, GBE1, GYS2, PYGL,


McArdle's disease, Hers Disease,


PFKM, see also Cori's Disease,


and Von Gierke's disease


Pompe's Disease, McArdle's disease,





Hers Disease, and Von Gierke's





disease


RBC Glycolytic enzyme
blood

any mutations in a gene for an enzyme


deficiency


in the glycolysis pathway including





mutations in genes for hexokinases I





and II, glucokinase, phosphoglucose





isomerase, phosphofructokinase,





aldolase Bm triosephosphate





isomerease, glyceraldehydee-3-





phosphate dehydrogenase,





phosphoglycerokinase,





phosphoglycerate mutase, enolase I,





pyruvate kinase


Hartnup's disease
Malabsorption
Various- brain,
SLC6A19



disease
gastrointestinal,




skin,


Hearing Loss
ear

NOX3, Hes5, BDNF,


Hemochromatosis (HH)
Iron absorption
Various-
HFE and H63D



regulation
wherever iron



disease
accumulates,




liver, heart,




pancreas, joints,




pituitary gland


Hemophagocytic
blood

PRF1, HPLH2, UNC13D, MUNC13-


lymphohistiocytosis disorders


4, HPLH3, HLH3, FHL3


Hemorrhagic disorders
blood

PI, ATT, F5


Hers disease (Glycogen storage
liver
muscle
PYGL


disease Type VI)


Hereditary angioedema (HAE)


kalikrein B1


Hereditary Hemorrhagic
Skin and

ACVRL1, ENG and SMAD4


Telangiectasia (Osler-Weber-
mucous


Rendu Syndrome)
membranes


Hereditary Spherocytosis
blood

NK1, EPB42, SLC4A1, SPTA1, and





SPTB


Hereditary Persistence of Fetal
blood

HBG1, HBG2, BCL11A, promoter


Hemoglobin


region of HBG 1 and/or 2 (in the





CCAAT box)


Hemophilia (hemophilia A
blood

A: FVIII, F8C, HEMA


(Classic) a B (aka Christmas


B: FVIX, HEMB


disease) and C)


C: F9, F11


Hepatic adenoma
liver

TCF1, HNF1A, MODY3


Hepatic failure, early onset, and
liver

SCOD1, SCO1


neurologic disorder


Hepatic lipase deficiency
liver

LIPC


Hepatoblastoma, cancer and
liver

CTNNB1, PDGFRL, PDGRL, PRLTS,


carcinomas


AXIN1, AXIN, CTNNB1, TP53, P53,





LFS1, IGF2R, MPRI, MET, CASP8,





MCH5


Hermansky-Pudlak syndrome
Skin, eyes,

HPS1, HPS3, HPS4, HPS5, HPS6,



blood, lung,

HPS7, DTNBP1, BLOC1, BLOC1S2,



kidneys,

BLOC3



intestine


HIV susceptibility or infection
Immune system

IL10, CSIF, CMKBR2, CCR2,





CMKBR5, CCCKR5 (CCR5), those in





WO2015148670A1


Holoprosencephaly (HPE)
brain

ACVRL1, ENG, SMAD4


(Alobar, Semilobar, and Lobar)


Homocystinuria
Metabolic
Various-
CBS, MTHFR, MTR, MTRR, and



disease
connective
MMADHC




tissue, muscles,




CNS,




cardiovascular




system


HPV


HPV16 and HPV18 E6/E7


HSV1, HSV2, and related
eye

HSV1 genes (immediate early and late


keratitis


HSV-1 genes (UL1, 1.5, 5, 6, 8, 9, 12,





15, 16, 18, 19, 22, 23, 26, 26.5, 27, 28,





29, 30, 31, 32, 33, 34, 35, 36, 37, 38,





42, 48, 49.5, 50, 52, 54, S6, RL2, RS1,





those described in WO2015153789,





WO2015153791


Hunter's Syndrome (aka
Lysosomal
Various- liver,
IDS


Mucopolysaccharidosis type II)
storage disease
spleen, eye,




joint, heart,




brain, skeletal


Huntington's disease (HD) and
Brain, nervous

HD, HTT, IT15, PRNP, PRIP, JPH3,


HD-like disorders
system

JP3, HDL2, TBP, SCA17, PRKCE;





IGF1; EP300; RCOR1; PRKCZ;





HDAC4; and TGM2, and those





described in WO2013130824,





WO2015089354


Hurler's Syndrome (aka
Lysosomal
Various- liver,
IDUA, α-L-iduronidase


mucopolysaccharidosis type I H,
storage disease
spleen, eye,


MPS IH)

joint, heart,




brain, skeletal


Hurler-Scheie syndrome (aka
Lysosomal
Various- liver,
IDUA, α-L-iduronidase


mucopolysaccharidosis type I H-
storage disease
spleen, eye,


S, MPS I H-S)

joint, heart,




brain, skeletal


hyaluronidase deficiency (aka
Soft and

HYAL1


MPS IX)
connective



tissues


Hyper IgM syndrome
Immune system

CD40L


Hyper- tension caused renal
kidney

Mineral corticoid receptor


damage


Immunodeficiencies
Immune System

CD3E, CD3G, AICDA, AID, HIGM2,





TNFRSF5, CD40, UNG, DGU,





HIGM4, TNFSF5, CD40LG, HIGM1,





IGM, FOXP3, IPEX, AIID, XPID,





PIDX, TNFRSF14B, TACI


Inborn errors of metabolism:
Metabolism
Various organs
See also: Carbohydrate metabolism


including urea cycle disorders,
diseases, liver
and cells
disorders (e.g. galactosemia), Amino


organic acidemias), fatty acid


acid Metabolism disorders (e.g.


oxidation defects, amino


phenylketonuria), Fatty acid


acidopathies, carbohydrate


metabolism (e.g. MCAD deficiency),


disorders, mitochondrial


Urea Cycle disorders (e.g.


disorders


Citrullinemia), Organic acidemias (e.g.





Maple Syrup Urine disease),





Mitochondrial disorders (e.g.





MELAS), peroxisomal disorders (e.g.





Zellweger syndrome)


Inflammation
Various

IL-10; IL-1 (IL-1a; IL-1b); IL-13; IL-





17 (IL-17a (CTLA8); IL-





17b; IL-17c; IL-17d; IL-17f); II-23;





Cx3cr1; ptpn22; TNFa;





NOD2/CARD15 for IBD; IL-6; IL-12





(IL-12a; IL-12b);





CTLA4; Cx3cl1


Inflammatory Bowel Diseases
Gastrointestinal
Joints, skin
NOD2, IRGM, LRRK2, ATG5,


(e.g. Ulcerative Colitis and


ATG16L1, IRGM, GATM, ECM1,


Chron's Disease)


CDH1, LAMB1, HNF4A, GNA12,





IL10, CARD9/15. CCR6, IL2RA,





MST1, TNFSF15, REL, STAT3,





IL23R, IL12B, FUT2


Interstitial renal fibrosis
kidney

TGF-β type II receptor


Job's Syndrome (aka Hyper IgE
Immune System

STAT3, DOCK8


Syndrome)


Juvenile Retinoschisis
eye

RS1, XLRS1


Kabuki Syndrome 1


MLL4, KMT2D


Kennedy Disease (aka
Muscles, brain,

SBMA/SMAX1/AR


Spinobulbar Muscular Atrophy)
nervous system


Klinefelter syndrome
Various-

Extra X chromosome in males



particularly



those involved



in development



of male



characteristics


Lafora Disease
Brain, CNS

EMP2A and EMP2B


Leber Congenital Amaurosis
eye

CRB1, RP12, CORD2, CRD, CRX,





IMPDH1, OTX2, AIPL1, CABP4,





CCT2, CEP290, CLUAP1, CRB1,





CRX, DTHD1, GDF6, GUCY2D,





IFT140, IQCB1, KCNJ13, LCA5,





LRAT, NMNAT1, PRPH2, RD3,





RDH12, RPE65, RP20, RPGRIP1,





SPATA7, TULP1, LCA1, LCA4,





GUC2D, CORD6, LCA3,


Lesch-Nyhan Syndrome
Metabolism
Various - joints,
HPRT1



disease
cognitive, brain,




nervous system


Leukocyte deficiencies and
blood

ITGB2, CD18, LCAMB, LAD,


disorders


EIF2B1, EIF2BA, EIF2B2, EIF2B3,





EIF2B5, LVWM, CACH, CLE,





EIF2B4


Leukemia
Blood

TAL1, TCL5, SCL, TAL2, FLT3,





NBS1, NBS, ZNFN1A1, IK1, LYF1,





HOXD4, HOX4B, BCR, CML, PHL,





ALL, ARNT, KRAS2, RASK2,





GMPS, AF10, ARHGEF12, LARG,





KIAA0382, CALM, CLTH, CEBPA,





CEBP, CHIC2, BTL, FLT3, KIT,





PBT, LPP, NPM1, NUP214, D9S46E,





CAN, CAIN, RUNX1, CBFA2,





AML1, WHSC1L1, NSD3, FLT3,





AF1Q, NPM1, NUMA1, ZNF145,





PLZF, PML, MYL, STAT5B, AF10,





CALM, CLTH, ARL11, ARLTS1,





P2RX7, P2X7, BCR, CML, PHL,





ALL, GRAF, NF1, VRNF, WSS,





NFNS, PTPN11, PTP2C, SHP2, NS1,





BCL2, CCND1, PRAD1, BCL1,





TCRA, GATA1, GF1, ERYF1, NFE1,





ABL1, NQO1, DIA4, NMOR1,





NUP214, D9S46E, CAN, CAIN


Limb-girdle muscular dystrophy
muscle

LGMD


diseases


Lowe syndrome
brain, eyes,

OCRL



kidneys


Lupus glomerulo- nephritis
kidney

MAPK1


Machado-
Brain, CNS,

ATX3


Joseph's Disease (also known as
muscle


Spinocerebellar ataxia Type 3)


Macular degeneration
eye

ABC4, CBC1, CHM1, APOE,





C1QTNF5, C2, C3, CCL2, CCR2,





CD36, CFB, CFH, CFHR1, CFHR3,





CNGB3, CP, CRP, CST3, CTSD,





CX3CR1, ELOVL4, ERCC6, FBLN5,





FBLN6, FSCN2, HMCN1, HIRAI,





IL6, IL8, PLEKHA1, PROM1,





PRPH2, RPGR, SERPING1, TCOF1,





TIMP3, TLR3


Macular Dystrophy
eye

BEST1, C1QTNF5, CTNNA1,





EFEMP1, ELOVL4, FSCN2,





GUCA1B, HMCN1, IMPG1, OTX2,





PRDM13, PROM1, PRPH2, RP1L1,





TIMP3, ABCA4, CFH, DRAM2,





IMG1, MFSD8, ADMD, STGD2,





STGD3, RDS, RP7, PRPH, AVMD,





AOFMD, VMD2


Malattia Leventinesse
eye

EFEMP1, FBLN3


Maple Syrup Urine Disease
Metabolism

BCKDHA, BCKDHB, and DBT



disease


Marfan syndrome
Connective
Musculoskeletal
FBN1



tissue


Maroteaux-Lamy Syndrome (aka
Musculoskeletal
Liver, spleen
ARSB


MPS VI)
system, nervous



system


McArdle's Disease (Glycogen
Glycogen
muscle
PYGM


Storage Disease Type V)
storage disease


Medullary cystic kidney disease
kidney

UMOD, HNFJ, FJHN, MCKD2,





ADMCKD2


Metachromatic leukodystrophy
Lysosomal
Nervous system
ARSA



storage disease


Methylmalonic acidemia (MMA)
Metabolism

MMAA, MMAB, MUT, MMACHC,



disease

MMADHC, LMBRD1


Morquio Syndrome (aka MPS IV
Connective
heart
GALNS


A and B)
tissue, skin,



bone, eyes


Mucopolysaccharidosis diseases
Lysosomal

See also Hurler/Scheie syndrome,


(Types I H/S, I H, II, III A B and
storage disease -

Hurler disease, Sanfillipo syndrome,


C, I S, IVA and B, IX, VII, and
affects various

Scheie syndrome, Morquio syndrome,


VI)
organs/tissues

hyaluronidase deficiency, Sly





syndrome, and Maroteaux-Lamy





syndrome


Muscular Atrophy
muscle

VAPB, VAPC, ALS8, SMN1, SMA1,





SMA2, SMA3, SMA4, BSCL2,





SPG17, GARS, SMAD1, CMT2D,





HEXB, IGHMBP2, SMUBP2,





CATF1, SMARD1


Muscular dystrophy
muscle

FKRP, MDC1C, LGMD2I, LAMA2,





LAMM, LARGE, KIAA0609,





MDC1D, FCMD, TTID, MYOT,





CAPN3, CANP3, DYSF, LGMD2B,





SGCG, LGMD2C, DMDA1, SCG3,





SGCA, ADL, DAG2, LGMD2D,





DMDA2, SGCB, LGMD2E, SGCD,





SGD, LGMD2F, CMD1L, TCAP,





LGMD2G, CMD1N, TRIM32, HT2A,





LGMD2H, FKRP, MDC1C, LGMD2I,





TTN, CMD1G, TMD, LGMD2J,





POMT1, CAV3, LGMD1C, SEPN1,





SELN, RSMD1, PLEC1, PLTN, EBS1


Myotonic dystrophy (Type 1 and
Muscles
Eyes, heart,
CNBP (Type 2) and DMPK (Type 1)


Type 2)

endocrine


Neoplasia


PTEN; ATM; ATR; EGFR; ERBB2;





ERBB3; ERBB4;





Notch1; Notch2; Notch3; Notch4;





AKT; AKT2; AKT3; HIF;





HIF1a; HIF3a; Met; HRG; Bcl2;





PPAR alpha; PPAR





gamma; WT1 (Wilms Tumor); FGF





Receptor Family





members (5 members: 1, 2, 3, 4, 5);





CDKN2a; APC; RB





(retinoblastoma); MEN1; VHL;





BRCA1; BRCA2; AR





(Androgen Receptor); TSG101; IGF;





IGF Receptor; Igf1 (4





variants); Igf2 (3 variants); Igf 1





Receptor; Igf 2 Receptor;





Bax; Bcl2; caspases family (9





members:





1, 2, 3, 4, 6, 7, 8, 9, 12); Kras; Apc


Neurofibromatosis (NF) (NF1,
brain, spinal

NF1, NF2


formerly Recklinghausen's NF,
cord, nerves,


and NF2)
and skin


Niemann-Pick Lipidosis (Types
Lysosomal
Various- where
Types A and B: SMPD1; Type C:


A, B, and C)
Storage Disease
sphingomyelin
NPC1 or NPC2




accumulates,




particularly




spleen, liver,




blood, CNS


Noonan Syndrome
Various -

PTPN11, SOS1, RAF1 and KRAS



musculoskeletal,



heart, eyes,



reproductive



organs, blood


Norrie Disease or X-linked
eye

NDP


Familial Exudative


Vitreoretinopathy


North Carolina Macular
eye

MCDR1


Dystrophy


Osteogenesis imperfecta (OI)
bones,

COL1A1, COL1A2, CRTAP, P3H


(Types I, II, III, IV, V, VI, VII)
musculoskeletal


Osteopetrosis
bones

LRP5, BMND1, LRP7, LR3, OPPG,





VBCH2, CLCN7, CLC7, OPTA2,





OSTM1, GL, TCIRG1, TIRC7,





OC116, OPTB1


Patau's Syndrome
Brain, heart,

Additional copy of chromosome 13


(Trisomy 13)
skeletal system


Parkinson's disease (PD)
Brain, nervous

SNCA (PARK1), UCHL1 (PARK 5),



system

and LRRK2 (PARK8), (PARK3),





PARK2, PARK4, PARK7 (PARK7),





PINK1 (PARK6); x-Synuclein, DJ-1,





Parkin, NR4A2, NURR1, NOT,





TINUR, SNCAIP, TBP, SCA17,





NCAP, PRKN, PDJ, DBH, NDUFV2


Pattern Dystrophy of the RPE
eye

RDS/peripherin


Phenylketonuria (PKU)
Metabolism
Various due to
PAH, PKU1, QDPR, DHPR, PTS



disorder
build-up of




phenylalanine,




phenyl ketones




in tissues and




CNS


Polycystic kidney and hepatic
Kidney, liver

FCYT, PKHD1, ARPKD, PKD1,


disease


PKD2, PKD4, PKDTS, PRKCSH,





G19P1, PCLD, SEC63


Pompe's Disease
Glycogen
Various - heart,
GAA



storage disease
liver, spleen


Porphyria (actually refers to a
Various-

ALAD, ALAS2, CPOX, FECH,


group of different diseases all
wherever heme

HMBS, PPOX, UROD, or UROS


having a specific heme
precursors


production process abnormality)
accumulate


posterior polymorphous corneal
eyes

TCF4; COL8A2


dystrophy


Primary Hyperoxaluria (e.g. type
Various - eyes,

LDHA (lactate dehydrogenase A) and


1)
heart, kidneys,

hydroxyacid oxidase 1 (HAO1)



skeletal system


Primary Open Angle Glaucoma
eyes

MYOC


(POAG)


Primary sclerosing cholangitis
Liver,

TCF4; COL8A2



gallbladder


Progeria (also called Hutchinson-
All

LMNA


Gilford progeria syndrome)


Prader-Willi Syndrome
Musculoskeletal

Deletion of region of short arm of



system, brain,

chromosome 15, including UBE3A



reproductive



and endocrine



system


Prostate Cancer
prostate

HOXB13, MSMB, GPRC6A, TP53


Pyruvate Dehydrogenase
Brain, nervous

PDHA1


Deficiency
system


Kidney/Renal carcinoma
kidney

RLIP76, VEGF


Rett Syndrome
Brain

MECP2, RTT, PPMX, MRX16,





MRX79, CDKL5, STK9, MECP2,





RTT, PPMX, MRX16, MRX79, x-





Synuclein, DJ-1


Retinitis pigmentosa (RP)
eye

ADIPOR1, ABCA4, AGBL5,





ARHGEF18, ARL2BP, ARL3, ARL6,





BEST1, BBS1, BBS2, C2ORF71,





C8ORF37, CA4, CERKL, CLRN1,





CNGA1, CMGB1, CRB1, CRX,





CYP4V2, DHDDS, DHX38, EMC1,





EYS, FAM161A, FSCN2, GPR125,





GUCA1B, HK1, HPRPF3, HGSNAT,





IDH3B, IMPDH1, IMPG2, IFT140,





IFT172, KLHL7, KIAA1549, KIZ,





LRAT, MAK, MERTK, MVK, NEK2,





NUROD1, NR2E3, NRL, OFD1,





PDE6A, PDE6B, PDE6G, POMGNT1,





PRCD, PROM1, PRPF3, PRPF4,





PRPF6, PRPF8, PRPF31, PRPH2,





RPB3, RDH12, REEP6, RP39, RGR,





RHO, RLBP1, ROM1, RP1, RP1L1,





RPY, RP2, RP9, RPE65, RPGR,





SAMD11, SAG, SEMA4A, SLC7A14,





SNRNP200, SPP2, SPATA7, TRNT1,





TOPORS, TTC8, TULP1, USH2A,





ZFN408, ZNF513, see also





20120204282


Scheie syndrome (also known as
Various- liver,

IDUA, α-L-iduronidase


mucopolysaccharidosis type I
spleen, eye,


S(MPS I-S))
joint, heart,



brain, skeletal


Schizophrenia
Brain

Neuregulin1 (Nrg1); Erb4 (receptor for





Neuregulin);





Complexin1 (Cplx1); Tph1





Tryptophan hydroxylase; Tph2





Tryptophan hydroxylase 2; Neurexin





1; GSK3; GSK3a;





GSK3b; 5-HTT (Slc6a4); COMT;





DRD (Drd1a); SLC6A3; DAOA;





DTNBP1; Dao (Dao1); TCF4;





COL8A2


Secretase Related Disorders
Various

APH-1 (alpha and beta); PSEN1;





NCSTN; PEN-2; Nos1, Parp1, Nat1,





Nat2, CTSB, APP, APH1B, PSEN2,





PSENEN, BACE1, ITM2B, CTSD,





NOTCH1, TNF, INS, DYT10,





ADAM17, APOE, ACE, STN, TP53,





IL6, NGFR, IL1B, ACHE, CTNNB1,





IGF1, IFNG, NRG1, CASP3, MAPK1,





CDH1, APBB1, HMGCR, CREB1,





PTGS2, HES1, CAT, TGFB1, ENO2,





ERBB4, TRAPPC10, MAOB, NGF,





MMP12, JAG1, CD40LG, PPARG,





FGF2, LRP1, NOTCH4, MAPK8,





PREP, NOTCH3, PRNP, CTSG, EGF,





REN, CD44, SELP, GHR, ADCYAP1,





INSR, GFAP, MMP3, MAPK10, SP1,





MYC, CTSE, PPARA, JUN, TIMP1,





IL5, IL1A, MMP9, HTR4, HSPG2,





KRAS, CYCS, SMG1, IL1R1,





PROK1, MAPK3, NTRK1, IL13,





MME, TKT, CXCR2, CHRM1,





ATXN1, PAWR, NOTCJ2, M6PR,





CYP46A1, CSNK1D, MAPK14,





PRG2, PRKCA, L1 CAM, CD40,





NR1I2, JAG2, CTNND1, CMA1,





SORT1, DLK1, THEM4, JUP, CD46,





CCL11, CAV3, RNASE3, HSPA8,





CASP9, CYP3A4, CCR3, TFAP2A,





SCP2, CDK4, JOF1A, TCF7L2,





B3GALTL, MDM2, RELA, CASP7,





IDE, FANP4, CASK, ADCYAP1R1,





ATF4, PDGFA, C21ORF33, SCG5,





RMF123, NKFB1, ERBB2, CAV1,





MMP7, TGFA, RXRA, STX1A,





PSMC4, P2RY2, TNFRSF21, DLG1,





NUMBL, SPN, PLSCR1, UBQLN2,





UBQLN1, PCSK7, SPON1, SILV,





QPCT, HESS, GCC1


Selective IgA Deficiency
Immune system

Type 1: MSH5; Type 2: TNFRSF13B


Severe Combined
Immune system

JAK3, JAKL, DCLRE1C, ARTEMIS,


Immunodeficiency (SCID) and


SCIDA, RAG1, RAG2, ADA, PTPRC,


SCID-XI, and ADA-SCID


CD45, LCA, IL7R, CD3D, T3D,





IL2RG, SCIDX1, SCIDX, IMD4,





those identified in US Pat. App. Pub.





20110225664, 20110091441,





20100229252, 20090271881 and





20090222937;


Sickle cell disease
blood

HBB, BCL11A, BCL11Ae, cis-





regulatory elements of the B-globin





locus, HBG 1/2 promoter, HBG distal





CCAAT box region between -92 and -130





of the HBG Transcription Start





Site, those described in





WO2015148863, WO 2013/126794,





US Pat. Pub. 20110182867


Sly Syndrome (aka MPS VII)


GUSB


Spinocerebellar Ataxias (SCA


ATXN1, ATXN2, ATX3


types 1, 2, 3, 6, 7, 8, 12 and 17)


Sorsby Fundus Dystrophy
eye

TIMP3


Stargardt disease
eye

ABCR, ELOVL4, ABCA4, PROM1


Tay-Sachs Disease
Lysosomal
Various - CNS,
HEX-A



Storage disease
brain, eye


Thalassemia (Alpha, Beta, Delta)
blood

HBA1, HBA2 (Alpha), HBB (Beta),





HBB and HBD (delta), LCRB,





BCL11A, BCL11Ae, cis-regulatory





elements of the B-globin locus, HBG





1/2 promoter, those described in





WO2015148860, US Pat. Pub.





20110182867, 2015/148860


Thymic Aplasia (DiGeorge
Immune system,

deletion of 30 to 40 genes in the


Syndrome; 22q11.2 deletion
thymus

middle of chromosome 22 at


syndrome)


a location known as 22q11.2, including





TBX1, DGCR8


Transthyretin amyloidosis
liver

TTR (transthyretin)


(ATTR)


trimethylaminuria
Metabolism

FMO3



disease


Trinucleotide Repeat Disorders
Various

HTT; SBMA/SMAX1/AR;


(generally)


FXN/X25 ATX3;





ATXN1; ATXN2;





DMPK; Atrophin-1 and Atn1





(DRPLA Dx); CBP (Creb-BP - global





instability); VLDLR; Atxn7; Atxn10;





FEN1, TNRC6A, PABPN1, JPH3,





MED15, ATXN1, ATXN3, TBP,





CACNA1A, ATXN80S, PPP2R2B,





ATXN7, TNRC6B, TNRC6C, CELF3,





MAB21L1, MSH2, TMEM185A,





SIX5, CNPY3, RAXE, GNB2, RPL14,





ATXN8, ISR, TTR, EP400, GIGYF2,





OGG1, STC1, CNDP1, C10ORF2,





MAML3, DKC1, PAXIP1, CASK,





MAPT, SP1, POLG, AFF2, THBS1,





TP53, ESR1, CGGBP1, ABT1, KLK3,





PRNP, JUN, KCNN3, BAX, FRAXA,





KBTBD10, MBNL1, RAD51,





NCOA3, ERDA1, TSC1, COMP,





GGLC, RRAD, MSH3, DRD2, CD44,





CTCF, CCND1, CLSPN, MEF2A,





PTPRU, GAPDH, TRIM22, WT1,





AHR, GPX1, TPMT, NDP, ARX,





TYR, EGR1, UNG, NUMBL, FABP2,





EN2, CRYGC, SRP14, CRYGB,





PDCD1, HOXA1, ATXN2L, PMS2,





GLA, CBL, FTH1, IL12RB2, OTX2,





HOXA5, POLG2, DLX2, AHRR,





MANF, RMEM158, see also





20110016540


Turner's Syndrome (XO)
Various -

Monosomy X



reproductive



organs, and sex



characteristics,



vasculature


Tuberous Sclerosis
CNS, heart,

TSC1, TSC2



kidneys


Usher syndrome (Types I, II, and
Ears, eyes

ABHD12, CDH23, CIB2, CLRN1,


III)


DFNB31, GPR98, HARS, MYO7A,





PCDH15, USH1C, USH1G, USH2A,





USH11A, those described in





WO2015134812A1


Velocardiofacial syndrome (aka
Various -

Many genes are deleted, COM, TBX1,


22q11.2 deletion syndrome,
skeletal, heart,

and other are associated with


DiGeorge syndrome, conotruncal
kidney, immune

symptoms


anomaly face syndrome (CTAF),
system, brain


autosomal dominant Opitz G/BB


syndrome or Cayler cardiofacial


syndrome)


Von Gierke's Disease (Glycogen
Glycogen
Various - liver,
G6PC and SLC37A4


Storage Disease type I)
Storage disease
kidney


Von Hippel-Lindau Syndrome
Various - cell
CNS, Kidney,
VHL



growth
Eye, visceral



regulation
organs



disorder


Von Willebrand Disease (Types
blood

VWF


I, II and III)


Wilson Disease
Various -
Liver, brains,
ATP7B



Copper Storage
eyes, other



Disease
tissues where




copper builds up


Wiskott-Aldrich Syndrome
Immune System

WAS


Xeroderma Pigmentosum
Skin
Nervous system
POLH


XXX Syndrome
Endocrine, brain

X chromosome trisomy









In an embodiment, the compositions, systems, or components thereof can be used treat or prevent a disease in a subject by modifying one or more genes associated with one or more cellular functions, such as any one or more of those in Table 5. In an embodiment, the disease is a genetic disease or disorder. In some of embodiments, the composition, system, or component thereof can modify one or more genes or polynucleotides associated with one or more genetic diseases such as any set forth in Table 5.









TABLE 5







Exemplary Genes controlling Cellular Functions








CELLULAR FUNCTION
GENES





PI3K/AKT Signaling
PRKCE; ITGAM; ITGA5; IRAK1; PRKAA2; EIF2AK2; PTEN; EIF4E;



PRKCZ; GRK6; MAPK1; TSC1; PLK1; AKT2; IKBKB; PIK3CA; CDK8;



CDKN1B; NFKB2; BCL2; PIK3CB; PPP2R1A; MAPK8; BCL2L1; MAPK3;



TSC2; ITGA1; KRAS; EIF4EBP1; RELA; PRKCD; NOS3; PRKAA1;



MAPK9; CDK2; PPP2CA; PIM1; ITGB7; YWHAZ; ILK; TP53; RAF1;



IKBKG; RELB; DYRK1A; CDKN1A; ITGB1; MAP2K2; JAK1; AKT1; JAK2;



PIK3R1; CHUK; PDPK1; PPP2R5C; CTNNB1; MAP2K1; NFKB1; PAK3;



ITGB3; CCND1; GSK3A; FRAP1; SFN; ITGA2; TTK; CSNK1A1; BRAF;



GSK3B; AKT3; FOXO1; SGK; HSP90AA1; RPS6KB1


ERK/MAPK Signaling
PRKCE; ITGAM; ITGA5; HSPB1; IRAK1; PRKAA2; EIF2AK2; RAC1;



RAP1A; TLN1; EIF4E; ELK1; GRK6; MAPK1; RAC2; PLK1; AKT2;



PIK3CA; CDK8; CREB1; PRKCI; PTK2; FOS; RPS6KA4; PIK3CB;



PPP2R1A; PIK3C3; MAPK8; MAPK3; ITGA1; ETS1; KRAS; MYCN;



EIF4EBP1; PPARG; PRKCD; PRKAA1; MAPK9; SRC; CDK2; PPP2CA;



PIM1; PIK3C2A; ITGB7; YWHAZ; PPP1CC; KSR1; PXN; RAF1; FYN;



DYRK1A; ITGB1; MAP2K2; PAK4; PIK3R1; STAT3; PPP2R5C; MAP2K1;



PAK3; ITGB3; ESR1; ITGA2; MYC; TTK; CSNK1A1; CRKL; BRAF; ATF4;



PRKCA; SRF; STAT1; SGK


Glucocorticoid
RAC1; TAF4B; EP300; SMAD2; TRAF6; PCAF; ELK1; MAPK1; SMAD3;


Receptor Signaling
AKT2; IKBKB; NCOR2; UBE2I; PIK3CA; CREB1; FOS; HSPA5; NFKB2;



BCL2; MAP3K14; STAT5B; PIK3CB; PIK3C3; MAPK8; BCL2L1; MAPK3;



TSC22D3; MAPK10; NRIP1; KRAS; MAPK13; RELA; STAT5A; MAPK9;



NOS2A; PBX1; NR3C1; PIK3C2A; CDKN1C; TRAF2; SERPINE1; NCOA3;



MAPK14; TNF; RAF1; IKBKG; MAP3K7; CREBBP; CDKN1A; MAP2K2;



JAK1; IL8; NCOA2; AKT1; JAK2; PIK3R1; CHUK; STAT3; MAP2K1;



NFKB1; TGFBR1; ESR1; SMAD4; CEBPB; JUN; AR; AKT3; CCL2; MMP1;



STAT1; IL6; HSP90AA1


Axonal Guidance
PRKCE; ITGAM; ROCK1; ITGA5; CXCR4; ADAM12; IGF1; RAC1;


Signaling
RAP1A; E1F4E; PRKCZ; NRP1; NTRK2; ARHGEF7; SMO; ROCK2;



MAPK1; PGF; RAC2; PTPN11; GNAS; AKT2; PIK3CA; ERBB2; PRKCI;



PTK2; CFL1; GNAQ; PIK3CB; CXCL12; PIK3C3; WNT11; PRKD1;



GNB2L1; ABL1; MAPK3; ITGA1; KRAS; RHOA; PRKCD; PIK3C2A;



ITGB7; GLI2; PXN; VASP; RAF1; FYN; ITGB1; MAP2K2; PAK4;



ADAM17; AKT1; PIK3R1; GLI1; WNT5A; ADAM10; MAP2K1; PAK3;



ITGB3; CDC42; VEGFA; ITGA2; EPHA8; CRKL; RND1; GSK3B; AKT3;



PRKCA


Ephrin Receptor
PRKCE; ITGAM; ROCK1; ITGA5; CXCR4; IRAK1; PRKAA2; EIF2AK2;


Signaling
RAC1; RAP1A; GRK6; ROCK2; MAPK1; PGF; RAC2; PTPN11; GNAS;


Actin Cytoskeleton
PLK1; AKT2; DOK1; CDK8; CREB1; PTK2; CFL1; GNAQ; MAP3K14;


Signaling
CXCL12; MAPK8; GNB2L1; ABL1; MAPK3; ITGA1; KRAS; RHOA;



PRKCD; PRKAA1; MAPK9; SRC; CDK2; PIM1; ITGB7; PXN; RAF1; FYN;



DYRK1A; ITGB1; MAP2K2; PAK4, AKT1; JAK2; STAT3; ADAM10;



MAP2K1; PAK3; ITGB3; CDC42; VEGFA; ITGA2; EPHA8; TTK;



CSNK1A1; CRKL; BRAF; PTPN13; ATF4; AKT3; SGK



ACTN4; PRKCE; ITGAM; ROCK1; ITGA5; IRAK1; PRKAA2; EIF2AK2;



RAC1; INS; ARHGEF7; GRK6; ROCK2; MAPK1; RAC2; PLK1; AKT2;



PIK3CA; CDK8; PTK2; CFL1; PIK3CB; MYH9; DIAPH1; PIK3C3; MAPK8;



F2R; MAPK3; SLC9A1; ITGA1; KRAS; RHOA; PRKCD; PRKAA1;



MAPK9; CDK2; PIM1; PIK3C2A; ITGB7; PPP1CC; PXN; VIL2; RAF1;



GSN; DYRK1A; ITGB1; MAP2K2; PAK4; PIP5K1A; PIK3R1; MAP2K1;



PAK3; ITGB3; CDC42; APC; ITGA2; TTK; CSNK1A1; CRKL; BRAF;



VAV3; SGK


Huntington's Disease
PRKCE; IGF1; EP300; RCOR1; PRKCZ; HDAC4; TGM2; MAPK1; CAPNS1;


Signaling
AKT2; EGFR; NCOR2; SP1; CAPN2; PIK3CA; HDAC5; CREB1; PRKCI;



HSPA5; REST; GNAQ; PIK3CB; PIK3C3; MAPK8; IGF1R; PRKD1;



GNB2L1; BCL2L1; CAPN1; MAPK3; CASP8; HDAC2; HDAC7A; PRKCD;



HDAC11; MAPK9; HDAC9; PIK3C2A; HDAC3; TP53; CASP9; CREBBP;



AKT1; PIK3R1; PDPK1; CASP1; APAF1; FRAP1; CASP2; JUN; BAX;



ATF4; AKT3; PRKCA; CLTC; SGK; HDAC6; CASP3


Apoptosis Signaling
PRKCE; ROCK1; BID; IRAK1; PRKAA2; EIF2AK2; BAK1; BIRC4; GRK6;



MAPK1; CAPNS1; PLK1; AKT2; IKBKB; CAPN2; CDK8; FAS; NFKB2;



BCL2; MAP3K14; MAPK8; BCL2L1; CAPN1; MAPK3; CASP8; KRAS;



RELA; PRKCD; PRKAA1; MAPK9; CDK2; PIM1; TP53; TNF; RAF1;



IKBKG; RELB; CASP9; DYRK1A; MAP2K2; CHUK; APAF1; MAP2K1;



NFKB1; PAK3; LMNA; CASP2; BIRC2; TTK; CSNK1A1; BRAF; BAX;



PRKCA; SGK; CASP3; BIRC3; PARP1


B Cell Receptor
RAC1; PTEN; LYN; ELK1; MAPK1; RAC2; PTPN11; AKT2; IKBKB;


Signaling
PIK3CA; CREB1; SYK; NFKB2; CAMK2A; MAP3K14; PIK3CB; PIK3C3;



MAPK8; BCL2L1; ABL1; MAPK3; ETS1; KRAS; MAPK13; RELA; PTPN6;



MAPK9; EGR1; PIK3C2A; BTK; MAPK14; RAF1; IKBKG; RELB;



MAP3K7; MAP2K2; AKT1; PIK3R1; CHUK; MAP2K1; NFKB1; CDC42;



GSK3A; FRAP1; BCL6; BCL10; JUN; GSK3B; ATF4; AKT3; VAV3;



RPS6KB1


Leukocyte
ACTN4; CD44; PRKCE; ITGAM; ROCK1; CXCR4; CYBA; RAC1; RAP1A;


Extravasation Signaling
PRKCZ; ROCK2; RAC2; PTPN11; MMP14; PIK3CA; PRKCI; PTK2;



PIK3CB; CXCL12; PIK3C3; MAPK8; PRKD1; ABL1; MAPK10; CYBB;



MAPK13; RHOA; PRKCD; MAPK9; SRC; PIK3C2A; BTK; MAPK14;



NOX1; PXN; VIL2; VASP; ITGB1; MAP2K2; CTNND1; PIK3R1; CTNNB1;



CLDN1; CDC42; F11R; ITK; CRKL; VAV3; CTTN; PRKCA; MMP1; MMP9


Integrin Signaling
ACTN4; ITGAM; ROCK1; ITGA5; RAC1; PTEN; RAP1A; TLN1;



ARHGEF7; MAPK1; RAC2; CAPNS1; AKT2; CAPN2; PIK3CA; PTK2;



PIK3CB; PIK3C3; MAPK8; CAV1; CAPN1; ABL1; MAPK3; ITGA1; KRAS;



RHOA; SRC; PIK3C2A; ITGB7; PPP1CC; ILK; PXN; VASP; RAF1; FYN;



ITGB1; MAP2K2; PAK4; AKT1; PIK3R1; TNK2; MAP2K1; PAK3; ITGB3;



CDC42; RND3; ITGA2; CRKL; BRAF; GSK3B; AKT3


Acute Phase Response
IRAK1; SOD2; MYD88; TRAF6; ELK1; MAPK1; PTPN11; AKT2; IKBKB;


Signaling
PIK3CA; FOS; NFKB2; MAP3K14; PIK3CB; MAPK8; RIPK1; MAPK3;



IL6ST; KRAS; MAPK13; IL6R; RELA; SOCS1; MAPK9; FTL; NR3C1;



TRAF2; SERPINE1; MAPK14; TNF; RAF1; PDK1; IKBKG; RELB;



MAP3K7; MAP2K2; AKT1; JAK2; PIK3R1; CHUK; STAT3; MAP2K1;



NFKB1; FRAP1; CEBPB; JUN; AKT3; IL1R1; IL6


PTEN Signaling
ITGAM; ITGA5; RAC1; PTEN; PRKCZ; BCL2L11; MAPK1; RAC2; AKT2;



EGFR; IKBKB; CBL; PIK3CA; CDKN1B; PTK2; NFKB2; BCL2; PIK3CB;



BCL2L1; MAPK3; ITGA1; KRAS; ITGB7; ILK; PDGFRB; INSR; RAF1;



IKBKG; CASP9; CDKN1A; ITGB1; MAP2K2; AKT1; PIK3R1; CHUK;



PDGFRA; PDPK1; MAP2K1; NFKB1; ITGB3; CDC42; CCND1; GSK3A;



ITGA2; GSK3B; AKT3; FOXO1; CASP3; RPS6KB1


p53 Signaling
PTEN; EP300; BBC3; PCAF; FASN; BRCA1; GADD45A; BIRC5; AKT2;


Aryl Hydrocarbon
PIK3CA; CHEK1; TP53INP1; BCL2; PIK3CB; PIK3C3; MAPK8; THBS1;


Receptor Signaling
ATR; BCL2L1; E2F1; PMAIP1; CHEK2; TNFRSF10B; TP73; RB1; HDAC9;



CDK2; PIK3C2A; MAPK14; TP53; LRDD; CDKN1A; HIPK2; AKT1;



PIK3R1; RRM2B; APAF1; CTNNB1; SIRT1; CCND1; PRKDC; ATM; SFN;



CDKN2A; JUN; SNAI2; GSK3B; BAX; AKT3



HSPB1; EP300; FASN; TGM2; RXRA; MAPK1; NQO1; NCOR2; SP1;



ARNT; CDKN1B; FOS; CHEK1; SMARCA4; NFKB2; MAPK8; ALDH1A1;



ATR; E2F1; MAPK3; NRIP1; CHEK2; RELA; TP73; GSTP1; RB1; SRC;



CDK2; AHR; NFE2L2; NCOA3; TP53; TNF; CDKN1A; NCOA2; APAF1;



NFKB1; CCND1; ATM; ESR1; CDKN2A; MYC; JUN; ESR2; BAX; IL6;



CYP1B1; HSP90AA1


Xenobiotic Metabolism
PRKCE; EP300; PRKCZ; RXRA; MAPK1; NQO1; NCOR2; PIK3CA; ARNT;


Signaling
PRKCI; NFKB2; CAMK2A; PIK3CB; PPP2R1A; PIK3C3; MAPK8; PRKD1;



ALDH1A1; MAPK3; NRIP1; KRAS; MAPK13; PRKCD; GSTP1; MAPK9;



NOS2A; ABCB1; AHR; PPP2CA; FTL; NFE2L2; PIK3C2A; PPARGC1A;



MAPK14; TNF; RAF1; CREBBP; MAP2K2; PIK3R1; PPP2R5C; MAP2K1;



NFKB1; KEAP1; PRKCA; EIF2AK3; IL6; CYP1B1; HSP90AA1


SAPK/JNK Signaling
PRKCE; IRAK1; PRKAA2; EIF2AK2; RAC1; ELK1; GRK6; MAPK1;



GADD45A; RAC2; PLK1; AKT2; PIK3CA; FADD; CDK8; PIK3CB;



PIK3C3; MAPK8; RIPK1; GNB2L1; IRS1; MAPK3; MAPK10; DAXX;



KRAS; PRKCD; PRKAA1; MAPK9; CDK2; PIM1; PIK3C2A; TRAF2; TP53;



LCK; MAP3K7; DYRK1A; MAP2K2; PIK3R1; MAP2K1; PAK3; CDC42;



JUN; TTK; CSNK1A1; CRKL; BRAF; SGK


PPAr/RXR Signaling
PRKAA2; EP300; INS; SMAD2; TRAF6; PPARA; FASN; RXRA; MAPK1;



SMAD3; GNAS; IKBKB; NCOR2; ABCA1; GNAQ; NFKB2; MAP3K14;



STAT5B; MAPK8; IRS1; MAPK3; KRAS; RELA; PRKAA1; PPARGC1A;



NCOA3; MAPK14; INSR; RAF1; IKBKG; RELB; MAP3K7; CREBBP;



MAP2K2; JAK2; CHUK; MAP2K1; NFKB1; TGFBR1; SMAD4; JUN;



IL1R1; PRKCA; IL6; HSP90AA1; ADIPOQ


NF-KB Signaling
IRAK1; EIF2AK2; EP300; INS; MYD88; PRKCZ: TRAF6; TBK1; AKT2;



EGFR; IKBKB; PIK3CA; BTRC; NFKB2; MAP3K14; PIK3CB; PIK3C3;



MAPK8; RIPK1; HDAC2; KRAS; RELA; PIK3C2A; TRAF2; TLR4;



PDGFRB; TNF; INSR; LCK; IKBKG; RELB; MAP3K7; CREBBP; AKT1;



PIK3R1; CHUK; PDGFRA; NFKB1; TLR2; BCL10; GSK3B; AKT3;



TNFAIP3; IL1R1


Neuregulin Signaling
ERBB4; PRKCE; ITGAM; ITGA5; PTEN; PRKCZ; ELK1; MAPK1; PTPN11;


Wnt & Beta catenin
AKT2; EGFR; ERBB2; PRKCI; CDKN1B; STAT5B; PRKD1; MAPK3;


Signaling
ITGA1; KRAS; PRKCD; STAT5A; SRC; ITGB7; RAF1; ITGB1; MAP2K2;



ADAM17; AKT1; PIK3R1; PDPK1; MAP2K1; ITGB3; EREG; FRAP1;



PSEN1; ITGA2; MYC; NRG1; CRKL; AKT3; PRKCA; HSP90AA1;



RPS6KB1



CD44; EP300; LRP6; DVL3; CSNK1E; GJA1; SMO; AKT2; PIN1; CDH1;



BTRC; GNAQ; MARK2; PPP2R1A; WNT11; SRC; DKK1; PPP2CA; SOX6;



SFRP2: ILK; LEF1; SOX9; TP53; MAP3K7; CREBBP; TCF7L2; AKT1;



PPP2R5C; WNT5A; LRP5; CTNNB1; TGFBR1; CCND1; GSK3A; DVL1;



APC; CDKN2A; MYC; CSNK1A1; GSK3B; AKT3; SOX2


Insulin Receptor
PTEN; INS; EIF4E; PTPN1; PRKCZ; MAPK1; TSC1; PTPN11; AKT2; CBL;


Signaling
PIK3CA; PRKCI; PIK3CB; PIK3C3; MAPK8; IRS1; MAPK3; TSC2; KRAS;



EIF4EBP1; SLC2A4; PIK3C2A; PPP1CC; INSR; RAF1; FYN; MAP2K2;



JAK1; AKT1; JAK2; PIK3R1; PDPK1; MAP2K1; GSK3A; FRAP1; CRKL;



GSK3B; AKT3; FOXO1; SGK; RPS6KB1


IL-6 Signaling
HSPB1; TRAF6; MAPKAPK2; ELK1; MAPK1; PTPN11; IKBKB; FOS;



NFKB2: MAP3K14; MAPK8; MAPK3; MAPK10; IL6ST; KRAS; MAPK13;



IL6R; RELA; SOCS1; MAPK9; ABCB1; TRAF2; MAPK14; TNF; RAF1;



IKBKG; RELB; MAP3K7; MAP2K2; IL8; JAK2; CHUK; STAT3; MAP2K1;



NFKB1; CEBPB; JUN; IL1R1; SRF; IL6


Hepatic Cholestasis
PRKCE; IRAK1; INS; MYD88; PRKCZ; TRAF6; PPARA; RXRA; IKBKB;



PRKCI; NFKB2; MAP3K14; MAPK8; PRKD1; MAPK10; RELA; PRKCD;



MAPK9; ABCB1; TRAF2; TLR4; TNF; INSR; IKBKG; RELB; MAP3K7;



IL8; CHUK; NR1H2; TJP2; NFKB1; ESR1; SREBF1; FGFR4; JUN; IL1R1;



PRKCA; IL6


IGF-1 Signaling
IGF1; PRKCZ; ELK1; MAPK1; PTPN11; NEDD4; AKT2; PIK3CA; PRKCI;



PTK2; FOS; PIK3CB; PIK3C3; MAPK8; IGF1R; IRS1; MAPK3; IGFBP7;



KRAS; PIK3C2A; YWHAZ; PXN; RAF1; CASP9; MAP2K2; AKT1; PIK3R1;



PDPK1; MAP2K1; IGFBP2; SFN; JUN; CYR61; AKT3; FOXO1; SRF;



CTGF; RPS6KB1


NRF2-mediated
PRKCE; EP300; SOD2; PRKCZ; MAPK1; SQSTM1; NQO1; PIK3CA;


Oxidative Stress
PRKCI; FOS; PIK3CB; PIK3C3; MAPK8; PRKD1; MAPK3; KRAS; PRKCD;


Response
GSTP1; MAPK9; FTL; NFE2L2; PIK3C2A; MAPK14; RAF1; MAP3K7;



CREBBP; MAP2K2; AKT1; PIK3R1; MAP2K1; PPIB; JUN; KEAP1;



GSK3B; ATF4; PRKCA; EIF2AK3; HSP90AA1


Hepatic
EDN1; IGF1; KDR; FLT1; SMAD2; FGFR1; MET; PGF; SMAD3; EGFR;


Fibrosis/Hepatic
FAS; CSF1; NFKB2; BCL2; MYH9; IGF1R; IL6R; RELA; TLR4; PDGFRB;


Stellate Cell Activation
TNF; RELB; IL8; PDGFRA; NFKB1; TGFBR1; SMAD4; VEGFA; BAX;



IL1R1; CCL2; HGF; MMP1; STAT1; IL6; CTGF; MMP9


PPAR Signaling
EP300; INS; TRAF6; PPARA; RXRA; MAPK1; IKBKB; NCOR2; FOS;



NFKB2; MAP3K14; STAT5B; MAPK3; NRIP1; KRAS; PPARG; RELA;



STAT5A; TRAF2; PPARGC1A; PDGFRB; TNF; INSR; RAF1; IKBKG;



RELB; MAP3K7; CREBBP; MAP2K2; CHUK; PDGFRA; MAP2K1; NFKB1;



JUN; IL1R1; HSP90AA1


Fc Epsilon RI Signaling
PRKCE; RAC1; PRKCZ; LYN; MAPK1; RAC2; PTPN11; AKT2; PIK3CA;



SYK; PRKCI; PIK3CB; PIK3C3; MAPK8; PRKD1; MAPK3; MAPK10;



KRAS; MAPK13; PRKCD; MAPK9; PIK3C2A; BTK; MAPK14; TNF; RAF1;



FYN; MAP2K2; AKT1; PIK3R1; PDPK1; MAP2K1; AKT3; VAV3; PRKCA


G-Protein Coupled
PRKCE; RAP1A; RGS16; MAPK1; GNAS; AKT2; IKBKB; PIK3CA;


Receptor Signaling
CREB1; GNAQ; NFKB2; CAMK2A; PIK3CB; PIK3C3; MAPK3; KRAS;



RELA; SRC; PIK3C2A; RAF1; IKBKG; RELB; FYN; MAP2K2; AKT1;



PIK3R1; CHUK; PDPK1; STAT3; MAP2K1; NFKB1; BRAF; ATF4; AKT3;



PRKCA


Inositol Phosphate
PRKCE; IRAK1; PRKAA2; EIF2AK2; PTEN; GRK6; MAPK1; PLK1; AKT2;


Metabolism
PIK3CA; CDK8; PIK3CB; PIK3C3; MAPK8; MAPK3; PRKCD; PRKAA1;



MAPK9; CDK2; PIM1; PIK3C2A; DYRK1A; MAP2K2; PIP5K1A; PIK3R1;



MAP2K1; PAK3; ATM; TTK; CSNK1A1; BRAF; SGK


PDGF Signaling
EIF2AK2; ELK1; ABL2; MAPK1; PIK3CA; FOS; PIK3CB; PIK3C3;



MAPK8; CAV1; ABL1; MAPK3; KRAS; SRC; PIK3C2A; PDGFRB; RAF1;



MAP2K2; JAK1; JAK2; PIK3R1; PDGFRA; STAT3; SPHK1; MAP2K1;



MYC; JUN; CRKL; PRKCA; SRF; STAT1; SPHK2


VEGF Signaling
ACTN4; ROCK1; KDR; FLT1; ROCK2; MAPK1; PGF; AKT2; PIK3CA;



ARNT; PTK2; BCL2; PIK3CB; PIK3C3; BCL2L1; MAPK3; KRAS; HIF1A;



NOS3; PIK3C2A; PXN; RAF1; MAP2K2; ELAVL1; AKT1; PIK3R1;



MAP2K1; SFN; VEGFA; AKT3; FOXO1; PRKCA


Natural Killer Cell
PRKCE; RAC1; PRKCZ; MAPK1; RAC2; PTPN11; KIR2DL3; AKT2;


Signaling
PIK3CA; SYK; PRKCI; PIK3CB; PIK3C3; PRKD1; MAPK3; KRAS;



PRKCD; PTPN6; PIK3C2A; LCK; RAF1; FYN; MAP2K2; PAK4; AKT1;



PIK3R1; MAP2K1; PAK3; AKT3; VAV3; PRKCA


Cell Cycle: G1/S
HDAC4; SMAD3; SUV39H1; HDAC5; CDKN1B; BTRC; ATR; ABL1; E2F1;


Checkpoint Regulation
HDAC2; HDAC7A; RB1; HDAC11; HDAC9; CDK2; E2F2; HDAC3; TP53;



CDKN1A; CCND1; E2F4; ATM; RBL2; SMAD4; CDKN2A; MYC; NRG1;



GSK3B; RBL1; HDAC6


T Cell Receptor
RAC1; ELK1; MAPK1; IKBKB; CBL; PIK3CA; FOS; NFKB2; PIK3CB;


Signaling
PIK3C3; MAPK8; MAPK3; KRAS; RELA, PIK3C2A; BTK; LCK; RAF1;



IKBKG; RELB, FYN; MAP2K2; PIK3R1; CHUK; MAP2K1; NFKB1; ITK;



BCL10; JUN; VAV3


Death Receptor
CRADD; HSPB1; BID; BIRC4; TBK1; IKBKB; FADD; FAS; NFKB2; BCL2;


Signaling
MAP3K14; MAPK8; RIPK1; CASP8; DAXX; TNFRSF10B; RELA; TRAF2;



TNF; IKBKG; RELB; CASP9; CHUK; APAF1; NFKB1; CASP2; BIRC2;



CASP3; BIRC3


FGF Signaling
RAC1; FGFR1; MET; MAPKAPK2; MAPK1; PTPN11; AKT2; PIK3CA;



CREB1; PIK3CB; PIK3C3; MAPK8; MAPK3; MAPK13; PTPN6; PIK3C2A;



MAPK14; RAF1; AKT1; PIK3R1; STAT3; MAP2K1; FGFR4; CRKL; ATF4;



AKT3; PRKCA; HGF


GM-CSF Signaling
LYN; ELK1; MAPK1; PTPN11; AKT2; PIK3CA; CAMK2A; STAT5B;



PIK3CB; PIK3C3; GNB2L1; BCL2L1; MAPK3; ETS1; KRAS; RUNX1;



PIM1; PIK3C2A; RAF1; MAP2K2; AKT1; JAK2; PIK3R1; STAT3;



MAP2K1; CCND1; AKT3; STAT1


Amyotrophic Lateral
BID; IGF1; RAC1; BIRC4; PGF; CAPNS1; CAPN2; PIK3CA; BCL2;


Sclerosis Signaling
PIK3CB; PIK3C3; BCL2L1; CAPN1; PIK3C2A; TP53; CASP9; PIK3R1;



RAB5A; CASP1; APAF1; VEGFA; BIRC2; BAX; AKT3; CASP3; BIRC3


JAK/Stat Signaling
PTPN1; MAPK1; PTPN11; AKT2; PIK3CA; STAT5B; PIK3CB; PIK3C3;



MAPK3; KRAS; SOCS1; STAT5A; PTPN6; PIK3C2A; RAF1; CDKN1A;



MAP2K2; JAK1; AKT1; JAK2; PIK3R1; STAT3; MAP2K1; FRAP1; AKT3;



STAT1


Nicotinate and
PRKCE; IRAK1; PRKAA2; EIF2AK2; GRK6; MAPK1; PLK1; AKT2; CDK8;


Nicotinamide
MAPK8; MAPK3; PRKCD; PRKAA1; PBEF1; MAPK9; CDK2; PIM1;


Metabolism
DYRK1A; MAP2K2; MAP2K1; PAK3; NT5E; TTK; CSNK1A1; BRAF; SGK


Chemokine Signaling
CXCR4; ROCK2; MAPK1; PTK2; FOS; CFL1; GNAQ; CAMK2A; CXCL12;



MAPK8; MAPK3; KRAS; MAPK13; RHOA; CCR3; SRC; PPP1CC;



MAPK14; NOX1; RAF1; MAP2K2; MAP2K1; JUN; CCL2; PRKCA


IL-2 Signaling
ELK1; MAPK1; PTPN11; AKT2; PIK3CA; SYK; FOS; STAT5B; PIK3CB;



PIK3C3; MAPK8; MAPK3; KRAS; SOCS1; STAT5A; PIK3C2A; LCK;



RAF1; MAP2K2; JAK1; AKT1; PIK3R1; MAP2K1; JUN; AKT3


Synaptic Long Term
PRKCE; IGF1; PRKCZ; PRDX6; LYN; MAPK1; GNAS; PRKCI; GNAQ;


Depression
PPP2R1A; IGF1R; PRKD1; MAPK3; KRAS; GRN; PRKCD; NOS3; NOS2A;



PPP2CA; YWHAZ; RAF1; MAP2K2; PPP2R5C; MAP2K1; PRKCA


Estrogen Receptor
TAF4B; EP300; CARM1; PCAF; MAPK1; NCOR2; SMARCA4; MAPK3;


Signaling
NRIP1; KRAS; SRC; NR3C1; HDAC3; PPARGC1A; RBM9; NCOA3; RAF1;



CREBBP; MAP2K2; NCOA2; MAP2K1; PRKDC; ESR1; ESR2


Protein Ubiquitination
TRAF6; SMURF1; BIRC4; BRCA1; UCHL1; NEDD4; CBL; UBE2I; BTRC;


Pathway
HSPA5; USP7; USP10; FBXW7; USP9X; STUB1; USP22; B2M; BIRC2;



PARK2; USP8; USP1; VHL; HSP90AA1; BIRC3


IL-10 Signaling
TRAF6; CCR1; ELK1; IKBKB; SP1; FOS; NFKB2; MAP3K14; MAPK8;



MAPK13; RELA; MAPK14; TNF; IKBKG; RELB; MAP3K7; JAK1; CHUK;



STAT3; NFKB1; JUN; IL1R1; IL6


VDR/RXR Activation
PRKCE; EP300; PRKCZ; RXRA; GADD45A; HES1; NCOR2; SP1; PRKCI;



CDKN1B; PRKD1; PRKCD; RUNX2; KLF4; YY1; NCOA3; CDKN1A;



NCOA2; SPP1; LRP5; CEBPB; FOXO1; PRKCA


TGF-beta Signaling
EP300; SMAD2; SMURF1; MAPK1; SMAD3; SMAD1; FOS; MAPK8;



MAPK3; KRAS; MAPK9; RUNX2; SERPINE1; RAF1; MAP3K7; CREBBP;



MAP2K2; MAP2K1; TGFBR1; SMAD4; JUN; SMAD5


Toll-like Receptor
IRAK1; EIF2AK2; MYD88; TRAF6; PPARA; ELK1; IKBKB; FOS; NFKB2;


Signaling
MAP3K14; MAPK8; MAPK13; RELA; TLR4; MAPK14; IKBKG; RELB;



MAP3K7; CHUK; NFKB1; TLR2; JUN


p38 MAPK Signaling
HSPB1; IRAK1; TRAF6; MAPKAPK2; ELK1; FADD; FAS; CREB1; DDIT3;



RPS6KA4; DAXX; MAPK13; TRAF2; MAPK14; TNF; MAP3K7; TGFBR1;



MYC; ATF4; IL1R1; SRF; STAT1


Neurotrophin/TRK
NTRK2; MAPK1; PTPN11; PIK3CA; CREB1; FOS; PIK3CB; PIK3C3;


Signaling
MAPK8; MAPK3; KRAS; PIK3C2A; RAF1; MAP2K2; AKT1; PIK3R1;



PDPK1; MAP2K1; CDC42; JUN; ATF4


FXR/RXR Activation
INS; PPARA; FASN; RXRA; AKT2; SDC1; MAPK8; APOB; MAPK10;



PPARG; MTTP; MAPK9; PPARGC1A; TNF; CREBBP; AKT1; SREBF1;



FGFR4; AKT3; FOXO1


Synaptic Long Term
PRKCE; RAP1A; EP300; PRKCZ; MAPK1; CREB1; PRKCI; GNAQ;


Potentiation
CAMK2A; PRKD1; MAPK3; KRAS; PRKCD; PPP1CC; RAF1; CREBBP;



MAP2K2; MAP2K1; ATF4; PRKCA


Calcium Signaling
RAP1A; EP300; HDAC4; MAPK1; HDAC5; CREB1; CAMK2A; MYH9;



MAPK3; HDAC2; HDAC7A; HDAC11; HDAC9; HDAC3; CREBBP; CALR;



CAMKK2; ATF4; HDAC6


EGF Signaling
ELK1; MAPK1; EGFR; PIK3CA; FOS; PIK3CB; PIK3C3; MAPK8; MAPK3;



PIK3C2A; RAF1; JAK1; PIK3R1; STAT3; MAP2K1; JUN; PRKCA; SRF;



STAT1


Hypoxia Signaling in
EDN1; PTEN; EP300; NQO1; UBE2I; CREB1; ARNT; HIF1A; SLC2A4;


the Cardiovascular
NOS3; TP53; LDHA; AKT1; ATM; VEGFA; JUN; ATF4; VHL; HSP90AA1


System


LPS/IL-1 Mediated
IRAK1; MYD88; TRAF6; PPARA; RXRA; ABCA1, MAPK8; ALDH1A1;


Inhibition of RXR
GSTP1; MAPK9; ABCB1; TRAF2; TLR4; TNF; MAP3K7; NR1H2; SREBF1;


Function
JUN; IL1R1


LXR/RXR Activation
FASN; RXRA; NCOR2; ABCA1; NFKB2; IRF3; RELA; NOS2A; TLR4;



TNF; RELB; LDLR; NR1H2; NFKB1; SREBF1; IL1R1; CCL2; IL6; MMP9


Amyloid Processing
PRKCE; CSNK1E; MAPK1; CAPNS1; AKT2; CAPN2; CAPN1; MAPK3;



MAPK13; MAPT; MAPK14; AKT1; PSEN1; CSNK1A1; GSK3B; AKT3;



APP


IL-4 Signaling
AKT2; PIK3CA; PIK3CB; PIK3C3; IRS1; KRAS; SOCS1; PTPN6; NR3C1;



PIK3C2A; JAK1; AKT1; JAK2; PIK3R1; FRAP1; AKT3; RPS6KB1


Cell Cycle: G2/M DNA
EP300; PCAF; BRCA1; GADD45A; PLK1; BTRC; CHEK1; ATR; CHEK2;


Damage Checkpoint
YWHAZ; TP53; CDKN1A; PRKDC; ATM; SFN; CDKN2A


Regulation


Nitric Oxide Signaling
KDR; FLT1; PGF; AKT2; PIK3CA; PIK3CB; PIK3C3; CAV1; PRKCD;


in the Cardiovascular
NOS3; PIK3C2A; AKT1; PIK3R1; VEGFA; AKT3; HSP90AA1


System


Purine Metabolism
NME2; SMARCA4; MYH9; RRM2; ADAR; EIF2AK4; PKM2; ENTPD1;



RAD51; RRM2B; TJP2; RAD51C; NT5E; POLD1; NME1


cAMP-mediated
RAP1A; MAPK1; GNAS; CREB1; CAMK2A; MAPK3; SRC; RAF1;


Signaling
MAP2K2; STAT3; MAP2K1; BRAF; ATF4


Mitochondrial
SOD2; MAPK8; CASP8; MAPK10; MAPK9; CASP9; PARK7; PSEN1;


Dysfunction
PARK2; APP; CASP3


Notch Signaling
HES1; JAG1; NUMB; NOTCH4; ADAM17; NOTCH2; PSEN1; NOTCH3;



NOTCH1; DLL4


Endoplasmic Reticulum
HSPA5; MAPK8; XBP1; TRAF2; ATF6; CASP9; ATF4; EIF2AK3; CASP3


Stress Pathway
NME2; AICDA; RRM2; EIF2AK4; ENTPD1; RRM2B; NT5E; POLD1;


Pyrimidine Metabolism
NME1


Parkinson's Signaling
UCHL1; MAPK8; MAPK13; MAPK14; CASP9; PARK7; PARK2; CASP3


Cardiac & Beta
GNAS; GNAQ; PPP2R1A; GNB2L1; PPP2CA; PPP1CC; PPP2R5C


Adrenergic Signaling


Glycolysis/
HK2; GCK; GPI; ALDH1A1; PKM2; LDHA; HK1


Gluconeogenesis


Interferon Signaling
IRF1; SOCS1; JAK1; JAK2; IFITM1; STAT1; IFIT3


Sonic Hedgehog
ARRB2; SMO; GLI2; DYRK1A; GLI1; GSK3B; DYRKIB


Signaling


Glycerophospholipid
PLD1; GRN; GPAM; YWHAZ; SPHK1; SPHK2


Metabolism


Phospholipid
PRDX6; PLD1; GRN; YWHAZ; SPHK1; SPHK2


Degradation


Tryptophan Metabolism
SIAH2; PRMT5; NEDD4; ALDH1A1; CYP1B1; SIAH1


Lysine Degradation
SUV39H1; EHMT2; NSD1; SETD7; PPP2R5C


Nucleotide Excision
ERCC5; ERCC4; XPA; XPC; ERCC1


Repair Pathway


Starch and Sucrose
UCHL1; HK2; GCK; GPI; HK1


Metabolism


Aminosugars
NQO1; HK2; GCK; HK1


Metabolism


Arachidonic Acid
PRDX6; GRN; YWHAZ; CYP1B1


Metabolism


Circadian Rhythm
CSNK1E; CREB1; ATF4; NR1D1


Signaling


Coagulation System
BDKRB1; F2R; SERPINE1; F3


Dopamine Receptor
PPP2R1A; PPP2CA; PPP1CC; PPP2R5C


Signaling


Glutathione
IDH2; GSTP1; ANPEP; IDH1


Metabolism


Glycerolipid
ALDH1A1; GPAM; SPHK1; SPHK2


Metabolism


Linoleic Acid
PRDX6; GRN; YWHAZ; CYP1B1


Metabolism


Methionine Metabolism
DNMT1; DNMT3B; AHCY; DNMT3A


Pyruvate Metabolism
GLO1; ALDH1A1; PKM2; LDHA


Arginine and Proline
ALDH1A1; NOS3; NOS2A


Metabolism


Eicosanoid Signaling
PRDX6; GRN; YWHAZ


Fructose and Mannose
HK2; GCK; HK1


Metabolism


Galactose Metabolism
HK2; GCK; HK1


Stilbene, Coumarine
PRDX6; PRDX1; TYR


and Lignin


Biosynthesis


Antigen Presentation
CALR; B2M


Pathway


Biosynthesis of
NQO1; DHCR7


Steroids


Butanoate Metabolism
ALDH1A1; NLGN1


Citrate Cycle
IDH2; IDH1


Fatty Acid Metabolism
ALDH1A1; CYP1B1


Glycerophospholipid
PRDX6; CHKA


Metabolism


Histidine Metabolism
PRMT5; ALDH1A1


Inositol Metabolism
ERO1L; APEX1


Metabolism of
GSTP1; CYP1B1


Xenobiotics by


Cytochrome p450


Methane Metabolism
PRDX6; PRDX1


Phenylalanine
PRDX6; PRDX1


Metabolism


Propanoate Metabolism
ALDH1A1; LDHA


Selenoamino Acid
PRMT5; AHCY


Metabolism


Sphingolipid
SPHK1; SPHK2


Metabolism


Aminophosphonate
PRMT5


Metabolism


Androgen and Estrogen
PRMT5


Metabolism


Ascorbate and Aldarate
ALDH1A1


Metabolism


Bile Acid Biosynthesis
ALDH1A1


Cysteine Metabolism
LDHA


Fatty Acid Biosynthesis
FASN


Glutamate Receptor
GNB2L1


Signaling


NRF2-mediated
PRDX1


Oxidative Stress


Response


Pentose Phosphate
GPI


Pathway


Pentose and
UCHL1


Glucuronate


Interconversions


Retinol Metabolism
ALDH1A1


Riboflavin Metabolism
TYR


Tyrosine Metabolism
PRMT5, TYR


Ubiquinone
PRMT5


Biosynthesis


Valine, Leucine and
ALDH1A1


Isoleucine Degradation


Glycine, Serine and
CHKA


Threonine Metabolism


Lysine Degradation
ALDH1A1


Pain/Taste
TRPM5; TRPA1


Pain
TRPM7; TRPC5; TRPC6; TRPC1; Cnr1; cnr2; Grk2; Trpa1; Pomc; Cgrp; Crf;



Pka; Era; Nr2b; TRPM5; Prkaca; Prkacb; Prkar1a; Prkar2a


Mitochondrial Function
AIF; CytC; SMAC (Diablo); Aifm-1; Aifm-2


Developmental
BMP-4; Chordin (Chrd); Noggin (Nog); WNT (Wnt2; Wnt2b; Wnt3a; Wnt4;


Neurology
Wnt5a; Wnt6; Wnt7b; Wnt8b; Wnt9a; Wnt9b; Wnt10a; Wnt10b; Wnt16); beta-



catenin; Dkk-1; Frizzled related proteins; Otx-2; Gbx2; FGF-8; Reelin; Dab1;



unc-86 (Pou4f1 or Brn3a); Numb; Reln









In an embodiment, the disclosure provides a method of individualized or personalized treatment of a genetic disease in a subject in need of such treatment comprising: (a) introducing one or more mutations ex vivo in a tissue, organ or a cell line, or in vivo in a transgenic non-human mammal, comprising delivering to cell(s) of the tissue, organ, cell or mammal a composition comprising the particle delivery system or the delivery system or the virus particle of any one of the above embodiment or the cell of any one of the above embodiment, wherein the specific mutations or precise sequence substitutions are or have been correlated to the genetic disease; (b) testing treatment(s) for the genetic disease on the cells to which the vector has been delivered that have the specific mutations or precise sequence substitutions correlated to the genetic disease; and (c) treating the subject based on results from the testing of treatment(s) of step (b).


Infectious Diseases

In an embodiment, the composition, system,(s) or component(s) thereof can be used to diagnose, prognose, treat, and/or prevent an infectious disease caused by a microorganism, such as bacteria, virus, fungi, parasites, or combinations thereof.


In an embodiment, the system(s) or component(s) thereof can be capable of targeting specific microorganism within a mixed population. Exemplary methods of such techniques are described in e.g. Gomaa A A, Klumpe H E, Luo M L, Selle K, Barrangou R, Beisel C L. 2014. Programmable removal of bacterial strains by use of genome-targeting composition, systems, mBio 5:e00928-13; Citorik R J, Mimee M, Lu T K. 2014. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32:1141-1145, the teachings of which can be adapted for use with the compositions, systems, and components thereof described herein.


In an embodiment, the composition, system,(s) and/or components thereof can be capable of targeting pathogenic and/or drug-resistant microorganisms, such as bacteria, virus, parasites, and fungi. In an embodiment, the composition, system,(s) and/or components thereof can be capable of targeting and modifying one or more polynucleotides in a pathogenic microorganism such that the microorganism is less virulent, killed, inhibited, or is otherwise rendered incapable of causing disease and/or infecting and/or replicating in a host cell.


In an embodiment, the pathogenic bacteria that can be targeted and/or modified by the composition, system,(s) and/or component(s) thereof described herein include, but are not limited to, those of the genus Actinomyces (e.g. A. israelii), Bacillus (e.g. B. anthracis, B. cereus), Bactereoides (e.g. B. fragilis), Bartonella (B. henselae, B. quintana), Bordetella (B. pertussis), Borrelia (e.g. B. burgdorferi, B. garinii, B. afzelii, and B. recurreentis), Brucella (e.g. B. abortus, B. canis, B. melitensis, and B. suis), Campylobacter (e.g. C. jejuni), Chlamydia (e.g. C. pneumoniae and C. trachomatis), Chlamydophila (e.g. C. psittaci), Clostridium (e.g. C. botulinum, C. difficile, C. perfringens. C. tetani), Corynebacterium (e.g. C. diptheriae), Enterococcus (e.g. E. Faecalis, E. faecium), Ehrlichia (E. canis and E. chaffensis) Escherichia (e.g. E. coli), Francisella (e.g. F. tularensis), Haemophilus (e.g. H. influenzae), Helicobacter (H. pylori), Klebsiella (E.g. K. pneumoniae), Legionella (e.g. L. pneumophila), Leptospira (e.g. L. interrogans, L. santarosai, L. weilii, L. noguchii), Listereia (e.g. L. monocytogeenes), Mycobacterium (e.g. M. leprae, M. tuberculosis, M. ulcerans), Mycoplasma (M. pneumoniae), Neisseria (N. gonorrhoeae and N. menigitidis), Nocardia (e.g. N. asteeroides), Pseudomonas (P. aeruginosa), Rickettsia (R. rickettsia), Salmonella (S. typhi and S. typhimurium), Shigella (S. sonnei and S. dysenteriae), Staphylococcus (S. aureus, S. epidermidis, and S. saprophyticus), Streptococcus (S. agalactiaee, S. pneumoniae, S. pyogenes), Treponema (T. pallidum), Ureeaplasma (e.g. U. urealyticum), Vibrio (e.g. V. cholerae), Yersinia (e.g. Y. pestis, Y. enteerocolitica, and Y. pseudotuberculosis).


In an embodiment, the pathogenic virus that can be targeted and/or modified by the composition, system,(s) and/or component(s) thereof described herein include, but are not limited to, a double-stranded DNA virus, a partly double-stranded DNA virus, a single-stranded DNA virus, a positive single-stranded RNA virus, a negative single-stranded RNA virus, or a double stranded RNA virus. In an embodiment, the pathogenic virus can be from the family Adenoviridae (e.g. Adenovirus), Herpeesviridae (e.g. Herpes simplex, type 1, Herpes simplex, type 2, Varicella-zoster virus, Epstein-Barr virus, Human cytomegalovirus, Human herpesvirus, type 8), Papillomaviridae (e.g. Human papillomavirus), Polyomaviridae (e.g. BK virus, JC virus), Poxviridae (e.g. smallpox), Hepadnaviridae (e.g. Hepatitis B), Parvoviridae (e.g. Parvovirus B19), Astroviridae (e.g. Human astrovirus), Caliciviridae (e.g. Norwalk virus), Picornaviridae (e.g. coxsackievirus, hepatitis A virus, poliovirus, rhinovirus), Coronaviridae (e.g. Severe acute respiratory syndrome-related coronavirus, strains: Severe acute respiratory syndrome virus, Severe acute respiratory syndrome coronavirus 2 (COVID-19)), Flaviviridae (e.g. Hepatitis C virus, yellow fever virus, dengue virus, West Nile virus, TBE virus), Togaviridae (e.g. Rubella virus), Hepeviridae (e.g. Hepatitis E virus), Retroviridae (Human immunodeficiency virus (HIV)), Orthomyxoviridae (e.g. Influenza virus), Arenaviridae (e.g. Lassa virus), Bunyaviridae (e.g. Crimean-Congo hemorrhagic fever virus, Hantaan virus), Filoviridae (e.g. Ebola virus and Marburg virus), Paramyxoviridae (e.g. Measles virus, Mumps virus, Parainfluenza virus, Respiratory syncytial virus), Rhabdoviridae (Rabies virus), Hepatitis D virus, Reoviridae (e.g. Rotavirus, Orbivirus, Coltivirus, Banna virus).


In an embodiment, the pathogenic fungi that can be targeted and/or modified by the composition, system,(s) and/or component(s) thereof described herein include, but are not limited to, those of the genus Candida (e.g. C. albicans), Aspergillus (e.g. A. fumigatus, A. flavus, A. clavatus), Cryptococcus (e.g. C. neoformans, C. gattii), Histoplasma (e.g., H. capsulatum), Pneumocystis (e.g. P. jiroveecii), Stachybotrys (e.g. S. chartarum).


In an embodiment, the pathogenic parasites that can be targeted and/or modified by the composition, system,(s) and/or component(s) thereof described herein include, but are not limited to, protozoa, helminths, and ectoparasites. In an embodiment, the pathogenic protozoa that can be targeted and/or modified by the composition, system,(s) and/or component(s) thereof described herein include, but are not limited to, those from the groups Sarcodina (e.g. ameba such as Entamoeba), Mastigophora (e.g. flagellates such as Giardia and Leishmania), Cilophora (e.g. ciliates such as Balantidum), and sporozoa (e.g. plasmodium and cryptosporidium). In an embodiment, the pathogenic helminths that can be targeted and/or modified by the composition, system,(s) and/or component(s) thereof described herein include, but are not limited to, flatworms (platyhelminths), thorny-headed worms (acanthoceephalins), and roundworms (nematodes). In an embodiment, the pathogenic ectoparasites that can be targeted and/or modified by the composition, system,(s) and/or component(s) thereof described herein include, but are not limited to, ticks, fleas, lice, and mites.


In an embodiment, the pathogenic parasite that can be targeted and/or modified by the composition, system,(s) and/or component(s) thereof described herein include, but are not limited to, Acanthamoeba spp., Balamuthia mandrillaris, Babesiosis spp. (e.g. Babesia B. divergens, B. bigemina, B. equi, B. microfti, B. duncani), Balantidiasis spp. (e.g. Balantidium coli), Blastocystis spp., Cryptosporidium spp., Cyclosporiasis spp. (e.g. Cyclospora cayetanensis), Dientamoebiasis spp. (e.g. Dientamoeba fragilis), Amoebiasis spp. (e.g. Entamoeba histolytica), Giardiasis spp. (e.g. Giardia lamblia), Isosporiasis spp. (e.g. Isospora belli), Leishmania spp., Naegleria spp. (e.g. Naegleria fowleri), Plasmodium spp. (e.g. Plasmodium falciparum, Plasmodium vivax, Plasmodium ovate curtisi, Plasmodium ovate wallikeri, Plasmodium malariae, Plasmodium knowlesi), Rhinosporidiosis spp. (e.g. Rhinosporidium seeberi), Sarcocystosis spp. (e.g. Sarcocystis bovihominis, Sarcocystis suihominis), Toxoplasma spp. (e.g. Toxoplasma gondii), Trichomonas spp. (e.g. Trichomonas vaginalis), Trypanosoma spp. (e.g. Trypanosoma brucei), Trypanosoma spp. (e.g. Trypanosoma cruzi), Tapeworm (e.g. Cestoda, Taenia multiceps, Taenia saginata, Taenia solium), Diphyllobothrium latum spp., Echinococcus spp. (e.g. Echinococcus granulosus, Echinococcus multilocularis, E. vogeli, E. oligarthrus), Hymenolepis spp. (e.g. Hymenolepis nana, Hymenolepis diminuta), Bertiella spp. (e.g. Bertiella mucronata, Bertiella studeri), Spirometra (e.g. Spirometra erinaceieuropaei), Clonorchis spp. (e.g. Clonorchis sinensis; Clonorchis viverrini), Dicrocoelium spp. (e.g. Dicrocoelium dendriticum), Fasciola spp. (e.g. Fasciola hepatica, Fasciola gigantica), Fasciolopsis spp. (e.g. Fasciolopsis buski), Metagonimus spp. (e.g. Metagonimus yokogawai), Metorchis spp. (e.g. Metorchis conjunctus), Opisthorchis spp. (e.g. Opisthorchis viverrini, Opisthorchis felineus), Clonorchis spp. (e.g. Clonorchis sinensis), Paragonimus spp. (e.g. Paragonimus westermani; Paragonimus africanus; Paragonimus caliensis; Paragonimus kellicotti; Paragonimus skrjabini; Paragonimus uterobilateralis), Schistosoma sp., Schistosoma spp. (e.g. Schistosoma mansoni, Schistosoma haematobium, Schistosoma japonicum, Schistosoma mekongi, and Schistosoma intercalatum), Echinostoma spp. (e.g. E. echinatum), Trichobilharzia spp. (e.g. Trichobilharzia regent), Ancylostoma spp. (e.g. Ancylostoma duodenale), Necator spp. (e.g. Necator americanus), Angiostrongylus spp., Anisakis spp., Ascaris spp. (e.g. Ascaris lumbricoides), Baylisascaris spp. (e.g. Baylisascaris procyonis), Brugia spp. (e.g. Brugia malayi, Brugia timori), Dioctophyme spp. (e.g. Dioctophyme renale), Dracunculus spp. (e.g. Dracunculus medinensis), Enterobius spp. (e.g. Enterobius vermicularis, Enterobius gregorii), Gnathostoma spp. (e.g. Gnathostoma spinigerum, Gnathostoma hispidum), Halicephalobus spp. (e.g. Halicephalobus gingivalis), Loa loa spp. (e.g. Loa loa filaria), Mansonella spp. (e.g. Mansonella streptocerca), Onchocerca spp. (e.g. Onchocerca volvulus), Strongyloides spp. (e.g. Strongyloides stercoralis), Thelazia spp. (e.g. Thelazia californiensis, Thelazia callipaeda), Toxocara spp. (e.g. Toxocara canis, Toxocara cati, Toxascaris leonine), Trichinella spp. (e.g. Trichinella spiralis, Trichinella britovi, Trichinella nelsoni, Trichinella nativa), Trichuris spp. (e.g. Trichuris trichiura, Trichuris vulpis), Wuchereria spp. (e.g. Wuchereria bancrofti), Dermatobia spp. (e.g. Dermatobia hominis), Tunga spp. (e.g. Tunga penetrans), Cochliomyia spp. (e.g. Cochliomyia hominivorax), Linguatula spp. (e.g. Linguatula serrata), Archiacanthocephala sp., Moniliformis sp. (e.g. Moniliformis moniliformis), Pediculus spp. (e.g. Pediculus humanus capitis, Pediculus humanus humanus), Pthirus spp. (e.g. Pthirus pubis), Arachnida spp. (e.g. Trombiculidae, Ixodidae, Argaside), Siphonaptera spp (e.g. Siphonaptera: Pulicinae), Cimicidae spp. (e.g. Cimex lectularius and Cimex hemipterus), Diptera spp., Demodex spp. (e.g. Demodex folliculorum/brevis/canis), Sarcoptes spp. (e.g. Sarcoptes scabiei), Dermanyssus spp. (e.g. Dermanyssus gallinae), Ornithonyssus spp. (e.g. Ornithonyssus sylviarum, Ornithonyssus bursa, Ornithonyssus bacoti), Laelaps spp. (e.g. Laelaps echidnina), Liponyssoides spp. (e.g. Liponyssoides sanguineus).


In an embodiment, the gene targets can be any of those as set forth in Table 1 of Strich and Chertow. 2019. J. Clin. Microbio. 57:4 e01307-18, which is incorporated herein as if expressed in its entirety herein.


In an embodiment, the method can include delivering a composition, system, and/or component thereof to a pathogenic organism described herein, allowing the composition, system, and/or component thereof to specifically bind and modify one or more targets in the pathogenic organism, whereby the modification kills, inhibits, reduces the pathogenicity of the pathogenic organism, or otherwise renders the pathogenic organism non-pathogenic. In an embodiment, delivery of the composition, system, occurs in vivo (i.e. in the subject being treated). In an embodiment, delivery occurs by an intermediary, such as microorganism or phage that is non-pathogenic to the subject but is capable of transferring polynucleotides and/or infecting the pathogenic microorganism. In an embodiment, the intermediary microorganism can be an engineered bacteria, virus, or phage that contains the composition, system,(s) and/or component(s) thereof and/or vectors and/or vector systems. The method can include administering an intermediary microorganism containing the composition, system,(s) and/or component(s) thereof and/or vectors and/or vector systems to the subject to be treated. The intermediary microorganism can then produce the system and/or component thereof or transfer a composition, system, polynucleotide to the pathogenic organism. In embodiments, where the system and/or component thereof, vector, or vector system is transferred to the pathogenic microorganism, the composition, system, or component thereof is then produced in the pathogenic microorganism and modifies the pathogenic microorganism such that it is less virulent, killed, inhibited, or is otherwise rendered incapable of causing disease and/or infecting and/or replicating in a host or cell thereof.


In an embodiment, where the pathogenic microorganism inserts its genetic material into the host cell's genome (e.g. a virus), the composition, system can be designed such that it modifies the host cell's genome such that the viral DNA or cDNA cannot be replicated by the host cell's machinery into a functional virus. In an embodiment, where the pathogenic microorganism inserts its genetic material into the host cell's genome (e.g. a virus), the composition, system can be designed such that it modifies the host cell's genome such that the viral DNA or cDNA is deleted from the host cell's genome.


It will be appreciated that inhibiting or killing the pathogenic microorganism, the disease and/or condition that its infection causes in the subject can be treated or prevented. Thus, also provided herein are methods of treating and/or preventing one or more diseases or symptoms thereof caused by any one or more pathogenic microorganisms, such as any of those described herein.


Mitochondria) Diseases

Some of the most challenging mitochondrial disorders arise from mutations in mitochondrial DNA (mtDNA), a high copy number genome that is maternally inherited. In an embodiment, mtDNA mutations can be modified using a composition, system, described herein. In an embodiment, the mitochondrial disease that can be diagnosed, prognosed, treated, and/or prevented can be MELAS (mitochondrial myopathy encephalopathy, and lactic acidosis and stroke-like episodes), CPEO/PEO (chronic progressive external ophthalmoplegia syndrome/progressive external ophthalmoplegia), KSS (Kearns-Sayre syndrome), MIDD (maternally inherited diabetes and deafness), MERRF (myoclonic epilepsy associated with ragged red fibers), NIDDM (noninsulin-dependent diabetes mellitus), LHON (Leber hereditary optic neuropathy), LS (Leigh Syndrome) an aminoglycoside induced hearing disorder, NARP (neuropathy, ataxia, and pigmentary retinopathy), Extrapyramidal disorder with akinesia-rigidity, psychosis and SNHL, Nonsyndromic hearing loss a cardiomyopathy, an encephalomyopathy, Pearson's syndrome, or a combination thereof.


In an embodiment, the mtDNA of a subject can be modified in vivo or ex vivo. In an embodiment, where the mtDNA is modified ex vivo, after modification the cells containing the modified mitochondria can be administered back to the subject. In an embodiment, the composition, system, or component thereof can be capable of correcting an mtDNA mutation, or a combination thereof.


In an embodiment, at least one of the one or more mtDNA mutations is selected from the group consisting of: A3243G, C3256T, T3271C, G1019A, A1304T, A15533G, C1494T, C4467A, T1658C, G12315A, A3421G, A8344G, T8356C, G8363A, A13042T, T3200C, G3242A, A3252G, T3264C, G3316A, T3394C, T14577C, A4833G, G3460A, G9804A, G11778A, G14459A, A14484G, G15257A, T8993C, T8993G, G10197A, G13513A, T1095C, C1494T, A1555G, G1541A, C1634T, A3260G, A4269G, T7587C, A8296G, A8348G, G8363A, T9957C, T9997C, G12192A, C12297T, A14484G, G15059A, duplication of CCCCCTCCCC-tandem repeats at positions 305-314 and/or 956-965, deletion at positions from 8,469-13,447, 4,308-14,874, and/or 4,398-14,822, 961ins/delC, the mitochondrial common deletion (e.g. mtDNA 4,977 bp deletion), and combinations thereof.


In an embodiment, the mitochondrial mutation can be any mutation as set forth in or as identified by use of one or more bioinformatic tools available at Mitomap available at mitomap.org. Such tools include, but are not limited to, “Variant Search, aka Market Finder”, Find Sequences for Any Haplogroup, aka “Sequence Finder”, “Variant Info”, “POLG Pathogenicity Prediction Server”, “MITOMASTER”, “Allele Search”, “Sequence and Variant Downloads”, “Data Downloads”. MitoMap contains reports of mutations in mtDNA that can be associated with disease and maintains a database of reported mitochondrial DNA Base Substitution Diseases: rRNA/tRNA mutations.


In an embodiment, the method includes delivering a composition, system, and/or a component thereof to a cell, and more specifically one or more mitochondria in a cell, allowing the composition, system, and/or component thereof to modify one or more target polynucleotides in the cell, and more specifically one or more mitochondria in the cell. The target polynucleotides can correspond to a mutation in the mtDNA, such as any one or more of those described herein. In an embodiment, the modification can alter a function of the mitochondria such that the mitochondria functions normally or at least is/are less dysfunctional as compared to an unmodified mitochondria. Modification can occur in vivo or ex vivo. Where modification is performed ex vivo, cells containing modified mitochondria can be administered to a subject in need thereof in an autologous or allogenic manner.


Microbiome Modification

Microbiomes play important roles in health and disease. For example, the gut microbiome can play a role in health by controlling digestion, preventing growth of pathogenic microorganisms and have been suggested to influence mood and emotion. Imbalanced microbiomes can promote disease and are suggested to contribute to weight gain, unregulated blood sugar, high cholesterol, cancer, and other disorders. A healthy microbiome has a series of joint characteristics that can be distinguished from non-healthy individuals; thus detection and identification of the disease-associated microbiome can be used to diagnose and detect disease in an individual. The compositions, systems, and components thereof can be used to screen the microbiome cell population and be used to identify a disease associated microbiome. Cell screening methods utilizing compositions, systems, and components thereof are described elsewhere herein and can be applied to screening a microbiome, such as a gut, skin, vagina, and/or oral microbiome, of a subject.


In an embodiment, the microbe population of a microbiome in a subject can be modified using a composition, system, and/or component thereof described herein. In an embodiment, the composition, system, and/or component thereof can be used to identify and select one or more cell types in the microbiome and remove them from the microbiome population. Exemplary methods of selecting cells using a composition, system, and/or component thereof are described elsewhere herein. In this way, the make-up or microorganism profile of the microbiome can be altered. In an embodiment, the alteration causes a change from a diseased microbiome composition to a healthy microbiome composition. In this way the ratio of one type or species of microorganism to another can be modified, such as going from a diseased ratio to a healthy ratio. In an embodiment, the cells selected are pathogenic microorganisms.


In an embodiment, the compositions and systems described herein can be used to modify a polynucleotide in a microorganism of a microbiome in a subject. In an embodiment, the microorganism is a pathogenic microorganism. In an embodiment, the microorganism is a commensal and non-pathogenic microorganism. Methods of modifying polynucleotides in a cell in the subject are described elsewhere herein and can be applied to these embodiments.


Models of Diseases and Conditions

In an aspect, the disclosure provides a method of modeling a disease associated with a genomic locus in a eukaryotic organism or a non-human organism comprising manipulation of a target sequence within a coding, non-coding or regulatory element of said genomic locus comprising delivering a non-naturally occurring or engineered composition comprising a viral vector system comprising one or more viral vectors operably encoding a composition for expression thereof, wherein the composition comprises particle delivery system or the delivery system or the virus particle of any one of the above embodiments or the cell of any one of the above embodiment.


In one aspect, the disclosure provides a method of generating a model eukaryotic cell that can include one or more a mutated disease genes and/or infectious microorganisms. In an embodiment, a disease gene is any gene associated an increase in the risk of having or developing a disease. In an embodiment, the method includes (a) introducing one or more vectors into a eukaryotic cell, wherein the one or more vectors comprise a composition, system, and/or component thereof and/or a vector or vector system that is capable of driving expression of a composition, system, and/or component thereof including, but not limited to: a guide sequence optionally linked to a tracr mate sequence, a tracr sequence, one or more Cas effectors, and combinations thereof and (b) allowing a composition, system, or complex to bind to one or more target polynucleotides, e.g., to effect cleavage, nicking, or other modification of the target polynucleotide within said disease gene, wherein the composition, system, or complex is composed of one or more CRISPR-Cas effectors complexed with (1) one or more guide sequences that is/are hybridized to the target sequence(s) within the target polynucleotide(s), and optionally (2) the tracr mate sequence(s) that is/are hybridized to the tracr sequence(s), thereby generating a model eukaryotic cell comprising one or more mutated disease gene(s). Thus, In an embodiment the composition and system contains nucleic acid molecules for and drives expression of one or more of: a Cas effector, a guide sequence linked to a tracr mate sequence, and a tracr sequence and/or a Homologous Recombination template and/or a stabilizing ligand if the Cas effector has a destabilization domain. In an embodiment, said cleavage comprises cleaving one or two strands at the location of the target sequence by the Cas effector(s). In an embodiment, nicking comprises nicking one or two strands at the location of the target sequence by the Cas effector(s). In an embodiment, said cleavage or nicking results in modified transcription of a target polynucleotide. In an embodiment, modification results in decreased transcription of the target polynucleotide. In an embodiment, the method further comprises repairing said cleaved or nicked target polynucleotide by homologous recombination with an recombination template polynucleotide, wherein said repair results in a mutation comprising an insertion, deletion, or substitution of one or more nucleotides of said target polynucleotide. In an embodiment, said mutation results in one or more amino acid changes in a protein expression from a gene comprising the target sequence.


The disease modeled can be any disease with a genetic or epigenetic component. In an embodiment, the disease modeled can be any as discussed elsewhere herein, including but not limited to any as set forth in Tables 4 and 5 herein.


In Situ Disease Detection

The compositions, systems, and/or components thereof can be used for diagnostic methods of detection such as in CASFISH (see e.g. Deng et al. 2015. PNAS USA 112(38): 11870-11875), CRISPR-Live FISH (see e.g. Wang et al. 2020. Science; 365(6459):1301-1305), sm-FISH (Lee and Jefcoate. 2017. Front. Endocrinol. doi.org/10.3389/fendo.2017.00289), sequential FISH CRISPRainbow (Ma et al. Nat Biotechnol, 34 (2016), pp. 528-530), CRISPR-Sirius (Nat Methods, 15 (2018), pp. 928-931), Casilio (Cheng et al. Cell Res, 26 (2016), pp. 254-257), Halo-Tag based genomic loci visualization techniques (e.g. Deng et al. 2015. PNAS USA 112(38): 11870-11875; Knight et al., Science, 350 (2015), pp. 823-826), RNA-aptamer based methods (e.g. Ma et al., J Cell Biol, 214 (2016), pp. 529-537), molecular beacon-based methods (e.g. Zhao et al. Biomaterials, 100 (2016), pp. 172-183; Wu et al. Nucleic Acids Res (2018)), Quantum Dot-based systems (e.g. Ma et al. Anal Chem, 89 (2017), pp. 12896-12901), multiplexed methods (e.g. Ma et al., Proc Natl Acad Sci USA, 112 (2015), pp. 3002-3007; Fu et al. Nat Commun, 7 (2016), p. 11707; Ma et al. Nat Biotechnol, 34 (2016), pp. 528-530; Shao et al. Nucleic Acids Res, 44 (2016), Article e86); Wang et al. Sci Rep, 6 (2016), p. 26857), c, and other in situ CRISPR-hybridization based methods (e.g. Chen et al. Cell, 155 (2013), pp. 1479-1491; Gu et al. Science, 359 (2018), pp. 1050-1055; Tanebaum et al. Cell, 159 (2014), pp. 635-646; Ye et al. Protein Cell, 8 (2017), pp. 853-855; Chen et al. Nat Commun, 9 (2018), p. 5065; Shao et al. ACS Synth Biol (2017); Fu et al. Nat Commun, 7 (2016), p. 11707; Shao et al. Nucleic Acids Res, 44 (2016), Article e86; Wang et al., Sci Rep, 6 (2016), p. 26857), all of which are incorporated by reference herein as if expressed in their entirety and whose teachings can be adapted to the compositions, systems, and components thereof described herein in view of the description herein.


In an embodiment, the composition, system, or component thereof can be used in a detection method, such as an in situ detection method described herein. In an embodiment, the composition, system, or component thereof can include a catalytically inactivate Cas effector described herein and use this system in detection methods such as fluorescence in situ hybridization (FISH) or any other described herein. In an embodiment, the inactivated Cas effector, which lacks the ability to produce DNA double-strand breaks may be fused with a marker, such as fluorescent protein, such as the enhanced green fluorescent protein (eEGFP) and co-expressed with small guide RNAs to target pericentric, centric and telomeric repeats in vivo. The dCas effector or system thereof can be used to visualize both repetitive sequences and individual genes in the human genome. Such new applications of labelled dCas effector and compositions, systems thereof can be important in imaging cells and studying the functional nuclear architecture, especially in cases with a small nucleus volume or complex 3 D structures.


Cell Selection

In an embodiment, the compositions, systems, and/or components thereof described herein can be used in a method to screen and/or select cells. In an embodiment, composition, system-based screening/selection method can be used to identify diseased cells in a cell population. In an embodiment, selection of the cells results in a modification in the cells such that the selected cells die. In this way, diseased cells can be identified and removed from the healthy cell population. In an embodiment, the diseased cells can be a cancer cell, pre-cancerous cell, a virus or other pathogenic organism infected cells, or otherwise abnormal cell. In an embodiment, the modification can impart another detectable change in the cells to be selected (e.g. a functional change and/or genomic barcode) that facilitates selection of the desired cells. In an embodiment a negative selection scheme can be used to obtain a desired cell population. In these embodiments, the cells to be selected against are modified, thus can be removed from the cell population based on their death or identification or sorting based the detectable change imparted on the cells. Thus, in these embodiments, the remaining cells after selection are the desired cell population.


In an embodiment, a method of selecting one or more cell(s) containing a polynucleotide modification can include introducing one or more composition, system,(s) and/or components thereof, and/or vectors or vector systems into the cell(s), wherein the composition, system,(s) and/or components thereof, and/or vectors or vector systems contains and/or is capable of expressing one or more of: a Cas effector, a guide sequence optionally linked to a tracr mate sequence, a tracr sequence, and an recombination template; wherein, for example that which is being expressed is within and expressed in vivo by the composition, system, vector or vector system and/or the recombination template comprises the one or more mutations that abolish Cas effector cleavage; allowing homologous recombination of the recombination template with the target polynucleotide in the cell(s) to be selected; allowing a composition, system, or complex to bind to a target polynucleotide to effect cleavage of the target polynucleotide within said gene, wherein the AAV-complex comprises the Cas effector complexed with (1) the guide sequence that is hybridized to the target sequence within the target polynucleotide, and (2) the tracr mate sequence that is hybridized to the tracr sequence, wherein binding of the complex to the target polynucleotide induces cell death or imparts some other detectable change to the cell, thereby allowing one or more cell(s) in which one or more mutations have been introduced to be selected. In an embodiment, the cell to be selected may be a eukaryotic cell. In an embodiment, the cell to be selected may be a prokaryotic cell. Selection of specific cells via the methods herein can be performed without requiring a selection marker or a two-step process that may include a counter-selection system.


Therapeutic Agent Development

The compositions, systems, and components thereof described herein can be used to develop CRISPR-Cas-based and non-CRISPR-Cas-based biologically active agents, such as small molecule therapeutics. Thus, described herein are methods for developing a biologically active agent that modulates a cell function and/or signaling event associated with a disease and/or disease gene. In an embodiment, the method comprises (a) contacting a test compound with a diseased cell and/or a cell containing a disease gene cell; and (b) detecting a change in a readout that is indicative of a reduction or an augmentation of a cell signaling event or other cell functionality associated with said disease or disease gene, thereby developing said biologically active agent that modulates said cell signaling event or other functionality associated with said disease gene. In an embodiment, the diseased cell is a model cell described elsewhere herein. In an embodiment, the diseased cell is a diseased cell isolated from a subject in need of treatment. In an embodiment, the test compound is a small molecule agent. In an embodiment, test compound is a small molecule agent. In an embodiment, the test compound is a biologic molecule agent.


In an embodiment, the method involves developing a therapeutic based on the composition, system, described herein. In particular embodiments, the therapeutic comprises a Cas effector and/or a guide RNA capable of hybridizing to a target sequence of interest. In particular embodiments, the therapeutic is a vector or vector system that can contain a) a first regulatory element operably linked to a nucleotide sequence encoding the Cas effector protein(s); and b) a second regulatory element operably linked to one or more nucleotide sequences encoding one or more nucleic acid molecules comprising a guide RNA comprising a guide sequence, a direct repeat sequence; wherein components (a) and (b) are located on same or different vectors. In particular embodiments, the biologically active agent is a composition comprising a delivery system operably configured to deliver composition, system, or components thereof, and/or or one or more polynucleotide sequences, vectors, or vector systems containing or encoding said components into a cell and capable of forming a complex with the components of the composition and system herein, and wherein said complex is operable in the cell. In an embodiment, the complex can include the Cas effector protein(s) as described herein, guide RNA comprising the guide sequence, and a direct repeat sequence. In any such compositions, the delivery system can be a yeast system, a lipofection system, a microinjection system, a biolistic system, virosomes, liposomes, immunoliposomes, polycations, lipid:nucleic acid conjugates or artificial virions, or any other system as described herein. In particular embodiments, the delivery is via a particle, a nanoparticle, a lipid or a cell penetrating peptide (CPP).


Also described herein are methods for developing or designing a composition, system, optionally a composition, system, based therapy or therapeutic, comprising (a) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, and from said selected target sites subselecting target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, or (b) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, or selecting for a (therapeutic) locus of interest gRNA target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, and optionally estimating the number of (sub)selected target sites needed to treat or otherwise modulate or manipulate a population, and optionally validating one or more of the (sub)selected target sites for an individual subject, optionally designing one or more gRNA recognizing one or more of said (sub)selected target sites.


In an embodiment, the method for developing or designing a gRNA for use in a composition, system, optionally a composition, system, based therapy or therapeutic, can include (a) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, and from said selected target sites subselecting target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, or (b) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, or selecting for a (therapeutic) locus of interest gRNA target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, and optionally estimating the number of (sub)selected target sites needed to treat or otherwise modulate or manipulate a population, optionally validating one or more of the (sub)selected target sites for an individual subject, optionally designing one or more gRNA recognizing one or more of said (sub)selected target sites.


In an embodiment, the method for developing or designing a composition, system, optionally a composition, system, based therapy or therapeutic in a population can include (a) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, and from said selected target sites subselecting target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, or (b) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, or selecting for a (therapeutic) locus of interest gRNA target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, and optionally estimating the number of (sub)selected target sites needed to treat or otherwise modulate or manipulate a population, optionally validating one or more of the (sub)selected target sites for an individual subject, optionally designing one or more gRNA recognizing one or more of said (sub)selected target sites.


In an embodiment the method for developing or designing a gRNA for use in a composition, system, optionally a composition, system, based therapy or therapeutic in a population, can include (a) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, and from said selected target sites subselecting target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, or (b) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, or selecting for a (therapeutic) locus of interest gRNA target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, and optionally estimating the number of (sub)selected target sites needed to treat or otherwise modulate or manipulate a population, optionally validating one or more of the (sub)selected target sites for an individual subject, optionally designing one or more gRNA recognizing one or more of said (sub)selected target sites.


In an embodiment, the method for developing or designing a composition, system, such as a composition, system, based therapy or therapeutic, optionally in a population; or for developing or designing a gRNA for use in a composition, system, optionally a composition, system, based therapy or therapeutic, optionally in a population, can include selecting a set of target sequences for one or more loci in a target population, wherein the target sequences do not contain variants occurring above a threshold allele frequency in the target population (i.e. platinum target sequences); removing from said selected (platinum) target sequences any target sequences having high frequency off-target candidates (relative to other (platinum) targets in the set) to define a final target sequence set; preparing one or more, such as a set of compositions, systems, based on the final target sequence set, optionally wherein a number of CRISP-Cas systems prepared is based (at least in part) on the size of a target population.


In an embodiment, off-target candidates/off-targets, PAM restrictiveness, target cleavage efficiency, or effector protein specificity is identified or determined using a sequencing-based double-strand break (DSB) detection assay, such as described herein elsewhere. In an embodiment, off-target candidates/off-targets are identified or determined using a sequencing-based double-strand break (DSB) detection assay, such as described herein elsewhere. In an embodiment, off-targets, or off target candidates have at least 1, preferably 1-3, mismatches or (distal) PAM mismatches, such as 1 or more, such as 1, 2, 3, or more (distal) PAM mismatches. In an embodiment, sequencing-based DSB detection assay comprises labeling a site of a DSB with an adapter comprising a primer binding site, labeling a site of a DSB with a barcode or unique molecular identifier, or combination thereof, as described herein elsewhere.


It will be understood that the guide sequence of the gRNA is 100% complementary to the target site, i.e. does not comprise any mismatch with the target site. It will be further understood that “recognition” of an (off-)target site by a gRNA presupposes composition, system, functionality, i.e. an (off-)target site is only recognized by a gRNA if binding of the gRNA to the (off-)target site leads to composition, system, activity (such as induction of single or double strand DNA cleavage, transcriptional modulation, etc.).


In an embodiment, the target sites having minimal sequence variation across a population are characterized by absence of sequence variation in at least 99%, preferably at least 99.9%, more preferably at least 99.99% of the population. In an embodiment, optimizing target location comprises selecting target sequences or loci having an absence of sequence variation in at least 99%, %, preferably at least 99.9%, more preferably at least 99.99% of a population. These targets are referred to herein elsewhere also as “platinum targets”. In an embodiment, said population comprises at least 1000 individuals, such as at least 5000 individuals, such as at least 10000 individuals, such as at least 50000 individuals.


In an embodiment, the off-target sites are characterized by at least one mismatch between the off-target site and the gRNA. In an embodiment, the off-target sites are characterized by at most five, preferably at most four, more preferably at most three mismatches between the off-target site and the gRNA. In an embodiment, the off-target sites are characterized by at least one mismatch between the off-target site and the gRNA and by at most five, preferably at most four, more preferably at most three mismatches between the off-target site and the gRNA.


In an embodiment, said minimal number of off-target sites across said population is determined for high-frequency haplotypes in said population. In an embodiment, said minimal number of off-target sites across said population is determined for high-frequency haplotypes of the off-target site locus in said population. In an embodiment, said minimal number of off-target sites across said population is determined for high-frequency haplotypes of the target site locus in said population. In an embodiment, the high-frequency haplotypes are characterized by occurrence in at least 0.1% of the population.


In an embodiment, the number of (sub)selected target sites needed to treat a population is estimated based on based low frequency sequence variation, such as low frequency sequence variation captured in large scale sequencing datasets. In an embodiment, the number of (sub)selected target sites needed to treat a population of a given size is estimated.


In an embodiment, the method further comprises obtaining genome sequencing data of a subject to be treated; and treating the subject with a composition, system, selected from the set of compositions, systems, wherein the composition, system, selected is based (at least in part) on the genome sequencing data of the individual. In an embodiment, the ((sub)selected) target is validated by genome sequencing, preferably whole genome sequencing.


In an embodiment, target sequences or loci as described herein are (further) selected based on optimization of one or more parameters, such as PAM type (natural or modified), PAM nucleotide content, PAM length, target sequence length, PAM restrictiveness, target cleavage efficiency, and target sequence position within a gene, a locus or other genomic region. Methods of optimization are discussed in greater detail elsewhere herein.


In an embodiment, target sequences or loci as described herein are (further) selected based on optimization of one or more of target loci location, target length, target specificity, and PAM characteristics. As used herein, PAM characteristics may comprise for instance PAM sequence, PAM length, and/or PAM GC contents. In an embodiment, optimizing PAM characteristics comprises optimizing nucleotide content of a PAM. In an embodiment, optimizing nucleotide content of PAM is selecting a PAM with a motif that maximizes abundance in the one or more target loci, minimizes mutation frequency, or both. Minimizing mutation frequency can for instance be achieved by selecting PAM sequences devoid of or having low or minimal CpG.


In an embodiment, the effector protein for each composition and system, in the set of compositions, systems, is selected based on optimization of one or more parameters selected from the group consisting of; effector protein size, ability of effector protein to access regions of high chromatin accessibility, degree of uniform enzyme activity across genomic targets, epigenetic tolerance, mismatch/budge tolerance, effector protein specificity, effector protein stability or half-life, effector protein immunogenicity or toxicity. Methods of optimization are discussed in greater detail elsewhere herein.


Optimization of the Systems

The methods of the present disclosure can involve optimization of selected parameters or variables associated with the composition, system, and/or its functionality, as described herein further elsewhere. Optimization of the composition, system, in the methods as described herein may depend on the target(s), such as the therapeutic target or therapeutic targets, the mode or type of composition, system, modulation, such as composition, system, based therapeutic target(s) modulation, modification, or manipulation, as well as the delivery of the composition, system, components. One or more targets may be selected, depending on the genotypic and/or phenotypic outcome. For instance, one or more therapeutic targets may be selected, depending on (genetic) disease etiology or the desired therapeutic outcome. The (therapeutic) target(s) may be a single gene, locus, or other genomic site, or may be multiple genes, loci or other genomic sites. As is known in the art, a single gene, locus, or other genomic site may be targeted more than once, such as by use of multiple gRNAs.


The activity of the composition and/or system, such as therapy or therapeutics may involve target disruption, such as target mutation, such as leading to gene knockout. Disruption or restoration of a splicing site are exemplary approaches that can be utilized in design of the donor polynucleotide for use with the system. The activity of the composition and/or system, such as therapy or therapeutics may involve replacement of particular target sites, such as leading to target correction. Therapy or therapeutics may involve removal of particular target sites, such as leading to target deletion. The activity of the composition and/or system, such as therapy or therapeutics may involve modulation of target site functionality, such as target site activity or accessibility, leading for instance to (transcriptional and/or epigenetic) gene or genomic region activation or gene or genomic region silencing. The skilled person will understand that modulation of target site functionality may involve CRISPR effector mutation (such as for instance generation of a catalytically inactive CRISPR effector) and/or functionalization (such as for instance fusion of the CRISPR effector with a heterologous functional domain, such as a transcriptional activator or repressor), as described herein elsewhere.


Accordingly, in an aspect, the disclosure relates to a method as described herein, comprising selection of one or more (therapeutic) target, selecting one or more functionality of the composition and/or system, and optimization of selected parameters or variables associated with the CRISPR-Cas system and/or its functionality. In a related aspect, the disclosure relates to a method as described herein, comprising (a) selecting one or more (therapeutic) target loci, (b) selecting one or more CRISPR-Cas system functionalities, (c) optionally selecting one or more modes of delivery, and preparing, developing, or designing a CRISPR-Cas system selected based on steps (a)-(c).


In an embodiment, the functionality of the composition and/or system comprises genomic mutation. In an embodiment, the functionality of the composition and/or system comprises single genomic mutation. In an embodiment, the functionality of the composition and/or system functionality comprises multiple genomic mutation. In an embodiment, the functionality of the composition and/or system comprises gene knockout. In an embodiment, the functionality of the composition and/or system comprises single gene knockout. In an embodiment, the functionality of the composition and/or system comprises multiple gene knockout. In an embodiment, the functionality of the composition and/or system comprises gene correction. In an embodiment, the functionality of the composition and/or system comprises single gene correction. In an embodiment, the functionality of the composition and/or system comprises multiple gene correction. In an embodiment, the functionality of the composition and/or system comprises genomic region correction. In an embodiment, the functionality of the composition and/or system comprises single genomic region correction. In an embodiment, the functionality of the composition and/or system comprises multiple genomic region correction. In an embodiment, the functionality of the composition and/or system comprises gene deletion. In an embodiment, the functionality of the composition and/or system comprises single gene deletion. In an embodiment, the functionality of the composition and/or system comprises multiple gene deletion. In an embodiment, the functionality of the composition and/or system comprises genomic region deletion. In an embodiment, the functionality of the composition and/or system comprises single genomic region deletion. In an embodiment, the functionality of the composition and/or system comprises multiple genomic region deletion. In an embodiment, the functionality of the composition and/or system comprises modulation of gene or genomic region functionality. In an embodiment, the functionality of the composition and/or system comprises modulation of single gene or genomic region functionality. In an embodiment, the functionality of the composition and/or system comprises modulation of multiple gene or genomic region functionality. In an embodiment, the functionality of the composition and/or system comprises gene or genomic region functionality, such as gene or genomic region activity. In an embodiment, the functionality of the composition and/or system comprises single gene or genomic region functionality, such as gene or genomic region activity. In an embodiment, the functionality of the composition and/or system comprises multiple gene or genomic region functionality, such as gene or genomic region activity. In an embodiment, the functionality of the composition and/or system comprises modulation gene activity or accessibility optionally leading to transcriptional and/or epigenetic gene or genomic region activation or gene or genomic region silencing. In an embodiment, the functionality of the composition and/or system comprises modulation single gene activity or accessibility optionally leading to transcriptional and/or epigenetic gene or genomic region activation or gene or genomic region silencing. In an embodiment, the functionality of the composition and/or system comprises modulation multiple gene activity or accessibility optionally leading to transcriptional and/or epigenetic gene or genomic region activation or gene or genomic region silencing.


Optimization of selected parameters or variables in the methods as described herein may result in optimized or improved the system, such as CRISPR-Cas system-based therapy or therapeutic, specificity, efficacy, and/or safety. In an embodiment, one or more of the following parameters or variables are taken into account, are selected, or are optimized in the methods of the disclosure as described herein: Cas protein allosteric interactions, Cas protein functional domains and functional domain interactions, CRISPR effector specificity, gRNA specificity, CRISPR-Cas complex specificity, PAM restrictiveness, PAM type (natural or modified), PAM nucleotide content, PAM length, CRISPR effector activity, gRNA activity, CRISPR-Cas complex activity, target cleavage efficiency, target site selection, target sequence length, ability of effector protein to access regions of high chromatin accessibility, degree of uniform enzyme activity across genomic targets, epigenetic tolerance, mismatch/budge tolerance, CRISPR effector stability, CRISPR effector mRNA stability, gRNA stability, CRISPR-Cas complex stability, CRISPR effector protein or mRNA immunogenicity or toxicity, gRNA immunogenicity or toxicity, CRISPR-Cas complex immunogenicity or toxicity, CRISPR effector protein or mRNA dose or titer, gRNA dose or titer, CRISPR-Cas complex dose or titer, CRISPR effector protein size, CRISPR effector expression level, gRNA expression level, CRISPR-Cas complex expression level, CRISPR effector spatiotemporal expression, gRNA spatiotemporal expression, CRISPR-Cas complex spatiotemporal expression.


By means of example, and without limitation, parameter or variable optimization may be achieved as follows. CRISPR effector specificity may be optimized by selecting the most specific CRISPR effector. This may be achieved for instance by selecting the most specific CRISPR effector orthologue or by specific CRISPR effector mutations which increase specificity. gRNA specificity may be optimized by selecting the most specific gRNA. This can be achieved for instance by selecting gRNA having low homology, i.e. at least one or preferably more, such as at least 2, or preferably at least 3, mismatches to off-target sites. CRISPR-Cas complex specificity may be optimized by increasing CRISPR effector specificity and/or gRNA specificity as above. PAM restrictiveness may be optimized by selecting a CRISPR effector having to most restrictive PAM recognition. This can be achieved for instance by selecting a CRISPR effector orthologue having more restrictive PAM recognition or by specific CRISPR effector mutations which increase or alter PAM restrictiveness. PAM type may be optimized for instance by selecting the appropriate CRISPR effector, such as the appropriate CRISPR effector recognizing a desired PAM type. The CRISPR effector or PAM type may be naturally occurring or may for instance be optimized based on CRISPR effector mutants having an altered PAM recognition, or PAM recognition repertoire. PAM nucleotide content may for instance be optimized by selecting the appropriate CRISPR effector, such as the appropriate CRISPR effector recognizing a desired PAM nucleotide content. The CRISPR effector or PAM type may be naturally occurring or may for instance be optimized based on CRISPR effector mutants having an altered PAM recognition, or PAM recognition repertoire. PAM length may for instance be optimized by selecting the appropriate CRISPR effector, such as the appropriate CRISPR effector recognizing a desired PAM nucleotide length. The CRISPR effector or PAM type may be naturally occurring or may for instance be optimized based on CRISPR effector mutants having an altered PAM recognition, or PAM recognition repertoire.


Target length or target sequence length may be optimized, for instance, by selecting the appropriate CRISPR effector, such as the appropriate CRISPR effector recognizing a desired target or target sequence nucleotide length. Alternatively, or in addition, the target (sequence) length may be optimized by providing a target having a length deviating from the target (sequence) length typically associated with the CRISPR effector, such as the naturally occurring CRISPR effector. The CRISPR effector or target (sequence) length may be naturally occurring or may for instance be optimized based on CRISPR effector mutants having an altered target (sequence) length recognition, or target (sequence) length recognition repertoire. For instance, increasing or decreasing target (sequence) length may influence target recognition and/or off-target recognition. CRISPR effector activity may be optimized by selecting the most active CRISPR effector. This may be achieved for instance by selecting the most active CRISPR effector orthologue or by specific CRISPR effector mutations which increase activity. The ability of the CRISPR effector protein to access regions of high chromatin accessibility, may be optimized by selecting the appropriate CRISPR effector or mutant thereof, and can consider the size of the CRISPR effector, charge, or other dimensional variables etc. The degree of uniform CRISPR effector activity may be optimized by selecting the appropriate CRISPR effector or mutant thereof, and can consider CRISPR effector specificity and/or activity, PAM specificity, target length, mismatch tolerance, epigenetic tolerance, CRISPR effector and/or gRNA stability and/or half-life, CRISPR effector and/or gRNA immunogenicity and/or toxicity, etc. gRNA activity may be optimized by selecting the most active gRNA. In an embodiment, this can be achieved by increasing gRNA stability through RNA modification. CRISPR-Cas complex activity may be optimized by increasing CRISPR effector activity and/or gRNA activity as above.


The target site selection may be optimized by selecting the optimal position of the target site within a gene, locus or other genomic region. The target site selection may be optimized by optimizing target location comprises selecting a target sequence with a gene, locus, or other genomic region having low variability. This may be achieved for instance by selecting a target site in an early and/or conserved exon or domain (i.e. having low variability, such as polymorphisms, within a population).


In an embodiment, optimizing target (sequence) length comprises selecting a target sequence within one or more target loci between 5 and 25 nucleotides. In an embodiment, a target sequence is 20 nucleotides.


In an embodiment, optimizing target specificity comprises selecting targets loci that minimize off-target candidates.


In an embodiment, the target site may be selected by minimization of off-target effects (e.g. off-targets qualified as having 1-5, 1-4, or preferably 1-3 mismatches compared to target and/or having one or more PAM mismatches, such as distal PAM mismatches), preferably also considering variability within a population. CRISPR effector stability may be optimized by selecting CRISPR effector having appropriate half-life, such as preferably a short half-life while still capable of maintaining sufficient activity. In an embodiment, this can be achieved by selecting an appropriate CRISPR effector orthologue having a specific half-life or by specific CRISPR effector mutations or modifications which affect half-life or stability, such as inclusion (e.g. fusion) of stabilizing or destabilizing domains or sequences. CRISPR effector mRNA stability may be optimized by increasing or decreasing CRISPR effector mRNA stability. In an embodiment, this can be achieved by increasing or decreasing CRISPR effector mRNA stability through mRNA modification. gRNA stability may be optimized by increasing or decreasing gRNA stability. In an embodiment, this can be achieved by increasing or decreasing gRNA stability through RNA modification. CRISPR-Cas complex stability may be optimized by increasing or decreasing CRISPR effector stability and/or gRNA stability as above. CRISPR effector protein or mRNA immunogenicity or toxicity may be optimized by decreasing CRISPR effector protein or mRNA immunogenicity or toxicity. In an embodiment, this can be achieved by mRNA or protein modifications. Similarly, in case of DNA based expression systems, DNA immunogenicity or toxicity may be decreased. gRNA immunogenicity or toxicity may be optimized by decreasing gRNA immunogenicity or toxicity. In an embodiment, this can be achieved by gRNA modifications. Similarly, in case of DNA based expression systems, DNA immunogenicity or toxicity may be decreased. CRISPR-Cas complex immunogenicity or toxicity may be optimized by decreasing CRISPR effector immunogenicity or toxicity and/or gRNA immunogenicity or toxicity as above, or by selecting the least immunogenic or toxic CRISPR effector/gRNA combination. Similarly, in case of DNA based expression systems, DNA immunogenicity or toxicity may be decreased. CRISPR effector protein or mRNA dose or titer may be optimized by selecting dosage or titer to minimize toxicity and/or maximize specificity and/or efficacy. gRNA dose or titer may be optimized by selecting dosage or titer to minimize toxicity and/or maximize specificity and/or efficacy. CRISPR-Cas complex dose or titer may be optimized by selecting dosage or titer to minimize toxicity and/or maximize specificity and/or efficacy. CRISPR effector protein size may be optimized by selecting minimal protein size to increase efficiency of delivery, in particular for virus mediated delivery. CRISPR effector, gRNA, or CRISPR-Cas complex expression level may be optimized by limiting (or extending) the duration of expression and/or limiting (or increasing) expression level. This may be achieved for instance by using self-inactivating compositions, systems, such as including a self-targeting (e.g. CRISPR effector targeting) gRNA, by using viral vectors having limited expression duration, by using appropriate promoters for low (or high) expression levels, by combining different delivery methods for individual CRISP-Cas system components, such as virus mediated delivery of CRISPR-effector encoding nucleic acid combined with non-virus mediated delivery of gRNA, or virus mediated delivery of gRNA combined with non-virus mediated delivery of CRISPR effector protein or mRNA. CRISPR effector, gRNA, or CRISPR-Cas complex spatiotemporal expression may be optimized by appropriate choice of conditional and/or inducible expression systems, including controllable CRISPR effector activity optionally a destabilized CRISPR effector and/or a split CRISPR effector, and/or cell- or tissue-specific expression systems.


In an aspect, the disclosure relates to a method as described herein, comprising selection of one or more (therapeutic) target, selecting the functionality of the composition and/or system, selecting mode of delivery, selecting delivery vehicle or expression system, and optimization of selected parameters or variables associated with the system and/or its functionality, optionally wherein the parameters or variables are one or more selected from CRISPR effector specificity, gRNA specificity, CRISPR-Cas complex specificity, PAM restrictiveness, PAM type (natural or modified), PAM nucleotide content, PAM length, CRISPR effector activity, gRNA activity, CRISPR-Cas complex activity, target cleavage efficiency, target site selection, target sequence length, ability of effector protein to access regions of high chromatin accessibility, degree of uniform enzyme activity across genomic targets, epigenetic tolerance, mismatch/budge tolerance, CRISPR effector stability, CRISPR effector mRNA stability, gRNA stability, CRISPR-Cas complex stability, CRISPR effector protein or mRNA immunogenicity or toxicity, gRNA immunogenicity or toxicity, CRISPR-Cas complex immunogenicity or toxicity, CRISPR effector protein or mRNA dose or titer, gRNA dose or titer, CRISPR-Cas complex dose or titer, CRISPR effector protein size, CRISPR effector expression level, gRNA expression level, CRISPR-Cas complex expression level, CRISPR effector spatiotemporal expression, gRNA spatiotemporal expression, CRISPR-Cas complex spatiotemporal expression.


It will be understood that the parameters or variables to be optimized as well as the nature of optimization may depend on the (therapeutic) target, the functionality of the composition and/or system, the system mode of delivery, and/or the delivery vehicle or expression system.


In an aspect, the disclosure relates to a method as described herein, comprising optimization of gRNA specificity at the population level. Preferably, said optimization of gRNA specificity comprises minimizing gRNA target site sequence variation across a population and/or minimizing gRNA off-target incidence across a population.


In an embodiment, optimization can result in selection of a CRISPR-Cas effector that is naturally occurring or is modified. In an embodiment, optimization can result in selection of a CRISPR-Cas effector that has nuclease, nickase, deaminase, transposase, and/or has one or more effector functionalities deactivated or eliminated. In an embodiment, optimizing a PAM specificity can include selecting a CRISPR-Cas effector with a modified PAM specificity. In an embodiment, optimizing can include selecting a CRISPR-Cas effector having a minimal size. In an embodiment, optimizing effector protein stability comprises selecting an effector protein having a short half-life while maintaining sufficient activity, such as by selecting an appropriate CRISPR effector orthologue having a specific half-life or stability. In an embodiment, optimizing immunogenicity or toxicity comprises minimizing effector protein immunogenicity or toxicity by protein modifications. In an embodiment, optimizing functional specific comprises selecting a protein effector with reduced tolerance of mismatches and/or bulges between the guide RNA and one or more target loci.


In an embodiment, optimizing efficacy comprises optimizing overall efficiency, epigenetic tolerance, or both. In an embodiment, maximizing overall efficiency comprises selecting an effector protein with uniform enzyme activity across target loci with varying chromatin complexity, selecting an effector protein with enzyme activity limited to areas of open chromatin accessibility. In an embodiment, chromatin accessibility is measured using one or more of ATAC-seq, or a DNA-proximity ligation assay. In an embodiment, optimizing epigenetic tolerance comprises optimizing methylation tolerance, epigenetic mark competition, or both. In an embodiment, optimizing methylation tolerance comprises selecting an effector protein that modify methylated DNA. In an embodiment, optimizing epigenetic tolerance comprises selecting an effector protein unable to modify silenced regions of a chromosome, selecting an effector protein able to modify silenced regions of a chromosome, or selecting target loci not enriched for epigenetic markers


In an embodiment, selecting an optimized guide RNA comprises optimizing gRNA stability, gRNA immunogenicity, or both, or other gRNA associated parameters or variables as described herein elsewhere.


In an embodiment, optimizing gRNA stability and/or gRNA immunogenicity comprises RNA modification, or other gRNA associated parameters or variables as described herein elsewhere. In an embodiment, the modification comprises removing 1-3 nucleotides form the 3′ end of a target complementarity region of the gRNA. In an embodiment, modification comprises an extended gRNA and/or trans RNA/DNA element that create stable structures in the gRNA that compete with gRNA base pairing at a target of off-target loci, or extended complimentary nucleotides between the gRNA and target sequence, or both.


In an embodiment, the mode of delivery comprises delivering gRNA and/or CRISPR effector protein, delivering gRNA and/or CRISPR effector mRNA, or delivery gRNA and/or CRISPR effector as a DNA based expression system. In an embodiment, the mode of delivery further comprises selecting a delivery vehicle and/or expression systems from the group consisting of liposomes, lipid particles, nanoparticles, biolistics, or viral-based expression/delivery systems. In an embodiment, expression is spatiotemporal expression is optimized by choice of conditional and/or inducible expression systems, including controllable CRISPR effector activity optionally a destabilized CRISPR effector and/or a split CRISPR effector, and/or cell- or tissue-specific expression system.


The methods as described herein may further involve selection of the mode of delivery. In an embodiment, gRNA (and tracr, if and where needed, optionally provided as a sgRNA) and/or CRISPR effector protein are or are to be delivered. In an embodiment, gRNA (and tracr, if and where needed, optionally provided as a sgRNA) and/or CRISPR effector mRNA are or are to be delivered. In an embodiment, gRNA (and tracr, if and where needed, optionally provided as a sgRNA), CRISPR effector, and/or transposase provided in a DNA-based expression system are or are to be delivered. In an embodiment, delivery of the individual system components comprises a combination of the above modes of delivery. In an embodiment, delivery comprises delivering gRNA, CRISPR effector protein, and/or transposase, delivering gRNA and/or CRISPR effector mRNA, or delivering gRNA and/or CRISPR effector and/or transposase as a DNA based expression system.


The methods as described herein may further involve selection of the composition, system delivery vehicle and/or expression system. Delivery vehicles and expression systems are described herein elsewhere. By means of example, delivery vehicles of nucleic acids and/or proteins include nanoparticles, liposomes, etc. Delivery vehicles for DNA, such as DNA-based expression systems include for instance biolistics, viral based vector systems (e.g. adenoviral, AAV, lentiviral), etc. The skilled person will understand that selection of the mode of delivery, as well as delivery vehicle or expression system, may depend on for instance the cell or tissues to be targeted. In an embodiment, the delivery vehicle and/or expression system for delivering the compositions, systems, or components thereof comprises liposomes, lipid particles, nanoparticles, biolistics, or viral-based expression/delivery systems.


Considerations for Therapeutic Applications

A consideration in genome editing therapy is the choice of sequence-specific nuclease, such as a variant of a Cas nuclease. Each nuclease variant may possess its own unique set of strengths and weaknesses, many of which must be balanced in the context of treatment to maximize therapeutic benefit. For a specific editing therapy to be efficacious, a sufficiently high level of modification must be achieved in target cell populations to reverse disease symptoms. This therapeutic modification ‘threshold’ is determined by the fitness of edited cells following treatment and the amount of gene product necessary to reverse symptoms. With regard to fitness, editing creates three potential outcomes for treated cells relative to their unedited counterparts: increased, neutral, or decreased fitness. In the case of increased fitness, corrected cells may be able and expand relative to their diseased counterparts to mediate therapy. In this case, where edited cells possess a selective advantage, even low numbers of edited cells can be amplified through expansion, providing a therapeutic benefit to the patient. Where the edited cells possess no change in fitness, an increase the therapeutic modification threshold can be warranted. As such, significantly greater levels of editing may be needed to treat diseases, where editing creates a neutral fitness advantage, relative to diseases where editing creates increased fitness for target cells. If editing imposes a fitness disadvantage, as would be the case for restoring function to a tumor suppressor gene in cancer cells, modified cells would be outcompeted by their diseased counterparts, causing the benefit of treatment to be low relative to editing rates. This may be overcome with supplemental therapies to increase the potency and/or fitness of the edited cells relative to the diseased counterparts.


In addition to cell fitness, the amount of gene product necessary to treat disease can also influence the minimal level of therapeutic genome editing that can treat or prevent a disease or a symptom thereof. In cases where a small change in the gene product levels can result in significant changes in clinical outcome, the minimal level of therapeutic genome editing is less relative to cases where a larger change in the gene product levels are needed to gain a clinically relevant response. In an embodiment, the minimal level of therapeutic genome editing can range from 0.1 to 1%, 1-5%, 5-10%, 10-15%, 15-20%, 20-25%, 25-30%, 30-35%, 35-40%, 40-45%. 45-50%, or 50-55%. Thus, where a small change in gene product levels can influence clinical outcomes and diseases where there is a fitness advantage for edited cells, are ideal targets for genome editing therapy, as the therapeutic modification threshold is low enough to permit a high chance of success.


The activity of NHEJ and HDR DSB repair can vary by cell type and cell state. NHEJ is not highly regulated by the cell cycle and is efficient across cell types, allowing for high levels of gene disruption in accessible target cell populations. In contrast, HDR acts primarily during S/G2 phase, and is therefore restricted to cells that are actively dividing, limiting treatments that require precise genome modifications to mitotic cells [Ciccia, A. & Elledge, S. J. Molecular cell 40, 179-204 (2010); Chapman, J. R., et al. Molecular cell 47, 497-510 (2012)].


The efficiency of correction via HDR may be controlled by the epigenetic state or sequence of the targeted locus, or the specific repair template configuration (single vs. double stranded, long vs. short homology arms) used [Hacein-Bey-Abina, S., et al. The New England journal of medicine 346, 1185-1193 (2002); Gaspar, H. B., et al. Lancet 364, 2181-2187 (2004); Beumer, K. J., et al. G3 (2013)]. The relative activity of NHEJ and HDR machineries in target cells may also affect gene correction efficiency, as these pathways may compete to resolve DSBs [Beumer, K. J., et al. Proceedings of the National Academy of Sciences of the United States of America 105, 19821-19826 (2008)]. HDR also imposes a delivery challenge not seen with NHEJ strategies, as it uses the concurrent delivery of nucleases and repair templates. Thus, these differences can be kept in mind when designing, optimizing, and/or selecting therapeutic as described in greater detail elsewhere herein.


Polynucleotide modification application can include combinations of proteins, small RNA molecules, and/or repair templates, and can make, In an embodiment, delivery of these multiple parts substantially more challenging than, for example, traditional small molecule therapeutics. Two main strategies for delivery of compositions, systems, and components thereof have been developed: ex vivo and in vivo. In an embodiment of ex vivo treatments, diseased cells are removed from a subject, edited and then transplanted back into the patient. In other embodiments, cells from a healthy allogeneic donor are collected, modified using a composition, system or component thereof, to impart various functionalities and/or reduce immunogenicity, and administered to an allogeneic recipient in need of treatment. Ex vivo editing has the advantage of allowing the target cell population to be well defined and the specific dosage of therapeutic molecules delivered to cells to be specified. The latter consideration may be particularly important when off-target modifications are a concern, as titrating the amount of nuclease may decrease such mutations (Hsu et al., 2013). Another advantage of ex vivo approaches is the typically high editing rates that can be achieved, due to the development of efficient delivery systems for proteins and nucleic acids into cells in culture for research and gene therapy applications.


In vivo polynucleotide modification via compositions, systems, and/or components thereof involves direct delivery of the compositions, systems, and/or components thereof to cell types in their native tissues. In vivo polynucleotide modification via compositions, systems, and/or components thereof allows diseases in which the affected cell population is not amenable to ex vivo manipulation to be treated. Furthermore, delivering compositions, systems, and/or components thereof to cells in situ allows for the treatment of multiple tissue and cell types.


In an embodiment, such as those where viral vector systems are used to generate viral particles to deliver the composition, system and/or component thereof to a cell, the total cargo size of the composition, system and/or component thereof should be considered as vector systems can have limits on the size of a polynucleotide that can be expressed therefrom and/or packaged into cargo inside of a viral particle. In an embodiment, the tropism of a vector system, such as a viral vector system, should be considered as it can impact the cell type to which the composition, system or component thereof can be efficiently and/or effectively delivered.


When delivering a system or component thereof via a viral-based system, it can be important to consider the amount of viral particles that will be needed to achieve a therapeutic effect so as to account for the potential immune response that can be elicited by the viral particles when delivered to a subject or cell(s). When delivering a system or component thereof via a viral based system, it can be important to consider mechanisms of controlling the distribution and/or dosage of the system in vivo. Generally, to reduce the potential for off-target effects, it is optimal but not necessarily required, that the amount of the system be as close to the minimum or least effective dose.


In an embodiment, it can be important to consider the immunogenicity of the system or component thereof. In embodiments, where the immunogenicity of the system or component thereof is of concern, the immunogenicity system or component thereof can be reduced. By way of example only, the immunogenicity of the system or component thereof can be reduced using the approach set out in Tangri et al. Accordingly, directed evolution or rational design may be used to reduce the immunogenicity of the CRISPR enzyme and/or transposase in the host species (human or other species).


Xenotransplantation

The present disclosure also contemplates use of the compositions and systems described herein, e.g. Cas effector protein systems, to provide RNA-guided DNA nucleases adapted to be used to provide modified tissues for transplantation. For example, RNA-guided DNA nucleases may be used to knockout, knockdown or disrupt selected genes in an animal, such as a transgenic pig (such as the human heme oxygenase-1 transgenic pig line), for example by disrupting expression of genes that encode epitopes recognized by the human immune system, i.e. xenoantigen genes. Candidate porcine genes for disruption may for example include α(1,3)-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase genes (see International Patent Publication WO 2014/066505). In addition, genes encoding endogenous retroviruses may be disrupted, for example the genes encoding all porcine endogenous retroviruses (see Yang et al., 2015, Genome-wide inactivation of porcine endogenous retroviruses (PERVs), Science 27 Nov. 2015: Vol. 350 no. 6264 pp. 1101-1104). In addition, RNA-guided DNA nucleases may be used to target a site for integration of additional genes in xenotransplant donor animals, such as a human CD55 gene to improve protection against hyperacute rejection.


Embodiments herein also relate to methods and compositions related to knocking out genes, amplifying genes and repairing particular mutations associated with DNA repeat instability and neurological disorders (Robert D. Wells, Tetsuo Ashizawa, Genetic Instabilities and Neurological Diseases, Second Edition, Academic Press, Oct. 13, 2011—Medical). Specific aspects of tandem repeat sequences have been found to be responsible for more than twenty human diseases (New insights into repeat instability: role of RNA·DNA hybrids. Mclvor E I, Polak U, Napierala M. RNA Biol. 2010 September-October; 7(5):551-8). The present effector protein systems may be harnessed to correct these defects of genomic instability.


Several further aspects herein relate to correcting defects associated with a wide range of genetic diseases which are further described on the website of the National Institutes of Health under the topic subsection Genetic Disorders (website at health.nih.gov/topic/GeneticDisorders). The genetic brain diseases may include but are not limited to Adrenoleukodystrophy, Agenesis of the Corpus Callosum, Aicardi Syndrome, Alpers' Disease, Alzheimer's Disease, Barth Syndrome, Batten Disease, CADASIL, Cerebellar Degeneration, Fabry's Disease, Gerstmann-Straussler-Scheinker Disease, Huntington's Disease and other Triplet Repeat Disorders, Leigh's Disease, Lesch-Nyhan Syndrome, Menkes Disease, Mitochondrial Myopathies and NINDS Colpocephaly. These diseases are further described on the web site of the National Institutes of Health under the subsection Genetic Brain Disorders.


In an embodiment, the systems or complexes can target nucleic acid molecules, can target and cleave or nick or simply sit upon a target DNA molecule (depending if the effector has mutations that render it a nickase or “dead”). Such systems or complexes are amenable for achieving tissue-specific and temporally controlled targeted deletion of candidate disease genes. Examples include but are not limited to genes involved in cholesterol and fatty acid metabolism, amyloid diseases, dominant negative diseases, latent viral infections, among other disorders. Accordingly, target sequences for such systems or complexes can be in candidate disease genes, e.g., as shown in Table 6.









TABLE 6







Diseases and Targets.












Disease
GENE
SPACER
PAM
Mechanism
References





Hypercho-
HMG-
GCCAAATT
CGG
Knockout
Fluvastatin: a review of its


lesterol-
CR
GGACGAC


pharmacology and use in


emia

CCTCG


the management of




(SEQ ID


hypercholesterolaemia.




NO: 27)


(Plosker GL et al. Drugs







1996, 51(3): 433-459)





Hypercho-
SQLE
CGAGGAG
TGG
Knockout
Potential role of nonstatin


lesterol-

ACCCCCGT


cholesterol lowering agents


emia

TTCGG


(Trapani et al. IUBMB Life,




(SEQ ID


Volume 63, Issue 11, pages




NO: 28)


964-971, November 2011)





Hyperlipi-
DGAT1
CCCGCCGC
AGG
Knockout
DGAT1 inhibitors as anti-


demia

CGCCGTG


obesity and anti-diabetic




GCTCG


agents. (Birch AM et al.




(SEQ ID


Current Opinion in Drug




NO: 29)


Discovery & Development







[2010, 13(4): 489-496)





Leukemia
BCR-
TGAGCTCT
AGG
Knockout
Killing of leukemic cells



ABL
ACGAGAT


with a BCR/ABL fusion




CCACA


gene by RNA interference




(SEQ ID


(RNAi). (Fuchs et al.




NO: 30)


Oncogene 2002,







21(37): 5716-5724)









Kits

In another aspect, the disclosure is directed to kit and kit of parts. The terms “kit of parts” and “kit” as used throughout this specification refer to a product containing components necessary for carrying out the specified methods (e.g., methods for detecting, quantifying or isolating immune cells as taught herein), packed so as to allow their transport and storage. Materials suitable for packing the components comprised in a kit include crystal, plastic (e.g., polyethylene, polypropylene, polycarbonate), bottles, flasks, vials, ampules, paper, envelopes, or other types of containers, carriers or supports. Where a kit comprises a plurality of components, at least a subset of the components (e.g., two or more of the plurality of components) or all of the components may be physically separated, e.g., comprised in or on separate containers, carriers or supports. The components comprised in a kit may be sufficient or may not be sufficient for carrying out the specified methods, such that external reagents or substances may not be necessary or may be necessary for performing the methods, respectively. Typically, kits are employed in conjunction with standard laboratory equipment, such as liquid handling equipment, environment (e.g., temperature) controlling equipment, analytical instruments, etc. In addition to the recited binding agents(s) as taught herein, such as for example, antibodies, hybridization probes, amplification and/or sequencing primers, optionally provided on arrays or microarrays, the present kits may also include some or all of solvents, buffers (such as for example but without limitation histidine-buffers, citrate-buffers, succinate-buffers, acetate-buffers, phosphate-buffers, formate buffers, benzoate buffers, TRIS (Tris(hydroxymethyl)-aminomethan) buffers or maleate buffers, or mixtures thereof), enzymes (such as for example but without limitation thermostable DNA polymerase), detectable labels, detection reagents, and control formulations (positive and/or negative), useful in the specified methods. Typically, the kits may also include instructions for use thereof, such as on a printed insert or on a computer readable medium. The terms may be used interchangeably with the term “article of manufacture”, which broadly encompasses any man-made tangible structural product, when used in the present context.


EXAMPLES
Example 1—Exemplary Type I-F Cas-Associated Transposase Systems and Loci

Examples of Type I-F Cas-associated transposase systems are shown in the Tables 7-45 below.


23319|4|ArcOceMetagenome_4_$F_3300009432|0115005_10000005|200650|Ga0 115005_10000005 (ID: 97)










TABLE 7





Elements
Sequences







tnsA
ATGTACATCCGGAACCTGCGGAAGCCCTCTCCAAACAAGAACGTGTTCAAGTTCGCCAGCACCAAGGTGTCCAACGT



GATCATGTGCGAGAGCACCCTGGAATTCGACGCCTGCTTCCACAACGAGTACAACGACGAGATCGAGAGCTACGGCT



CTCAGCCCGAGGGCTTTCAGTACGAGTTCAACGGCAAGCTGCTGCCCTACACACCCGACGCTCTGATCCTGTACAAGA



ACGGCGTGGAAAAGTACCACGAGTATAAGCCCTACAGCAAGATCAGCAGCCCTCTGTTCAGAGAGCAGTTTATCGCC



AAGAGAGCCGCCAGCCTGGAACTGGGCAGAGAGCTGATCCTGGTCACCGACAGACAGATCAGAGTGAACCCCATCC



TGAACAACCTGAAACTGCTGCACCGGTACAGCGGCGTGTACGGCGTTAGCGACATCCAGAGAAAGCTGCTCGAGTAC



ATCCAGCAGTCTGGCGCCGTGAAGCTGAACGACATCAGCCACAGATTCAACCTGAGCGTGGGCGAGACAAGAAGCTT



CCTGTACGCCCTGATCCACAAGGGCTTCGTGAAGGCCGACCTGGAAAGAGAGAGCCTGAGCGACAACCCTCTCGTGT



GGTCCATCTGCAACGGCTGA (SEQ ID NO: 31)





tnsB
ATGGCCGACTTCAACGACGAGTTCGATGAGTTCGACGTGCCCGTGAAGCCTGAGATCCCCATCCAGTACGTGAAGCT



GGAAGATGCCAAGACCATCAAGCGCGACCTGGATACCTTTCCTGACTTCCTGAAAGAGAAGGCCCTGGACAAGTACA



AGCTGCTGTGCATCATCGAGAAAGAGGACCCCGGCAGCTGGACCCAGAAGAATCTGGACCCCATCCTGGATAAGCTG



TTCGCCGAGAGCGAGCTGAACAGACCCAATTGGAGAACCGTGGCCAGATGGCGGAAGCGGTACATCGACAGCAATG



GCGATCTGACCAGCCTGGTGTCCGCCAGACACAAGATGGGCAACAGAAGCAAGCGGATCGAGGGCGACGAGAAGTT



CTTCGACGAGGCCCTGAAGTACTTTCTGGACGCCAAGCGGCTGTCTATCGCCACAGCCTACCGGTACTACAAGGACCT



GATCATCATTGAGAACGAGAAGATCGTGGACGGCAAGATCCCTATCATCAGCTACACCAGCTTCAACAAGCGCATCA



AGACCACCTCTCCATACGACGTGACAGTGGCCAGACGGGGCAAGTTCAAGGCCGAGGAACTGTATGGCGCCTGCGCC



GCTCATATCCTGCCTACCAGAATCCTGGAACGCGTGGAAATCGATCACACCCCTCTGGACATCATCCTGCTGGACGAT



GAGCTGGGCATCCCCATCGGCAGACCTAATCTGACAGCCCTGATCGACGTGTTCAGCGGCTGCCTGCTGGGCTTTCAC



CTGAGCTATAACGCCCCTAGCTATGTGTCTGCCGCCAAGGCCATTAGCCACGCCGTGAAACCTAAGCTGCTGAGCAG



CCTGAACATCACCCTGCAGAACGACTGGCCCTGCTATGGCAAGATCGAGAACCTGGTGGTGGACAACGGCGCCGAGT



TTTGGAGTGATGCCCTGGAACACGCCTGCAAAGAGACAGGCATCAACACCCAGTACAACAAAGTGGGCAAGCCCCA



GCACAAGCCCACCATCGAGAGATTCTTCGGCCTGATCAACCAGTACTTCCTGGATGAGTTCCCCGGCAAGACCTTCAG



CAACATCCTGGCCAAAGAGAAGTACAACCCCGAGAAGAACGCCGTGATCCGGTTCAGCACCTTCGTGAAAGAATTCC



ACAGATGGGTCGTCGACGTGTACCACCAGGACAGCGACAGCAGAAAGACACGGATCCCAATCCAGCAGTGGAAGAA



GGGCTTCGACGCCTATCCTCCACTGAAGATGAGCGACGAGGAAAGCAAGCTGTTCTCTATCCTGCTGAACGTGCTGA



AGAAGCCCACACTGACCCGGAACGGCATCAAGTTCGAGAATCTGATGTACGACAGCACAGCCCTGTCCGAGTACCGG



AAGCAGTACCCTCAGACAAAGGGCACCGCCAAGAAGATCATCAAGATCGACCCCGACGACCTGAGCAAGATCTACA



TCCACCTGGAAGAACTGGAAACCTACCTGGAAGTGCCCTGCACCGATACCACCGGCTACACCAAGAACCTGAGCCTG



TACGAGCACAAGAAGATTTCCAAGATCAAGCGGAAGATGATCGATGAGTACATCGATAACAGCGCCCTGGCCAAGG



CTCGGATGGCCAAGAGAGAGAGCATCAAGAAAGAGCAAGAGCTGAGCCTGACCAACAAGAGCAAGGCCAAGATCA



GCAGCGTGAAGAAGCAGGCCCAGCTGGCCGGCATCTCTAATACCGGACCTGGCACCATTCTGGTCAAAGAGGACAGC



AGCAGCATCCCCAAGAGCAACGACACCAACAACATGTTCGACGACTGGGACAACGACCTGGAAGCCTTCGAGTGA



(SEQ ID NO: 32)





tnsC
ATGAACGTGCTGACCGAGGTGCAGATCGAGCAGCTGAGAAACTTCAGCGACTGCATCGTGATGCACCCTCAGATCAA



GACCATCTTCAACGACTTCGACGAGCTGCGGCTGAACCGGAAGTTCCAGAGCGATCAGCAGTGTATGCTGCTGATTG



GCGATACCGGCGTGGGCAAGAGCCACACCATCAACCACTACAAGAAACGCGTGATCGCCACACAGAACTACAGCCG



GAACACCATGCCTGTGCTGATCTCCAGAATCAGCAGAGGCAAAGGCCTGGACGCCACACTGGTTCAGATGCTGGCTG



ACCTGGAACTGTTCGGCAGCAGCCAGATTAAGAAGCGGGGCTACAAGACCGACCTGACCAAGAAACTGGTGGAAAG



CCTGATCAAGGCCCAGGTGGAACTGCTGATTATCAACGAGTTCCAAGAGCTGATCGAGTTCAAGTCCGTGCAAGAGC



GGCAGCAGATCGCCAACGGCCTGAAGTTCATCAGCGAAGAGGCCAAGGTGCCCATCGTGCTCGTTGGAATGCCTTGG



GCCGCCAAGATTGCCGAGGAACCTCAGTGGGCCTCTAGACTCGTGCGGAAGCGGAAGCTGGAATACTTTAGCCTGAA



GAACGACAGCAAGTACTTCCGGCAGTACCTGATGGGCCTCGCCAAGCAGATGAGCTTCGATGCCCCTCCTAAGCTGG



AAAGCCGGCACACAACAATCGCCCTGTTCGCCGCTTGCAGAGGCGAGAATAGAGCCCTGAAACATCTGCTGTCTGAG



GCCCTGAAGCTGGCCCTGAGCTGTAACGAGCACCTGGAAAACAAGCACTTCTTCACCGCCTACGGCAAGTTCGACTT



CTTCAATGACAAAGAGAAGCTGAAGCTCAAGAACCCCTTCAAGCAGGACATCAAGGACATCGAGATCTACGAAGTG



ATCAAGAGCAGCAGCTACAACCCCAACGCTCTGGACCCCGAGGATATGCTGCTCGGCAGACAGTTCAGCTCCATCAA



GTGA (SEQ ID NO: 33)





tnsD
ATGGCCTTCCTGTTCAGCCCTAAGGCCAGAGCCTTTAGCGACGAGAGCCTGGAAAGCTACCTGCTGAGAGTGGTGTC



CGAGAACTTCTTCGACAGCTACGAGGGCCTGAGCCTGGCCATCAGAGAGGAACTGCACGAGCTGGATTTTGAGGCCC



ACGGCGCCTTTCCAGTGGACCTGAAGAGACTGAACGTGTACCACGCCAAGCACAACAGCCACTTCCGGATGAGAGCC



CTGGGCCTGCTGGAAACACTGCTGGACCTGCCTAGATACGAGCTGCAGAAGCTGGCCCTGTTCAAGAGCGACATCAA



GTTCAACAGCAGCACAGCCCTGTACAAGAACGGCGTGGACATCCCTCACAAGTTCATCCGGTATCACCCCGAGGACG



CCGTGGATAGCATTCCTGTGTGTCCTCAGTGCCTGGCCGAGGAAGCCTACATCAAGCAGAGCTGGCACATCAAATGG



GTCAACGCCTGCACAAAGCACAAGTGCGCCCTGCTGCACAACTGCCCTGAATGCTGCGCCCAGATCAACTACATCGA



GAACGAGAGCATCACCCACTGCAGCTGCGGCCTGGAACTGACCTGTGCCTCTACAAGCCCCGTGAACACCCTGAGCA



TCGAGCACCTGAACAAGCTGCTGGACAAGAGCGAGGGCAACGACAGCAACCTGCTGTTCAACAACACCACACTGAC



CGAGAGATTCGCCGCTCTGCTGTGGTATCAAGAGCGGTACAGCCAGACCGACAACTTCTGCCTGGATGTGGCCGTGG



ACTACTTCAGCAAATGGCCTGCCGTGTTCTACAAAGAGCTGGACGAGCTGTCTAAGTACGCCGAGATGAAGCTGATC



GACCTCTTCAACAAGACCGAGTTCAAGTTTATCTTCGGCGACGCCATCCTGGCCTGTCCTAGCACACAGAAGCAGAG



AGAGCTGCACTTCATCTACAGAGCCCTGCTGGACTACCTGGTCACCCTGGTGGAAAGCAACCCCAAGACCAAGAAGC



CCAACGCCGCCGATCTGCTGGTGTCTGTTCTGGAAGCTGCCACTCTGCTGGGCACCTCTGTGGAACAGGTGTACAGAC



TGTACCAGGACGGCATCCTGCAGACCGTGTCCAGACACAAGATGAACCAGCGGATCAACCCCTACAAGGGCGTGTTC



TTCCTGCGGCACGTGATCGAGTACAAGACCAGCTTCGGCAACGATAAGGCCCGGATGTACCTGTCTGCTTGG (SEQ ID



NO: 34)





Cas5/
ATGACCAAGCTGGAATGCATCTGCCGGCACGGCGAGTACATGCACCTGAAAGAGCTGCTGGAAATCATCGACACCAC


8
CGAGCGGGACAGACTGCTGAGAAGGGCCTTTAGCAGCTACACCGCCATGATCGACATCACCGGCTCTGAAGCCGTGG



CTCTGATCATCCTGCTGAACCTGACCTACCGGAAGAACCAGGTGGACGACCTGCTGGACAAGAGACTGGCCAAGCAG



GCCCTGAAGTCCGAGGACCACATCAACAAGTGCATCAAAGAGATGGCCTGGTTTCACACCCACAACCTGAAGTACCC



CGACATCCGGGTGTCCAAGCAGAACCTGGCTGTGGAACCTCCTACACTGCAGAGCTACGTGCTGAGCAGCGCCAACT



ATCCTAAGGCCTATGGCTGGTCCCACGACAGCGCCAAAGTGAACTTCGCCAAGCTGTTCGTGTCCTACTTCAAGTGGC



AGAATCAGGTGTCCTGTCTGGCCCAGGTGCTGGCCACCAACAGCGACAATTGGAAGTCCGCCTTTACCAGCCTGGGC



CTGAGCGTGAAGGCCTTTAAGAGCCTGTGCGTGACCATCAAGAAGTCCCTGCCTGAGGAAGCTATCCCCGACAGCGT



GGACAGACACAGCAGACAGATCAGAATGCCCTACCACGACGGCTACCTGGCCGTGACACCTGTGATCAGCTACGTGG



TGCAGAGCAAGATTCAGCAGGCCGCCATCGACAAGCGGGCCAGATTCTCCAACGTGGAATTCACCAGACCTGCCGCC



GTGTCTATGCTGGCCGCTTCTCTTGGCGGCGTGGTCAACGTGCTGAACTACCCTCCTTACATGCGGAACAAGTACCAC



GGCCTGAGCAACAGCAGAGCCTTCAAGCTGAACAACGGCCAGACCGTGTTCAATGTGGAAGCCCTGCTGAAGCCCGA



GCTGATCAAAGCCCTGGAAGGCATCATCTTCAGCAACAACGCCCTGGCACTGAAGCAGCGGAGACAGCAGAAAGTG



AAGAATATCAAAGAGCTGAGGAACACCCTGCTCGAGTGGTTCAGCCCTGTGTTTGAGTGGCGGCTGGACGCCATCGA



GAATGGCCATGATCTGGAACAGCTGGAAAGCGCCTCTGAGCAGCTCGAGTACAAGATCCTGAGCCTGCCTGACAACG



AGCTGCCCAGCCTGACAATCCCTCTGTTCAGGCTGCTGAACGAGATGCTCGGCGGCGTGTCCATGACACAGAGATAC



GCCTTCCATCCTAAGCTGATGAGCCCTCTGAAGGCTGCCCTGCAGTGGCTGCTGATTAACCTGACCGATCAGAAGAAT



GAGCTGATCGAAGAGGACGACGAGCACTACAGATACCTGCACCTGAGCGGCATCAGAGTGTTCGATGCACAGGCCCT



GTCTAACCCCTACTGCAGCGGAATCCCAAGCCTGACAGCTGTGTGGGGCATGCTGCACAGCTACCAGCGGAAGCTGA



ATGAGGCCCTGGGCATCAATGTGCGGTTCACCTCCTTCAGCTGGTTCATCAGAGACTACGCCGCCGTGACAGGCAAG



AAGCTGCCTGAGATTAGTCTGCAGGGCGCTCAGCAGAACAAGCTGAAAAGACCCGGCATCATCGACGGCAAGTACTG



CGACCTGGTGTTCGACCTGATCGTGTACATCGATGGCTACGAGGACGATCTGCAGGCCATCGATAGCGAGCCCGATA



TCCTGAAGGCCCACTTTCCTAGCAACTTTGCCGGCGGAGTGATGCACCAGCCTGAGCTGAACAGCAACATCAACTGG



TGCTGCCTGTACGGCAACGAGAATCAGCTGTTCGAGAAGCTGAGACAGCTGCCCTTTAGCGGCTGCTGGGTCATGCCT



ACCGAGCACAAAATCCAGGACCTCGACGAACTGCTGCTGCTCCTGAACAATGACAGCAAGCTGAGCCCCAGCATGAT



GGGCTACATGCTGCTGACCGAGCCTAAGGCTAGAGTGGGCGCCCTGGAAAAGCTGCACTGTTATGCCGAGCCTGTGA



TCGGCGTCGTGAAGTACGAGACAGCCATCAGCATCCGGCTGAAGGGCATCAGCAACTACTTCAGCAATGCCTTCTGG



ATGCTGGATGCCCGCGAGAAGTTCATGCTGATGAAGAAG (SEQ ID NO: 35)





Cas7
ATGGAACTGTGCAACATCCTGAAGTACGACCGCTCTCTGTACCCCGGCAAGGCCGTGTTCTTTTACAAGACCGCCGAC



AGCAACTTCGTGCCCCTGGAAGCCGACGTGAACAAGATCAGAGGCCCCAAGAGCGGCTTCACCGAGGCCTTCACACC



TCAGTTTCTGCCCAAGAACATCAGCCCTCAGGATCTGACCCACAACAACATTCTGACCCTGGAAGAGTGCTACGCCCC



TCCTAACGTGGAACACATCTTCTGCCGGTTCAGCCTGAGAGTGCAGGCCAATTCTCTGGCCCCTAGCGGCTGTTCTGA



TCCCGAGGTGTTCTCCCTGCTGAAAGAGCTGGCCCTGACCTTCAAAGAGTGCGGCGGCTACAAAGAACTGGCCGTGC



GGTACTGCCGGAACATCCTGCTTGGAACCTGGCTGTGGCGGAACCAGAACACCGGCAATACCCAGATCGAGATCAAG



ACCAGCAAGGGCAGCTGCTACCTGATCTACAACACCCGGAAGCTGGCCTGGGAGAGCAAATGGGCTAGCGACGATCT



GAAGGTGCTGGAAGAACTGAGCAACGAGATCGAGAGCGCCCTGACAGACCCCAATGTGTTTTGGAGCGCCGACATC



ACCGCCAAGATCGAAGCCAGCTTCTGCCAAGAGATCTACCCCAGCCAGATTCTGAACGACAAGATCAAGCAGGGCGA



AGCCTCCAAGCAGTTCGTGAAGGCCAAGTGCGCCGATGGCAGATACGCCGTGTCCTTCAACAGCGTGAAGATCGGAG



CCGCTCTGCAGTCCATCGACGATTGGTGGGATGAAGATGCCAGCAAGCGGCTGAGGGTGCACGAGTTTGGAGCCGAC



AAAGAGATCGGAATCGCCAGAAGGCCTCCTGACAGCGAGCAGAACTTCTACAGCATCTTCAAGAACACCGAGTGGTA



TCTGTCTGCCCTGAAGAACTGCATCACCAACAAGAACGAGAACATCGACCCCGCCATCTACTACCTGTTCAGCGTGCT



GATCAAAGGCGGCATGTTCCAGAAGAAGGCCGAGAGCAAGAAGGCCTGA (SEQ ID NO: 36)





Cas6
ATGCAGCGGTACTACTTCACCGTGCACTTTCTGCCCAAGCAGGCCAATCTGGCCCTGCTGACAGGCAGATGCATCAGC



ATCATGCACGGCTTCATCCTGAAGCACAACATCGAAGGCGTGGGCGTGACATTCCCCAATTGGAGCGATAGCAGCAT



CGGCGACGTGATCGCCTTCGTGCACACCGACATGGAAATCCTGAACAGCCTGAAAGAACAGACCTACTTCGTGGATA



TGCAGGACTGCGGCTTCTTCAAGATCAGCCAGGTGCTGGCCGTGCCTGAGAACTGCCAAGAGATCCGGTTCATCCGG



AATCAGGCCGTGGCCAAGATCTTCACCGGCGAGTCTAGACGGCGGCTGAAGAGACTGCAGAAGAGAGCACTTGCCA



GAGGCGAGGACTTCAACCCCAAGAAACTGGTGGCCCCTAGAGAGATCGACATCTTCCACAGAGTGGCCATGACCAGC



AAGAGCAGCCAAGAGGACTACATCCTGCACATCCAGAAACAGGACGTGGACTGCCAGGCCGAGCCTTACTTCAGCA



ATTACGGCCTGGCCAGCAACGAGAAGTTCAAGGGCACAGTGCCCGATCTGAGCCCTCTGATCGAGAGCAACTGA



(SEQ ID NO: 37)





DR
GTGACCTGCCGTATAGGTAGCTGAGAAT (SEQ ID NO: 38)





RE
TGTCGCTGCAACCATACTTTGACATAATATAACCATACTTTGACATAATATAACCATACTTTGACATAAAACCCCCTTT



TAATAATGGCATTTAAAATTAAAATTATTTAAAATCAATGGGCTGGCGTTTTATTAAACCATAGTGTGACATAATTGT



TTTTTTTGTATAGTATATATACAATAGTAAAAAATAGTTATTTCATTAATGTATATACGCAACTTAAG (SEQ ID NO: 39)





LE
AGGCTTCTTCAGACTTAATGTAATTCATTTTAATCATTCAACTATTTATCTAAATCTAAACCTACTTAAATTAAGGTGA



AACTTAAGCTAATAAATATCAATCTAAGTGCCACACCTCGCTTGAATTCAAAAAATTCTCAAGCTGCCGCAGATTCTT



AATTTAAGTGTCGCTGCTCGCTATGTCACTGTATGGTTGTATTTTATGTCACTGTATGGTTGTATTTTATGTCACTGTAT



GGTTGCAGCGACA (SEQ ID NO: 40)









24897|692|CrToilmet3SPAdes_$F_3300027742|0209121_10000693β5625|Ga020 9121_10000693 (ID: 98)










TABLE 8





Elements
Sequences







tnsA
ATGTACATCCGGAACCTGCGGAAGCCCTCTCCAAACAAGAACGTGTTCAAGTTCGCCAGCACCAAGGTGTCCAGCGT



GGTCATGTGTGAAAGCAGCCTGGAATTCGACGCCTGCTTCCACCACGAGTACAACGACCTGATCGAGAGCTTCGGCT



CTCAGCCCGAGGGCTTCAAGTACAAGTTCATGGGCAAGAGCCTGCCTTACACACCCGACGCTCTGATCAGCTACACC



GACAAGACCCAGAAGTATCACGAGTATAAGCCCTACAGCAAGATCGCCTCTCCTCTGTTCCGGGCCGAGTTTGCCGCT



AAAAGAGCCGCCTCTCTGAAGCTGGGCATCGACCTGGTGCTGGTCACCGACAGACAGATCAGAGTGAACCCCATCCT



GAACAACCTGAAGCTGCTGCACAGATACAGCGGCGTGTACGGCATCAGCGGCATCCAGAATGAGCTGCTGAGCTTCA



TCCACAAGAGCGGCGTGATCAAGCTGAACGACATCAGCAGCCAAGTGGGCATCCCCATCGGCGAGACAAGAAGCTT



CCTGTTCGGCCTGATGCACAAGGGCCTCGTGAAAGCCGATCTGGGCTGCGACGACCTGACCAACAATCCCACACTGT



GGGCCACACCTTGA (SEQ ID NO: 41)





tnsB
ATGGGCTACACCATGACCGATTTCTTCAACGAGTTCGACGAGAGCCTGGTGCCTCTGAAGCCCCAGACACCTACACA



GTACGTGAAGCTGGACGACGCCAACCTGATCCAGAGAGATCTGGACACCTTCTCCGACACCTTCAAGAATCAGGCCC



TGCAGCGGTACAAGCTGATCTCCACCATCGACAAGAAGCTGAGCAGAGGCTGGACCCAGAGGAATCTGGACCCCATC



CTGGACGAGCTGTTCAAAGGCGGAGATGTCGTGCGGCCCAATTGGAGAACAGTGGCCAGATGGCGGAAGAAGTACA



TCGAGAGCAACGGCGACATTGCCAGCCTGGCCGACAAGAACCACAAGATGGGCAACCGCACCAACCGGATCAAGGG



CGACGACAAGTTCTTCGACAAGGCCCTGGAACGGTTCCTGGACGCCAAGAGGCCTACAATCGCCACCGCCTACCAGT



ACTACAAGGACCTGATCGTGATCGAGAACGAGAGCATCGTGGAAGGCAAGATCCCCATCATCAGCTACAACGCCTTC



AACAAGCGCATCAAGGCCATTCCTCCATACGCCGTGGCCGTGGCCAGACACGGAAAGTTTAAAGCCGACCAGTGGTT



CGCCTACTGCGCCGCTCATGTGCCTCCAACCAGAATCCTGGAACGCGTGGAAATCGATCACACCCCTCTGGATCTGAT



CCTGCTGGACGATGAGCTGCTGATCCCTATCGGCAGACCCTACCTGACACTGCTGATCGACGTGTTCAGCGGCTGCGT



GCTGGGCTTTCACCTGAGCTACAAGAGCCCCAGCTATGTGTCTGCCGCCAAGGCCATCACACACGCCATCAAGCCCA



AGAGCTTCGACGCCCTGAACATCGAGCTGCAGAACGACTGGCCTTGCTTCGGCAAGTTCGAGAACCTGGTGGTGGAC



AACGGCGCCGAGTTCTGGTCCAAGAATCTGGAACACGCCTGTCAGAGCGCCGGCATCAACATCCAGTACAACCCTGT



GCGGAAGCCCTGGCTGAAGCCCTTCATCGAGAGATTCTTCGGCGTGATGAACGAGTACTTCCTGCCTGAGCTGCCCGG



CAAGACCTTCAGCAACATCCTGGAAAAAGAAGAGTACAAGCCCGAGAAGGACGCCATCATGCGGTTCAGCACCTTCG



TGGAAGAGTTCCACAGATGGATCGCCGACGTGTACCACCAGGACAGCAACAGCAGAGAGACACGGATCCCAATCAA



GCGGTGGCAGCAGGGCTTCGATGCCTATCCTCCTCTGACCATGAACGAGGAAGAAGAAACCCGGTTCTCCATGCTGA



TGCGGATCAGCGACAGCAGAACCCTGACCAGAAACGGCTTCAAGTACCAAGAGCTGATGTACGACAGCACAGCCCT



GGCCGATTACCGGAAGCACTACCCTCAGACCAAAGAAACCGTGAAGAAACTGATCAAGGTGGACCCCGACGACATC



AGCAAGATCTACGTGTACCTGGAAGAACTCGAGAGCTATCTCGAGGTGCCCTGCACCGATCCTACCGGCTATACAGA



TGGCCTGAGCATCTACGAGCACAAGACCATCAAGAAAATCAACCGGGAAGTGATCCGCGAGAGCAAGGATTCTCTG



GGCCTCGCCAAAGCCAGAATGGCCATCCACGAGAGAGTGAAGCAAGAGCAAGAGGTGTTCATCGAGTCCAAGACCA



AGGCCAAGATCACCGCCGTGAAAAAGAGAGCCCAGATTGCTGACGTGTCCAACACCGGCACCAGCACCATCAAGGT



GTCCGAGGAATCAGCCACACCTGTGCAGAAGCACATCTCCAACGACAACAGCGACGACTGGGCCGACGATCTGGAA



GCCTTTGAGTGA (SEQ ID NO: 42)





tnsC
ATGAATGCCCTGACCGAGATCCAGATCGAGAAGCTGCGGAACTTCAGCGACTGCATCGTGATGCACCCTCAGATCAA



GACCATCTTCAACGACTTCGACGAGCTGCGGCTGAACCGGAAGTTCCAGAGCGATCAGCAGTGTATGCTGCTGATTG



GCGATACCGGCGTGGGCAAGAGCCACACCATCAACCACTACAAGAAACGCGTGCTGGCCACACAGAACTACAGCCG



GAATACCATGCCTGTGCTGGTGTCCAGAATCAGCAGAGGCAAAGGCCTGGACGCCACACTGGTTCAGATGCTGGCTG



ACCTGGAACTGTTCGGCAGCAGCCAGATTAAGAAGCGGGGCTACAAGACCGACCTGACCAAGAAACTGGTGGAAAG



CCTGATCAAGGCCCAGGTGGAACTGCTGATTATCAACGAGTTCCAAGAGCTGATCGAGTTCAAGTCCGTGCAAGAGC



GGCAGCAGATCGCCAACGGCCTGAAGTTCATCAGCGAAGAGGCCAAGGTGCCCATCGTGCTCGTTGGAATGCCTTGG



GCCGCCAAGATTGCCGAGGAACCTCAGTGGGCCTCTAGACTCGTGCGGAAGCGGAAGCTGGAATACTTCAGCCTGAA



GAACGACAGCAAGTACTTCCGGCAGTACCTGATGGGCCTCGCCAAGAAAATGCCCTTCGACGTGCCACCTAAGCTGG



AAAGCAAGAACACCACAATCGCCCTGTTCGCCGCCTGCAGAGGCGAGAATAGAGCCCTGAAACATCTGCTGCTGGAA



GCCCTGAAGCTGGCCCTGAGCTGCAACGAGTACCTGGAAAACAAGCACTTCATCACCGCCTACGACAAGTTCGACTT



CTTCAATGACAAAGAGAAGCTCAAGAGCAAGAACCCCTTCAAGCAGGACATCAAGGACATCGAGATCTACGAAGTG



ATCAAGAACAGCAGCTACAACCCCAACGCTCTGGACCCCGAGGACATGCTGACCGATAGAGTGTTCGCCATCGTGAA



GTGA (SEQ ID NO: 43)





tnsD
ATGGCCTTCCTGTTCAGCCCTAGAGCCAGAGCCTTTAGCGACGAGAGCCTGGAAAGCTACCTGCTGAGAGTGGTGTC



CGAGAACTTCTTCGACAGCTACGAGGGCCTGAGCCTGGCCATCAGAGAGGAACTGCACGAGCTGGATTTTGAGGCCC



ACGGCGCCTTTCCAATCGACCTGAAGAGACTGAACGTGTACCACGCCAAGCACAACAGCCACTTCCGGATGAGAGCC



CTGGGCCTGCTGGAAACACTGCTGGACCTGCCTAGATACGAGCTGCAGAAACTGGCCCTGCTGAAGTCCGACATCAA



GTTCAACAGCAGCGCCGCTCTGTACAACAACGGCGTGGACATCCCTCTGCGGTTCATCAGACATCATGCCGAGGGCG



CTGTGGACAGCATCCCTGTTTGTCCTCAGTGCCTGGCCGAGGAAGCCTACATCAAGCAGAGCTGGCACATCAAATGG



GTCAACGCCTGCACCAAGCACCAGTGTGCCCTGCTGCACAATTGCCCTGAGTGCTGCGCCCCTATCAACTACATCGAG



AACGAGAGCATCACCCACTGCAGCTGCGGCTTCGAACTGAGCTGTGCCAGCACAAGCCCCGTGAACACACTGAGCAT



CGAGCACCTGAACAAGCTGCTGGACAAGGGCGAGAGAAACGACAGCAACCCACTGTTCAACAACATGACCCTGACC



GAGAGATTCGCCGCACTGCTGTGGTATCAAGAGCGGTACAGCCAGACCGACAACTTCTGCCTGAACGACGCCGTGAA



CTACTTCAGCAAGTGGCCTGCCGTGTTCAACACCGAGCTGGACGAGCTGAGCAAGAACGCCGAGATGAAGCTGATCG



ACCTGTTTAACAAGACCGAGTTCAAGTTCATCTTCGGCGACGCCATCCTGGCCTGTCCTAGCACACAGAAGCAGAGC



GAGAGCCACTTCATCTACAAAGCCCTGCTGGACTACCTGGTCACCCTGGTGGAAAGCAACCCCAAGACCAAGAAGCC



CAACGCCGCCGATCTGCTGGTGTCTGTTCTGGAAGCTGCCACTCTGCTGGGCACCTCTGTGGAACAGGTGTACAGACT



GTACCAGGACGGCATCCTGCAGACCGCCTTCCGGCACAAGATGAACCAGCGGATCAACCCCTACAAGGGCGCCTTCT



TTCTGCGGCACGTGATCGAGTACAAGACCAGCTTCGGCAACGACAAGGCCCGGATGTATCTGAGCGCTTGGTGA



(SEQ ID NO: 44)





Cas5/
ATGACCAAGCTGGAATGCATCTGCCGGCACGGCGAGTACATGCACCTGAAAGAGCTGCTGGAAATCACCGACACCAC


8
CGAGAGAGACAGAAGCCTGCGGAGAGCCTTCTCTCCCTACACCGCCATGATCGACATCACCGGCTCTGAAGCCGTGG



CTCTGATCATCCTGCTGAACCTGACCTACCGGAAGAACCAGGTGGACGACCTGCTGGACAAGAAGCTGGCCAAGCAG



GCCCTGAAGTCCGAGGACCACATCAACAAGTGCATCAAAGAGATCGCCTGGTTTCACACCCACAACCTGAAGTACCC



CGACATCCGGGTGTCCAAGCAGAACCTGGCTGTGGAACCTCCTACACTGCACAGCTACGTGCTGAGCAGCGCCAACT



ATCCTAAGGCCTATGGCTGGTCCCACGACAGCGCCAAAGTGAACTTCGCCAAGCTGTTCATCAGCTACTTCAAGTGGC



AGAATCAGGTGTCCTGTCTGGCCCAGGTGCTGGCCACCAACAGCAACAATTGGAAGTCCGCCTTCACCAGCCTGGGC



CTGTCTGTGAAGGCCTTTAAGAGCCTGTGCGTGACCGTGAAGAACAGCCTGCCTGAGGAAGCTATCCCCGACAGCGT



GGACCGGTACTCTAGACAAGTGCGGATGCCCTACCACGACGGCTATGTGGCTGTGACCCCTGTGATCTCTCACGTGGT



GCAGAGCAAAGTGCAGCAGGCCGCCATCGACAAGAGAGCCAGATTCAGCAACGTGGAATTCACCAGACCTGCCGCC



GTGTCTATGCTGGCCGCTTCTCTTGGCGGCGTGATCAACGTGCTGAACTACCCTCCTTACATCCGGTCCAAGTACCAC



GGCCTGAGCAGCAGCAGACAGTTCAAGCTGAACAACGGCCAGACCGTGTTCAACGTGGGAGCCCTGCTGAAGCCCG



AGTTCATCAAAGCCCTGGAAGGCATCATCTTCAGCAACAACGCCCTGGCACTGAAGCAGCGGAGACAGCAGAAAGT



GAAGAATATCCGGAACGTGCGGAGCACCCTGCTGGAATGGTTCAGCCCTGTGTTTGAGTGGCGGCTGGACGTGATCG



AGAACGGCAACGATCTGGAACAGCTGGAATCTATCAGCAACCAGCTCGAGTACAAGATCCTGAGCCTGCCAGACGAC



GAGCTGCCCTCTCTGACAATCCCTCTGTTCCGGCTGCTGAACGAGATGCTGGGAGATGTGTCTATGACCCAGCGCTAC



GCCTTCCATCCTCAACTGATGAGCCCACTGAAGGCCGCTCTGCAGTGGCTGCTGATTAACCTGACCGATCAGAAGAAC



GAGCTGATCGAAGAGGACGATGAGCACTACAGATACCTGCACCTGAGCGGCATCAGAGTGTTCGATGCACAGGCCCT



GTCTAACCCCTACTGCAGCGGAATCCCAAGCCTGACAGCTGTGTGGGGCATGATCCACAGCTACCAGCGGAAGCTGA



ATGAGGCCCTGGGCACCAATGTGCGGTTCACCAGCTTTAGCTGGTTCATCCGGAACTACAGCGCCGTTGTGGGAAAG



AAGCTGCCCGAGCTGTCTCTGCAGGGTGCCCAGCAATCTAGACTGAAGAGGCCCGGCATCATCGACGGCAAGTACTG



CGACCTGGTGTTCGACCTGATCATTCACATCGATGGCTACGAGGACGATCTGCAGGCTGTGGACAGCAAGCCCGATA



TCCTGAAGGCCCACTTTCCTAGCAACTTTGCCGGCGGAGTGATGCACCAGCCAGAGCTGAACTCCAACATCAACTGGT



GCTGCCTGTACAGCAACGAGAATCAGCTGTTCGAGAAGCTGAGGCGGCTGCCTCTGTCTGGCTGTTGGGTTATGCCTA



CCGAGCACAAGATTCAGGACCTGGATGAGCTGCTCCTGCTGCTGAATAGCGACTCCAAGCTGAGCCCCAGCATGATG



GGCTACATGCTGCTGACCGAGCCTAAGGCTAGAGTGGGCGCTCTGGAAAGACTGCACTGTTATGCCGAACCTGCCAT



CGGCGTCGTGAAGTACGAGACAGCCATTAGCGTGCGGCTGAAAGGCATCGGCAACTACTTCAACAGCGCCTTCTGGA



TGCTGGATGTGCAAGAGAAGTTCATGCTGATGAAGAAGGTGTAG (SEQ ID NO: 45)





Cas7
ATGGAACTGTGCAACATCCTGAAGTACGACCGCTCTCTGTACCCCGGCAAGGCCGTGTTCTTCTACAAGACCAGCGAC



AGCGACTTCGTGCCCCTGGAAGCCGACGTGAACAAGATCAGAGGCCCCAAGAGCGGCTTCACCGAGGCCTTCACACC



TCAGTTCAGCCCCAAGAACATCAGCCCTCAGGATCTGACCCACAACAACATTCTGACCCTGGAAGAGTGCTACGTGC



CACCTAACGTGGAACACATCTTCTGCCGGTTCAGCCTGAGAGTGCAGGCCAATAGCCTGGTGCCTAGCGGCTGTTCTG



ATCCCGAGGTGTTCTCCCTGCTGGAAGAACTGGCCAAGACCTTCAAAGAGTGCGGCGGCTACAAAGAGCTGGCCACC



AGATACTGCCGGAACATCCTGCTCGGAACATGGCTGTGGCGGAACCAGAACACCGGCAACACCCAGATCGAGATCA



AGACCTCCAAGGGCAGCTGCTACCTGATCGGCAATACCAGAAAGCTGGCCTGGGAGAGCAAGTGGGCCAGCGACGA



TCTGAAGGTGCTCGAGGAACTGAGCAACGAGATCGAGAGCGCCCTGACAGACCCCAATGTGTTTTGGAGCGCCGACA



TCACCGCCAAGATCGAAGCCAGCTTCTGCCAAGAGGTGTACCCCAGCCAGATTCTGAACGACAAAGTGAAGCAGGGC



GAAGCCTCCAAGCAGTTCGTGAAGGCCAAGTGCGCCGATGGCAGATACGCCGTGTCCTTCAACAGCGTGAAGATCGG



AGCCGCTCTGCAGTCCATCGACGATTGGTGGGACGAAGATGCCAACAAGCGGCTGAGGGTGCACGAGTTTGGAGCCG



ACAAAGAGATCGGAATCGCCAGAAGGCCTCCTGACAGCGAGCAGAACTTCTACAGCATCTTCAAGAACACCGAGTG



GTATCTGTCTGCCCTGCAGAACTGCATCACCAACAAGAACGTGAAGATTGACCCCGCCATCTACTACCTGTTCAGCGT



GCTGATCAAAGGCGGCATGTTCCAGAAGAAGGCCGAGGCCAAGAAGGCCTGA (SEQ ID NO: 46)





Cas6
ATGCAGCGGTACTACTTCACCGTGCACTTTCTGCCCAAGCAGGCCAATCTGGCCCTGCTGACAGGCAGATGCATCAGC



ATCATGCACGGCTTCATCCTGAAGCACTACATCGAAGGCATGGGCGTGACATTCCCCGCTTGGAGCGATAGCAGCAT



CGGCAACGAGATCGCCTTCGTGTACACCGACAAAGAGATCCTGAACACCCTGAAGGACCAGGCCTACTTCGTGGATA



TGCAGGACTGCGGCTTCTTCAAGGTGTCCCAGGTGCTGGTGGTGCCCGACAGCTGTAAAGAGCTGCGGTTCATCCGG



AACCAGGCCATTGCCAAGATCTTCACCGGCGAGAGCAGACGGCGGCTGAAGAGACTGCAGAAAAGAGCCCTTGCCA



GAGGCGAGGACTTCAACCCCAAGAAGCTGGAAGCCCCTAGAGAGATCGACATCTTCCACAGAGTGGCCATGACCAG



CAAGAGCAGCCAAGAGGACTACATCCTGCACATCCAGAAACAGGACGTGGACTGCCAGGCCGAGCCTATCTTCAACA



ATTACGGCCTGGCCAGCAACGAGAAGTTCAAGGGCACAGTGCCCGATCTGAGCCCCAGCATCGACAGAAACTGA



(SEQ ID NO: 47)





DR
GTGACCTGCCGTATAGGCAGCTGAAAAT (SEQ ID NO: 48)





RE
TGTCGCTGCAACCATAGTTTGACATAATACAACCATACCTTGACATAATTAAAGTCATACTCTGACATAAAGACCCTT



ATTAAAAATGATGCTAAAAATAAATTCCATTATAATCAATTCTTTAAGAATTAATTAAACCATAGTGTGACATAGTGG



CTTTTTATTTGTATAGTATGTGTACTCAAATAATAAAAATTTACTTATGTATATACGCAACTTAAGAAA (SEQ ID NO:



49)





LE
CGTATAGGCAGCTGAAGATAAAAACAATCGATTCGATGTTTAAGTTAATGTAATTCTGCCGAAAAGGCAGTGAGTAG



TAATTGAAAAAACCAGTCTTATATCCGGGCTGGTTTTTTTTGTTTTTAGCGTTATAACTTTTATTTCACTATGTCACTGT



ATGGTTGCATTTTATGTCAGTGAATGGTTGCAGGTTTTTTGTAAGTTATTGATATGCCTATCCAGTGTATGTCACGCTT



TGCTTGCAGCGACA (SEQ ID NO: 50)









26705|1051|GOMGTlmesoSPAdes_2_$F_3300025731|a0209396_1001052|31432|Ga0209396_1001052 (ID: 99)










TABLE 9





Elements
Sequences







tnsA
ATGACCAACTGCCTGTTCCTGCTGTTCAGCCTGTACAGCATCCCCAGAAAGACCCTGGGCAGCTGCATGTACATCCGG



AACCTGAGAAAGCCCTCTCCGAACAAGAACATCTTCAAGTTCGCCAGCACCAAGGTGTCCCACGTGATCATGTGCGA



GAGCACCCTGGAATTCGACGCCTGCTTCCACCACGAGTACAACGACGCCATCGAGAGCTACGGCTCTCAGCCTGAGG



GCTTCAAGTACCAGTTCATGGGCAAGAGCCTGCCTTACACACCCGACGCTCTGATCCTGTACAAGAACAGCGTGGAA



AAGTACCATGAGTACAAGCCCTACAGCCAGATCAGCAGCCCTCTGTTCAGAGAGAAGTTCGCCGCCAAGAGAATCGC



CAGCCTGAAGCTGGGCAGAGATCTGATCCTCGTGACCGACCGGCAGATCAGAGTGAAGCCCATCCTGAACAATCTGA



AGCTGCTGCACCGGTACAGCGGCGTGTACGGCGTTAACACCGTGCAGAATGAGCTGCTGACCCTGATCCAGAAGTCC



GGCAGCATCAAGCTGAACGACGTGTCCTCTCAAGTGGGCCTGAGCATCGGAGTGGCCAGAAGCTTTCTGTACGCCCT



GATTCACAAGGGCTTCGTGAAGGCCGACCTGGGAAGAGATGACCTGACCATCAATCCCACACTGTGGCCCGTGTACG



ACTGA (SEQ ID NO: 51)





tnsB
ATGATCGACTTCTACGACGAGTTCGACGAGTCTATCGCCCCTAACAAGCCCAAGACACCCATCCAGTACGTGAAGCT



GGAAGATGCCAACCTGATCAAGCGCGACCTGGATACCTTTCCTGACTTCCTGAAAGAGCAGGCCCTGGATAAGTACG



AGCTGATCTCCCAGATCGACAAAGAGATCGAAGGCGGCTGGACCAAGAAGAACATCGACCCCATCCTGGAAAAGCT



GTTCGACAGCAACAGCTTCAACAGACCCAACTGGCGGACAGTTGTGCGGTGGCGGAAGAAGTATATCGAGAGCAGC



GGCGATCTGGCCAGCCTGGTCAATGAGAGACACAAGATGGGCAACCGCAAGAAGCGGATCAAGGGCGACGAGGCCT



TCTTCGATACAGCCCTGGAAAGATTCCTGGACGCCAAGAGGCCTACCGTGTCCACCGCCTACAAGTACTACAAGGAC



CTGATCATCATCGAGAACGAGAAGATCGTGGAAGGCAAGATCCCCACCGTGTCCTACACCGCCTTCAACAAGAGAAT



CAAGGCCCTGCCTCCTTATCCTCTGGCCGTGGCCAGACACGGCAAGTTCATGGCTGATCAGTGGTTCGCCTACTGCAG



CAGCCATCTGCCTCCAACCAGGATTCTGGAACGCGTGGAAATCGATCACACCCCTCTGGATCTGATCCTGCTGGACGA



CGAGCTGCTGATCCCTCTGGGCAGACCTTACCTGACACTGCTGGTGGATGTGTTCAGCGGCTGCATCATGGGCTTCCA



CCTGAGCTACAAGTGCCCCAGCTATGTGTCTGCCGCCAAGGCCATCACACACGCCATCAAGCCTAAGAGCCTGGAAT



CCATCGGCATCGAGTTCCAGAACGACTGGCCCTGCTACGGCAAGATCGAGAACCTGGTGGTGGACAACGGCGCCGAG



TTTTGGAGCAAGTCTCTGGAACACGCCTGTCACAGCGCCGGCATCAATATCCAGTACAACCCCGTGCGGAAGCCCTG



GCTGAAGCCCTTTGTGGAACGGTTCTTCGGCGTGATCAACCAGCACTTCCTGAGCGAGCTGCCCGGCAAGACCTTCAG



CAACATTCTGGAAAAAGAAGAGTACAAGAGCGAGAAGGACGCCATCATGCGGTTCAGCACCTTCGTGGAAGAGTTC



CACAGATGGATCGTGGACGTGTACCACCAGGACAGCGACAGCCGGGACACAAGAATCCCCATCAGACAGTGGAAGT



CCGGCTTCGATGTGTACCCTCCACTGAAGATGAAGAACGAGGAAGAGGAACGCTTCAGCGTGCTGATGCACATCAGC



TCCGAGCGGACCCTGACCAGAAACGGCTTCAAGTTCGAGGAACTGATGTACGACAGCACTGCCCTGGCCGACTACCG



GAAGCACTACCCTCAGAGCAAGAAAACCATCAAAAAGATCATCAAGGTGGACCCCGACGACATCAGCAAGATCTAC



GTGTACCTGGAAGAACTGAACAGCTATCTGGAAGTGCCCTGCACAGACCCCAGCAGCTATACAAAGGGCCTGAGCAT



CCACGAGCACAAGACCATTAAGAAGATCAACCGCGAGATCATCCGGGAAAGCAAGAACAGCCTGGGCCTCGCCAAA



GCCAGAATGGCCATCCACGAACGCGTGAAGAAAGAACAAGAGTTCTTCGTGGCCAGCAAGAGCACCGCCAAGATCA



GCACCGTGAAGAAGCAGGCCCAGCTGGCCGACATCTGCAATACCGGCAAGGGCACCATCCGGATCAGCAAGGATGA



GACAACCAGCATGCAGCCCAACAAGAGCAACCACATCTTCGACAACTGGGACGACGACCTGGAAGCCTTCTGA (SEQ



ID NO: 52)





tnsC
ATGAACACCCTGACCGAGATCCAGATCGAGCAGCTGCGGAAGTTCAGCGACTGCATCGTGGTGCACCCTCAGATCGA



AGTGATCTTCAACGACTTCGACGAGCTGCGGCTGAACCGGAAGTTCCAGAGCGATCAGCAGTGCATGCTGCTGACCG



GCGATACAGGCGTGGGAAAGTCCCACGTGATCAACCACTACAAGAAACGCGTGCTGGCCACGCAGAACTACAATCG



GAGCACAATCCCCGTGCTGGTGTCCAGAATCAGCAGCGGCAAAGGCCTGGACGCCACACTGATCCAGATGCTGACAG



ACCTGGAACTGTTCGGCAGCAGCCAGCGGAAGAAGAGAGGCTACAAGACCGACCTGACCAGAAAGCTGGTGGAAAG



CCTGGTCAAGGCCCAGGTGGAACTGCTGATTATCAACGAGTTCCAAGAGCTGATCGAGTTCAAGTCCATCCAAGAGC



GGCAGTCTATCGCCAACGGCCTGAAGTTCATCAGCGAAGAGGCCAAGGTGCCCATCGTGCTCGTTGGAATGCCTTGG



GCCGAGATCATTGCCGAGGAACCTCAGTGGTCCAGCAGACTCGTGCGGAAGCGGAAGCTGGAATACTTCAGCCTGCA



GCGGGACAGCAAGTACTACCGGCAGTATCTGATGGGCCTCGCCAAGAACATGCCCTTCGATGTGCCTCCAGAGCTGG



AAGATAAGCACACCGCTATCGCCCTGTTCAGCGCCTGTAGAGGCGAGAACAGAGCCCTGAAACATCTGCTGAGCGAG



AGCCTGAAGCTGGCCCTGACCTGCAACGAGTACCTGGAAAACAAGCACTTCATCTCCGCCTTCGACAAGCTGTACAG



AAGCGGCGAGACAGACAGCACCCAGGGCAAGAAGAACCTGAAGAACCCCTTCAAGCAGGACGTGAAGGATATCGTG



GTGTCCGAGATGATCGAGCACTCCAAGTACAACCCCAACGCTCTGGACCCCGAGGACATGCTGACTGGCAGAGTGTT



CAGCTGA (SEQ ID NO: 53)





tnsD
ATGAGCTTCCTGTTCAGCCCCGAGACAAGAGCCTTCGCCGATGAGAGCCTGGAAAGCTACCTGCTGCGGATCATCAG



CGAGAATTTCTTCGAGAGCTACGAGGAACTGAGCCTGGCCATCAGAGAGGAACTGCACGAGCTGGACTTTGACGCCC



ATGGCGCCTTTCCAATCGACCTGAAGCGGCTGAATGTGTTCCACGCCAAGCACAACAGCCACTTCAGAATGAGAGCC



CTGAGCCTGCTGGAAACCCTGCTGGATCTGCCTAGACACGAGCTGCAGAAACTGGCCCTGCTGAAGTCCAACAAGAC



CTTCAACACCTCTATCGCCCTGCACCGGAACGGCGTGGACATCCCTCTGAAGTTCATCCGGTACAACGGCACCGACGG



CATCAGCACAATCCCTGTGTGTCCTCAGTGCCTGAGCGAGGAAGCCTACATCAAGCAGAGCTGGCACCTGAAATGGG



TCAACAACTGCACCAAGCACGAGTGCGCCCTGCTGCACTACTGCCCTGAGTGTAACCTGCCTCTGAACTACATCGAGA



ACGAGAGCATCACCCACTGCAGCTGCGGCTTTGAACTGAGCGCCGCCAGCACCAACAGCACCGATAAGCAGAGCATC



GACGTGCTGAAGATGCTGATGCTGAACGACGCCAGCAGCGACAACCCTCTGTTCAAGAGCACCAGCATCTCCCAGAG



ACTGGCCACACTGCTGTGGTATCAGGACAGATACTCTGCCGCCGACACCTTCTGCCTGAACGAGATCGCCGACTACTT



CAACAAGTGGCCCGAGATCCTGTACAAAGAGCTGGATTACCTGAGCCAGCGGGCCGAGATCAAGCTGATCGACCTGT



TTAACAAGACCGCCTTCCGGTTCATCTTCGGCGAGCTGATCCTGAGCGTGCCCCACAACAATCAGTCCGAGGAACAG



CTGCACTTCATCCGGATCACCCTGATGGACTACCTGGTGCTGCTGGTGGAAAAGAACCCCAAGAGCAAGAAACCCAA



CGTGGCCGACATGCTGGTGTCCGTGTCAGAGGTGGCCATCATCCTGGGCACAAGCCACGAACAGGTGTACCGGCTGT



ACCAGGACGGCATCCTGCAGAGCGTGTTCCGGCACAAGATGAAGCAGCGGATCGACCCTCACAGCTGCGTGTTCTTT



CTGCGGCAAGTGATCGAGTACAAGAGCAGCTTCGGCGTGAACAAGTCCAGAATCTACCTGAGCGCCTGGTGA (SEQ



ID NO: 54)





Cas5/
ATGGTGTCCATGATCCACCTGAGAGAGCTGCTGATCATCGAGAACGTGCCCGAGAGAAACCAGAGCCTGAGAAGGG


8
CCTTTAGCGCCTACACCAAGGCCATCGATGTGACCGGCTGCGAGAATATCGCCCTGACCATCCTGCTGAACCTGACCT



ACAGAAAAGTGGTGGTGGTCGACCTGCTGGACAAGAAGCTGGCCAAGACAGCCCTGAACAACGAGGACATCATGAA



CAAGTGCATCAAAGAACTGCAGTGGTTTCACACCCACAACCTGAAGTACCCCGACATCCGGGTGTCCAAGCAGAACC



TGGCCATTGATAGCCCCGTGCTGCACCCCAATGTGCTGAGCAGCGCCAACTACGACAGAAGCTTTGGCTGGGCCCAC



GACAGCGCCAAAGTGAACCTGGTCAAGCTGTTCCTGAGCTACTTCATCTGGGAGGGCAAAGAGAGATGCCTGGCCGA



CATCCTGAGCAGCTCTGCCAAAGGATGGAAGGCCGCCTTTCAGAGCCTGGGCGTGCCAGTGAAGTCCTTCAAGAACG



TGTGCGCCAACGTGAAGGGCTTCCTGCCTCACGTGATGATCCCCAACACCGTGGACCGGTACAGCATCCAAGTGCGG



CTGCCTTACCACGACGGCTACGTGGCAATCACCCCTGTGGTGTCTCACGTGCTGCAGAGCAAGATTCAGCAGGCCGCC



ATCAGCAAGAACGGCCGGTTTAGCAAGATCGGCTTCACCAGATCCAGCGCCGTGTCTCAGCTGGTGGCTTCTCTTGGC



GGCGTGGTCAACAGCCTGAACTACCCTCCTTACAAGTACAAGAAGCAGCACGCCCTGAGCAACAGCAGACTGCTGCA



GATCCAGAAAGGCAAGCCCGTGTTCTACCTGAACGCCCTCGTGAACAGCAAGTTCATCAGAGCCCTGGACTGCCTGA



TCTTCAACGGCGGATCTCTGGCCCTGAAGCAGCGGAGACAGCAGAAGCTGATCTCCAACAAAGAGATCCGGTCTACC



CTGAGCGAGTGGCTGGCCCCTATTCTGGAATGGCGGCTGGAAGTGATGGATAAGAACAACAACAGCCCTCAGCTGGA



CAACATCAGCGAGACAGTGGAATTCAAGCTGCTGACCGTGTCCGACGACGACCTGCCTAAGCTGGTCATGCCTGTGT



TCGGCCTGTTCAACGCCATGCTGAGCAACCTGAGCCTGACACAGAAGTACGCCTTTCATCCCAAGCTGATGACCCCTT



TCAAGGCCGGACTGAAGTGGCTGCTGTCCAATATCGCCAACGAGGATAGCAAGCTGAGCGTGGACGACAACGTGGA



AAAGTACAGATACCTGTACCTGAAGGACATCCGCGTGTTCGATGCACAGGCCCTGTCTAACCCTTACTGCAGCGGCA



CACCTTCTCTGACAGCCGTGTGGGGAATGGTGCACAGATACCAGCGGAAGCTGAACGAGGCCCTGTGTACCAAAGTG



CGGTTCACCTCCTTCAGCTGGTTCATCAAGGACTACAGCATCGTCGAGGGCAAGAAACTGCCCGAAGTGAATCTGCA



GGGCCCCATGCAGAACGAGTTCAGAAGGCCCGGCATCATCGACAACAAGCACTGCGACCTGGTGTTCGATCTGGTGG



TGCACATCGACGGATGCGAGAGCGATCTGAGACTGCTGGATGAGCAGCCCGAGATCATCAAGGCCCACTTTCCACCA



TCTCTGGCAGGCGGAGTTATGCTGCAGCCTGAGCTGAGCCTGTCCACCGATTGGTGCAGACTGTACAGCGACGAGAA



CCTGCTGTTCGAGAAGCTGAGAAGGCTGCCCCTGAGCGGCAGATGGATCATGCCCACCAAGTACCGGATCAGCGACC



TGGAAGAACTGCTGCTGCTGGTCACAAATCACCCCGAGCTGTCCCCAACCATGTTCGGCTATCTGCTGCTCGACCAGC



CTAAGGCTAGAGATGGCAGCATCGAGGAACGGCACTGTTATGCCGAGCCTGCCATCGGCCTGATCGAGTACACAACC



GCCATCAAGATCCGGCTGAAGGGGAAGAAGAACTACTTCAACAGAGCCTTCTGGGTGCTCGACGCCCAAGAGCGGTT



CATGCTGATGAAGGGCATCTGA (SEQ ID NO: 55)





Cas7
ATGGAAATCTGCAACATCCTGAAGTACGACCGCTCTCTGTACCCCAGCAAGGCCGTGTTCTTCTACAAGACCATCGAC



TGCGACTTCGTGCCCCTGGAAGCCGACATCAGCAAGATCAGAGGCCCCAAGACCGGCTTCACCGAGGCCTTCACACC



TCAGTTCAGCCCCAAGAATCTGGCCCCTCAGGATCTGACCCACAACAACATTCTGACCCTGGAAGAGTGCTACGTGCC



ACCTAACGTGGAACACATCTACTGCCGGTTCAGCCTGAGAGTGCAGGCCAACAGCCTGATGCCTAGCGGCTGTTCTG



ATCCCGAAGTGTTCGCCCTGCTGAAAGAACTGGCCACCGTGTTCAAAGAGTGCGCCGGCTATAAGGCCCTGGCCATC



AGATACAGCAGAAACATCCTGCTCGGCACCTGGCTGTGGCGGAATCAGAATACCGGCAACACCGAGATCGAGATCA



AGACCAGCAGCGGCAAGAGCTACCTGATCAACAACACCCGGAAGATCGCCTGGGAGAGCACCTGGCCTGAAGAGGA



ACAGAAGGTGCTGGACGAGCTGAGCGAGGAAATCCATCAGGCCCTGGTGGACCCCAACATCTATTGGAGCGCCGATA



TCACCGCCAAGATTGAGGCCGCCTTCTGCCAAGAGATCTACCCCAGCCAGATCCTGTCCGACAAGCCCAAACAAGGC



GACGCCAGCAAGCAGTTCGTGAAGGCCAAGTGCACCGACGGCAGATACGCCGTGTCCTTCAACAGCGTGAAAGTGG



GAGCCGCTCTGCAGTCCATCGACGATTGGTGGGATGTCGACGCCTCCAAGAGACTGAGGGTGCACGAGTTTGGCGCC



GACAAAGAGCTGAACATCACCAGAAGGCCTCCAGACAGCGAGCGGAACTTCTACTACCTGCTGAGAAAGACCGAGC



TGCTCGTGGGAGAACTGAAGGCCGCCGTGACCAGCAAGAGCAAAGTGATCAACCCCAATATCTACTATCTGTTCAGC



GTGTTCATCAAAGGCGGCATGTTCCAGAAGAAGGCCGAGAAGAAAAAGGTGTAG (SEQ ID NO: 56)





Cas6
ATGAAGCGGTACTACTTCATGGTGTCCTTTCTGCCCAAAGAGGCCAACCTGCCTCTGCTGACCGGCAGATGCATCAGC



ATCATGCACGGCTTCATCTGTCGGCACAACATCCAAGGCATCGGCGTGTCCTTGCCTTCTTGGAGCGATACCAGCATC



GGCAACAAGATCGCCTTCGTGCACTACGACGAGAGCATCCTGAACAGCCTGAAGCAGCAGGCCTACTTCCAAGAGAT



GAAGGACTGCGGCTTCCTGAAGCTGAGCGAAGTGTGCATCGTGCCCACCGGCTGTAGAGAAGTGCGGTTCAAGCGGA



ACCAGGCCATTGCCAAGATCTTCGTGGGCGAGAGCAGACGGCGGCTGAAGAGACTGGAAAAGAGAGCCCTGGCTCG



GGGCGACGTGTTCAACCCTAAGAAGCCTAGCACCAGCAGAGAGCTGGACATCTTCCACCGGATCGCCATGAGCAGCA



GCCGGAACCTGGAAGAGTTCATCCTGCACATCCAGAAAGAATACGTGGACTGCAAGAACGAGCCCACCTTCGGCAGC



TACGGCTTCGCCAGCAACAAGAAATTCCAGGGCACCGTGCCTGACCTGTCCATCCTGGCTAATTGA (SEQ ID NO: 57)





DR
GTGACCTGCCGCATAGGCAGCTGAAAAT (SEQ ID NO: 58)





RE
TGTCGCTGAAACCATACTTTGACATAATATAACCATACATTGACAAATTTAAGCCATACTTTGACATAAAGTGTGGAC



TTGTTGTTTTACCACAAAATAAAGTCGATAAAAATCAGCCAGTAACGTCACAATTAAAGCATACCATGACAAATTGTT



TGTTTTTATTATTTAGTCTATACTCAATACCAAGAAAAACACTT (SEQ ID NO: 59)





LE
ATCGAACTCTGCCGAATAGGTAGTTAATAAGCCTCTTCTGAGTTTAAAATATAGAGAGGCTTTTCTCTTTTTACAAGC



AACATCACTATGATAAAAATGTAATTTTATTACTTATCTACATTAAGATATTTGAAAAGCCATTTTATTTGTCACTGTA



TGGTTATATTTTTATGTCATCAAATGGTTTCAAGTGTTAGCTAAGTACTTGTTTTTAAATCGTGGCTTATGTCAGTGTTT



AGTTTCAGCAACA (SEQ ID NO: 60)









27754|44|IMG_3300003980_$F_3300003980|Ga0064232_10045|134414|Ga0064 232_10045 (ID: 100)










TABLE 10





Elements
Sequences







tnsA
ATGCGGACCAAGCTGATGAAGATGGTCATCCTGCTGATGTATATCCGGAACCTGCGGAAGCCCTCTCCAAACAAGAA



CGTGTTCAAGTTCGCCAGCACCAAGGTGTCCAGCGTGGTCATGTGTGAAGGCACCCTGGAATTCGACGCCTGCTTCCA



CCACGAGTACAACGACCTGATCGAGAGCTTCGGCTCTCAGCCCGAGGGCTTTAAGTACGAGTTCATGGGCAAGAGCC



TGCCTTACACACCCGACGCTCTGATCAGCTACACCGACAAGACCCAGAAGTATCACGAGTATAAGCCCTACAGCAAG



ATCGCCTCTCCTCTGTTCCGGGCCGAGTTTGCCGCTAAAAGAGCCGCCTCTCTGAAGATGGGCATTGACCTGATCCTG



GTCACCGACCGGCAGATCAGAGTGAACCCCATCCTGAACAACCTGAAGCTGCTGCACAGATACAGCGGCGTGTACGG



CATCAGCAGCATCCAGAATGAGCTGCTGAGCTTCATCCACAAGAGCGGCGTGATCAAGCTGAACGACATCAGCTCCC



AGATCGGCCTGCCTATCGGCAAGACCAGAAGCTTCATCTTCGGCCTGATGCACAAGGGCCTCGTGAAGGCTGATCTG



GGCTGCGACGACCTGACCAACAATCCCACACTGTGGGCCACACCTTGA (SEQ ID NO: 61)





tnsB
ATGGGCTACACCATGACCGATTTCTTCAACGAGTTCGACGGCAGCCTGACACCTCTGAAGCCCCAGACACCTAAGCA



GTACGTGAAGCTGGACGACAGCAACCTGATCCAGAGAGATCTGGACACCTTCTCCGACACCTTCAAGAATCAGGCCC



TGCAGCGGTACAAGCTGATCATCAGCATCGACAAGAAGCTGAGCGCCGGCTGGACCCAGAGAAACCTGGATCCTATC



CTGGACGAGATCTTCAAAGAGGACGAGCAGGCCAGACCTAACTGGCGGACAATTGCCAGATGGCGGAAGAAGTACC



TGGAAAGCAACGGCGATCTGGCCAGCCTGGTGGTCAAGAACCACCGGATGGGCAACAGAATCAAGCGGATCGAGGG



CGACGAGAGCTTCTTCGACAAGGCCCTGGAAAGATTCCTGGACGCCAAGAGGCCTACAGTGGCCACAGCCTACCAGT



ACTACAAGGACCTGATCGTGATCGAGAACGAGAGCATCGTGGAAGGCAAGATCCCCATCATCAGCTACAACGCCTTC



AACAAGCGCATCAAGGCCATTCCTCCATACGCCGTGGCCGTGGCCAGACACGGAAAGTTTAAAGCCGACCAGTGGTT



CGCCTACTGCGCCGCTCATGTGCCTCCAACCAGGATTCTGGAACGCGTGGAAATCGATCACACCCCTCTGGATCTGAT



CCTGCTGGACGATGAGCTGCTGATCCCTATCGGCAGACCCTACCTGACACTGCTGATCGACGTGTTCAGCGGCTGCGT



GCTGGGCTTTCACCTGAGCTACAAGAGCCCCAGCTATGTGTCTGCCGCCAAGGCCATCACACACGCCATCAAGCCTA



AGAGCCTGGATGCCCTGAACATCGAGCTGCAGAACGACTGGCCTTGCTTCGGCAAGTTCGAGAACCTGGTGGTGGAC



AACGGCGCCGAGTTCTGGTCCAAGAATCTGGAACACGCCTGCCAGTCTGCCGGCGTGAACATCCAGTATAACCCCGT



GCGGAAGCCCTGGCTGAAGCCCTTCATCGAGAGATTCTTTGGCGTGATCAACGAGTACTTCCTGCCTGAGCTGCCCGG



CAAGACCTTCAGCAACATCCTGGAAAAAGAAGAGTACAAGCCCGAGAAGGACGCCATCATGCGGTTCAGCACCTTCG



TGGAAGAGTTCCACAGATGGATCGTGGACGTGTACCACCAGGACAGCAACAGCAGAGAGACACGGATCCCAATCAA



GAGATGGCAGCAGGGCTTCGACGCCTATCCTCCACTGACCATGAGCGAGGAAGAAGAGGCCAGATTCGACATGCTGA



TGCGGATCAGCGACAGCAGAACCCTGACCAGAAACGGCATCAAGTACCAAGAGCTGATGTACGACAGCACAGCCCT



GGCCGACTACCGGAAGCACTACCCTCAGACCAAAGAGACAATCAAGAAACTGATCAAGGTGGACCCCGACGACATC



AGCAAGATCTACGTGTACCTCGAGGAACTGGAAAGCTACCTGGAAGTGCCCTGCACCGATCCTACCGGCTATACAGA



TGGCCTGAGCATCTACGAGCACAAGACCATCAAGAAGATCAACCGCGAGATCATCAGAGAGAGCAAGGACAGCCTG



GGCCTCGCCAAAGCCAGAATGGCCATCCACGAAAGAGTGCGGCAAGAGCAAGAGGCTTTCATCGAGTCCAAGACCA



AGGCCAAGATCACCACCGTGAAGAAACAGGCCCAGATTGCCGACGTGTCCAATACCGGCACCGGCACCATTAAGGTG



TCCGAAAAGTCTGCCGCTCCTGTGCAGAAGAACATCTCCAACGACATCTTCGACGACTGGGACGACGACCTGGAAGC



CTTCGAATGA (SEQ ID NO: 62)





tnsC
ATGAATGCCCTGACCGAGCTGCAGATCGGCCAGCTGAGAAACTTCAGCGACTGCATCGTGATGCACAGCCAGATCAA



GACCATCTTCAACGACTTCGACGAGCTGCGGCTGAACCGGATCTTCCAGAGCGATCAGCAGTGTATGCTGCTGATTGG



CGATACCGGCGTGGGCAAGAGCCACACCATCAACCACTACAAGAAACGCGTGCTGGCCACACAGAACTACAGCCGG



AATACCATGCCTGTGCTGATCTCCCGGATCTCTAGAGGCAAAGGCCTGGACGCCACACTGATCCAGATGCTGGCTGA



CCTGGAACTGTTCGGCAGCTCCCAGATTAAGAAGCGGGGCTACAAGACCGACCTGACCAAGAAACTGGTGGAAAGC



CTGATCAAGGCCCAGGTGGAACTGCTGATTATCAACGAGTTCCAAGAGCTGATCGAGTTCAAGTCCGTGCAAGAGCG



GCAGCAGATCGCCAACGGCCTGAAGTTCATCAGCGAAGAGGCCAAGGTGCCCATCGTGCTCGTTGGAATGCCTTGGG



CCGCCACAATTGCCGAGGAACCTCAGTGGGCCTCTAGACTCGTGCGGAAGCGGAAGCTGGAATACTTTAGCCTGAAG



AACGACATCAAGTACTTCCGCCAGTACCTGATGGGCCTCGCCAAGCAGATGCCCTTCGATGAGCCTCCTAAGCTGGA



AAGCAAGAACACCACAATGGCCCTGTTCGCCGCCTGCAGAGGCGAGAATAGAGCCCTGAAACATCTGCTGTCTGAGG



CCCTGAAGCTGGCCCTGAGCTGTAACGAGCACCTGGAAAACAAGCACTTCATCACCGCCTACGAGAAGTTCGACTTC



TTCAATGACAAAGAGAGCCTCGAGCTGAAGAACCCCTTCGAGCAGGACGCCAAGGACATCGTGATCTACGAAGTGAT



CAAGAGCAGCAGCTACAACCCCAACGCTCTGGACCCTGAGCACATGCTGACCGGCAGAAAGTTCGCCATCCTGAAGT



GA (SEQ ID NO: 63)





tnsD
ATGGCCTTCCTGTTCAGCCCTAAGGCCAGAGCCTTTAGCGACGAGAGCCTGGAAAGCTACCTGCTGAGAGTGGTGTC



CGAGAACTTCTTCGACAGCTACGAGGGCCTGAGCCTGGCCATCAGAGAGGAACTGCACGAGCTGGATTTTGAGGCCC



ACGGCGCCTTTCCAATCGACCTGAAGAGACTGAACGTGTACCACGCCAAGCACAACAGCCACTTCCGGATGAGAGCC



CTGGGCCTGCTGGAAACACTGCTGGACCTGCCTAGATACGAGCTGCAGAAACTGGCCCTGCTGAAGTCCGACATCAA



GTTCAACAGCAGCGCCGCTCTGTACAAGAACGGCGTGGACATCCCTCAGAAGTTCATCCGGTATCACCCCGAGGACG



CCGTGGATAGCATTCCTGTGTGTCCTCAGTGCCTGGTGGAAGAGGCCTACATCAAGCAGAGCTGGCACATCAAATGG



GTCAACGCCTGCGTGAAGCACCAGTGTGCCCTGCTGCACAATTGCCCTGAGTGCTGCGCCCCTATCAACTACATCGAG



AACGAGAGCATCACCCACTGCAGCTGCGGCTTCGAACTGACCTGTGCCAGCACAAGCCCTGCCAACACACTGAGCAT



CGAGCACCTGAACGAGCTGCTGGACAAGAGCGAGCGGAACGACAGCAACCCTCTGTTCAACAACACCACACTGACC



GAGAGATTCGCCGCACTGCTGTGGTATCAAGAGCGGTACAGCCAGACCGACAACTTCTGCCTGGATGACGTCGTGGG



CTACTTCAACAAGTGGCCCACCGCCTTCTACAAAGAGCTGGACGAGCTGAGCAAGAACGCCGAGATGAAGCTGATCA



ACCTGTTTAACAAGACCGAGTTCAAGTTCATCTTCGGCGACGCCATCCTGAGCTGCCCCAACACACAGAAGCAGAAA



GAGCTGCACTTCATCTACAGAGCCCTGCTGGACTACCTGGTCACCCTGGTCGAGAGCAATCCCAAGGCCAAGAAACC



CAACGCCGCCGATCTGCTGGTGTCTGTGCTTGAAGCTGCCACTCTGCTGGGCACCTCTGTGGAACAGGTGTACAGACT



GTACCAGGACGGCATCCTGCAGACCGCCTTCCGGCACAAGATGAACCAGCGGATCAACCCCTACAAGGGCGTGTTCT



TCCTGCGGAGAGTGATCGAGTACAAGACCAGCTTCGGCAACGACAAGACCCGGATGTACCTGAGCGCTTGGTGA



(SEQ ID NO: 64)





Cas5/
ATGATCAAGCTCGAGTGCATCTGCCGGCACGGCGAGTACATGCACCTGAAAGAGCTGCTGGAAATCACCGATATCGC


8
CGAGCGGGACAGACTGATCAGACGGGCCTTCAATCCCTACACCACCACCATCGATATCACCGGCTGCGAGGGCAACG



CCCTGATCATCCTGCTGAACCTGACCTACCGGAAGAACCAGGTGGACGACCTGCTGGATAAGCAGCTGGCCAAGCAG



GCCCTGAAGTCCGAGGACCACATCAACAAGTGCATCAAAGAGATCGCCTGGTTTCACACCCACAACCTGAAGTACCC



CGACATCCGGGTGTCCAAGCAGAACCTGGCTGTGGAACCTCCTCTGCTGCACAGCTACGTGCTGTCCAGCGCCAACTA



TCCTAAGGCCTATGGCTGGTCCCACGACAGCGCCAAAGTGAACGTGGCCAAGCTGTTCATCAGCTACTTCAAGTGGG



AAGATGAGGACTGCTGTCTGGCCCAGGTGCTGGCCACCTACAGCGATAATTGGAAGGCCGCCTTTACCAGCCTGGGC



CTGTCTGTGAAGGCCTACAAGAGCCTGTGTGGCACCGTGAAGGGCGAGCTGCACGAAGAAGTGATCCCTGGCAGCGT



GGACCGGTACAGCAGACAGATCAGAATGCCCTACCACGACGGCTTTCTGGCCGTGACACCTGTGATCTCTCACGTGG



TGCAGAGCAAGATTCAGCAGGCCGCCATTGAGAAGCAGGCCAGATTCACCAAGCTGGAATTCACCAGACCTGCCAGC



GTGTCAATGCTGGCCGCATCTCTTGGCGGCGTGGTCAACGTGCTGAACTACCCTCCAGACATCCGGACCAAGTACCAC



GGCCTGAGCAACAGCCGGCAGTTCAAGTTCAACAACGGCCAGACCGTGCTGAATGTGGAAGCCCTGCTGAAGCCCGA



GCTGATCAAAGCCCTGGAAGGCATCATCTTCAGCAACAACGCTCTGGCCCTGAAACAGCGGCGGCAGCAGAAAGTGA



AGTCTATCAAAGAAGTGCGGAGCACCCTGCTGGAATGGTTCAGCCCTGTGTTTGAGTGGCGGCTGGACTTCATTGAGT



CTGGCGGAGATCTGGGAGAGCTGGAATCCATCTCTGACCAGCTCGAGTACAAGATCCTGAGCCTGCCTGACGACGAG



CTGCCCTCTCTGACAATCCCTCTGTTCCGGCTGCTGAACGAGATGCTGGGCAGCCTGAGCATGACCCAGAGATACGCC



TTCCATCCTAAGCTGATGAGCCCTCTGAAGGCCGCTCTGCAGTGGCTGCTGATCAACCTGACCAACCAGAAAAACGA



GCTGGTGGAAGAGGACGATGAGCACTACAGATACCTGCACCTGAGCGGCATCAGAGTGTTCGATGCACAGGCCCTGT



CTAACCCCTACTGCAGCGGAATCCCTAGCCTGACAGCTGTGTGGGGCATGCTGCACTCCTACCAGCGGAAGCTGAAT



GAGGCCCTGGGCACCAACCTGCGGTTCACCAGCTTTAGCTGGTTCATCAAGGACTACGCCGCCGTGGCCGGAAAGAA



GCTGCCTGAATTGTCTCTGCAAGGCGCCCAGCAGAACAAGCTGAAAAGACCCGGCATCATCGACGGCAAGTACTGCG



ACCTGGCCTTCGACCTGATCGTGCACATCGATGGCTACGACAACGACCTGCAGGCTGTGGACAGCGAGCCCGATATT



CTGAAGGCTCACTTCCCCAGCAACTTTGCCGGCGGAGTTATGCACCAGCCAGAGCTGACCAGCAACGTGAACTGGTG



CTGCCTGTACAGCAACGAGAACCAGCTGTTCGAGAAGCTGCGGAGACTGCCTCTGTCTGGCTGTTGGGTTATGCCCAC



CGACCACAAGATCGAGGACCTGGATGAACTGCTGCTTCTGCTGAACAACGACAGCAAGCTGAGCCCCAGCATGATGG



GCTACCTGCTGCTGACAGAGCCCAAGGCTAGAGTGGGCGCCCTGGAAAAGCTGCACTGTTATGCCGAGCCTGCCATC



GGCGTCGTGAAGTACGAGACAGCCATCAGCATCCGGCTGAAGGGCATCAGCAATTACTTCAAGACCAGCTTCTGGAT



GCTGGACGCCCGCGAGAAGTTCATGCTGATGAAGAAAGTGTGA (SEQ ID NO: 65)





Cas7
ATGGAACTGTGCAACATCCTGAAGTACGACCGCTCTCTGTACCCCGGCAAGGCCGTGTTCTTTTACAAGACCGCCGAC



AGCAACTTCGTGCCCCTGGAAGCCGACATCAACAAGATCAGAGGCCCCAAGAGCGGCTTCACCGAGGCCTTCACACC



TCAGTTTCTGCCCAAGAACATCAGCCCTCAGGATCTGACCCACAACAACATTCTGACCCTGGAAGAGTGCTACGTGCC



ACCTAACGTGGAACACATCTTCTGCCGGTTCAGCCTGAGAGTGCAGGCCAATAGCCTGGTGCCTAGCGGCTGTAGCG



ACCCCGATGTGTTCTCCCTGCTGAAAGAGCTGGCCGAGACATTCAAAGAGTGCGGCGGCTACAAAGAACTGGCCACC



AGATACTGCAAGAATATCCTGCTCGGCACCTGGCTGTGGCGGAACCAGAATACCGGCAACACCCAGATCGAGATCAA



GACCAGCAAGGGCAACTGCTACCTGATCGACAACACCCGGAAGCTGGCCTGGGAGAGCAAGTGGACCTCCGACGAT



CAGAAGGTGCTGGAAGAACTGAGCAACGAGATCGAGAGCGCCCTGACAGACCCTAATGTGTTTTGGAGCGCCGATAT



CACCGCCAAGATCGAAGCCAGCTTCTGCCAAGAGATCTACCCCAGCCAGATCCTGTCCGACAAAGTGAAGCAGGGCG



AAGCCTCCAAGCAGTTCGTGAAGGCCAAATGCGTGGACGGCAGATACGCCGTGTCCTTCAACAGCGTGAAGATCGGA



GCCGCTCTGCAGTCCATCGACGATTGGTGGGATGAAGATGCCAGCAAGCGGCTGAGGGTGCACGAGTTTGGAGCCGA



CAAAGAGATCGGAATCGCCAGACGGCCTCCTAACAGCGAGCAGAACTTCTACAGCATCTTCAAGAACACCGAGTGGT



ATCTGTCTGCCCTGAAGAACTGCATCACCAACAAGAAAGAGAACATCGACCCCGCCATCTACTACCTGTTCAGCGTG



CTGATCAAAGGCGGCATGTTCCAGAAGAAGGCCGAGGCCAAGAAGGCCTGA (SEQ ID NO: 66)





Cas6
ATGGCCCGGTACTACTTCACCATCCACTTTCTGCCCAAGCAGGCCAATCTGGCCCTGCTGACAGGCAGATGCATCAGC



ATCATGCACGGCTTCATCCTGAAGAACAACATCGAAGGCATGGGCGTGACATTCCCCGCTTGGAGCGATAGCAGCAT



CGGCAACGTGATCGCCTTCGTGCACAAGGACATGGAAATCCTGAACAGCCTGAAAGAACAGGCCTACTTCGTGGATA



TGCAGGACTGCGGCTTCTTCAAGATCAGCCAGATCCTGGCCGTGCCTGACAGCTGCAAAGAAGTGTGCTTCATCCGG



AACCAGGCCGTGGCCAAGATCTTTACCGGCGAGAGCAGACGGCGGCTGAAGAGACTGCAGAAAAGAGCCCTGGCCA



GAGGCGAGAACTTCAACCCCAAGAAGATCGAGGCCCCTAGAGAGATCGACATCTTCCACAGAGTGGCCATGACCAG



CAAGAGCAGCCAAGAGGACTACATCCTGCACATTCAGAAGCAGAACGCCGACTGCCAGGTGGAACCCGACTTCAGC



AATTACGGCTTCGCCAGCAACGAGAAGTTCAAGGGCACCGTGCCAGATCTGAGCCCTCTGATCGACAGCAACTGA



(SEQ ID NO: 67)





DR
GTGACCTGCCGTATAGGCAGCTGAGAAT (SEQ ID NO: 68)





RE
TGTCGCTGAAACCATAGTTTGTCATAATACAACCATACCGTGACATAATTAAACCATACTTTGACATAAAAACCCATT



TAAAAGTGAGGTTTAAAAATTAAATTAAGTATAATCAATTGCTTGTTATTTTATTTAACCATAGAGTGACATAGTTAT



TTTTTGTTTGTATAGTATGCGTACTAAATTAATGAAAATGGTTA (SEQ ID NO: 69)





LE
GCCGAGTAGGCAGCTGAAGATAAAAATAATAGTTTCGATGTTTACACTAATGTAAATATCGAAAAGGCAGTAGTTAG



AAGTTTAAAAACCAGCCTGAAGCTTAAGGCTGGTTTTTTGTTTTTAGTGTATAGATAACCCCACTTCGCTATGTCATTG



TATGGTTGTATTTTATGTCAGTGAATGGTTTTAGGTTATTTGTAAGTGGTTGATATTTATACCCAGTGTTTGTCACGCTT



CGCTTGCAGCGACA (SEQ ID NO: 70)









32450|4802|Marsedof8samples_$F_3300010430|118733_100004803|40162|Ga01 18733_100004803 (ID: 101)










TABLE 11





Elements
Sequences







tnsA
ATGTACATCCGGAACCTGCGGAAGCCCTCTCCAAACAAGAACGTGTTCAAGTTCGCCAGCGCCAAGGTGTCCGAGAC



AATCATGTGCGAGAGCACCCTGGAATTCGACGCCTGCTTCCACCACGAGTACAACGAAACCATCGAGACATTCGGCA



GCCAGCCTAAGGGCTTCTACTACTGCTTCGAGGGCAAGAGACTGCCCTACACACCCGATAGCCTGCTGCACTACATCG



ACGGCACCACCAAGTTCCACGAGTATAAGCCCTACAGCAAGACCTTCGATCCCATCTTCCGGGCCAAGTTCGTGGCC



AAGAAAGAGGCTGCTAGAGCCCTGGGCACAGAGCTGATCCTGGTCACCGACAAGCAGATCAGAGTGAACCCCATCCT



GAACAACCTGAAGCTGCTGCACCGGTACAGCGGCATCTACGGCGTGACCGATATCCAGAGAGAACTGCTGCAGCTGA



TCCGGAAGTCCGGCAAGGTTCAGCTGCACGATATCGCCAGCGAGTACAAGCTGCCTATCGCCGAGACAAGAAGCTTC



CTGTACAGCCTGATCAACAAGGGACTGATCAAGGCCGACCTGAACCAGGACGACCTGAGCTGCAATCCTAGCGTGTG



GTGCAACGCCTGA (SEQ ID NO: 71)





tnsB
ATGATGGACTTCGAGGACGAGTTCACCGTGTCCACCAGCGTGAAGAAGCCTGAGACACCCGCTCAGTACGTGAAGCT



GGACGATAGCGAGCTGGTCAAGCGCGACCTGGATACCTTTCCTGACTTCCTGAAAGAGAAGGCCCTGGACAAGTACA



AGCTGATCTCCTTCATCGAGCAAGAGAACAGCGGCGGCTGGACCCAGAAGAAGCTGGATCCCATCCTGGATAAGCTG



TTCGAGGGCAACAGAGACAAGCGGCCCAATTGGAGAACAGTCGTGCGGTGGCGGAAGTCCTACATCGACAGCAATG



GCGATCTGGCCAGCCTGGTGGTCAAGAGACACAAGATGGGCAATCGCAACAAGAGAGTGGAAGGCGACGAGGTGTT



CTTCGAGAGAGCCCTGAGCAGATTCCTGGACGCCAAGAGGCCTAAAGTGACCACCGCCTACCAGTACTACAAGGACG



CCATCACCATCGAGAACGAGACAATCGTGGACGGACAGATCCCCATCATCAGCTACACCGCCTTCAACCAGCGGATC



AAGAGCCTGCCTCCTTATCCTATCGCCGTGGCCAGACACGGCAAGTTCAAAGCCGATCAGTGGTTCGCCTACTGCAGC



TCTCACATCCCTCCAACCAGAATCCTGGAACGCGTGGAAATCGATCACACCCCTCTGGACCTGATCCTGCTGGATGAC



GAGCTGCTGATCCCTCTGGGCAGACCCTACCTGACACTGATCGTGGATGTGTTCAGCAACTGCGTGCTGGGCTTCCAC



CTGAGCTATAAGGCCCCTAGCTATGTGTCTGCCGCCAAGGCCATTGTGCACGCCATCAAGCCTAAGACACTGAGCAA



CGTGGGCATCGAGCTGCAGAACGACTGGCCTTGCTATGGCAAGTTCGAGACACTGGTGGTGGACAACGGCGCCGAGT



TTTGGAGCAAGTCTCTGGACCACGCCTGCAAAGAGGCCGGCATCAACATCCAGTACAACCCCGTGCGGAAGCCCTGG



CTGAAGCCCTTCGTGGAAAGATTCTTCGGGATGATCAACCAGTACTTCCTGACCGAGCTGCCCGGCAAGACCTTCAGC



AACATCCTGGAAAAAGAGGACTACAAGCCCGAGAAGGATGCCATCATGCGGTTCAGCGTGTTCGTGGAAGAGTTCCA



CAGATGGATCGTGGACATCTACCACCAGGACAGCGACAGCCGGGACACACGGATCCCTATTAAGCAGTGGCAGCAC



GGCTTCGATATCTACCCCAGCCTGCAGATGGGCGTCGAGGATGAGGAACGGTTCAACGTGCTGATGGGCATCACCGA



CGAGCGGAGACTGACCAGAAACGGCTTCAAGTTTGAGGAACTGATGTACGACAGCACAGCCCTGGCCGACTACCGG



AAGCACTACCCTCAGACCAAGGATACCATCAAGAAGCTGATCAAGATCGACCCCGACGACCTGAGCAGCATCCACGT



GTACCTGGAAGAACTGGAAGGCTACCTGAAGGTGCCCTGCACCGATACCACAGGCTATACACTGGGCCTGAGCCTGC



ACGAGCACAAGATCACCAAGAAGATCAACCGCGAGATCATCAGAGAGAGCAAGGACAACCTGGGCCTCGCCAAAGC



CAGGATGGCCATTCATGCCAGAGTGCAGCAAGAGCAAGAGCTGTTCAACGAGTCCAAGACCAAGGCCAGACTGAGC



GGCGTGAAAAAGCAGGCCCAGCTGGCCGACATCAGCAATACCGGACAGGGCACCATCAAGCTGGAAAAGTCTAACA



GCCCCAGCGTGATCACCAACAAGCCTGAGCCAAACATCAGCGATATCCTGGACAACTGGGACGACGACATCGAGGG



CTTCGAGTGA (SEQ ID NO: 72)





tnsC
ATGAGCACACTGACAGCCCTGCAGATGGAACTGCTGCGGAGATTCAGCGACTGCTTCGTGATGCACCCTCAGGCCAG



AACCATCTTCAACGACTTCGACGACCTGCGGCTGAACCGGAACTTCCAGAGCGATCAGCAGTGCATGCTGCTGACCG



GCGATACAGGCGTGGGAAAGAGCCACCTGATCAACAACTACAAGAAACGCGTGCTGGCCTCTCAGATCTACAGCAG



AACCAGCATGCCCGTGCTGGTCACCAGAATCAGCAGCCACAAAGGCCTGGACGCCACACTGAGACAGATGCTGGCCG



ACCTGGAAAGCTTTGGCAGCCAGCAGAGAAAGGGCCCCAATTACAAGATCGACCTGAAGAACCAGCTCGTGAAGAA



CCTCGTGCGGGCCAATGTCGAGCTGCTGATCTTCAATGAGTTCCAAGAGCTGATCGAGTTCAAGACCCCTAAAGAGC



GGCAGACAATCGCCAACGAGCTGAAGTTCATCAGCGAGGAAGCCAGAATTCCCATCGTGCTCGTGGGCATGCCTTGG



ACAGAACAGATCGCCGAGGAACCCCAGTGGTCCAGCAGACTGATCCGGAAGCGGAACCTGGAATACTTCAGCCTGC



AGAAGGACAGCAAGTACTACCGGCAGTACCTGATCGGCCTGGCCAAGTACATGCCCTTCGACGAGCCTCCAAAGATC



GAGGACAAGCACATTGCCATTCCTCTGTTCGCCGCCTGCAGAGGCGAGAATAGAGCCCTGTCTCATCTGCTGAGCGA



GACACTGAAGCTGGTCATGGTCAACGGCGACAGAAGCCTGGACATCAGACATCTGGCCCAGACCTACAAGAAGCTGT



ACGAAGGCCAAGGCAGCGGCAGCACCAAGGTGTTCTTCAACCCCTTCCTGGAACCTCTGGACAAGGTGCTGATCTCC



GAGGTGGTCAAGCCCAGCAGATACAACCCCAACGCCATGACACCCGACGACATGCTGATCAAGAGAGAGTTCAGCA



CCCCTAGCACACTGGACCAGCTGCTGAGCAAGTGA (SEQ ID NO: 73)





tnsD
ATGGCCTTCCTGTTCAGCCCTAACGCCAGAGCCTTTAGCGACGAGAGCCTGGAAAGCTACCTGCTGAGAGTGGTGGC



CGAGAACTTCTTCGACAGCTACCAGCAGCTGAGCCTGGCCATCAGACTGGAACTGCACGAGCTGGATTTTGAGGCCC



ACGGCGCCTTTCCAATCGAGCTGAAGCGGCTGAACGTGTACCACGCTCAGCACAACAGCCACTTCCGGATGAGAGCC



CTGAGCCTGCTGGAATCCCTGCTGGATCTGCCTCCTCACGAGCTGCAGAAACTGGCCCTGCTGAGGTCCAACAGAACC



TTCGTTGGCGGCATGAGCGCCGTGCACAGAAACGGCATCGATATCCCTCTGAGCTTCATCAGAAACGCCGGCGAGAA



TGGCATCGAGAGCGTGCCAATCTGCCCTCAGTGCCTGAAAGAGAAGCCCTACATCCGGCAAGTGTGGCACCTGAAGC



CTGTGGAAGTGTGCGCCAAGCACTCTTGCGAGCTGCTGCACCAGTGTCCTGAGTGCCAGCAGCCTATCAACTACATCG



AGAACGAGTCTATCGCCCACTGCAGCTGCGGATTCGAACTGGCTACAGCCCCTAGCGTGAAGGCCGATTCTCAGGCT



GTGCTGCTGAGCAGAAGCCTGTTTGACGGCGACGCCCTGAGCAACAACCCTCTGCTGTTTATGGGCACCAGCGCCAC



ACACAGATTCGCCGCTCTGCTGTGGTATCAGAAGCGGCACGCCAAGAACACCGAGTGCATGACACACGGCAGCGTGG



GCTACTTCGAGGATTGGCCTACCAGCTTCTACCGCGAACTGGACGCTGTGACAACAGGCGCTGAAGTGCGGCTGATC



GACCTGTTCAACCGGACCAGCTTCCGGTCCATCTACGGCGAGCTGATCCTGGACTCTCAGTGTCTGCTGCCCGAGGAC



AAAGAGCCCCACTTCATCTATCTGGCCCTGATGGAGTACATCAGCAAGCTGGTGGAATCTCACCCCAAGAGCAAGAA



ACCCAACGTGGCCGACATGCTGGTGTCCGTGGCTGAAACAGCAGTGCTGCTGTCCACCACACACGAACAGGTGTACC



GGCTGTACCAGGATGGCGTGCTGACAGCCGGCTTCAAGCAGAAGATCCGGACCAGAATCGGACCCCACATCGGCGTG



TTCTACCTGCGGCAAGTGATCGAGTACAACACCAGCTTCGGCAACGACAAGCAGGGCATGTACCTGAGCGCTTGGTG



A (SEQ ID NO: 74)





Cas5/
ATGGTGGACAAGCTGAAGTTCCAAGAGCTGCTGGACATCGACGACATCAGCGAGCGGAACATCGTGCTGAGAAGGG


8
CCTTCACCGCCTACACAGCCCCTATGGATGTGACCGGCTATGAAGCCGCCGCTCTGACCATCCTGCTGAACCTGACAT



ACCCCAGAAAGAGAGTGGACGACCTGCTGGATAAGCGGCTGGCCAAGCAGACCCTGAACACAGACGCTCATGTGGA



CGCCTGTATCGGCGAAGTGCAGTGGCTGCACACCCACAACCTGAAGTACCCCGACATCCGGGTGTCCAAGCAGCGGC



TGATTACAGCCCCTCCTTTCTCTCACCCACACGTGCTGTCTAGCGCCAACTGCATCTCTACACTCGGCTGGTCCCACGA



CAGCGCCAAAGTGAATCTGGCCAAACTGTTCAGCTGCCACTTCAATTGGCAGGGCAGAGTGTGCTGCCTGGCCACAC



TTCTTGCCGACGCTCCCAAAGAGTGGAAAGAGGCCTTTCAGCAGCTGGGCATGAGCGTGAAGCACTTCATGAACCTG



TGCTGCCGGATCAAGGCCAGCCTGCCTAGCAATGAGAGCCCCAGCAGAGTGGACAAGTACAGCATCCAAGTGCGGCT



GCCCTACAGAGATGGCTACCTGGCCATCACACCCGTGGTGTCTCATGCCCTGCAGGCCGAAATTCAGCAGGCCGCCA



TGGCCAAACAGGGCAGATACACCAACATCGAGTTCACCAGACCTGCCGCCGTGTCTGAGCTGTCTGCTTCTCTCGGCG



GAAACGTGAAAGCCCTGAACTACCCTCCTCGGATCGAGAACGCTGTGCACGGCCTGTCTGATAGCTGGGTGCTGAAA



GTGCAGGCCGGCCAGACAGTTCTGAATCAGGGTGCTCTGAGCCAGCCTCGGTTCAAGAGAGCACTGCAGGGCCTGCT



GTCCAAGAACTTTGAGCTGGCCCTGAAGCAGCGGAGACAGCAGAAAGTGGCCAGCATGCGGCAGATCAGGTCTACC



CTGACAGAGTGGCTGAGCCCTCTGCTGGAATGGCGGCTGGAAGTGGAAGAGAACAAGATCAACGTGTCCGAGCTGG



CCTGCATCCACGGCAGCTTCGAGTACCAGTTCCTGACCACACAGAAAGAAAACCTGGTGGAACTGCTGAGCCCCATG



TTTTCTCTGCTGAACACCGTCCTGAGCAACAGCAACACCCTGCAGAAGTACGCCTTCCACCAGTACCTGATGACCCCT



CTGAAGAACAGCCTGAAATGGCTGCTGGGCAGCCTGAGCAGAGAAGCCAATACCGTGATCGTGGACGAGGACAGCC



AGCAGAGATACCTGTACCTGAAGGGCATCAGAGTGTTCGATGCACAGGCCCTGAGCAATCCCTACTGCGCCGGAATT



CCAAGCCTGACAGCTGTGTGGGGCATGATCCACAACTACCAGCGGAGGCTGAACGAGAGACTGGGCACCAAGCTGA



GACTGACCAGCTTCAGCTGGTTCATCAGACAGTACAGCAGCGTGGCCGGAAAGAAGCTGCCTGAGTACGGAATGCAG



GGCCAAAAAGAGAACCAGTTTCGGAGAGCCGGCATCGTGGACAACAAGCACTGCGACCTGGTGTTCGATCTGGTGGT



GCACATCGACGGCTACGAAGAGGACCTGGACGCCATCGACAATAGCACCGACGCCATCAAGGCTAGCTTCCCCGCTA



CATTTGCCGGCGGAGTGATGCACCCTCCTGAGATCGGATCTGTGGATGAGTGGTGCGAGCTGTACAGAAGCGACACC



AGCCTGTACAGCAAGCTGCGGAGACTGCCTGTGTCTGGCAAATGGGTCATGCCCACCAGATACCAGATGGACTCCCT



GGATGGCGTGCTGCAGCTGCTCAAGCTGAATGTGGCTCTGTGCCCTGTGATGAGCGGCTACCTGATGCTGGGCTCTCC



CGAGAGCAGAAAGAACTCTCTGGAACCCCTGCACTGCTACGCCGAGCCTGCTATTGGAGTGGTGGAATGTGCCACCG



CCATCGATATCCGGCTGCAGGGAATGTCCAACTTCTTCAGACGGGCCTTCTGGATGCTCGACATCAAAGAAACCTCCA



TGCTGATGAAGCGGATCTGA (SEQ ID NO: 75)





Cas7
ATGGAACTGTGCAACGTGCTGAAGTACGACAGATCTCTGTACCCCAGCAAGGCCGTGTTCTTCTACAAGACCGCCGA



GAGCGACTTCGTGCCTCTGGAAGCCGAGATCAACCGGATCAGAGGACAGAAGGCCGGCTTCACCGAGGCCTTCACAC



CTCAGTTCAAGAGCAAGAATCTGGCCCCTCAGGATCTGGCCCACTGCAACCCTCTGATTCTGGAAGAGTGCTACGTGC



CACCTAACGTGGAACACATCTACTGCCGGTTCAGCCTGAGAGTGCAGGCCAACTCTCTGAAGCCTGCCGGCTGTTCTG



AGCCTACCGTGTTTGCCCTGCTGGAAGAATTCGCCGCCACCTTCAAAGCCTACGGCGGCTACAAAGAGCTGGCCACC



AGATACTGCAAGAACGTGCTGCTCGGCACATGGCTGTGGCGGAATCAGAATACCGGCAACAGCCAGATCGAGATCA



AGACCAGCAGCGGCAACTGCTACCAGATCGCCAACACCAGACAGCTGGACTGGAACAGCAGATGGCCTGCCGATGC



TGAACAGGTGCTCGAGGAACTGAGCCACGAAGTGCATCAGGCCCTGGCCGATCCAACCGTGTTTTGGCACGCCAACA



TCACCGCCAAGATCGAGACAGCCTTCTGCCAAGAGATCTACCCCAGCCAGAGCTTCGGAGAGAAAGCCGCTCAAGGC



GAGGCCAGCAAGCAGTTCGCCAAAGTGAAATGCGTGGACGGCAGATACGCCGTGTCCTTCAACAGCGTGAAGATCG



GAGCTGCCCTGCAGCTGATCGACGATTGGTGGGATGGCGACGGCAGCAAGAGACTGAGAATCCACGAGTACGGCGC



CGACAAAGAACTCGGAGTGGCTAGAAGGGCCCCTGAGAGCAAGCAGAGCTTCTACAGCCTGTTCGTGAACGCCGAG



CTGTACCTGGCCGAGCTGAAACAGCAGCTGGCTGAGGACGAGTACAGCATCAGCCGGAACATCTACTACCTGTTCGC



CGTGCTGATCAAAGGCGGCATGTTCCAGAAGAAGGCCGAGGCCAAGTCTAAGTCCAAGGCCGAGACAACCACCTCC



AAGACCACCACCAGCAAGACAACCCCTGTGAAAGCCTGA (SEQ ID NO: 76)





Cas6
ATGAAGCGGTACTACTTCATGGTCCGATTTCTGCCCGAGCAGGCCAATCTGGCTCTGCTGACAGGCAGATGCATTAGC



GTGATGCACGGCTTCATCTGCAAGCGGGACATCCAAGGCCTGGGCGTGTCATTTCCTGCTTGGAGCGATACCAGCATC



GGCAACATGATCGCCTTCGTGCACACCGACATCGGCGTGCTGAATGAGCTGAGACTGCAGGGCTACTTCCAGGATAT



GCAAGAGTGCGGCTTCTTTAGCATCGGCCCCGTGGAAGCTGTGCCCGACAATTGTGGCGAAGTGCGGTTCAAGCGGA



ACCAGTCTATCGCCAAGATCTTCGTGGGCGAAGCCAGACGGCGGCTGAAGAGACTGGAAAAGAGAGCCCTGGCCAG



AGGCGAGATCTTCAACCCCAACAAGAGCCCCGAGCCTCGGGAAAGAGAGGCCTTTCACAGAATCGCCATGAGCAGC



GGCAGAAGCCAAGAGGACTACATCCTGCATGTGCAGAAGGACACCGCCGACAAGCAGCTGGAACCCATGTTCAACA



GCTACGGCTTCGCCACCAACCAGCAGCTGAATGGCACCGTGCCTAACCTGGAATACCTGGTGGACAAGTACTGA



(SEQ ID NO: 77)





DR
GTGACCTGCCGAATAGGCAGCTGAAAAG (SEQ ID NO: 78)





RE
TGTCGCTGAAAGCATACATTGACATAAGATAACCATAGTCTGACAAATTTAAAGCATAGTTTGACATAAAATAGTGTT



TTGTATTTTAACTACATAATTCAATTTTATATAAAACAATTGCTTAGGCTTTAAATTAAAGCATACCCTGACAAATTTG



ACAAAATATCGAGTAACTGTACACTAAGTGTACTTATAGTTGCTCGAGTTTTGCGCATGTATATTCGG (SEQ ID NO:



79)





LE
TGGTGATACAGATGGTTCACTCAAAGCGGTGAACAGCGCTTCATACGACTTCTCGTCACACTTCCAAAAGTGAGTTAG



AAGATGCTAGCCTCGTGGCCGTAAGAAAATAACATATAGCTGTTATCATTTAAGGTCGGCTGCTTCAATTTGTCACCT



TATGGTTATATTTTATGTCGGGATATGGTTATATCTTTAAGTTAAATGGTTGAAAGTCGAATAAGGGGTATGTCAGCT



TATGCTTGCAGCGACA (SEQ ID NO: 80)









1697|37|MTLE01.1|MTLE01000038.1|100866|Biofilm (ID: 102)










TABLE 12





Elements
Sequences







tnsA
ATGTACAGAAGGCACCTGGGCCACAGCAGAGTGAAGAACCTGTTCAAGTTCGTGTCCGCCAAGATGGACACCGTGTT



CACCGTGGAAAGCGCCCTGGAATTCGACGCCTGCTTCCACCTGGAATACTCCCACGACATCACCAGCTACGAGGCCC



AGCCTGAGGGCTTCTTCTACCAGTTCAACGGCAGACCCTGTCCTTACACACCCGACTTCAAGATCAACCACGCCGTGA



ACGGCATCCAGTTCCTCGAGATCAAGCCCATCGAAAAGACCAACGACGCCGACTTCATCGAGCGGTTCAAGGCCAAG



AGAACCCAGAGCACCCAGAACGGCCTGCCTCTGATCCTGGTCACCGAGAAGCAGATCAGAATCAACCCCATCCTGTA



CAACCTGAAGCTGCTGCACAGATACAGCGGCAGCAAGCACCTGACCAGCGTGCAGATCTACCTGCTGAGCGAAGTGA



AGAAGCTGGGCAAAGTCTCCATCGAGTTCCTCATCAACAACATCAAGACGAACGAGGACAACATGTTCAGCCTGATC



CTGAACCTGCTGGCCAAGGGCTACCTGCGGAGCAACATCACCGACAACATCTTCAACATGAACACCACCGTGTGGTG



CAAAGAGTGA (SEQ ID NO: 81)





tnsB
ATGAACCAGAACGACGGCGCCCAAGAGTTCGGCATCTTCCAGGACGAGTTCCCCGACGCCACCAACGAGGAACTGAC



CAAGGACAAGAAACTGCAGCCCGTGTTCATCAAGCGCGACCTGGATAGCTTCAGCGAGGACATGAAGGCCCTGGCCA



TCTACCGGCTGAACTACATCCAGTGGATCCAGAGCAACATCTGCGGCGGCTGGACCCAGAAAAACCTGGTGCCTCTG



ATCGAGAAGGCCAAGGATGAGCTGGGAGAGCCTGCTCCTGAATGGCGGACACTTGCTAGATGGTGGTCCCGGTACAA



GAAAAGCGGCTTCAAAGTGACCTCTCTGATCCCTCAGCACAAGAACAAGGGCAACAGAAAGCCCCGCTTCGACAACA



TCGAGGAAGAACTGGCCCAGAACGCCATCACCGAGTACCTGGACGAGAAGAAGCCCTCTATCGCCAGCGTGTACCAG



GACTACAAGGACGACATCATCCTGCAGAACGAGTACCGGACCGACCTGAAGAAAACCATCAAGCCTATCAGCTACCA



GGGCTTCTGCAAGAAGATTAAGAAGATCAGCACACACGCCCTGATCAGCGCCCGGAAGGGCAAATATGAGGCCGAG



CTGAACTTCAGATACGTGGCCAGCCACAAGCCTCCAACCAGAGTGCTGGAAAGAGTGGAACTGGATCACACCCCTAT



CGATATCATTCTGCTGGACGACGAGCTGCTGATCCCACTGGGCAGAGCCTATCTGACCCTGCTGATCGACAGCTACAG



CCACTGCATCCTGGGCTTCAACCTGGGCTTTAACGAGCCCGGCTTTTACCCCGTGCGGAACACACTGCTGCACGCCTT



CAAGCCCAAGACCTACATCCGGGATCAGTACCCCGACCTGATCCACGATTGGCCTCACCACGGAAAGCCCGAGACAA



TCGTGGTGGACAACGGCGTGGAATTCTGGGGCCAAGACCTGGAACAGACCTGCAAAGAACTGCACATCAACGTGCA



GTACAACCCTGTGCGCAAGCCCTGGCTGAAGCCTCTGGTGGAAAGAAGCTTCGGCATCATCAACAGCAAGGTGCTGG



ATCAGATCCCCGGCAAGACCTTCAGCAGCATCCTGAAGAGATTCGACTACGACCCCGTGAAGGACGCCGTGTTCAGA



TTCAGCAGCTTCATCGAGCATCTGCACGAGTGGATCATCGACGACTACCACTTCAGCCCCGACAGCCGGAAGCGGTA



CATCCCTTATCTGCTGTGGCAGACAGGCGCCAGCGAGTTCCCTCCAAAGCAGTTCACCACAGAGGAACAGCAAGAGC



TGGACGTGATCATCAGCTTCACCGACAAGCGGACCCACAGCACAGGCGGCATCGATATCCACAGCCTGCGGTACAAC



AGCGAGATGCTGGCCGAGTTCCGGAAGATGTACGACGAGAAGCAGCTCAAGACCAAAGTGCTGGTCAAGACAAACC



CCAACGACATCAGCCATGTGCACGTGTTCATTGAGAGCATCGGCAAGTACATCAAGGTGCCCTGCATCGACGCCGTG



GGCTACACATCTGGACTGTCTCTGCAGCAGCACAAAATCAACCTGCGGCTGCAGCATGAGTACATCGACAAGAGCAC



CGACATCGTGGCCCTGGCTAAAGTGCGGCGGAAGCTGAAAGAGAGAATCCAGAGAGAGATCGACGAGATCACCAGC



AGCAGAAAGAAGCACACCCTGAAGCACGCCAGCAGACTGGCCAAATACCAGGGCGTTAGCTCCCAGCAGAACAGCA



CAATCGCCGAGAACGACTTCAGCGCCATGCAGAGCAGCCAGAACAAGGATGCCATCAAGAACATCAGCGACACCAA



GTACAACACCGACGAGTGGGAAGATTTCGTGTCCAAGCTGGACCCCTACTGA (SEQ ID NO: 82)





tnsC
ATGGGCAGATTCTGCATCGAGATCGGCAGCCTGCTGATGAACCAGCTGAGCGACAAGAACCAGCAGAAACTGCTGCT



GTTCATCCAGTGCTTCGTGGAAACCCCTATGGCCAAGCTGATCTTCGACGACTTCGACCGGCTGCGGTACAACCAGAA



GTTTGGCGGAGAGCAGCAGTGCATGCTGATTACTGGCGACGCCGGCTGTGGCAAGAGCAGCATCATCAACCACTACA



AGCAGCAGTACCCCAACCAGCTGCAGGCCGGCTTCATCAACAATCCCGTGCTGGTGTCTCGGATCCCCAGCAAGCCT



ACACTGGAAAGCACCATGATCGAGCTGCTGAGAGATCTGGGCCAGTTCGGCAGCAGCCTGAGAAAGCACATCAGCA



ACGACAAGAGCCTGACCGAGAGCCTGATCACCTGTCTGAAGAAGTGCCGGACCGAGCTGATCATCATCAATGAGTTC



CAAGAGCTGATCGAGAACAAGACCAGAGAGAAGCGGAACCAGATCAGCAACCGGCTGAAGTTCATCTCCGAGGAAG



CTCAGATCCCCATCGTGCTCGTGGGAATGCCTTGGGCCGTGAAGATTGCCGAGGAACCACAGTGGGCCAGCAGACTG



CTGATCAGAAGGCAGATCCCCTACTTCAAGCTGTCCGAGAATCCCGAGAACTTTATCCGGCTGCTGATGGGCCTCGCC



AAGTACATGCCTTTCGCCATCAAGCCCAAGCTGGAAGAGAAGCACAGCACATACGCCCTGTTCAGCGCCAGCTCTGG



CTGTCTGAGAACCCTGAAGCACTTCCTGGACGAGAGCGTGAAGCAGGCCCTGATCGTGGATGCCGAGACTCTGGCCA



ATGAGCACATGGCCAAAGCCTTCGCCATCTATCACCCCGAGGAAATCAACCCATTCCTGCAGCCTATCGACGAGATCT



GTGCCCGGGAAGTGAAGAAGTACAGCTACTACGACGTGGACGCCCACGAGGACGAACAGTTGAGCCCTCTGCAGTA



CACCGACAAGCTGAGCATTGGACAGCTGCTGAAGCTGCGGTGA (SEQ ID NO: 83)





tnsD
ATGCAGCTGCTCGTCAGACCTGCTCACCACGCCGATGAGAGCCTGGAAAGCTACCTGCTGAGACTGAGCCAAGAGAA



CGGCTTCAGCAGCTACACCGAGATGAGCACCGTGCTGAAGCTGTGGCTGCAGAGCCACGATCATGATGCCGGCGGAG



TGTTCCCTATCGAGCTGAGCATGGTCAACGTGTACCACGCCAACAGAAGCAGCAGCTTCCGGATCAGAGCCCTGAGG



CTGATCGAGCACCTGACCGAACAGACCCCTCTGAAGCTGGTGGAACTGGCCCTGGTGCACAGCTCTGCCCACTTCGG



CTCTAACATCAAGGCCGTGCACAGAACCGGCGTGGACGTGCCAAAGCAGTTCCTGAGAACCCACAGCATCCCTGTGT



GCCCCAAATGTCTGCAGGCCGACGGCTACATCAGACAGCTGTGGCACTACCAGCCTTACACCGCCTGTCACATCCACC



ACTGCCAGCTGACCGATCACTGTCCTGCTTGTGGCGCCGAGCTGGACTACCTGAAGAACAAGAGCATCGAAGTGTGC



GAGTGCGGCTTCCACCTGTGCTACGCCAAGTGTATCGAGCCCAGCGACGAGCAGATCAAGCTGAGCCAGCTGATCGC



CGAGTGTCCCTTCGAGAACAGCACCAATCCTCTGCTGGCCTCTCAGAACCTGAGCTTCAGATTCGGCGCCCTGTTCTG



GTACTTCAACCGGTACAAACAGCAGCAGACCAGCAACGACGGCATCAGCGAGGCCCTGAATAGCGCCATCACCTACT



TCGAGGACTGGCCCGACAACTTCTTCGCCGAACTGGAACAGCAGATTGAGCACTTCTACCAGGTCCAGATCAAGAAA



GTGAACCAGACCGCCTTCTACGAGGTGTTCGGCAGCCTGCTGACCGACTGTAGCAGACTGCCTATGAGCGACCTGAG



CCACAACTTCATCCTGAAAACCGTGATCGACTTCTTCGTGCACCAAGTGGAAACAAACCCCAAGAGCAAGAAGGCCA



ACATCGGCGACGTGCTGGTCACCCCTGAAGAAGCTGCACATCTGCTGAGCACCGACATTGAGCAGATCTACCGGCTG



CACCAAGAGGGCTTCATCACCCTGGCCATCACACCCAGCACAAAGTGGCACATCAGCGCCTACCTGCCTATCCTGTAC



CTGCGGCAAGTGATGGAACTGCGGCTGGCCAGAATCCACAGCCAGAACAATGTGTACGAGACATACCTGAGCGCCTG



GTGA (SEQ ID NO: 84)





Cas5/
ATGTACATCAACGAGATCATCACCATCCAGGACCGGAACGAGAGAGACAAGGCCCTGAGAAAGGCCTTCGCCAGCT


8
ACGGCAAGATCCCCATCACCGACAACGCCGAGTTCATCACCCTGGTCATCCTGCTGAATCTGACCCTGAAGCGGAGC



GACATCGACGACCTGTGCAACGTGACAATCGCCCAGCAGCTCCTGAAGGACAGCATCCATCTGCAGCACTGCCTGAG



AACCACCGAGTGGTTTCACACCCACAACCTGAAGTACCCCGATCCTCGGGTGTCCAAGCAGAGACTGATCAGCGAGC



CTCCTAAGCCTATTCCTGGCATCATCACCTCTGCCGGCCTGCCTCTGCTTTTTGGCTGGGCCAACAACAGCAGCGACA



TCAACTTCAGCAAGCTGTTCAACAGCGCCTTCGTGTACCAAGGCAAGAGCCAGAATCTGGCCCAGCTGCTGGCCCAA



GAAGATCCTAGTTGGCTCCAGGTGTTCATCCAGCTGGGACTGAGCACCCTGGAAGTGTCCAATCTGTGCGTGTCCGTG



AAGAACAGCCTGATGATGCACGCCAACTTTCCCGCCGAGGTGGACGACTACAGCAAGCAGCTGAGACTGCCCAACAA



CCAGAACTATATCGCCATCACACCCGTGGTGTCCCACAGCCTGCAAGTTCGACTGCACCAGCTGGCCTTTCACGGCGC



CTTTAACACCACCACCATCAAGCACGCCCATCCTGCCAGTGTGTCTGGACTCGTGGGAGTGCTCGGCGGAAATGTGTC



TGCCCTGTACTACCCTCCTGACATCCGGAAGCTGAAGCCCCAGACCTTCACACAGAGCAAGATCAAGAGCCACACAC



AGGCCAAGATGCTGTTCGACAACTCCATCATCTACGACCGGTACTTCATTAAGGCCCTGGACCACATCATTCACCCCG



ACGGCCTGACCAAGAAGCAGAAGCAGCACAGCAGACACTCTGCCCTGACCTACCTGAAGAGATGCCTGTGCATCTGG



CTGAGCCCCATCTTCGACCTGCGGGACAACCTGGAAAACAACCACATCAAGATCAGCAAGGGCGACCTGAGCGAGCT



GTCCGAGAGGCTGATTACACAGCCTCAGCACGAGCTGCACAGCCTGAGCAATGCCCTGACAACCGAGATCCAGAAAA



CCCTGCAGAGCTTCCACATCACCAAGAAGTACGCCTACCACACCAGACTGCTGCACCCTATCAAGCAGAACTTCGTG



GGCATCCTGAAGCAGCTGGCCAAAATGGAAAAGGGCACCAGCAAGACAGCCCACAGCGCCTACTATCTGCACCTGA



GCAACATCCACGTGTACGACGCTCTGGCCCTGGCCAATCCTTACCTGTGTGGAATCCCTAGCCTGAGCGCCCTGGCCG



GCTTTTGTCACGACTACCAGAGAAGAGTGTCTAAGCTGCTGAGCAAACAGCTGCTGTTCAGCGAGTTCGCCTGGTTCA



TCAGAGACTACAGCCCCGTGACCGGAAAGCAGCTGCCAGAGCCTAGCATCATCGAGAAGCACAACGACGCCAGCAA



CGTGAAGAGGCCCGGAATCATCGACAACAAGCACTGCGACCTGCTGATGGACCTCGTGATCAAGATCCAGATGCCTG



AGGAACAGCTGAGCCTGTCCGACTCCGAGTTCCTGCTGTTTCAAGCCGGACTGCCCAGCAGATTTGCCGGCGGATGTC



TGCATCCTCCTAGCCTGTACGAGAGCATCAATTGGTGCGAGCTGTACTCCGACATGAATGAGCTGTACACCAAGCTGG



CCAGACTGCCTAGACACGGCTGTTGGGTGTACCCCTATCCTACCGAGATCACCAGCCTGAACGAGCTGAGCGATCTG



ACCAAGGCCAAGCCTGCCATCAAGCCTGTGTCCATCGGCTACATCGGCCTGGAAGATCCCAACGAGCGGAACAACTC



TATCGAGAAGAACCATATGTACGCCGAGAGCTGCATCGGCGTGGCCGAGTGTGTGAACCCTATTGATGTTCGGCTGC



AGGGCATCAACAAGTTTATCCAGAACGCCTTCTGGCAGCCCATCTACGAGAAACACAGCATCCTGATCAAGAAAGCC



TTTCGGATGGACCAGAAAAACGAGACAGTGCAGACCCCTAAGCTGCACTGA (SEQ ID NO: 85)





Cas7
ATGAAGCTGTGCAAGCACCTGAACTACATCAGATCTCTGAGCCCCGGCAAGGCCGTGTTCTTCTACAAGACCAAAGA



AAGCGACTTCGTGCCCCTGAAGGTGGAAATCAACAAGATCAGCGGCCAGAAGTCCAGCTACAGCGAGGCCTTCATCC



ACGACCTGGAAAGCAAGAACGTGCAGGGCTTCGAGCTGGCCTACAGCAACCCTCAGACCATCGAGACATGCTACGTG



CCACCTAATATCGAGAACATCTTCTGCCGGTTCAGCCTGAGAGTGGAAGCCAACAGCCTGTCTCCTGACATCTGCGCC



AACATCGACATCAGAAGCCAGCTGACCGAGCTGGCTACCCAGTACTCTAGATGCGGCGGCTACAAAGAGCTGGCCAA



TAGATACGCCAAGAACATCCTGATGGGCACCTGGCTGTGGCGGAACAAGAATAGCCTGTGCACCAAGATCGACGTGA



AAACCAGCCTGGGCACCACACTGAGCCTGGATGATGTTCGACTGCTGCCCTGGAACATGCCCTGGGACGAGAAGAAG



CAGAAGCAGCTGGATCAGCTGACAGCCGAGCTGTCTCAGGCCCTGTCTAACCCTAGCCTGTTCTGGTTCAGCGACATC



ACAGCTACCCTGAGCACCAGCTTTTGCCAAGAGATCTACCCCAGCCAGCTGTTCACCGAGAAAGAGAAACAGCTGAA



CGAGGCCAGCAAGAAGCTGGCCACAGTCGAGTGTCCTGATGGAAGCAGAGCCGCCTGTTTTCACGCCCAGAAGATTG



GAGCTGCCCTGCAGCAGATCGACGACTGGTGGATGGAAGATGCCGACACACCCATCCGGATCCACGAGTATGGCGCC



GACAAGAAGAACCAGACAGCCCTGAGACACCCCGTGGCTCAGCACGACTTTTACCATCTGCTGAGCAAGACCGACCA



GTACGTGGAAGAGATGAAGTCCCTGCCTGACGACGGCAACACCCTGGAACCTGATATCCACTTCCTGATGGCCGTGC



TGTGCAAAGGCGGCCTGTTTCAAGGCGGCAGAGAGTGA (SEQ ID NO: 86)





Cas6
ATGATCCAGAAACCTGTGCGGTACTACTTCATGATCCAGTACCTGCCTGACGACGCCGACTACTCTCTGCTGGCCGGC



AGATGTATCAGCACCCTGCACGGCTTTAAGATCGGCCACAAGAGGGACCAGATCGGCATCACCTTTCCAAGCTGGTC



TACCCTGAGCATCGGCAACACCATCGGCTACGTGTCCCAGAGCGAGAGCGTTCTGAGACTGCTGAAGAACACCTTCT



ACTTTCGGCAGATGCAAGAGTACGGCCTGTTCGAGATCAGCGAGATCAACATCGTGCCCGAGATCTCCGAGGAAGTG



ATGTTCGTCCACAACCGGAAGATCGGCAAGCTGTTCACCGGCGACATCAGAAGAAGGCTGGCCAGAGCTAAGCGGA



GAGCCGAAGCTAGAGGCGAGCTGTACGTGCCCAAGGCTCACAGAGAGAGAACCGAGATCGACATCTTCCACAGCGC



CTTCATCCAGAGCAAGACAACCGGCCAGGACTTCCTGCTGCATCTGCAGAAGAGAAGCTGCAGCAACTACAGCTTCA



GCGCCGATTACAGCGGCTACGGCTTCGCCACCAATCAAGAGTACACAGGCAGCGTGCCAGAGCTGAGCCTGTACATG



ATGTGA (SEQ ID NO: 87)





DR
ATGACCAGCCGCATAGGCTGCCAAGAAA (SEQ ID NO: 88)





RE
TATGGTTTAAGCCATAACTTGGCATAAATCAGCTGTAAAATGACATAATTTGCCCCATAAGCTGACATAGTCTACATT



TGTTGTAGGAAAACTACAGTTTATGGGGTGAGTTATGTATCGACGACACCTTGGACATTCCCGCGTAAAAAATCTTTT



CAAATTCGTAAGTGCAAAAATGGATACAGTCTTTACTGTTGAAT (SEQ ID NO: 89)





LE
TTCAGAAATTCCTGCAGCAACTTGTATTGATGAACATGTGAATAAGCCGGAATACAAGGGATGTGTCTGGTGTATAA



CTGAATACATAAAATAACGTGTTATTGAATTACGTTACTCAATTTCACTGAGTGTCTATACTAAAAAAGTTATGTCGG



CTTTTGGTTTATATATGTCATTTTATAGTTTATAAAATAACAATAACTCATTGATTTATAAATTCAGCCTATGCCAACT



TACGGCTGACTCAACA (SEQ ID NO: 90)









6215|1|OJBC01.1|OJBC01000002.1|299655|seawater (ID: 103)










TABLE 13





Elements
Sequences







tnsA
ATGTACATCCGGAACCTGCGGAAGCCCTCTCCAAACAAGAACGTGTTCAAGTTCGCCAGCGCCAAGATCAACAACGT



GATCATGTGCGAGAGCACCCTGGAATTCAACGCCTGCTTCCACCACGAGTACAACGACGAGATCGAGAGCTACGGCA



GCCAGCCTAAGGGCTTTAAGTACGAGTTCAACGGCAAGAACCTGCCTTACACACCCGACACACTGATCATCTACAAG



AACGGCAACGAGAAGTACCATGAGTACAAGCCCTTCAGCAAGATCAGCAGCCCTCTGTTCAGAGAGAAGTTCAAGGC



CAAGAAGCAGGCCAGCCTGATCCTGGGCAGAGAGCTGATCCTGATCACCGACAAGCAGATCTGTGTGAACCCCATCC



TGAACAACCTGAAGCTGCTGCACCGGTACAGCGGCATCTATGGCGTGAACGCCGTGCAGAAAGAGCTGCTGAATCTG



ATCAAGAAGTCCGACGTCATCAAGTTCAACGACGTGTCCAGCCAGCTGGGCCTGTCTATTGGAGAGGCCAGAAGCTT



CCTGTACGCCCTGATCCACAAGGGCTTCGTGAAGGCCGATCTGAGCCACGACGACCTGACCAACAATCCCACACTGT



GGGCCGCCTACGACGGCTTTTAA (SEQ ID NO: 91)





tnsB
ATGACCGGCTTCAACGACGAGTTCGACGAGAGCATCGTGCCCAACAAGCCCAAGACACCCATCCAGTACATCCGGCT



GGAAGATGCCAACCTGATCAAGCGCGACCTGGACACACTGCCCGAGGCTCTGAAGAACAACACCCTGGACAAGTAC



AAGATCATCAGCTATATCGCCAAAGAGCTGACCGAAGGCTGGACCCAGAAGAACATCGACCCCATCCTGGATAAGCT



GTTCGACAACGACGACAAGAAGCGGCCCAACTGGCGGACAATCGTCAGATGGCGGAAGAAGTACAACGAGAGCAAC



GGCGACCTGACCAGCCTGATCTCTGAGCACCACAAGATGGGCAACAGAAAGAAGCGGATCAGCGGCGACGAGGTGT



TCTTCGACAAGGCCCTGGAACGGTTCCTGAACGCCAAAAGACCTACCGTGTCCACCGCCTACCAGTACTACAAGGAC



CTGATCATCATCGAGAACCAGCACCTGTTCGAGAACAAGATCCCCACCATCAGCTACGTGGCCTTCAACAAGAGAAT



CAAGAGCCTGCCTCCTTACAAGGTGGCCGTGGCCAGACACGGCATCTTTAAAGCCGCTCAGTGGTTCGCCTACTGCGG



CGCTCATAACCCTCCAACCAGAATCCTGGAACGCGTGGAAATCGATCACACCCCTCTGGATCTGATCCTGCTGGACGA



CGAGCTGCTGATCCCTATCGGCAGACCCTACCTGACACTGCTGATCGACGTGTTCAGCGGCTGCATCATGGGCTTCCA



CCTGAGCTACAAGTGCCCCAGCTATGTGTCTGCCGCCAAGGCCATCTCTCACGCCATCAAGCCTAAGAGCCTGGACA



GCATCGGCATCGAGCTGCAGAACAACTGGCCCTGCTACGGCAAGATCGAGAATCTGGTGGTGGACAACGGCGCCGA



GTTCTGGTCCAAGTCTCTGGAACACGCCTGTCAGAGCGTGGGCATCAACATCCAGTATAACCCCGTGCGGAAGCCCT



GGCTGAAGCCCTTCGTGGAAAGATTCTTCGGCGTGATCAACCAGTACTTCATCAGCGAGCTGCCCGGCAAGACCTTCA



GCAACATCCTGGAAAAAGAAGAGTACAAGCCCGAGAAGGACGCCATCATGCGGTTCAGCACCTTTGTGGAAGAGTTT



CACCGGTGGATCGTGGACATCTACCACCAGGACAGCGACAGCCGGGACACAAGAATCCCCATCAAGAAGTGGCAGA



CCGGCTTTGAGGTGTACCCTCCTCTGGAAATGAATCAAGAAGAGGAAGAGAAGTTCAGCATCCTGATGAACATCAGC



GACGAGCGGACCCTGACCAGAAACGGCTTCAAGTTCGAGGAACTGATGTACGACAGCACAGCCCTGAGCGAGTACC



GGAAGCACTACCCTCAGACCAAAGAGACAATCAAGAAAATCATCAAGGTGGACCCCGACGACATCAGCAAGATCTA



CGTGTACCTGGAAGAACTGAACAGCTACATCGAGGTGCCCTGCACCGATCCTACCGGCTATACAAAGGGCCTGAGCA



TCCACGAGCACAAGACCATCAAAAAGATCAACCGCGAGATGATCCGGGGCAGCAAGGATGTGCTGGGACTTGCCAC



AGCCAGAATGGCCATCCACGAAAGAGTGAAGCAAGAGCAAGAGCTGTTCATCACCAGCAAGAACAAGCGGAAGATC



AGCTCCGTGAAGAAACAGGCCCAGCTGGCCGACGTGTCCAATACCGGAACCGGCACAATCAAGGTGTCCGAGCAGA



AAAGCACCACCAAGCAAGAGAACATCTCCAACGACATCCTCGAGAACTGGGACGACGACCTGGAAGCCTTCGAGTG



A (SEQ ID NO: 92)





tnsC
ATGAACACCCTGACCGAGACACAGATCGAGCAGCTGCGGCAGTTCAACGACTGCATCGTGGAACACCCTCAGATCAA



GAGCATCTTCAACGATTTCGACGAGCTGAGACAGAACCGGCTGTTTCAGCTGGACCAGCAGTGCATGCTGCTGAGCG



GAGATGCTGGCGTGGGCAAGAGCCACATCATCAACCACTACCGGAAGAGAGTGCTGGCCAACCAGAACTACAGCAG



AAGCACAATCCCCATCCTGATCAGCCGGATCAGCAAAGGCAAAGGCCTGGAAGCCACACTGATCCAGGTGCTGGCTG



ACCTGGATCTGTTTGGCAGCGAGCAGCGGAAGAAGCGGGGCTACAAGACCGACCTGACCAAGAAGCTGATCGAGAG



CCTGATCAAGGCCCAGGTGGAACTGCTGATCATCAACGAGTTCCAAGAGCTGATTGAGTTCAAGAGCCGGCAAGAGC



GGCAGCACATTGCCAACGAGCTGAAGCTGATTAGCGAAGAGGCCAAGGTGCCCATCGTGCTCGTGGGAATGCCTTGG



GCCGAACTGATTGCCGAGGAACCTCAGTGGTCCAGCAGACTCGTGCGGAAGAGAAAGCTGAGCTACTTCAGCCTGAA



GAACGACAAGAACTACTTCATCCGGTACATCATGGGCCTCGCCAACAAGATGCCCTTCGAGGAACCACCTACACTGG



GCGATAAGCAGACCGCCACCGCCATCTTTTCTGCCTGTAGAGGCGAGAACCGCAGCCTGAAACATCTGCTGTCCGAG



TCTCTGAAGATCGCCCTGCTGAGCAACGAGAACCTGGAAATCAAGCACCTGGCTCTGGCCTTCGACAAGCTGGAACT



CCTGGGAAAAGAGGCCCAGCGGCAGAACAAGAAGAAAGAGGGCAAAGAGAAGTCCGAGGACATCGTGATCGACAA



CCCCTTCAACCAGAGCCTGAAGGACATCGACATCAGCGAAGTGATCAAGCACAGCCAGTACGCCCCTAACGCTCTGG



ACCCCGAGGATATTCTGACCGGCAGATTC (SEQ ID NO: 93)





tnsD
ATGGCCTTCCTGTTCAGCCCTAAAGTGCGGGCCTTCAGCGACGAGACACTGGAAAGCTACCTGCTGAGAGTGGTGTC



CGAGAACTTCTTCGACAGCTACGAGCAGCTGAGCCTGGCCATTAGAGAGGCCCTGCACGAGCTGGATTTTGACGCCC



ATGGCGCCTTTCCAATCGACCTGAAGCGGCTGAATGTGTACCACGCCAAGCACAACAGCCACTTCCGGATGAGAGCC



ATCGGCCTGCTGGAAACCCTGCTGGACCTGCCTAGATTCGAGCTGCAGAAACTGGCCCTGCTGAAGTCCGACAAGAA



ATTCAACAGCAGCGTGGCCGTGCACCGCGACGGAATCGATATCCCTCTGAAGTTCATCAGAAGCAACGGCGCCGACG



GCGAGTGTAGCCTGCCTATTTGTCCTCAGTGCCTGGCCGAGGAACCCTACATCAAGCAGAGCTGGCACATCCGGTGG



ATCAACATCTGCACAAAGCACAAGTGCACCCTGATCCACCAGTGTCCTGACTGCAACCTGCCTATCAACTACATCGAG



AACGAGTCTATCGCCCACTGCCTGTGCGGCTTTGATCTGGCCAGCGCCACCAACAGCAACACCACCAGCATCACCGT



GAAGCGGAAGGACGCCGAGCTGATCCACAACCTGCTGAACAACGAAACCCTGATCGACAACCCTCTGTTCCGGGAAA



CCACCATCAGCCAGAGATTCGCCGCTCTGCTGTGGTATCAAGAGCGGTACAGCTGCATCGACAATTTCTGCCTGAACG



ACGCCGCCACCTTCTTCAGCAAGTGGCCCGAGAACCTGTACAATGAGCTGGACCACCTGAGCAAGAACGCCAACATG



AAGCTGATCGAGATGTTCAACAAGACCATCTTCCGGTTCATCTTCGGCGAAGTGATCCTGAGCGTGCCCCACAGCATC



CAGAGAGAGGGCCAGAGACACTTCATCCGGATCGCCCTGATTGACTACCTGATCCGGCTGGTGGCCAACAATCCCAA



GAGCAAGAAACCCAACGTGGCCGACATGCTGGTGTCCGTGACAGAGGTGGCCATCATCCTGGGCACAAGCCACGAA



CAGGTGTACCGGCTGTACCAGGACGGCATCCTGCAGAACGCCTTCCGGCAGAAGATGAATAGCCGGATCGACCCTCA



CACCGGCGTGTTCTTTCTGCGGCAAGTGATCGAGTACAAGAGCAGCTTCGGCGACGACAAGCCCAAGATGCACCTGT



CTGCTTGGTGA (SEQ ID NO: 94)





Cas5/
ATGGGCATGCATCTGCAAGAGCTGCTGGCCATCGAGAGCGTGCCCGATAGAGATCAGTCTCTGCGGAGAGCCTTCAG


8
CGCCTACACCGAGGAAATCGACATCACCGGCTACGAGTCTATCGCCCTGACCATCCTGCTGAACCTGACCTACCGGA



AGGTGCAGATCGACAACCTGCTGGACAAGAAGCTGGCCAAGAAGGCCCTGAACAACGAGTCTCTGCTGAACAAGTG



CATCGACGAGCTGCAGTGGTTTCACACCCACAACCTGAAGTACCCCGACATCCGGGTGTCCAAGCAGAACCTGGTGG



TGGACAGCCCTATGCTGCATCCTCTGGTGCTGAGCAGCGCCAACTACGATAGAGCCTACGGCTGGACCCACAACAGC



GCCCAAGTGAACCTGGTCAAGCTGTTCGTGTCCTACTTCTACTGGCAAGGCAACAAGTGCTGCCTGGCCGAGATTCTG



GCCGCTCAGCCTATTGAGGTGGAATGGAAGGCCGCCTTTCAGAGCCTGGGAATGCAAGTGAAGCTGTTCATCAACAT



CTGCGGCCGAGTGAAGGGCTTCCTGCCTCAAGTGATGATCCCCGACACCGTGGACCGGTACTCTCCACAAGTGCGGA



TGCCTTACCACGACGGCTATGTGGCTGTGACCCCTGTGGTGTCTCACGTGCTGCAGAGCAAGATTCAGCAGGCCGCCA



TCAACAAGAACGGCAAGTTCAGCCAGATCGAGTTTACCAGATCTGCCGCCGTGTCTCAGCTGGTGGCTTCTCTTGGCG



GAGTGGTCAAGGCCCTGTCTTACCCTCTGTACTTCAACAACAAGCACCACGGCCTGCACGACAGCAGACGGCTGAAA



GTGCAGAATGGCCAGAGCGTGTTCAACCTGATTGCCCTGACAACCACACACTTCATCAACGCCCTGAACGGCCTGAT



CTACAACGGCAATGCCCTGGCTCTGAAGCAGCGGAGACAGCAGAAAGTGATCTGCATCAAGGCCGTGCGGAACGCC



CTGTCTGAATGGCTGAGCCCTATCTTCGAGTGGCGGTTCAGCATCATCGAGAACAAGAGCCAGCTGGAACAGCTGGA



TAAGATCAGCGACACCCTGGAATACCAGCTGCTGACCACACTGGACGACGACCTGCCTGAGCTGGTCAATCCTCTGTT



CGGCGTGCTGAACGCCATGTTCTCCCACGACACCAGCACACAGAAGTACGCCTTCCATCCTAAGCTGATCGGCTCTAT



CAAGGCCAGCCTGAAGTGGCTGCTGTCCAACGCCGCCATTATCGACAACAGCCCCGCCTTCCACGACAACGAGGAAC



AGTACAGATACCTGCACCTGAGAGACATCAGGGTGTTCGATGCACAGGCCCTGAGCAATCCTTACTGCGCCGGAACA



CCTTCTCTGACAGCCGCCTGGGGAATGATGCACCACTACCAGCGGAAGCTGAACAATGCTCTGGACACCAACGTGCG



GTTCACCTCCTTCAGCTGGTTTATCAAGGACTACAGCAACGTGCCCGGCAAGAAACTGCCCGAGATGAGACTGCAGG



GCGCCAAACAGAACGAGCTGAAGAGGCCCGGAATCATTGATAACAAGCACTGCGACCTGGTGTTCGACCTGGTCATC



CACATCGACGGCAACGAAGAGGACCTGCTGCTGATTGACGAGCAGCCTGAGATGCTGAAGGCCCACTTTCCTACCAC



CTTTGCCGGCGGAGTGATGCACCCTCCTGAACTGGATCTGGCCATCAACTGGTGCCGGCTGTACGACGATGAGAACA



AGCTGTTTGAGAAGCTGAAGCGGCTGCCCCTGTCTGGCAGATGGGTCATGCCTACCAAGCACAAGATCTGCGATCTG



GATGAGCTGCTGCTGCTCCTCAACAACGACCTGAAGCTGAGCCCCATCATGTTCGGCTATCTGCTGCTCGACAAGCCC



AAGAAGAGATGCGGCAGCCTGGAAGAACTGCACTGCTATGCCGAGCCTGCCATCGGCCTGGTCGAGTACATCACCGC



CATTAACATCCGGCTGAAGGGCAAGAACTTCTACTTCAACCACGGCTTCTGGATGCTCGAGGCCAAAGAACAGTTCA



TGCTGATGAAGGGCGTGTGA (SEQ ID NO: 95)





Cas7
ATGGACATCTGCAACATCCTGAAGTACGACCGCTCTCTGTACCCCGGCAAGGCCGTGTTCTTCTACAAGACCAAGGAC



AACGACTTCATCCCTCTGGAAGCCGACATCAACAAGATCAGAGGCCCCAAGGCCGGCTTCACCGAGGCTTTCACACC



TCAGTTCAGCCCCAAGAAGCTGGCCCCTCAGGATCTGACCCACAACAACATTCTGACCCTGGAAGAGTGCTACGTGC



CACCTAACGTGGAACACGTGTACTGCCGGTTCAGCCTGAGAGTGCAGGCCAACAGCCTGAAGCCTAGCGGCTGTAGC



GACCCCAAGGTGTTCTCCCTGCTGAAAGAACTGGCCACCGTGTTCACAGACAGCGGCGGCTACAAAGAGCTGGCTAC



CCGGTACTGCAGAAACATCCTGCTCGGCACCTGGCTGTGGCGGAATCAGAATACCGGCAACACCGAGATCGAGATCA



AGACCAGCAGCGGCAGCAGCTACAAGATCCGGAACACCAGAAAGGTGGCCTGGGAGAGCAGTTGGCCTAGCGAGGA



TCAGAACGTGCTGAACGAGCTGAGCGACGAGATGCAGAACGCCCTGATCGACCCCAACATCTTTTGGAGCGCCGATA



TCACCGCCAAGATCGAGACAGCCTTCTGCCAAGAGATCTACCCCAGCCAGATCCTGTCCGACAAACCTGCTCAAGGC



GACGCCAGCAAGCAGTTCGTGAAAACAAAGTGCATCGACGGCAGATACGCCGTGTCCTTCAACAGCGTGAAAGTGG



GAGCCGCTCTGCAGTCCATCGACGATTGGTGGGACGAAGATGCCGACAAGAGACTGCGGGTGCACGAGTTTGGCGCC



GACAAAGAAATCAGCGTGACCAGAAGGCCTCCTGACAGCGGCCGGAACTTCTACCATCTGCTGAAGAACACCGAGC



AGTACATCGATGAGCTGAACGTGAAGAATACCACCACCAAGAGCACCATCAATCCGAACATCTACTACATGTTCAGC



GTGCTGATCAAAGGCGGCATGTTCCAGAAGAAGTCCGAGACAAAGAAGGGCTGA (SEQ ID NO: 96)





Cas6
ATGCTGCGGCACTACTTCATGGTGGAATTCTGCCCCAAAGAGGCCAACCTGCCTCTGCTGAGCGGCAGATGCATCAG



CATCATGCACGGCTTCATCTGCAAGCACAACATCCAAGGCCTGGGCGTGTCACTGCCTGCTTGGAGCGATAACACCAT



CGGCAACAAGATCGCCTTCATCCACTACGACGACGTGACCCTGAACAGCCTGAAGCAGCAGCCCTACTTCCAGGATA



TGAAGGACTGCGGCTTCTTCAAGCTGAGCGACGTGTGCGTGGTGCCCAACGAGTGTAAAGAAGTGCGGTTCAAGCGG



AACCAGAGCGTGGCCAAGATCTTCGTGGGCGAGAGCAGAAGAAGGCTGAAGCGGCTGGAAAAGAGAGCCCTGGCTA



GAGGCGAGGTGTTCAGCCCTAAGAAGTCCAGCTACACCAGAGAGCTGGACACCTTCCACAGAATCCCCATGAGCAGC



AGCTGCAACCTGGAAGATTTCATCCTGCACATCCAGCGCGAGTACGTGGACTTCAAGGGCGAGCAGAGCTTTGGCAG



CTACGGCTTCGCCACCAACAAGAAATTCCAGGGCACCGTGCCTGACCTGAGCACCCTGACCAACAACATCTGA (SEQ



ID NO: 97)





DR
GTGACCTGCCGCATAGGCAGCTGAAAAT (SEQ ID NO: 98)





RE
TGTCGCTGAAACCATACTTTGACATAATGCAACCATAGAATGACAAATTTAAACCATACTTTGACATAAAACTTAATT



TTGTAATTTAATTACAAAATTAAATTCCTTTAAAATAAGCAACTTAAAATATAAATAAAGCATAGAATGACAAATTGT



TTAAATCTTTTGTTTAGTTTATACTCAATAGCAATAAAAACACTCGGTTTATTGTATGTATATTCGAAA (SEQ ID NO:



99)





LE
TATGTTAACCGACATTTGCCGCACAGGCAGAGATCAGGCCTCTTCTAAATTTTAAGTTTAGAAGAGGCCTTTTTCTTC



ATAAATTCTCTCGAATATTATGTAATTTTATTACAAGACTAAATAAAATATTTTTATTGGGTTATTTATTTGTCATAGT



ATGGTTATATTTTATGTCACTGTATGGTTTCACAGTGTTGCTAAGTCCTTGTTTTTTAGTTGTGGCTTATGTCATGCTTT



GGGTTCAGCGACA (SEQ ID NO: 100)









39683|0|GCA_000014885.1_ASM1488v1_genomic|CP000472.1|5396476|Shewa nella (ID: 104)










TABLE 14





Elements
Sequences







tnsA
ATGTACATCCGGAACCTGCGGAAGCCCTCTCCAAACAAGAACGTGTTCAAGTTCGCCAGCGCCAAGGTGTCCGAGAC



AATCATGTGCGAGAGCACCCTGGAATTCGACGCCTGCTTCCACCACGAGTACAACGAAACCATCGAGACATTCGGCA



GCCAGCCTAAGGGCTTCTACTACAGATTCGAGGGCAAGAGACTGCCCTACACACCCGATGCCATCCTGCACTACATC



GACGGCACCACCAAGTTCCACGAGTATAAGCCCTACAGCAAGACCTTCGATCCCATCTTCCGGGCCAAGTTCGTGGC



CAAGAAAGAAGCCGCTCAGGCCCTGGGAACAGAGCTGATCCTGGTCACCGACAAGCAGATCAGAGTGAACCCCATC



CTGAACAACCTGAAGCTGCTGCACCGGTACAGCGGCATCTACGGCGTGACCGATATCCAGAGAGAACTGCTGCAGCT



CGTGCGGAAGTCCGACAATATCCAGCTGGCCGATGTGGCCAGCGAGTACAATCTGCCTATCGCCGAGACAAGAAGCT



TCCTGTACAGCCTGATCAACAAGGGACTGATCAAGGCCGACCTGAACCAGGACGACCTGAGCTGCAATCCTAGCGTG



TGGTGTCACGCCTGA (SEQ ID NO: 101)





tnsB
ATGGACTTCGCCGACGAGTTTACCGAGAGCACCAGCGCCAAGAAGCCTGAGACACCAGCTCAGTACGTGAAGCTGGA



CGATGCCGAGCTGCTGAAGAGAGATCTGGATACCTTTCCGGACTTCCTGAAAGAGAAGGCCCTGGACAAGTACAAGC



TGATCTCCTTCATCGAGCAAGAGAACAGCGGCGGCTGGACCCAGAAGAAGCTGGATCCCATCCTGGACAGACTGTTC



GAGGGCAACACCGAGAAGCGGCCCAATTGGAGAACAGTCGTGCGGTGGCGGAAGTCCTACATCGACAGCAATGGCG



ATCTGGCCAGCCTGGTGGTCAAGAGACACAAGATGGGCAACCGCAAGAAAAGAGTGGAAGGCGACGAGGTGTTCTT



CGAGAGAGCCCTGAGCAGATTCCTGGACGCCAAGAGGCCTAAAGTGACCACCGCCTACCAGTACTACAAGGACGTG



ATCACCATCGAGAACGAGACAATCGTGGACGGCAAGATCCCCATCATCAGCTACACCGCCTTCAACCAGCGGATCAA



GAGCCTGCCTCCTTATCCTATCGCCGTGGCCAGACACGGCAAGTTCAAAGCCGATCAGTGGTTCGCCTACTGCAGCTC



TCACATCCCTCCAACCAGAATCCTGGAACGCGTGGAAATCGATCACACCCCTCTGGACCTGATCCTGCTGGATGACGA



ACTGCTGATCCCTCTGGGCAGACCCTACCTGACACTGATCGTGGATGTGTTCAGCAACTGCGTGCTGGGCTTCCACCT



GAGCTATAAGGCCCCTAGCTATGTGTCTGCCGCCAAGGCCATTGTGCACGCCATCAAGCCTAAGACACTGAGCAACA



TCGGCATCGAGCTGCAGAACGACTGGCCCTGCTATGGCAAGTTCGAGACACTGGTGGTGGACAACGGCGCCGAGTTT



TGGAGCAAGTCTCTGGACCACGCCTGCAAAGAGGCCGGCATCAACATCCAGTACAACCCCGTGCGGAAGCCCTGGCT



GAAGCCCTTCGTGGAAAGATTCTTCGGGATGATCAACCAGTACTTCCTGACCGAGATTCCCGGCAAGACCTTCAGCA



ACATCCTGGAAAAAGAGGACTACAAGCCCGAGAAGGACGCCATCATGCGGTTCAGCGTGTTCGTGGAAGAGTTCCAC



AGATGGATCGTGGACATCTACCACCAGGACAGCGACAGCCGGGACACCAGAATTCCCATCAAGCAGTGGCAGCACG



GCTTCGATATCTACCCTCCACTGCAGATGGAAGTCGAGGACGAGAAGAGATTCAACGTGCTGATGGGCATTGCCGAC



GAGCGGACCCTGACCAGAAACGGCTTCAAGTTTGAGGAACTGATGTACGACAGCACAGCCCTGGCCGACTACCGGAA



GCACTACCCTCAGACCAAGGACACCATCAAGAAGCTGATCAAGATCGACCCCGACGACCTGAGCAGCATCCACGTGT



ACCTGGAAGAACTGGAAGGCTACCTGAAGGTGCCCTGCACCGATACCACAGGCTATACACAGGGACTGAGCCTGCAC



GAGCACAAAGTGACAAAGAAGATCAACCGCGAGATCATCAGAGAGAGCAAGGACAACCTGGGCCTCGCCAAAGCCA



GGATGGCCATTCATGCCAGAGTGCAGCAAGAGCAAGAGCTGTTCAACGAGAGCAAGACCAAGACAAAGCTGAGCGG



CGTGAAGAAGAAGGCCCAGCTGGCCGATATCAGCAGCACCGGCAAGAGCACAATCGTGCTGCCTGAGAGCGAGCCC



CAGAAGTCCATCAACTGCAATCAGGTCGAGGCCGAGATGGAAGATGACGACTGGGACATGGACCTGGAAGGATACT



GA (SEQ ID NO: 102)





tnsC
ATGACCAAGCTGACCCTGCAGCAGGACACAGCCCTGAAAGAATTCGGCCTGTGCTTCATCGAGCTGCCCATCGTGTC



CGAGACATTCCAGGACTTCGACGACCTGCGGTTCAACCGGGACTACCAGAGCGATCCCCAGTGCATGATGCTGACAG



GCGAGACAGGCAGCGGCAAGACCAGACTGATCCAAGAGTACCGGCGGAGAGTGAACGCCAACAGCGGCTTTAGACA



CAGCGACGTGCCAGTGCTGATCACCAACATCAGCAGCAACAAAGGCCTGGAAAACACCCTGGTGCAGATCCTGAGCG



ACCTGGATACCTTCGGCTGCCACCAGAAAAAGCGGGGCATGAAGACCGACCTGACCAAGAAAGTCGTGCGGAACCT



GATCGCCGCCAACGTGGAACTGCTGATCATCAATGAGTTCCACGACCTGATCAAGTTCAAGAACTACCAAGAGATCC



AGATCATCACGAGCGCCCTGAAGTTCATCAGCGAGGCCGCCAACATTCCCATCGTGCTTGTGGGCATGCCTTGGATGA



AGGACATCATCAACGACAGCGAGTGGGGCAGCAGACTGCGGAGAAGAAAGCACCTGGAATACTTCAGCTACATCCG



GAAAGAGGACAGAGAGCACTTCCGGCTGCTGCTCGTGGGCTTCAGCAAGAGAATGAGCTTCGACACCAGACCTGTGC



TGCACAGCAAAGAGCTGACAAGAGCCCTGTTCGCCGTGTGCAGAGGCGAGTTCAGACAGCTGATGGTGTTCCTGTAC



GAGGCCTGCAAGATGGCCCTGCAGAACAACGATCACACCCTGAACGAGAAAACCCTGGCCGAAACCTTCGACAAGC



TGGGCTGTGAACACCTGAGCAGCAACCCCTTCACCATCAAGTTTAAAGAAATCCCCATTCCGGTGCTGAGCATCCCCA



GCAGATACAACCCCAACGCTCTGGAAGAGAAGGACGAGATCATCGACCGGGTGTTCGAGTACATCTACTGA (SEQ ID



NO: 103)





tnsD
ATGGCCTTCCTGTTCAGCCCTAAGAGCCTGGCCTTTAGCGGCGAGAGCCTGGAAAGCTACCTGCTGAGAGTGGTGGC



CGAGAACTTCTTCGACAGCTACCAGCAGCTGTCCCTGGCCATCAGAGAGGAACTGCACGAGCTGGATTTTGAGGCCC



ACGGCGCCTTTCCAATCGAGCTGAAGAGACTGAACGTGTACCACGCCAAGCACAACAGCCACTTCCGGATGAGAGCC



CTGAGCCTGCTGGAATCCCTGCTGGATCTGCCTCCTCACGAGCTGCAGAAACTGGCCCTGCTGCGGAGCAATAGAAG



ATTCGTCGGCGGCATGAGCGCCGTGCACAGAAACGGAATCGACATCCCTCTGAGCTTCATCAGATGCGCCGACAAGG



ACGGCATCGAGAGCGTGCCAATCTGCCCTCAGTGTCTGAAAGAGGGCCCCTACATCAGACAGGCCTGGCACATCAAG



CCCATCGAAGTGTGCGCCAAACACGGCTGCGAGCTGATCAATCACTGCCCCGATTGCCAGCAGCCTATCAACTACAT



CGAGAACGAGAGCATCACCCACTGCGCCTGCGGCTTCGACTTTACCACAGCCAGCTCTGTGAAGGCCGATAGCCAGG



CTGTGCTGCTGAGCAGATCCCTGTTTGATGGCGACGCCCTGAGCAACAACCCTCTGCTGTTTATGGGCACCAGCGTGA



CCCACAGATTCGCCGCTCTGATCTGGTATCAGAAGTGCCACGCCAGAAACACCGAGTGCATGGCCCATAGAGCCGTG



GGCTACTTCGAGGATTGGCCCACCAGCTTCTACAGAGAACTGGACGCCGTGACCACAGGCGCCGAAGCCAGACTGAT



CGACCTGTTCAACCGGACCAGCTTCCGGTCCATCTACGGGGAGCTGATCCTGGACTCACAGTGCCTGCTGCCTGAGGA



CAAGGACCCTCACTTCATCTATCTGGCCCTGATGGAGTACATCAGCAAGCTGGTCGAGTCTCACCCCAAGAGCAAGA



AACCCAACGTGGCCGACATGCTGGTCACCGTGGCTGAAATTGCCGTGCTGCTGTCCACCACACACGAACAGGTGTAC



CGGCTGTACCAGGATGGCGTGCTGACAGCCGGCATGAGAAGCAAGATCCGGACCAGAATCAGCCCTCACATCGGCGT



GTTCTACCTGCGGCAAGTGATCGAGTACAAGACCTCCTTCGGCAACGACAAGCAGGGCATGTACCTGAGCGCTTGGT



GA (SEQ ID NO: 104)





Cas5/
ATGGTGGACAAGCTGAAGTTCCAAGAGCTGCTGGACATCGACGACATCAGCGAGCGGAACATCGTGCTGAGAAGGG


8
CCTTCACCGCCTACACCGTGCCTCTGGATGTGACCGGAAATGAAGCCGCCGCTCTGACCATCCTGCTGAACCTGACAT



ACCCCAGAAAGAGAGTGGACGACCTGCTGGATATGCGGCTGGCCAAGCAGACCCTGAACACAGACGCTCATGTGGA



CGCCTGTATCGGCGAAGTGCAGTGGCTGCACACCCACAACCTGAAGTACCCCGACATCCGGGTGTCCAAGCAGAGAC



TGATTGCCGCCTCTCCTCTGCTGCACCCTCATGTGCTGTCTAGCGCCAACTGCATCAACACCCTCGGCTGGTCCCACGA



CAGCGCCAAAGTGAATCTGGCCAAACTGTTCAGCTGCCACTTCATCTGGCAAGAAAGAGTGTGCTGCCTGGCCACAC



TGCTGGCCGATGCTCCTAAAGGATGGAAAGAGGCCTTTCAGGCCCTGGGCATGCTGGTCAAGGACTTCATGAACCTG



TGCGGCCGGATCAAGGCCAGCCTGCCTAATGACGACACCCCTAACCACGTGGACAAGTACAGCATCCAAGTGCGGCT



GCCCTACCAGGATGGCTACCTGGCTATCACCCCTGTGGTGTCTCATGCCCTGCAGGCCGAAATTCAGCAGGCCGCCAT



GGCCAAACAGGGCAGATACACCAACATCGAGTTCACCAGACCTGCCGGCGTGTCCGAACTGTCTGCTTCTCTCGGCG



GAAACGTGAAAGCCCTGAACTACCCTCCTCGGATCGAGAATGCCGAGCACGGCCTGTCTGATAGCTGGGCCCTGAAA



GTGCAGAGCGGCCAGACAGTGCTGAATCAGGGTGCTCTGAGCCAGCCTCGGTTCAAGAGAGCACTGGAAGGCCTGCT



GTCCAAGAACTTCGAACTGGCCCTGAAGCAGCGGCGGCAGCAGAAAGTGGCTTGCATGAGGCAGATCAGAGCCACA



CTGACCGAGTGGCTGAGCCCTCTTCTTGAATGGCGGCTGGAAGTGGAAGAGAACAAAGTGAACACCAGCGAGCTGG



GCTGCATCCACGGCAGCTTCGAGTACCAGTTCCTGACCACACAGAAAGAAAACTTCGTGGAACTGCTGAGCCCCATG



TTCAGTCTGCTGAACACTGTGCTGAGCAACAGCAACACCCTGCAGAAGTACGCCTTCCACCAGCACCTGATGAAGCC



CCTGAAGAACAGCCTGAAATGGCTGCTCGACAACCTGAGCAAAGAAAGCAACGCCGTGGCCATCGACAGCGACGAG



GACAACCAGCAGAGATACCTGTATCTGAAGGGCATCCGCGTGTTCGATGCACAGGCCCTGAGCAACCCTTACTGCGC



CGGAATTCCAAGCCTGACAGCCGTGTGGGGCATGATGCACAACTACCAGCGGAGACTGAACGAGAGACTGGGCACC



CAGCTGAGGCTGACCAGCTTCTCCTGGTTCATCCGGCAGTACTCTAGCCTGGCCGGCAAGAAGCTGCCTGAGTACGG



AATGCAGGGCCAAAAAGAGAACCAGTTTCGGAGAGCCGGCATCGTGGACAACAAGCACAGCGACCTGGTGTTCGAT



CTGGTGGTGCACATCGACGGCTACGAAGAGGACCTGGACGCCATCGATAACAGCATCGACGCCATTAAGGCCAGCTT



TCCCGCCACATTTGCCGGCGGAGTTATGCACCCTCCTGAGATCGGATCCGTGGACGAGTGGTGCGAGCTGTACTGTTC



TGAGGCCTCTCTGTACAGCAAGCTGCGCAGACTGCCTGCCTCTGGCAAGTGGATCATGCCCACCAGATACCAGATGG



ACAGCCTGGACGGACTGCTGCAGCTGCTGAAGCTGAATGTGGCCCTGTGTCCTGTGATGAGCGGCTACCTGATGCTG



GGCTCTGCCGAGAGCAGAAACTACTCCCTGGAACCTCTGCACTGCTACGCCGAGCCTGCCATTGGAGTGGTGGAATG



TGCCACCGCCATTGACATCCGGCTGCAGGGAATGTCCAACTTCTTCAGACGGGCCTTCTGGATGCTCGACATCAAAGA



AACCTCCATGCTCATGAAGCGGATCTGA (SEQ ID NO: 105)





Cas7
ATGGAACTGTGCAACGTGCTGAAGTACGACAGATCTCTGTACCCCAGCAAGGCCGTGTTCTTCTACAAGACCGCCGA



GAGCAACTTCGTGCCCCTGGAAGCCGAGATCAACCGGATCAGAGGACAGAAGGCCGGCTTCACCGAGGCCTTCACAC



CTCAGTTCAAGAGCAAGAATCTGGCCCCTCAGGATCTGGCCCACTGCAACCCTCTGATTCTGGAAGAGTGCTACGTGC



CACCTAACGTGGAACACATCTACTGCCGGTTCAGCCTGAGAGTGCAGGCCAACTCTCTGAAGCCTGCCGGCTGTTCTG



AGCCTACCGTGTTTGCCCTGCTGGAAGAATTCGCCGCCACCTTCAAAGCCTGCGGCGGCTACAAAGAGCTGGCCACC



AGATACTGCAAGAACGTGCTGCTCGGCACATGGCTGTGGCGGAATCAGAATACCGGCAACAGCCAGATCGAGATCA



AGACCAGCAGCGGCAACTGCTACCAGATCGCCAACACAAGACAGCTGGCCTGGGATAGCTCCTGGCCTGCTGATGCT



CAGCAAGTGCTCGAGGAACTGAGCCACGAAGTGCATCAGGCCCTGACAGATCCCGCCGTGTTTTGGCACGCCAAGAT



CACCGCCAAGATTGAGACAGCCTTCTGCCAAGAGATCTACCCCAGCCAGAGCTTCGGAGAGAAAGCCGCTCAAGGCG



AGGCCAGCAAGCAGTTCGCCAAAGTGAAATGCGTGGACGGCAGATACGCCGTGTCCTTCAACAGCGTGAAGATCGG



AGCTGCCCTGCAGCTGATCGACGATTGGTGGGATGTCGACGGCAGCAAGCGGCTGAGAATCCACGAATACGGCGCCG



ACAAAGAAATCGGAGTGGCCAGAAGGGCCCCTGAGAGCAAGCAGAGCTTCTACAGCCTGTTCGTGAACGCCGAGCT



GTACCTGGCCGAGCTGAAACAGCAACTGGCCGAGGGCGAGTACAGCATCAGCCCCAACATCTACTACCTGTTCGCCG



TGCTGATCAAAGGCGGCATGTTCCAGAAGAAGGCCGAGGCCAAGTCTAAGTCCAAGGCCGAGCCTACCACAGCCAA



GACCACCACCTCTAAGGCCACACCTGTGAAAGCCTGA (SEQ ID NO: 106)





Cas6
ATGCAGCGGTACTACTTCATGGTCCGATTTCTGCCCGAGCAGGCCAATCTGGCTCTGCTGACAGGCAGATGCATTAGC



GTGATGCACGGCTTCATCTGCAAGCACGAGATCCAAGGCCTGGGCGTGTCCTTTCCAGCTTGGAGCGACGTGTCCATC



GGCAACATGATCGCCTTCGTGCACACCGATATCGCCGTGCTGAACGAGCTGAGACTGCAGGGCTACTTCCAGGACAT



GCAAGAGTACGGCGCCTTCAACATCGGCGACGTGGAAGCTGTGCCTGACAGCTGTACCGAAGTGCGGTTCAAGCGGA



ACCAGGCCATTGCCAAGATGTTCGTGGGCGAGACACGGCGGAGACTGAAGCGGCTGGAAAAAAGAGCACTGGCCAG



AGGCGAGGTGTTCAACCCCAGCAAGAGCTACGAGCCCAGAGAGCTGGACTCCTTCCACTGTATTGCCGTGGGCAGCA



CCTCTACCGAGCAGGATTTTCTGCTGCATGTGCAGAAAGAGAACGTCCAGAAGAGAGAGGGCGCCGAGTTTTCTCAG



CTGGGCCTCGCTACAAACCAGCTGCTGAGAGGAACCGTGCCTGAGTTCGACATGTTCTGA (SEQ ID NO: 107)





DR
GTGAACTGCCGAATAGGCAGCTGAAAAG (SEQ ID NO: 108)





RE
TGTCGCTGAAAGCATACATTGACATAAGATAACCATAGTATGACAAATTTAAAGCATAGTTTGACATAAAATGATGT



TTTGTATTTTAACTACATAATTCAAAGTTATATAAATCAATTGCTTAGAGTGTAGATTAAAGCGTACCCTGACAAATTT



GACAAAATATCGAGCAACTGTACACTAAGTGTACTTAAGTTGCTCGAGTTTTGCGCATGTATATTCGAA (SEQ ID NO:



109)





LE
GGAACACCCTCTAGAGTTAGGCTTGTTATGTAACTAAAAGGTTTTAAATAAGGCATTGCACGTAGATAGTGTAGTGCC



TTTCTGTTTTAAAAAATTTAGTAATTCAATTACATTTAGAAGGAATCGGAAATCTGCAATCGCTTAGATTTGTCAGCTT



ATGGTTATATTTTATGTCAGGATATGCTTATATTTTTAAGCTAAGTGTTTGAAAGAAAAATAAGGCTTATGTCAGCTTT



TGCTTGCAGCGACA (SEQ ID NO: 110)









40633|4|GCA_000153265.1_ASM15326v1_genomic|CH902601.1|492617|Vibrio (ID: 105)










TABLE 15





Elements
Sequences







tnsA
ATGTACCGGCGGAACCTGAGACACAGCAGAGTGAAGAACATCTTCAAGTTCGTGTCCAGCAAGATGAACAAGGTGCT



GACCGTGGAAAGCCGGCTGGAATTCGATACCTGCTTCCACCTGGAATACTCCCCAGACATCAGCTTCATCGAGGCCC



AGCCTGAGGGCTTCATCTACCCCTTCCAAGAGAAACATCTGCCCTACACACCCGACTTTCTGATCGTGGACAAGGGCG



AGAGAAAGCTGATCGAAGTGAAGCCCTTCAAGAAAACACAGAGCCCCGAGTTCCAGCAGCGGTTCTCTGCCAAAAA



AGCCCAGGCCGACAACTTCGACATCCCTCTGATCCTGGTCACCGAGAAGCAGATCAGAGTGAACCCCATCCTGAACA



ACCTGAAGCTGCTGCACAGATACAGCGGCTTCCAGAGCTTCACCCCTCTGCACCTGAGCTTTCTGAAGCTGGTCAAGC



GGTACAAACAGATCAAAGTCAAGGACTTCATCACCAGCTGCCACGTGGAACAGAACGTGGCCGTGAAAACAGCCCT



GGCTCTGATCAGCTCTGGCATGCTGCACACCAACCTGAGCGCCCAAGAGATCAGCCTGGACAGCATCGTGTGGTGCT



CTGGCCACGAAGAGAGCTGA (SEQ ID NO: 111)





tnsB
ATGAAGAACCACGACAAGCCCAGCATCTTCAGCGACGAGTTCGAGTGCGAGAACCAGATCGAGGAAAGCGAGCTGG



CCTCCAATGCCGAGTGTGCCGTGTCTAGAGATCTGGCCAGCTATCCCGACGCCACACAGAAAGAAGTGATGCGGCGG



TACTACTTCATCGAGTGGATGCGGAAAGAGCTGGCTGGCGGCTGGACCCAGAAGAACCTGGATCCTCTGCTGAACAG



AGCCGCCAGAGAACTGCAGCTGAAGGCCCCTAAATGGCGCGCTCTGGCCAACTGGTGGAAGATCTACAGCCAGAGC



GGCTTCAAGCTGACCTCTCTGATCCCTAGACAGACCGCCGGCAACCGGCACCTGAAAGTGAAGAACGAGATGGTGTT



CTTCGACAAGGCCCTGGAAAGATACCTGGTGCCTGAGAGGCCTTCTATCGCCGCCGTGTACCAGTACTACAGCGACCT



GATCAGAATCGAGAATCAGAACATCGTCGAGAACAAGATTGAGGCCCTGAGCTACAAGGGCTTCTACAACCGGATCA



AGAAGCTGAGCGCCTACGACGTGAAGGTGGCCAGGCACGGAAAGTATCTGGCCGACATGGAATTCAACAGCATCGA



CGCTCACTACCCCGCCAGCAGAGTGCTGGAAAAGGTGGAAATCGATCACACCCCTCTGGACCTGATCCTGCTGGACG



ACGAGCACAACTTCCCCATCGGCAGACCCTACCTGACACTGCTGATCGACCAGTTCAGCCGGTGCATCATCGGCTTCT



ACCTGGGCTTCAAAGAGCCCAGCTACTTCTCCGTGATGAAGGCCCTGCTGAACGCCATCAAGCCCAAGAACTACATC



AGCGAGCAGTTCCCCAGCATCGAGAAAGAGTGGTGCTGCGAGGGCAAGATGGAAAGCCTGGTGGTGGATAACGGCG



CCGAGTTCTGGTCCAAGAGCCTGGAACAGTCCTGCCTGGAACTGGGCATCCACATCCAGTACAACCCCGTGCGGAAG



CCCTGGCTGAAACCCCTGGTGGAACGGATCTTCCGGACCATCAACAGCAAGCTGACAATCAGCATCCCCGGCAAGAC



CTTCAGCAACATCCTGCAGAGAGAGGACTACGACAGCAAGAAAGACGCCGTGATGCGGTTCTCCATCTTCAACGAGA



TCCTGCACAAGTGGATCATCGACGTGTACCACCACGAGCCTGACAGCAGAAAGCGGAGCATCCCTTACCTGAAGTGG



CAAGAGGGCATCAACTACCTGCCTCCAATCAGCTACAGCCCCGAGGACGAAAAACAGCTGGCCATCATCCTGGGCAT



CAAGGCCAAACGGCAGCACAGAAGAGGCGGAATCCACATTCACAGCCTGAGATACGACTCTGAGATCCTGGCCGAC



TGCAGACGGATGTACCCTAGCGTGACAAGCGTGCTGACCAAGACAAACCCCGACGACATCTCCTACATCTACGTGTT



CATCGAGCACGAGCAAAAGTACATCAAGGTGCCCTGCGTGGACCCTATCGGCTACACAAAGGGCCTGAGCCTGTTCC



AGCACCAGATCAACCTGAAGCTCCAGAGAGAGTACATCGACAAGAAAACCGACCTGGACAGCCTGGCCAAAGTGCG



CATGTACATCAACGACCGGATCCTGAAAGAGATCAACGATCTGAAGTCCCGGCAGAAGAAGGCCACCAAGGGCATT



AGCAGACTGGCCAAGCACGCCAGCATCGGCAGCGATAAGAAAGAGTCTATCAGCACAAGCCCTCTGCTCAACGTGTC



CAAGGACGCCGATCAGACCAAGCCTGTGCAGCCTAAAGGCGACGACTGGGACGATCTGATCAGCGATCTGGACCCCT



ACTGA (SEQ ID NO: 112)





tnsC
ATGCGGAGACTGAGCAAGCAGCAAGAGCAAGCCCTGCGCGAGTACATCGGCGTGTTCATCGAGAGCCCTATCGCCAC



CACCATCATGGACGACTTCGAGCGGCTGCGGTACAACAAACACCTCGGCGGAGAGCAGCAGTGTATGCTGCTGACAG



GCGATACAGGCAGCGGCAAGAGCAGACTGATCCAAGAGTACAAGCAGCGGCTGTGCAGCGACAGCAACGAGAGCAG



TTTTAGCCTGCTGGTGTCTCGGATCCCCAGCAAGCCTAGCCTGCCTAGCACAATCATCCAGCTGCTGAAGGACATGGG



CCACTTCGGCAGCACCTACAGAAAGGGCATCAGCAACGACCAGAGCCTGACCGAGTCTCTGATCCGGTGCCTGAGAA



GCAAGAACACCGAGCTGATCATCATCAACGAGTTCCAAGAGCTGGTCGAGTTCAAGTCCGGCAAGGCCCTGAACGAG



ATCGCCAACCGGCTGAAGTACATCAGCGAAGAGGCCCAGGTGCCAATCGTGCTCGTTGGAATGCCTTGGGCCAAGAA



GATCACCACCGAACCTCAGTGGGCCAGCAGACTGCTGATCCAGAGAGAGCTGGAATACTTCAAGCTGAGCGACAAGC



CCGAGTACTTCATCAGATTCGTGAAGGGCCTGATCCTGCGGATGCCCCTGGAACCTAGCGAGAAGCTGTTCAACAAG



GCCGTGATCCTGAGCCTGTTCAGCGTGTCCCAGGGCCAGATCAGAAAGCTGAAGCACTTCCTGGACGAAGCCCTGAA



GCTGGCCATGCTGGAAGAACAGAGCGAGATCACCCCTCACAGCTTCAGCAAGATCTTCAGCATGTGGTATCCCAACC



AGACGAACCCCTTCAAGCAGAAGGCCGAGGAAATCATCGGGCAAGAAGTGAAGTCCTACAGCTACTACGACTCTGG



CGCCGACAATGAGTTCGAGGCCATCATTCCCACACAGTACACCGACAAGCTGACCCTGAGCCAGATCATCAAGAAAT



GA (SEQ ID NO: 113)





tnsD
ATGCTGACCCTGACCAAGAGCATCCTGGTGTTCCGGGTGTCCATGTTCCTGCTGGAACCCGCCAAGCTGTACGTGACC



GAGAGCCTGGAAAGCTTCCTGATCAGACTGTGCCAGGCCAACGGCTTCGAGAGCTACAGAATCATGGCCCTGGTCAT



CAGAGACTGGATGTACAACAACGACTTCGAGTCTGCCGGCGCTTGGCCTCTGGTTCTGGAACAGGCCAATATCTTCCA



CGCCAACCACAGCAGCGGCTTCAGAGTGCGGGCCTTCAAGCTGCTGGATAGCCTGTTCAGCGACAGCACCAGCAGCG



TGCTGGAAAGATGCCTGCTGAACAGCGCCACACTGTTCAGCCCCAAGATCAGCTCCGTGTCCTACCAGAACGTGTTCA



TCCCTCAGCTGTTCATCCGGCGGAAGGGCATCCCTGTGTGTCCCGAGTGCCTGAAAGAGAACGCCTGCATTCCTGTGC



TGTGGCACGTGGAACCCTACCAAGTGTGCCACCACCACCAGTGCGAGCTGATTAGCCACTGTCCTAGCTGCAACCGG



CAGCTGAACTACGTGGAAAGCGAGCAGATCACCAAGTGCGAGTGCGGCTACGACCTGTGCTTCATGGAAAAGCTGCA



CAGCCAGAGCAACGCCCTGAAGCTGAGCCAGTATATCGCCGGGGAGAAAGTGAACGGCCTGCCTGATGGCCTGGAC



ATCTCTGAGAGACTGGGCATCATCCTGTGGTTCTACAAGAGATACCCCAACGTGAACAGCTACGACGCCAACGCCAT



CGTGGAATACTTCAGCCAGTGGCCTAACATCTACATCGACGAGCTGAACGCCATCAGCGAGCACGCCATCGACAGAC



AGATCAAGCCCTTCAACCACACCGACTTCAACCTGATCTTCGGCGACATCCTGAGCAGCTGCAGAAAGCTGCCCTAC



AGAAACCCCGAGCAGAACATCATCCAGCAGGCCAGCATCGACTACCTGATCAAGCTGGTGGAACAGAACCCCAAGA



GCAAGACCAGCAACTTCGCCGACCTGCGGCTGAATATCATCGAGGTGTCAGGCGTGCTGAGCACCAGCGTGGAACAG



GTGTACAGACTGGTGGAAGAGGGCTACCTGCAGCTGGCCATCCGGCTGAAGATCAGAGAGAGACTGCCTCCATTCAA



GGGCGCCTTCTACCTGCGGCAAGTGATCGAGCTGCGGCAGTCTCAAACACCCCTGCCTCAGAGCAAGCAGATTACCT



ACCTGCCTAGCTGGTGA (SEQ ID NO: 114)





Cas5/
ATGAACCTGAGCAGCATCATCAAGATCCGCGAGAAGGTGGACAGAGAGAAGGCCCTGAGACAGAGCTTCAGCCCTT


8
ACAGCCCTCCTATCGCCGTGGACGACGAGGAATTCAAGTGCCTGGTCATCCTGATCAACCTGACCGTGCCTCGGAAG



AAGATCGACGACCTGCTGGATGCCAAGCACGCCGAGGAACTGTGGCGGAATGATGTGCACCTGAACAAGTGTCTGAG



CGAGGCCTGCTGGTATCACAGCCACAACCTGAAGTACCCCGATCCTAGAGTGTCCCACCAGGTGTACAGAGGCGTGA



CCCCTAGCCTGTATCCTGACGTGCTGACCAGCGCCAATCTGCCTTGTAGCTTCGGCTGGTCCAACAACAGCGCCATGG



TCAATATCGCCAAGCTGTTCAGCAGCGAGTTCCTGTGGAACGGCAACCTGACAACACTGGGCCTGCTGCTGCTGAAG



AGACAGTCCCTGTGGCTGGACCTGCTGATCTCTCTGGGCGTGAAGCAGGACACCCTGGACCTGATCATCAGCTTTTTC



AGCGACGAGCTGGGCAAGCAGAAAATCCCCACCGAGGTGTCCGACTACAGCAAGCAGCTGCAGTTCGTGATGGACG



GCCAGCCTGTGGCCATCACACCTATCGTGTCTCACACCGTGCAAGTGAAGATCTACCAGCTGAGCCTGGTGCTGAGA



AGCTCCATCATCCAGCACGGACACCCAGCCTCCGTGTCTGGATTTGTGGCTAGCACCGGCGGCTTCACCAGAGTGCTG



AACTACAGACCTCTCGTGCGGAAGCGGATCGACAACGGCCTGCTGAAAAACTTCCGGAACAAGAAGGACTGCTTCGA



CAACCAGGTGCTGAGCAGCCAGCGGTTCATCAACGCCCTGAAGTGCATCAGCAAAGAGGAACTGGCCCCTACACTGC



GGCAGCGGAGACAGCTGAGAATCAGCGCCCTGAGATTCATCCGGAAGCAGCTGGCTCTGTGGCTCGCCCCTATTATG



GAATGGCGGGACTGCGAGAGCGACCCCAAGAATCACCCTGAGATCAAGACCATCGGCGAGAAGCTGGTGTTCACCC



CTCTGGCACAACTGCCTGAGCTGGCCTCTGAGCTGAACGTGAAGTTCCACCAGAGCATCCAGTACAGCAAACACGTG



TCCCGCTACGCCTTCCATCCTGAGCTGATGCTGCCCATCAAGACCCAGCTGCTGTGGCTGCTGAGATACCTGAGCGTG



CCACAGGATGCCCCTAAGAGCAGCTGTAGCAGCGTGTACCTGCACCTGAGGCGGCTGAAAGTGTCCGATGCCAGCGC



TCTGAGCAACCCCTACATCAGCGGAATCCCAAGCCTGACAGCTCTGTGGGGCTTCGTGAACAACTACCAGAGCCGGA



TCAAGAAACTGACCAAGACCGTGGTGGAAGTGCAGAGCGTGGCCTGGTTTATCAACGACTACTCCGAAGTGAAGTCC



AAGAAGCTGCCCGAGCCTAGCATCCCCGAGAGCAAGAGAAAAGTGGGCAACATCAAGCGGAGCGGCATCATCGACG



GCAAGTACTGCGACATGACCATCGACCTCGTGATCAAGCTGAAGATCGGCGACAACTTCCCCGAGATTCAGCTGCTG



CAAGCCGCTCTGCCTAGCAGATTTGCTGGCGGAACACTGCTGCCTCCAAGCCTGTACGAGCTGAGAGACTGGCTGGA



AGTGTTCGACGACAAGAGCGAGCTGTTCTCCGTGATCAGCAGAAAGAGCAGATTCGGCTGTTGGATCTACCCCTCCG



ACGAGAAACTGGAAAGCTTCGAGCAGCTGGAACAGAAGCTGACCCTGGAACCAGACCTGAAGCCTGTGAATATGGG



CTTCATCCCTCTGGACGTGCCCTGCAATAGAGAGAACAGCATCTCCAACTTCCACTGCTACGCCGAGAGCTGCATCGG



AGTGGTGCAGTGCAAGAACCCCATCGAAGTGCGGCTGGAAGCCAGCAGCAAGTTCTTCGAGAGCGCCTTCTGGCACC



TGGACAACGAGAATGGGGCCATCCTGATGCGGAAGTACCAGTGA (SEQ ID NO: 115)





Cas7
ATGAACATCTGCCGGCACCTGACCTACACCAGATCTCTGAGCCCTGGCAAGGCCGTGTTCTTCTACCAAACCACCGAG



AGCGACTTCGTGCCCCTGCAGCTGGAAACAAACAAGATCAGAGCCCCTAAGAGCGGCAGCACCGAGGCCTACGATA



GAAACGGACACCCCAAAGAGCTGAGCCCTCACGCTCTGGCCTACAGCAATCCTCAGTGCATCCAGGCCTGCTACGTG



CCACCTAATGTGACCAGCGTGCACTGCCGGTTCAGCCTGAGAGTGGAAGCCAACAGCCTGGAACCTGATACCTGCGA



GGACCTGAAAGTGCGGAGATACCTGAGCATGCTGAGCAGCCTGTACGCCCAGAAGCGGGGCTACAAAGAACTGGCC



AAGCGGTACTGCCGGAACCTGCTGATGGGAACCTGGCTGTGGCGGAACAAGCACACCCTGGGCACAACAATCGAGG



TGGTCACCAGCAACGGCAGCCACTACGAGGTGTCCGATACCAGACTGCTGTCTTGGAGCGGAGAGTGGAGCGAGCAG



GATAGCCAGACACTGACAGAGCTGGCCTCCGAGATGGAAGAGGCCCTGATCAACGACGACAAGTACTGGCTGATCG



ACGTGCACGCTATCCTGAAAACCGGCTTCTGCCAAGAGATTCACCCCAGCCAGAAGTTCATCGAGCACGGCGAAGGC



GAGGCCAGCAAGCAGTACGCCACCACCTTTTGCGGCAACGGCGAAGAGACAGTGTGCTTCCACGCCGAGAAAGTGG



GAGCTGCTCTGCAGCTGATCGATGACTGGTGGAGCGAAGATGCCTACAAGCCCCTGAGAGCCCACGAGTATGGCGCC



GACAGAAACTACCTGCTGGCCAGAAGATACCCCGCCATTGCCAACGACTTCTACACCCTCATCAAGTATATCGCCGTG



TACATCCGCAGCCTGAGGAAGGTGTCCTCTCCAGAGCAGATCCATCCTAACATCCACTACGTGATGAGCATCCTGTGC



AAAGGCGGCCTGTACCAGAGAGGCAGAGGAAACGGATAA (SEQ ID NO: 116)





Cas6
ATGCTGTGCCGGTTCAGCGCCAAAGAGGACTACACAAGCGAGGGCGAAGTGATGGTGGAACGGTACTACGTGGTCAT



CAGATACCTGGTCAACGACATCGACCTGGGCCTCGTGGCTGGCAGATGTGTGAATATTCTGCACGGCGTGCTGCTGA



GCAAGAAGAACCAGTACTCTGGCATCGGCGTGTCATTCCCCAAGTGGTCCAATAGCAGCCTGGGCAACGAGATCGCC



TTCGTGTCCTACGATAGACACGCCCTGGACTACCTGACACAGCAGCCCTACTTCGAGATGATGATGAACGAGAAGAT



CTTTCTGATCAGCAACGTGAACACGGTGCCCAAAGAGCTGCCCGAGGTTTCCTTCAGACGGAACCAGAATATCGCCA



AGTGCTTCACCGGCGAGAAGCGGAGAAGGCTGCAGAGAGCTAAGCGGAGAGCCGAGGAAAGAGGCGAGATCTTCGA



GCCCGTGAAGGTGCACCAGAGCAGAGAGGTGGAACTGTTTCACAGCGTGTTCATGAATAGCAAGAAGTCCGGCCAG



AAGTTCCTGCTGCACATCCAGAGATACCCCTCTCCAGACATCTTCATCGAGACATACAACAGCTACGGCTTCAGCACC



AACCGCAGCCACCAGGGAACAGTGCCTGATCTGAGCAGCCTGACCTGA (SEQ ID NO: 117)





DR
GTGAACCGCCGTATAGGCAGCTGAGAAA (SEQ ID NO: 118)





RE
TGTTGTTTGCACCATACCTCTGCATAATTCTACTTTCTCACTGCATAACTTGCACCATACCTCTGCATAACCTATTTTTG



TTGTAGTTTAGCTACAAAAAAGAGCGTTGTTATGTACAGGCGAAATCTAAGACATTCCCGCGTTAAAAACATCTTCAA



ATTTGTTAGCTCTAAGATGAATAAGGTCTTAACTGTTGAATC (SEQ ID NO: 119)





LE
TAAGATGCTGAGTTCATCCATCTTTACCTCTGGTAGTAACAGAGTAAATGCTTCAGAGATTATAGGATACAAGATGCA



TTTGTGAGTATTTTTGCACTGTATAATGAAAGAATGTTTCTTTCATGAAAAATCTTTGTTTGAGTTTTTACGTAAATGC



TATGCAGAGTTATGATTCTAAATTATGCAGAGGTATGGTGCAGATTCAAAGGTAGGCTATTGAGTGTTATGCAGAGGT



ATGGTGCAAGCAACA (SEQ ID NO: 120)









43668|7|GCA_000238275.3_PTnd_2.0_genomic|AHCF02000042.1|218104|PseT doalteromonas (ID: 106)










TABLE 16





Elements
Sequences







tnsA
ATGGTTCGATGGCTGACCCACATGTACCGGCGGAAGCTGAAGCACAGCAGAGTGAAGAACCTGCACAAGTTCGCCAG



CCAGAAGAACAAGAGCACCTGTCTGGTGGAAAGCAGCCTGGAATTCGACGCCTGCTTCCACTTCGAGTTCAGCCCTT



CTATCGCCGCCTTTGAGGCTCAGCCTCTGGGCTACGAGTACCAGTTCGACAACCTGATCTGCCGGTACACCCCTGACT



TTCTGCTGACACACACCGACGGCACCCAGAAATTCATCGAAGTGAAGCCCCAGAGCAAGATCGCCGACGAGGACTTC



AGAGCCCGGTTCATCGAGAAGCAGACAATCGCCAAGCAGGACGGCAGGGACCTGATCCTGGTCACCGACAAGCAGA



TCCGGGTGTACCCCACACTGAACAACCTGAAGCTGCTGCACAGATACAGCGGCTTCCAGAGCCTGACAGAGCTGCAG



GCTTCTGTGCTGGAACTGGTCAAGCAGTACGGCTCCATCAAAGTGGGCCAGCTGGTGTCCTTCCTGAAAGTGACAGC



AGGCGAGCTGCTGGCCACAGTGCTGAGATTGCTGTCTCTGGGACAGCTGTTCGCCGACCTGACCACCAACGAGATCA



GCATCGAGACAGCCATCTGGTCCAACAACGTGTGA (SEQ ID NO: 121)





tnsB
ATGTTCAACGACGGCCTGTTCGAGGACGAGTTCAACCAGCCTCTGCCTAAGGTGGAAACAAAGCTGCCCCAGAACTA



CGCCAAGGACCTGCAGGCCCTGCCTGAGAAGATCAAGACCACCACCTTCGCCAAGCTGAAGTACATCCAGTGGCTGG



AAGCCAACATCCAAGGCGGCTGGACCCAGAAGAACCTGGAACCTCTGCTGAAAGTGATGCCCGAGGTGGAAGGCGA



GAAGAAGCCCTCTTGGAGAACAGCCGCCAGATGGTACAGCGCCTACACCAACGCCGACAAGAACATCATGGCTCTGA



TCCCCAGCCACCAGAAGAAGGGCAACAGAGAGAGAGACACCGCCACCGACAAGTTCTTCGAGAAGGCCCTGGAACG



CTACCTGGTCAAAGAAAAGCCTAGCGTGGCCTCCGCCTACAAGTACTACGCCGACCTGGTCATCATCGAGAACGACA



GCGTTGTGGGCAGCGTGCTGAAGCCCCTGACCTACAAGGCCTTCAAGAACCGGATCGACAACCTGCCTCAGTACGAA



GTGATGATCGCCAGATACGGCAAGCGGCTGGCCGATATCGCCTTCAACAAAGTGGAAGGCCACACCAGACCTACCAG



AGTGCTGGAAAAAGTGGAAATCGATCACACCCCTCTGGACCTGATCCTGCTGGACGACGAGCTGCACATTCCTCTGG



GCAGACCCACACTGACCATGCTGGTGGATGTGTACAGCCACTGCATCGTGGGCTACTACTTTAGCTTCAGCGAGCCCA



GCTACGACGCCGTGCGTAGAGCTATGCTGAACGCCATGAAGCCCAAGAACGAGGTGGCCAAGAGATACCCCGACAC



CATCAACGAGTGGAAGTGCGCCGGCAAGATCGAGACACTGGTGGTGGATAACGGCGCCGAGTTCTGGTCCAACTCTC



TGGAACTGGCCTGCGAGGAAATCGGCATCAACACCCAGTACAACCCCGTGGCCAAGCCTTGGCTGAAGCCTTTCGTG



GAACGGATGTTCGGCACCATCAATACCGAGCTGCTGGACCCCATTCCTGGCAAGACCTTCAGCAACATCCTGCAGAA



GCACGAGTACAATCCCAAGAAAGACGCCATCATGCGGTTCACCACCTTTATGCAGCTGTTCCACAAATGGGTCGTCG



ACGTGTACCACCAGGACGCCGACAGCCGGTTCAAGTACATTCCTAGCCAGCTGTGGGACCAGGGCTTCAATACCCTG



CCTCCTACCGTGCTGAGCAACGACGATCTGCAGCAGCTGGATGTGGTGCTGTCCATCAGCTACCACCGGGTGCTGAG



AAAAGGCGGCATTCAGCTGGAAAACAGCTCCTACGACAGCACCGAGCTGGCCAACTACCGGAAGCAGTTCAGCCAC



AAGGTGTCCCAAGAGGTGCTGATCAAGCTGAACCCCGACGACATCTCCTACATCTACGTGTACCTGGACAAGCTCGA



GCACTACATCAAGGTGCCCTGCAAGGACCAAGAGTACACCCAGGGCCTGAGCCTGAACCAGCACAAGATCAACATG



CGGATCCACCGGGACTTCATCAGCGGCAGCATCGACAATGTCGGCCTGGCCAAGGCCAGAATGTTCATCCACAACAA



GATCCAGAACGAGTTCGAGGAACTGAAGAACGCCCCTAAGAACAGCAAAGTGAAAGGCGGGAAAGCCCTGGCCAAA



CACCAGAACGTGTCCAGCGACAGCCAGAAGTCTATCGCCCAGAGCGAGCCCGTGGAACCTAAGAAAGTGACCCCTA



AAGAACAAGTGACCGACAGCTGGGACGACTTCATCTCCGACCTGGACGGCTTCTGA (SEQ ID NO: 122)





tnsC
ATGCTGACCGACAAGCAGAAAGAGAAGCTGAACGAGTTCCGGGACGTGTTCATCGAGTACCCCATCATCACCACCGT



GTTCAACGACTTCGACCGGCTGAGACTCGGCAAAGGACTGGCCGGCGAGAAGCCTTGCATGCTGCTGAATGGCGATA



CCGGCACAGGCAAGACAGCCCTGATCAAGCAGTACAAAGAGCGGCATCTGCCCCAGTTCATCAACGGCGTGATGAAT



CACCCCGTGCTGGTGTCTCGGATCCCCAGCAATCCTACACTGGAAAGCACACTGGCCGAGCTGCTGAAGGATCTGGG



CCAAGTGGGCAGCACCGAGAGAAAGCTGAGAGTGAACGGCACCAGACTGACCACCAGCCTGATTAAGTGCCTGAAA



ACCTGCGGCACCGAGCTGATCATCATCGACGAGTTCCAAGAGCTGATCGAGCACAACCAGGGCAAGAAGCGGAGAG



AGATCGCCAACCGGCTGAAGTACATCAACGATGAGGCCGGCGTGTCCATCGTGCTCGTTGGAATGCCTTGGGCCGAG



AAGATCGCCGATGAGCCTCAGTGGTCTAGCAGACTGCTTGTGCGGAGACAGCTGCCCTACTTCAAGCTGAGCGAGAA



CCCCAAGCACTTCGTGCAGCTGATTATCGGCCTGGCCAACAGAATGCCCTTCACCGAGAAGCCAAGCCTGTCTGAGC



AGGCCACAGTGTTCGCCCTGTTCAGCCTGAGCAAGGGCTGCTTCAGAACCCTGAAGTACTTTCTGGACGACGCCGTGC



TGTACGCCCTGATGGACAATGCCAAGACACTGACCACAAAGCACCTGGTCAAGGCCTTCGACGTGCTGTTCCCCGAT



CTGGCCAACCTGTTTACACTGCCCGTGGCCAAGATCACCGCCAGCGAGGTGGAAAGATACAGCCTGTACAAGCCCGA



GAGCGCCCAGGACGAGGATCCCTTTATCACCACCAAGTTCACCGACAGGATGCCCATCAGCCAGCTGCTGAGAAAGT



GA (SEQ ID NO: 123)





tnsD
ATGCACTTCCTGGTGCAGACCAAGCCTTATCCTGACGAGGCCCTGGAAAGCTACCTGCTGAGACTGGCCAGAGACAA



CAGCTACGACGGCTACAGAGAGCTGGCCGACATTCTGTGGCAGTGGCTGGCCGAACAGGACCACGAACTTGAAGGC



GCTCTGCCCCTGGAACTGAACAAAGTGGACGTGTACCACGCCAGACAGGCCAGCAGCTTCAGAATCAGAGCCCTGAA



ACTGGTGGCCCAGCTGGCTGATGTGAACGCCGGCGATATTCTGGAACTGGCCTGCAGAAGAAGCAACTTCAAGTTTG



GCAACCTGGCCGCCGTGTCCAGAAACGAGCTGACAATCCCACTGGAACTGCTGCGGACCGACTACATCCCTGTGTGC



ATCGAGTGTCTGAGCGAGAGCAGCTACATCCCCTTCTACTGGCACCTGAAGCCTTACAAGGCCTGCCACAAGCACAA



GACCCAGCTGACCACACACTGCGGCGAGTGCCACAACCTGATCGACTACAGAGCCAGCGAGGCCTTCCTGGAATGTT



CCTGTGGCTGCAAGCTGACCAGCAGCGAGCAGCTGAACGACGCCGACTTCAAGATCGCCTTTGCTCTGGCCTCCAGC



AACAGCCAGAAAATCGTGGGCCTGATCAGTTGGTTCGCCAAAGTGAAGCAGCTGGACGTGCGGGATGCCGATTTCAA



CAGAGCCTTCGTGGACTACTTCAGCACCTGGCCTGATAGCTTCACCGCCGAGCTGGATCTGCTGACCAACAACGCCAG



ACTGAAACAGCTGAACCCCTTCAACAAGACCAAGTTCAACAGCGTGTACGGCAACGTGATCCGGGATGCCCAGATTG



CCGCCACCTCCAACAGAAAGAACAAGGTGCTGGACGAGATCATCAACTACTTCGTGGAACTGGTGGACAGCAACCCC



AAGGCTAAGCACCCCAACATTGCCGACCTGCTGCTGTGCACATTTGACGCCGCTGTGCTGCTGAACACCACCACCGA



ACAGCCACGTGTTCTACCTGCGGCAAGTGATCGAACTGCAGCAGGCCTTTGCCGCCGAGAAGCCTCAGACCAAGAAG



ACAGGTGTACCGGCTGCACCAAGAGGGCTTTCTGAACTGCGCCTATCCTCAGAAGAAACACGAACAGCTGAGAGCCG



ACAGCCACGTGTTCTACCTGCGGCAAGTGATCGAACTGCAGCAGGCCTTTGCCGCCGAGAAGCCTCAGACCAAGAAG



CAGTTTATCGCCCCTTGGTGA (SEQ ID NO: 124)





Cas5/8
ATGAACCTGCAGGATGCCCTGGCCATCGAGAGCCTGAAAGAGAAAACCACCGCTCTGCGGAAGCTGTTCGCCCCTTA



TACACCTCACGTGGCCGTGGACGGCTTCGAGGAACAGGTTCTGGTGGTGCTGATCAACCTGGTGTACAAGCGGAGCG



AGATCGACGACCTGACATCTGTGCGGACAGCCAAGAGCGTGCTGCTGGATGAAGTGCTGCTGAGCAAGTGCATCAAC



GAAGTGAAGTGGTTTCACACCCACAACCTGAAGTACCCCGACATCAGAGTGTCCCACCAGAGACTGATCAGCAAGGT



GGTGTCCGAGGATATCGCCGGCATCTGCAGCAGAAGCCTGCCTCTGTCTTTTGGCTGGTCCCACAACAGCGCCGAGAT



CAACCACGCCAAGCTGTTTCTGACCAGCTTCAATTGGCAGGGCGAAGTGACCTGCCTGGCCAAGCTGCTGATTGCCG



AAGAACCCGTGTGGATTAACCTGATCAGAGGCTACGGCTTCACCAAGAAAGCCGTGCTGGACATCAGCGGCAAGATC



AAACAGCTGCTGCCTGTGGCCGAGCTGCCTCTGGAAGTGTCTAGCTTTAGCCCTCAGCTCCAGATGCCTTTCCAGCAG



AGCTACCTGGCCGTGACACCTGTGGTGTCTCATGCCATGCTGGCCAAGATTCAGCAGCTGACCACCGACCGGAAGCT



GAACTTCGGCTTTGTGGAACACAGCAGACCCGCCAACGTGGGCGATCTGGCTTCTTCTGTTGGCGGCAACATCCGGGT



GCTGCGGTACTTCCCTAAGACCTACAGCAAGGCCGTGAACCGGTCCAAGGTGGCCAACAACTACATCGAGAAGGCCT



TTAAAGTGCGGGCCCTGCTGTCCAGCCAGTTTCAACAGGCACTGCTGGTGCTCGTGGGCATCAAGCAGTTCAACACCC



TGCGGCAGAAACGGCTGGCTAGAGTGGCCGCCATTCGGCAAGTTCGAGTGTCTCTGCAGCTGTGGCTGGATAACATC



CTGGAAGCCAAGAACAACGCCCAGGGCCAAGCCTATCCTGAGTGGGCCAAACACTACCTGGACCAGAGCATCACCA



ACTGCATCAGCCAGTTCTCCAACGTGCTGAACGAGTCCCTGGGCACCCTGAGCAAGCTGAAGAGATTCGCCTACCAT



CCTAACCTGATGGGCCTGTTCAAGATGCAGCTGAACTACGTGTTCACCCACTGCGTGGCCGAGGAAGAAACCCTGAA



CGACGAACAGGTGGTGTACGTGCACTGCCAGGACATGAGAGTGTTCGACGCCGAGGCCATGGCTAACCCTTACATCC



AGGGCATGCCTAGCCTGACAGCCCTGAATGGACTGGCCCACAACTTCGAGCGGAAACTGAAGAACTTCATCGACCCC



AGCATCAAGTGTATCGGCAGCGCCATCTATATCGAGAACTACCAGCTGCACACCGGCAAGCCTCTGCCTGAGCCTTCC



AAGCTGAAACAAGTGGCCGGCAGATCCCACGTGATCCGGACAGGCATCATCGACAAGCCCAAGTGCGACATCACCCT



GGACCTGGTGTTCAGACTGTTCGTGCCCAACACCGAGCTGCTGGACAAGCTGAACAGCCAGCTGATCAAGCCCGCTC



TGCCTAGCTCTTTTGCCGGCGGAACAATGCACCCTCCTAGCCTGTACCAGAACATCAACTGGTGCCACGTGTACAGCA



AGCCCAGCGAGCTGTTCAAGTCCCTGAAAGTGAAGTCCAGCAATGGCTCCTGGCTGTACCCCAGCAAGAAGGTGGTC



AAGAGCTTCGAGCAGCTGATCGATGCCCTGAACAGCAACTTCAACCTGCGGCCTGCCGCCATCGGATTTGCCGCTCTT



GAGGAACCCGTGAAGAGAGATGCCGCTCTGCACGAGTACCACTGCTATGCCGAGCCTGTGATCGGCCTGCTCGAGTG



CGTGTCCAATACCAGCGTGAAGTACGCTGGCGCCAAGCAGTTTTTCCACGACGCCTTTTGGGTCATGGACGTGCAGAA



AGAATCCATGCTGATGAAGAAGTCCAAGTTTGAGTACGAGTGA (SEQ ID NO: 125)





Cas7
ATGCAGCTGCCTAGACACCTGAGCTACACCAGATCTCTGAGCCCCAGCAAGGCCGTGTTCTTCTACAAGACCCCTGAG



AGCGACTTCGAGCCCCTGCAGATCGAGCAGAACAAGCTCGTGGGCCAGAAGTCCGGATTTGGCGACGCCTACCAGAA



ACAGAACGTGGCCAAGAATCTGGCCCCTCAGGATCTGGCCTTCGGCAACCCTCAGACCATCGACGTGTGTTACGTGC



CACCTACCGTGAATGAGCTGTTCTGCCGGTTCAGCCTGAGAGTGGAAGCCAACTGCATCGAGCCTCACGTGTGCGAC



GACCCCAAAGTGATCTACTGGCTGAAGCGGTTCTTCGAGACATACAAGAAGCACAACGGCCTGAACGAGGTGGCCAC



AAGATACGCCAAGAACATCCTGATGGGCAACTGGCTGTGGCGGAACAGACAGAGCCCCAACGTGGACATCGAGATC



CTGACAGAACACGCCGCTCCTATCGTGGTGGAAGGCGCCCAGAAACTGAAATGGCAAGGCAATTGGCAGAACAACC



AGACAGCCCTGCTGACCCTGAGCGAGTCTATCCAAGAGGGCCTGAGCAATCCCCAGAACTACTGCTACCTGGACATC



ACCGCCAAGATCAAGAATGCCTTCAGCCAAGAGGTGCACCCCAGCCAGAAATTCGTGGACAACGTGGAACAGGGCA



TGAGCAGCAAGCAGCTGGCCTACACACAAGTGGGCGATAAGAAGGCCGCCAGCCTGAACTCTCAGAAAGTGGGCGC



CAGCATCCAGACAATCGACGATTGGTACGAAGGCGGCTACAAGCCTCTGCGGACACACGAATATGGCGCCGACAAG



CAGATCCTGGTGGCCCACAGAACACCCAAGAGCCACAGCGACTTCTACAGCCTGCTGCCTAGGATCGCCCTGCACAT



CAAGCACATGGAAAAGCACGGCCTCGAGCAGGGCGAAGAGTCTGATGCCGTGCACTTTATTGCCGCCGTGCTGATCA



AAGGCGGCCTGTTCCAGAGAAGCAAGGGCTGA (SEQ ID NO: 126)





Cas6
ATGAAGCGGTACTACTTCACCATCACCTACCTGCCTAAGAACTGCGACGTGTCCCTGCTGGCCGGCAGATGTATCGGA



ATCCTGCACGGCTTCATGAGCAGCCGGAAGGTGTCCAATATCGGCGTGTGCTTCCCCAAGTGGAACAAGAAAACCAT



CGGCAACGAGCTGGCCTTCGTGTCCACCGACAAGAAGCAGCTGACCAACCTGAGCCAGCAGAGCTACTTCGAGATGA



TGGCCCACGACAAGCTGCTGGGCCTGAGCAAGATTCTGGAAGTGCCTCCTAACCAGAGCGAAGTGATGTTCGTGCGG



AACCAGTCTGTGGCCAAGGCCTTTGTGGGAGAGAAGCAGCGGAGACTGAAGCGGGCCAAGAAGAGAGCTGAAGCCA



GAGGCGAGATCTACAACCCCGAGTACAAGTTCGAGGGCAAAGACATCGGCCACTTCCACAGCATCCCTCTGACCAGC



AAAGGCAACGGCGAGAACTTCATCCTGCACATCCAGAAGATCGAGAAGGCCGAGAGCATCCGCAACCAGTTCAACA



ACTACGGCTTCGCCACCAACCAGACCTTCCAGGGCACAGTGCCTAGCCTGAACAGCCTGTTCGAGTGA (SEQ ID NO:



127)





DR
GTGAACTGCCGAGTAGGCAGCTGGAAAT (SEQ ID NO: 128)





RE
TGTTGTTTGAAGTATAAGTTGACATATTTGTACTAAAAGATGGCATAAATTGGAAGTATAAGGTGGCATAGTCTAGTA



TTTAACCAAATGGTTAGATGGTTGACTCACATGTACAGAAGAAAACTCAAACACTCCCGTGTTAAAAACCTCCATAA



ATTTGCTAGTCAAAAAAATAAATCTACCTGTTTAGTTGAATCCTC (SEQ ID NO: 129)





LE
TCTGAGTTTAAGCCAAATGGGCAGTATATTGCACTGTTATTACCTTCCTAACTATTTTTATCTTTTTCTACTTTTGGTGC



TGAGTAATCTTTTATGTACTCTTTTATTAAAGGAGTCTCATTACACAAAACTTTATTTGGTAACTTTATGCCATTATAA



GCTTCAATATTATGTCAACTTACACTTCACTTGTGCCGTAGTAGCTCAATGAAATCGAATGTGGTTATGCCAACTTATA



CTTCAAACAACA (SEQ ID NO: 130)









43667|0|GCA_000238255.4_ASM23825v4_genomic|CP011039.1|3154175|PseTd oalteromonas (ID: 107)










TABLE 17





Elements
Sequences







tnsA
ATGATCATGATTCGGCGGAAGCTGAAGCACAGCAGAGTGAAGAACCTGTACAAGTTCGCCAGCCAGAAGAACAAGG



CCACCTGTCTGGTGGAAAGCAGCCTGGAATTCGACGCCTGCTTCCACTTCGAGTACAGCAGAGAGATCAAGAGCTTC



GAGGCCCAGCCTCTGGGCTTTGAGTACGAGTTCGACGGCAGGATCTGCCGGTACACCCCTGACTTTCTGCTGACCCAC



CCAGAAACAGCTGGTGGCCAAAGAGCAGATCGGCATCGAGCTGATCCTGGTCACCGACAAGCAGATCCGGGTGTACC



CACGAGAAGCCCCAAAAGTACATTGAAGTGAAGCCCTTCAGCAAGATCGCCAACAGCGAGTTCAGAGCCAGATTCGC



CCAGAAACAGCTGGTGGCCAAAGAGCAGATCGGCATCGAGCTGATCCTGGTCACCGACAAGCAGATCCGGGTGTACC



CCACACTGGACAACCTGAAGCTGCTGCACAGATACAGCGGCTTCCAGAGCCTGACCGAACTGCAGCTGAGCATCATC



CAGCTGCTGAACCAGTGGCGCAAGCTGACCATCCAGAACCTGGTCAAGACCCTGAAGGCCAGCATCGGAGAGATCCT



GGCCAGCGTGTACAGACTGCTGTCTCTGGGCAGCGTGAACAGCGACCTGAATACCGAGCTGACACTGGAAAGCGTGA



TCTGGGCCGATGGCGTGTAA (SEQ ID NO: 131)





tnsB
ATGGAATTCGAGGACGAGTTCAGCTTCGAGGAAGCCCCTCAGAAGCTGGCCAAGACCGCCAATACCGAGGAAAGCA



ACCCTCAGCCTCGCGACCTGGAAAGCCTGAGCAAAGAGGTGCAAGAGGCCACACTGGCCCGGCTGAAATACGTGAA



GTGGCTGAAGCAGAGACTGATCGGCGGCTGGACCCAGAAGAATCTGGCTCCTCTGCTGGCCGAGATGCCCGAGTTTG



AGGGACAAGAGAAGCCCAAGTGGCGGACAGTGGCTGGATGGTACGCCGACTACATCAAGGCCGAAGAGGACATCCA



CGCTCTGATCCCCAAGCACCACCGGAAGGGCAATAGACAGGCCAGAAGCGACACCGACAAGTTCTTCGAGCTGGCCC



TGACCAGATACCTGACCAAAGAAATCCCCAACGTGGCCAGCGCTCACCGGTTCTACTGTGACCAGATCGTGCTGGAA



AACGAGAAGGTGCTGGGCGAGCCTCTGAAGCCCCTGACCTACAAGGCCTTCAAGAACCGGATCGACAACCTGCCTCA



GTACGAAGTGATGCTGGAAAGATACGGCAAGCGGCTGGCCGACATCGAGTACAACAAAGTGATGAGCCACAAGCGG



CCCACCAGAGTGCTCGAGAGAGTGGAAATCGATCACACCCCTCTGGACCTGATCCTGCTGGACGATGAGCTGGATGT



GCCACTGGGCAGACCTACACTGACCCTGCTGATCGACGTGTACAGCCACTGCGTCGTGGGCTTCTACCTGGGCTTTCA



GAGCCCTGGCTACGATGCTGTGCGGAGAGCCATTACACACGCCATGAAGCCTAAGATCTACCTCAAGAGCACATACC



CCGAGGTGGTCAACGAGTGGCCTTGCTGCGGAAAGATCGAGACACTGGTGGTGGACAACGGCGCCGAGTTTTGGTGT



CAGAGCCTGGAACTGGCCTGCGAGGAAGTGGGCATCAACATCAGCTACAACCCCGTGGGCAAGCCTTGGCTGAAACC



CTTCGTGGAACAGTTCTTCAAGACCATCAACGAGATGATGCTGAGCCCATTTCCTGGCAAGACCTTCAGCAACATGCT



GGCCAGGCACGACTACAACCCTAAGAAGGACGCCATCCTGAGATTCGGCACCTTCACCATGCTGTTCCACAAGTGGA



TCGTGGACGTGTACCACCAGAGCGCCGATGCCAGATTCCGGTACATCCCTTGCGAGGACTGGAACAAGGGCTTCGCT



GTTCTGCCTCCTGCTCAGCTGACACAGCAGGACACCGATAAGCTGGACGTGGTCATGTGCATGGCCAAAGAGAAAAC



CCTGAGAAAAGGCGGCATCAAGAACCTGCACATCAACTACGACAGCGACGAGCTGAGCGTGTACAGAAAGCGGTAC



TGCGCCAAGAAATCCATCAAAGTGAAAGTGAAGATCAACCCCGACGACCTGAGCTACGTGTACGTCTACCTGAACGC



CCTGGAAAACTATATCAAGGTGCCCAGCATCGACCTGGACGGCTACACAATGGGACTGTCTCTCGTGCGGCACAAGA



TCCACCTGAAGTTCCACCGGGATTACATCCAGGGCAAAGTGGACCTGCTGGGCCTCGCCAAAGCCAGAAGATTCATC



GACGAGCGCGTGAAAGAAGAGGCCCGGCAGCTGAAGAACGTGGTGTCCAAGACCAAAGTGACCGGCACCAAGGCCA



TGGCTAGAGCCCAGGGCATCGACAACACCCAAGTGAAGTCCATCGTGACAATCCCCGAGGCCAAGAAAACCGAGCC



TTCTCCTGCCGACACAAAAGTGAAAAAGGACGTGGAAAACTGGGACGACTTCGTGTCCGATCTGGAAGCCTTCTGA



(SEQ ID NO: 132)





tnsC
ATGCTGACCCAGGCCAAGAAGGCCAAGCTGAACCAGTTCAAGGCCGTGTTCATCGAGTACACAATCCCCAAGACCAT



CATCAACGACTTCGACAAGCTGCGGCTGCACTACGATCTGGCCGGCGAGAAGCCTTGCATGATGCTGTCTGGCGATA



CCGGCTGTGGCAAGAGCGCCCTGATCAAGCACTACTACGACAACAACCCTCCTCACTTCGCCGACGGCCAGAGAAAA



GTGCCTGTGCTGCTGAGCAGAATCCCCAGCAATCCCAGCATCGAGAGCACCCTGAAACAGCTGCTGCACGACCTGGG



ACAGTTCGGCGCCAAGTCTAGCAAGAGACTGAAGAACGGCAACGAGATCGCCCTGGCCGAGTCTCTGGTTGAGCAGC



TGAAGAGAAGCGGCACCGAGCTGATCATCATCGACGAGTTCCAAGAGCTGGTGGAAAACAACCTGGGCAAGAAGCG



GCGGGATATCGCCAATCAGTTCAAGTACATCAACGAGAAGGCCGGCATCAGCATCGTGCTCGTGGGAATGCCTTGGA



TCGAGCAGATCGCCGATGAGCCTCAGTGGTCCAGCCGGATCTTTATCAGACGGTTCATCCCCTACTTCCGGATCAGCA



AGAAAGAGGAACTGCAGCTGTTCATCCGGGTGCTGAAGGGCTTCGCCAACAGACTGCCTTTCAGCGACAAGCCCAGA



TTCGAGAACCTGGACATTGCCCTGAGCCTGTTCGCCATCAGCAACGGCTGTCTGCGGAAGCTGAAGAACTTCCTGGAC



AGCGCTCTGACTGAGGCCCTGATTACCGATGCCGTGACACTGAACAAGCACTGCCTGAGCAGCGCCTTCAAGGCTTG



GAGGCCCGAGCTGGACAACGTGTTCGAGATGAACGTGAACGAGATCCAGGGCTGCGAGGTGGAACAGTACAGCACC



TTCAAGCCTGACGGCCCTCAGGACGAGGACCCCTTTATCGATACCCAGTTCTGCAACAAGGTGCCCCTGGTGCAGCTG



CTGAAGAAGTGA (SEQ ID NO: 133)





tnsD
ATGCAGTTCCTGAGCCAGGCCACACCTTATCCTGACGAGACAATCGAGAGCTACCTGCTGAGACTGTCCCAGGACAA



TGGCTACCTGGGCTTCGCCGACATGGCCGACATTCTGTGGGATTGGCTGGTCACCCAGGACCACGAACTGGAAGGCG



CTTTCAGCAACGAGCTGCAGAGCGTGGACGTGTACAAGGCCAGCCAGAGCAGCAACTTTAGAGTGCGGGCTCTGAGA



CTGGTGGCTCAGCTTGCTGGCGTGGAAGCCTCTGAGCTGCTGAATCTGTGCTGGCTGAGAAGCAACACCCAGTTCGGC



GTGATCACCGCTGTGGCTAGATCTGGACTGCTGGTGCCTAGACAGCTGCTGCGCAAGAGCAACATCCCTGTGTGCACC



GAGTGCCTGAAGCAAGAGGTGTACGTGCCCTACCTGTGGCACCTGAAGGTGTACAAAGCCTGCCACAAGCACAACCG



GCAGCTGACCAAGATCTGCAGACAGTGCAACACCGAGATCGACTACAGAGTGTCCGAGGCCTTCCTGGAATGCGAAT



GCGGAGCCGCCATTAAGCAGGGCCCTAAAGCCTCTCAGGCCGACCTGAAACTGGCCAGCGCTCTGACATCTACCGCC



GATGCCAAACTCGTGGGACTGATGGCCTGGTTCAGCCAGTGGCAGAGCATCAGCTTCGACGACGACGAGTTCAGCGA



GCTGTTCGTGTCCTACTTCTCCAACGGCCTGAGCGGATTCCAGGACGAGCTGAGCAATATCGCCGAGCTGGCCAAGAT



TAAGCAGCTGCGGCCCTTCAATCACACCCCTTTCAACGACGTGTTCGGCAGCCTGCTGAAGGACTCCAAACTGGCCTG



TGCCGGCAGCCAGGGCTATAATACTGTGCAGCTGGCCATCATTGCCTTTCTGACCAAGCTGGTGGAACAGAACCCCA



AGAAGAAGCACCCCAACCTGTCCGACCTGCTGATCTCCATGCTGGATGCCGCTGTGATCCTGGGCACCAACACCGAA



CAGGTGTTCCGGCTGTACGAGGAAGGATTTCTGGCCGCTGTGCAGCCTCCTAAGAAGAACACCTTCCTGAAGCCTAG



CGACAACCTGTTCTACCTGCGGCAAGTGATTGAGCTGCAGCAGAGCTTCGCCCCTAGCATCAGCAACAAGCCCCAGC



AGTTTGTGCCTCCTTGGTGA (SEQ ID NO: 134)





Cas5/
ATGGAACTGAACACCCTGCTGCAGAACACCCCTATCAAAGAGCTGACCCAGACACTGAGAGTGGCCTTCGCTCCCTA


8
CAGCGAGTACATCGATACCACCGGCAGCGAGTTTCAGGCCCTGGTGGTGCTGATCAACCTGACCTACAAGCGGAAGG



ACATCAAGGACCTGACCAGCATGTCTGCCGCCAAAGCCGTGCTGAGAGATGAGCAGCACCTGAAAACCTGCATCGAC



GAAGTGAAGTGGTATCACACCCACAACCTGAAGTACCCCGACATCAGAGTGTCCCACCAGAGACTGCTGGCCCAGGT



GGTGGATGATGGCCACAGAGTGGTGTCCAGCAGCAGATACCCTGCTCAGTTTGGCTGGTCCCACGACAGCGCCAAGA



TCAACCACGCCAAGCTGTTTCTGCGGGGCTTCATTTGGAGAGGCGAGTACGTGTGTCTGGCCCAGCTGCTGGCCAAGC



AAGAAGGCTTTTGGGTCGAGCAGTTCTCCGAGCTGGGCCTGCTGAAGAAAGACGTGATCACCGTGTGCGAGCAGATC



GCCGCTCAGCTGCCTAATGAGGATCTGCCTGAGCAGATCAGCAACTACACCCCTCAGCTGCTGATCCCCATCGAGCAC



GATTACCTGAGCGTGTCACCTGTGGTGTCTCATGCCGTGCTGGCCGTGATGCAGACAGCCACAAGAAGCGGACTGCT



GAAGCGGGGCATCATTGAGCACAACAGACCCGTGAATGTGGGCGAGCTGCCTTCTGCTCTTGGCGGAAGAGTGAACG



TGCTGAAGTACTTTGTGAAAACCTACAGCGCCACCACCGTGAACAACTACTACAGCCAGGACGAGCAGCGGCTGTTC



AACGTGTCCCTGCTGAACAGCAAGACCCTGTCTGAAGCTCTGCTGGTGCTGAGCAAGAGCAAGCCCTTCAACACCCT



GAGACAGAAACGGCTGGCCAGAGTGGCCGCCATCAAGGTGTTGAGAACAGCCCTGTACGGCTGGCTGGAAAAGCTG



ATCAAGCTGGTGCAGAGCGAGACAATCAACGACAGCGACAGCGAGCTGGTCAAGCTCCTGGCCACCAAAGAGTACA



CCATCCTAAGCTGATGCCCATCCTGAAAGCCCAGCTGAGCTACGTGCTGAGCCACCAGAACAATCAAGAGGGCGAAC



AGCAGCTGGAACTGACCCTGAGCCAAGAGCTGAACAAGCAGATGAACGGCCTGAAGTATCTGAAGCGCTACGCCTA



CCATCCTAAGCTGATGCCCATCCTGAAAGCCCAGCTGAGCTACGTGCTGAGCCACCAGAACAATCAAGAGGGCGAAC



TGGAAGCCGAGCACATCAAATACGTGCACTGCCAGAACCTGCGGGTGTACAACGCCGAGGCCATGCCTAATCCTTAC



ATCATGGGCATGCCTAGCATCACAGCCCTGGAAGGACTGGGCCACCAGTTCCAGAGAAAGCTGCAGAAGCTCGTCGG



CAGCGGAGTGCATGTGATTGGCGTGGCCGTGTACATCAGAAGCTACCAGCTGCACAACCACAAACAGCTGCCCGAGC



CTAACAAGCTGAAGAAGGATGGCCAGAAGAGAGAGCCCCTGCGGAGCGCCATTATGCAGATCCCCAAGTGCGACAT



CTGCTTCGACCTGGTGTTCCGGGTGCAGACCAAGAATCAGGCCGTGGCCAATGACCTGAGCGAGAATCTGCTGAAGG



CCGCCTTTCCTAGCAGATACGCTGGCGGAACACTGCACCCTCCAAGCCTGTACGTGCAGGTCGACTGGTGTCAGGTGT



ACGCCAAACCTCTGGCTCTGTTCGAGCGGATCAGAAGCCTGCCTAAAGGCGGCAGCTGGCTGTACCCAACAAGCGTG



GAAGTGTCCAGCTTCGAGGAACTGGCCGAACAGCTGACACTGAGGCCTACAATGAGGCCTGCCGCTCTGGGATATCT



GGCCCTCGAGGAACCTAAGCCTAGACAGGGCAGCATCACACAGCTGCACTGCTACGTGGAACCCGTGATCGGCCTGC



TGGAATGTGTGGATGCCGTGACCGCTAGACTGAGCGGAGCCAGACACTTCTTCAACCACGGCTTCTGGACCATGCAC



TGCAAGAAAGCCTCCATGCTGATGAAGAAGTCCAAGTTCGAGTACGACTGA (SEQ ID NO: 135)





Cas7
ATGAAGCTGCCCCGGCAGCTGACCTACACCAGATCTCTGAGCCCTGGCAAGGCCGTGTTCTTCTACAAGACCCCTGAG



AGCGACTTCGAGCCCCTGCAGATCGAGCGGCAGAAGATCAGAGGCCAGAAGTCCGGCTTTGTCGAGGCCTACAAGA



ACGAGGCCACACCTAAAGAGCTGGCCCCTCAGGATCTGGCCTTCGGCAATCCTCACACCATCGAGCTGTGCTACGTG



CCACCTACAGTGCAGCAGGTCTACTGCCGGTTCAGCCTGAGAGTGGAAGCCAACAGCCTGGAACCTAACGTGTGCAG



CGAGCCCAAGGTGTCCTACTGGCTGACCAGATTCATGAACACCTACAAGCAGCACGGCGGCTTCCGCGATCTGGCCA



AGAGATACGCCAAGAACATCCTGATCTGCGAGTGGCTGTGGCGGAACAAGACAAGCCCCAACGTGGACCTGGAAAT



CATCGGCGAGGGCTTCAAGCCCATCAGCATCAGCAAGGCCAACCGGCTGAGATGGGAAGGCAAATGGCGGGAAGCC



GAGGATAGCCTGCACACCCTGACAGACGTGATCCAGACCGGCCTGGAAGATCCCTACAGCTTCTGCTTCCTGGAAGT



GACCGCCAAGATCGACACCTACTTCGGACAAGAGATCTACCCCAGCCAGAGCTTCGCCGAGAATGGCGCTATCGCCA



GAACCTACGCCTACACACAGGTGGCCGGAAAGGATGCCGCCTGCTTCCATAGCCAGAAAGTGGGAGCCGCCATCCAG



ATGATCGACGATTGGTACGATGAGGGCGCCAACAAGCGGCTGAGAATCCACGAATACGGCGCCGACTACAAGAATG



TGATCGCCAGACGGGCCCCTAGCAAGAGACTGGACTTTTACAGCCTGCTGAAGAAAATCGCCCTGTACGTGAAAGAG



ATGGAACAGAACGGCCTGAAGAATCAAGAGCAGGCCAGCCACATCCACTATATCGCCGCTGTGCTGATCAAAGGCG



GCCTGTTCCAGCGGACCAAAGAGTGA (SEQ ID NO: 136)





Cas6
ATGAGCAGAGCCTACTTCACCATCACCTACCTGCCTGAGAACTGCGACGTGACACTGCTGGCCGGCAGATGTATCGG



AATCCTGCACGGCTTCATGAACAAGCTGAGCTGCAACCACATCGGCGTGTCATTCCCCAAGTGGACCGATAAGCACC



TGGGCAACCAGATCGCCTTCGTGTCCGAGGATAAGACAGCCCTGAAGAACCTGAGCCAGCAGAACTACTTCGAGATG



ATGGCCCACGACAAGCTGTTCGAGATCAGCGTGATCAAGCCCGTGCCTGCCGATGCTACAGAAGTGCGGATCATCAG



GGATCAGAGCCTGGGCAAGCTGTTTATGGGCGAGAAGCGGCGGAGAATGGAACGGGCTAAGAGAAGGGCTGAAGCC



AGAGGCGAAGAGTACACCCCTCAGTACGTGTCCAGCGACATCGAGATCTCCACCTTCCACAAGATCCCTATCGCCAG



CAAGCGGAACCAGAACGATTTCGTGCTGCACCTGAGACTGGAACTGGCCAACAGCATCCAGAACACCTTCAACAGCT



ACGGCTTCGCCACCAACGAAGAGTATAAGGGCTCCGTGCCTCTGCTGGCCTTCTGA (SEQ ID NO: 137)





DR
GTGACCTGCCGCATAGGCAGCTGTAAAT (SEQ ID NO: 138)





RE
TGATGTTTGAAGTGTAAGTCTACAAATTTGTATCAAAACCCTGCATAAAATTTGAAGAATAATCCTGCATAGTCTAAT



TATTATATAATGTCACATCATTGGTGATGATTATGATAAGGCGTAAACTAAAGCATTCCAGAGTTAAGAATCTCTATA



AGTTTGCAAGTCAAAAGAATAAAGCTACTTGCTTAGTTGAGTCA (SEQ ID NO: 139)





LE
GATAGGAACTTGCACAGATTTAGTCACAGACTCGTCTGGGCTAGTACAATTTATTCACTCAAGTACTTTCTTTCGATTC



CATTTTGACCACAGGCTGTAAAAAAGATGTTTAAACCAGTTATGAACTTTTTAGTATTTACTGACCTTATGCCATTATA



AGCTTCAATATTATGTCAACTTACACTTCAGTTGTGCCGTTGTAGCTCAATGAAATTAAATATGCCTATGCCAACTTAT



ACTTCAAACAACA (SEQ ID NO: 140)









43674|0|GCA_000238395.4_ASM23839v4_genomic|CP011025.1|3840834|PseTd oalteromonas (ID: 1081










TABLE 18





Elements
Sequences







tnsA
ATGTACATCCGGAACCTGCGGAAGCCCTCTCCAAACAAGAACGTGTTCAAGTTCGCCAGCACCAAAGTGGGCAACGT



GATCATGTGCGAGAGCACCCTGGAATTCAACGCCTGCTTCCACAACGAGTACAACGACCTGATCGAGAGCTACGGCT



CTCAGCCCGAGGGCTTTAAGTACGAGTTCATGGGCAAGAGCCTGCCTTACACACCCGACACCGTGGTGGTGTACAAG



GATAAGTGCGTGAAGTACCACGAGTATAAGTACGAAACCGAGACAGCCGAGCCTCTGTTCAGAGAGAGATTCAGCG



CCAAGAGAGCCGCCTGCCTGAAGATGGGAGTGCAGCTGATCCTGGTCACCGAGAACCAGATCACCAAAGGACTGGC



CCTGAACAACTTCAAGCTGCTGCACAGATACAGCGGCGTGTACGGCATCAAGAACATCCAGAGCGAGATGCTGAACT



TCATCAACAAGAGCGGCGCCATCAACCTGGTGGACGTGAAGTCCCAGTTCAACCTGAGCATCGGCGAGGCCAGAAGC



TTCCTGTACGCCCTGCTTCACAAGGGCCTGCTGAAAGCCGACCTGGAAGATGACGACCTGAGCAACAACCCCACACT



GTGGGTCACCCCTTGA (SEQ ID NO: 141)





tnsB
ATGGGCTACACCATGACCGATTTCTTCGACGAGTTCAACGAGTCTCTGGCCCCTCTGAAGCCCCAGACACCTACCAGA



TACCTGAAGCTGGACGACGCCAACCTGATCAAGAGAGATCTGGACACCTTCAGCAACACCCTGAAGAACGAGGCCCT



GCAGCGGTACAAGCTGATCATCAGCATCGACAAGAAGCTGAGCGCCGGCTGGACCCAGAGAAACCTGGATCCTATCC



TGGACGAGATCTTCAAAGAGGACGAGCAGGCCAGACCTAACTGGCGGACAGTTGCCAGATGGCGGAAGAAGTACAT



CGAGAGCAACGGCGATCTGGCCAGCCTGGTGGTCAAGAACCACAAGATGGGCAACAGAAACAAGCGGATCGAGGGC



GACGAGAGCTTCTTCGACAAGGCCCTGGAAAGATTCCTGGACGCCAAGAGGCCTACAATCGCCACCGCCTACCAGTA



CTACAAGGACCTGATCGTGATCGAGAACGAGAGCATCGTGGAAGGCAAGATCCCCATCATCAGCTACACCGCCTTCA



ACAAGCGCATCAAGGCCATTCCTCCATACGCCGTGGCCGTGGCCAGACACGGAAAGTTTAAAGCCGACCAGTGGTTC



GCCTACTGCGCCGCTCATGTGCCTCCAACCAGGATTCTGGAACGCGTGGAAATCGATCACACCCCTCTGGATCTGATC



CTGCTGGACGATGAGCTGCTGATCCCTATCGGCAGACCCTACCTGACACTGCTGATCGACGTGTTCAGCGGCTGCGTG



CTGGGCTTTCACCTGAGCTACAAGAGCCCCAGCTATGTGTCTGCCGCCAAGGCTATTGCCCACGCCATCAAGCCTAAG



AGCCTGGATGCCCTGAACATCCAGCTGCAGAACGACTGGCCTTGCTTCGGCAAGTTCGAGAACCTGGTGGTGGACAA



CGGCGCCGAGTTCTGGTCCAAGAATCTGGAACACGCCTGTCAGTCCGCCGGCATCAACATCCAGTACAACCCTGTGC



GGAAGCCCTGGCTGAAGCCCTTCATCGAGAGATTCTTTGGCGTGATGAACCAGTACTTCCTGCCTGAGGTGCCCGGCA



AGACCTTCTCCAACATCCTGGAAAAAGAAGAGTACAAGCCCGAGAAGGACGCCATCATGCGGTTCAGCACCTTCGTG



GAAGAGTTCCACAGATGGATCGTGGACGTGTACCACCAGGACAGCAACAGCAGAGAGACACGGATCCCAATCAAGC



GGTGGCAGCAGGGCTTCGATGTGTACCCTCCTCTGACCATGAACGAGGAAGATGAGGCCCGGTTCACCATGCTGATG



CGGATCAGCGACAGCAGAACCCTGACCAGAAACGGCATCAAGTACCAAGAGCTGATGTACGACAGCACAGCCCTGG



CCGACTACCGGAAGCACTACCCTCAGACCAAAGAGACACTGAAGAAACTGATCAAGGTGGACCCCGACGACATCAG



CAAGATCTACGTGTACCTGGAAGAACTCGAGAGCTATCTCGAGGTGCCCTGCACCGATCCTACCGGCTATACAGATG



GCCTGAGCATCTACGAGCACAAGACCATCAAGAAAGTCAACCGGGAAACCATCCGCGAGAGCAAGAATAGCCTGGG



CCTCGCCAAAGCCAGAATGGCCATCCACGAGAGAGTGAAGCAAGAACAAGAGGTGTTCATTGCCAGCAAGACCAAG



GCCAAGATCACCGCCGTGAAGAAGCAGGCCCAGATTGCCGACGTGTCCAATACCGGCAAGGGCACCATCAAGGTGTC



CGAGGAATCTGCCGCTCCTGTGCACAAGAACATCTCCAACGACGCCTTCGACGACTGGGACGACGATCTGGAAGCCT



TCGAGTGA (SEQ ID NO: 142)





tnsC
ATGAATGCCCTGACCGAGATCCAGATCGAGCAGCTGAGAAACTTCAGCGACTGCATCGTGATGCACCCTCAGATCAA



GGCCATCTTCAACGACTTCGACGAGCTGCGGCTGAACCGGAAGTTCCAGTCTGATCAGCAGGGAATGCTGCTGATCG



GCGATACAGGCGTGGGCAAGAGCCACACCATCAACCACTACAAGAAACGCGTGCTGGCCACACAGAACTACAGCCG



GAATACCATGCCTGTGCTGATCTCCCGGATCTCCAGAGGCAAAGGCCTGGACGCCACACTGATTCAGATGCTGGCCG



ACCTGGAACTGTTCGGCAGCAGCCAGATGAAGAAGCGGGGCTACAAGACCGAGCTGACCAAGAAACTGGTGGAAAG



CCTGATTAAGGCCCAGGTGGAACTGCTGATTATCAACGAGTTCCAAGAGCTGATCGAGTTCAAGTCCGTGCAAGAGC



GGCAGCAGATCGCCAACGGCCTGAAGTTCATCAGCGAAGAGGCCAAGGTGCCCATCGTGCTCGTTGGAATGCCTTGG



GCCGCCAAGATTGCCGAGGAACCTCAGTGGGCCTCTAGACTCGTGCGGAAGCGGAAGCTGGAATACTTTAGCCTGAA



GAACGACAGCAAGTACTTCCGGCAGTACCTGATGGGCCTCGTGAAGCAGATGCCCTTCGATGAGCCTCCTAAGCTGG



AAAGCAAGCACACCACAATGGCCCTGTTCGCCGCCTGCAGAGGCGAGAATAGAGCCCTGAAACATCTGCTGATGGAA



GCCCTGAAGCTGGCCCTGAGCTGCAACGAGTACCTGGAAAACAAACACTTTATCGCCGTGTACGAGAAGTTCGACTT



CTTCAATGACAAGGACAGCCTGAAGCTCAAGAACCCCTTCAAGCAGGACATCAAGGATATCATCATCTACGAAGTCA



CCAAGAACAGCAGCTACAACCCCAACGCTCTGGACCCCGAGGATATGCTGACCGGCAGAAAGTTCGCCATCGTGAAG



TGA (SEQ ID NO: 143)





tnsD
ATGGCCTTCCTGTTCAGCCCTAAGGCCAGAGCCTTTAGCGACGAGAGCCTGGAAAGCTACCTGCTGAGAGTGGTGTC



CGAGAACTTCTTCGACAGCTACGAGGGCCTGAGCCTGGCCATCAGAGAGGAACTGCACGAGCTGGATTTTGAGGCCC



ACGGCGCCTTTCCAATCGACCTGAAGAGACTGAACGTGTACCACGCCAAGCACAACAGCCACTTCCGGATGAGAGCC



CTGGGCCTGCTGGAAACACTGCTGGACCTGCCTAGATACGAGCTGCAGAAACTGGCCCTGCTGAAGTCCGACATCAA



GTTCAACAGCAGCGCCGCTCTGTACAAGAACGGCGTGGACATCCCTCAGAAGTTCATCAGATACCACACCGAGGCCG



CCGTGGACAGCATTCCTGTTTGTCCTCAGTGCCTGGCCGAGGAAGCCTACATCAAGCAGAGCTGGCACATCAAATGG



GTCGACGCCTGCACCAAGCACCAGTGTACTCTGGCCCACAACTGCCCTGAGTGCTGCGCCCCTATCAACTACATCGAG



AACGAGAGCATCACCCACTGCAGCTGCGGCTTTGAACTGACCTGGGCCAGCACAAGCCCTGTGAATGCCCTGTCTAT



CGAGCACCTGAACAAGCTGCTGGACAAGAGCGAGCGGAACGACAGCCACAGCCTGTTCAACAACACCACACTGACC



GAGAGATTCGCTGCCCTGCTGTGGTATCAGGGCAGATACAGCCAGACCGACAACTTCTGCCTGGACGACGCCGTGGA



TTACTTCAGCATGTGGCCTGCCGTGTTCTACAAAGAGCTGGACGAGCTGAGCAAGAACGCCGAGATGAAGCTGATCG



ACCTGTTTAACAAGACCGAGTTCAAGTTCATCTTCGGCGACGCCATCCTGGCCTGTCCTAGCACACAGATGCAGAGAG



AGCTGCACTTCATCTACAGAGCCCTGCTGGACTACCTGGTCACCCTGGTGGAAGGCAATCCCAAGGCCAAGAAGCCC



AACACCGCCGATCTGCTGGTGTCTGTGCTGGAAGCTGCTACCCTGCTGGGCACATCTGTGGAACAGGTGTACCGGCTG



TACCAGGACGGCATTCTGCAGACCGCCTTCCGGCACAAGATGAACCAGCGGATCAACCCCTACAAGGGCGTGTTCTT



CCTGCGGCACGCCATCGAGTACAAGACCAGCTTCGGCAACGACAAGGCCCGGATGTATCTGAGCGCTTGGTGA (SEQ



ID NO: 144)





Cas5/8
ATGATCAAGCTCGAGTGCATCTGCCGGCACGGCGAGTACATGCACCTGAAAGAGCTGCTGGAAATCACCGATATCGC



CGAGCGGGACAGACTGATCAGACGGGCCTTCAATCCCTACACCACCACCATCGATATCACCGGCTGCGAGGGCAACA



CCCTGATCATCCTGCTGAACCTGACCTACCGGAAGAACCAGGTGGACGACCTGCTGGATAAGCAGCTGGCCAAGCAG



GCCCTGAAGTCCGAGGAACACATCAACAAGTGCATCAAAGAGATCGCCTGGTTTCACACCCACAACCTGAAGTACCC



CGACATCCGGGTGTCCAAGCAGAATCTGGCTGTGGCTCCTCCACTGCTGGACAGCTATGTGCTGAGCAGCGCCAACT



ATCCCAAGGCCTATGGCTGGTCCCACGACAGCGCCAAAGTGAACTTCGCCAAGCTGTTCGTGTCCTACTTCAAGTGGC



AGAACCAGGACTCCTGTCTGGCCCAGGTGCTGGCCACCAACAGCGATAATTGGAAGGCCGCCTTTACCAGCCTGGGC



CTGTCTGTGAAGGCCTTTAAGAGCCTGTGCGTGACCGTGAAGAAGTCCCTGCCTGAGGAAGCTATCCCCGACAGCGT



GGACAGATACAGCAGACAGATCAGAATGCCCTACCACGACGGCTACCTGGCCGTGACACCTGTGATTTCTCACGTGG



TGCAGAGCAAGATTCAGCAGGCCGCCATCGACAAGCGGGCCAGATTTTCCAACGTGGAATTCACCAGACCTGCCGCC



GTGTCTCTGCTGGCTGCTTCTCTTGGCGGCGTGGTCAACGTGCTGAACTACCCTCCTAAGATCCTGAACAAGTACCAC



GGCCTGAGCAGCAGCCGGCAGTTCAAGCTGAACAATGGCCAGACCGTGTTCAACGTGGGAGCCCTGCTGAAGCCCGA



GTTCATCAAAGCCCTGGAAGGCATCATCTTCAGCAACAACGCCCTGGCTCTGAAGCAGCGGAGACAGCAGAAAGTGA



AGAACATCCGGGACGTGCGGAGCACCCTGCTGGAATGGTTTAGCCCCATCTACGAGTGGCGGCTGGACATCATCGAG



ACAGAAGTGGGACTCGAGCAGCTGGAAGGGACCAGCGATCAGCTTGAGTACAAGATCCTGTCTCTGAGCGACGACG



AGCTGCCCCTGCTGACAATCCCTCTGTTCAGACTGCTGAACGAGATGCTGTCCGACGTGTCCATGACACAGCGCTACG



CCTTCCATCCTCAACTGATGAGCCCACTGAAGGCCGCTCTGCAGTGGCTGCTGATCAACCTGACCGATCAGAAGAAC



GAGCTGATCGAAGAGGACGATGAGCACTACAGATACCTGCACCTGAGCGGCATCAGAGTGTTCGATGCACAGGCCCT



GTCTAACCCCTACTGCAGCGGAATCCCAAGCCTGACAGCTGTGTGGGGCATGCTGCACAGCTACCAGCGGAAGCTGA



ATGAGGCCCTGGGCATCAATGTGCGGTTCACCTCCTTCAGCTGGTTCATCAGAGACTACAGCGCCGTGGCCGGAAAG



AAGCTGCCTGAACTGTCTCTGCAGGGCGCTCAGCAGAACAAGCTGAAAAGACCCGGCATCATCGACGGCAAGTACTG



CGATCTGATCTTCGACCTGATCATTCACATCGATGGCTACGAGGACGATCTGCAGACCGTGGACAGCGAGCCCGATA



TCCTGAAGGCCTACTTTCCCAGCACCTTTGCCGGCGGAGTGATGCATC (SEQ ID NO: 145)





Cas7
ATGGAACTGTGCAACATCCTGAAGTACGACCGCTCTCTGTACCCCAGCAAGGCCGTGTTCTTCTACAAGACCGCCGAC



AGCGACTTCGTGCCCCTGGAAGCCGACATCAACAAAGTGCGGGGACCCAAGAGCGGCTTCACCGAGGCTTTCACACC



CCAGTTTCTGCCCAAGAACATCAGCCCTCAGGATCTGACCCACAACAACATTCTGACCCTGGAAGAGTGCTACGTGCC



ACCTAACGTGGAACACATCTTCTGCCGGTTCAGCCTGAGAGTGCAGGCCAATTCTCTGGCCCCTAGCGGCTGTTCTGA



TCCCGAGGTGTTCTCCCTGCTGAAAGAGCTGGCCACCATCTTCAAAGAGTGCGGCGGCTACAAAGAACTGGCTACCC



GGTACTGCCGGAACATCCTGCTTGGAACCTGGCTGTGGCGGAACCAGAACACCGGCAATACCCAGATCGAGATCAAG



ACCAGCAAGGGCAACAGATACCTGATCGACAACACCCGGAAGCTGGCCTGGGAGTCTAAGTGGGCCTCCGACGATC



AGAGAGTGCTGGAAGAACTGAGCAACGAGATCGAGAGCGCCCTGACAGACCCCAATGTGTTTTGGAGCGCCGATATC



ACCGCCAAGATCGAAGCCAGCTTCTGCCAAGAGGTGTACCCTAGCCAGATTCTGAACGACAAAGTGAAGCAGGGCG



AAGCCTCCAAGCAGTTCGTGAAGTCCAAGTGCGCCGACGGCAGATACGCCGTGTCCTTCAACAGCGTGAAGATCGGA



GCCGCTCTGCAGTCCATCGACGATTGGTGGGATGAAGATGCCAGCAAGCGGCTGAGGGTGCACGAGTTTGGAGCCGA



CAAAGAGATCGGAATCGCCAGAAGGCCTCCTGACAGCGAGCAGAACTTCTACAGCATCTTCAAGAACACCGAGTGGT



ATCTGAGCGCTCTGAAGAACTGCATCACCAACAAGAACGAGAACATCGACCCCGCCATCTACTACCTGTTCAGCGTG



CTGATCAAAGGCGGCATGTTCCAGAAGAAGGCCGAGGCCAAGAAGGCCTGA (SEQ ID NO: 146)





Cas6
ATGCAGCGGTACTACTTCACCGTGCACTTTCTGCCCAAGCAGGCCAATCTGGCCCTGCTGACAGGCAGATGCATCAGC



ATCATGCACGGCTTCATCCTGAAGCACAACATCGAAGGCATGGGCGTGACATTCCCCGCTTGGAGCGATAGCAGCAT



CGGCAACGTGATCGCCTTCGTGCACAAGGACATGGAAGTGCTGAACAGCCTGAAAGAACAGGCCTACTTCGTGGATA



TGCAGGACTGCGGCTTCTTCAAGATCAGCCAGATCAGCACCGTGCCTGACAGCTGCCAAGAAGTGCGGTTCATCCGG



AATCAGAGCGTGGCCAAGATCTTCACCGGCGAGAGCAGAAGAAGGCTGAAGCGGCTGCAGAAGAGAGCCCTTGCCA



GAGGCGAGGACTTCAACCCCAAGAAGCTGGAAGCCCCTAGAGAGATCGACATCTTCCACAGAGTGGCCATGACCAG



CAAGAGCAGCCAAGAGGACTACATCCTGCACATTCAGAAGCAGGACGCCGACTGTCAGGCCGAGCCTGTGCTGAGC



AATTACGGCTTCAGCAGCAACGAGAAGTTCAAGGGCACAGTGCCCGATCTGAGCCCTCTGATCGAGAGCAACTGA



(SEQ ID NO: 147)





DR
GTGACCTGCCGAGTAGGCAGCTGAGAAT (SEQ ID NO: 148)





RE
TGTCGCTGAAACCATACTTTGACATAATACAAGCATACTGTGACATAATTAAACCATACTTTGACATAAAACTTACTT



AAGAAAATGCAGGGAAAATAAATTTATTTACTATCATGAACTTATATTTTTATTTAAGCATAGTGTGACATAACCATT



TTTTATTTGTATATTATGTATACGATGATAATAAAAATACTGGTTTAGCGCATGTATATACGTAACTTA (SEQ ID NO:



149)





LE
GTTCCGCTTAGAGCGAAAAATCAGACATTAGAATAGGTAGAAATTTAGCCCTTAAATCGTAAATACTGAAATTCTAC



CGATTACTTTATTTGCGTACTGACAATGCCTATTTGTCAACGACAAACTAAAGAGTAACTTTAAATTAATATGTCATT



GTATGGTTGTATTTTATGTCAGTGAATGGTTGCAGGTTATCTATAAGTGATTGATATATTTATCCAGTGCTTGTCATGC



TTTGCATGCAGCGACA (SEQ ID NO: 150)









45463|26|GCA_000279285.1_ASM27928v1_genomic|ALED01000027.1|102357 6|Vibrio (ID: 109)










TABLE 19





Elements
Sequences







tnsA
ATGACCAGCCTGCCTACACCTAGCGCCATCACAACAAGCGCCCTGGAATACGCCTTTCACACCCCTGCCAGAAACCT



GACCAAGAGCCGGGGCAAGAACATCCACAGATACGTGTCCGTGAAGATGAGCAAGCGGATCACCGTGGAAAGCACA



CTGGAATGCGACGCCTGCTACCACTTCGACTTCGAGCCTAGCATCGTGCGGTTCTGCGCCCAGCCTATCCGGTTCCTG



TACTACCTGAATGGCCAGAGCCACAGCTACGTGCCCGATTTCCTGGTGCAGTTCGACACCAACGAGTTCGTGCTGTAC



GAAGTGAAGTCCGCCTACGCCAAGAACAAGCCCGACTTCGACGTGGAATGGGAAGCCAAAGTGAAAGCCGCCACAG



AGCTGGGCCTCGAGCTGGAACTGGTGGAAGAGAGCGACATCAGAGACACCGTGGTGCTGAACAACCTGAAGCGGAT



GCACAGATATGCCAGCAAGGACGAGCTGAACAATGTGCACAACAGCCTGCTGAAGATCATCAAGTACAACGGCGCC



CAGAGCGCCAGATGTCTGGGAGAACAACTGGGCCTGAAGGGCAGAACCGTGCTGCCTATCCTGTGCGACCTGCTGTC



TAGATGCCTGCTGGACACCAGACTGGACAAGCCCCTGAGCCTGGAAAGCAGATTCGAGCTGGCCTCCTACGGCTGA



(SEQ ID NO: 151)





tnsB
ATGGCCAAGAAGGGCTTCAGCAGCTTCCACAGAAAGGCCGTGTCCAGCCAGGACACCCTGGAATCCATTGAGCTGGT



GTCCAGCGCCAACTGCCTGGAAAGCGTGACCTACCAGGACATCAGCGCCTTTCCAGAGACAATCGCCGTGGAAATCA



ACTTCCGGCTGAGCATCCTGCGGTTTCTGGCCCGGAAGTGCGAGACTATCGTGGCCAAGTCTATCGAGCCCCACAGA



GTGGAACTGCAGCAGAACTACTCCCGGAAGATCCCCAGCGCCATCACCATCTACAGGTGGTGGCTGGCCTTCAGAAA



GAGCGACTACAACCCCATCTCTCTGGCCCCTAACATCAAGGACCGGGGCAACAGAGAAACAAAGGTGTCCACCGTGG



TGGACTCCATCATGGAACAGGCCGTCGAGAGAGTGATCAGCGGCCGGAAAGTGAATGTGTCCTCCGCCTACAAGCGC



GTGCGGAGAAAAGTGCGGCAGTACAATCTGACCCACGGCACCAAGTACACATACCCTAAGTACGAGAGCGTGCGCA



AGCGGGTCAAGAAGAAAACCCCTTTCGAGCTGCTGGCCGCTGGCAAGGGCGAAAGAGTGGCCAAGCGCGAGTTCAG



ACGGATGGGCAAGAAGATCCTGACCAGCAGCGTGCTGGAACGGGTCGAGATCGATCACACAGTGGTGGACCTGTTCG



CCGTGCACGAAGAGTACAGAATCCCTCTGGGCAGACCCTGGCTGACCCAGCTGGTGGATTGCTACTCTAAGGCCGTG



ATCGGCTTCTACCTGGGCTTCGAGCCTCCTAGCTACGTGTCAGTGTCACTGGCCCTGAAGAACGCCATCCAGAGAAAG



GACGACCTGATCAGCAGCTACGAGAGCATCGAGAACGAGTGGCTGTGCTACGGCATCCCCGATCTGCTCGTGACCGA



CAACGGCAAAGAGTTCCTGAGCAAGGCCTTCGACCAGGCCTGTGAAAGCCTGCTGATTAACGTGCACCAGAACAAGG



TGGAAACCCCTGACAACAAGCCCCACGTGGAACGGAACTACGGCACCATCAATACCAGCCTGCTGGACGATCTGCCC



GGCAAGAGCTTTAGCCAGTACCTGCAGAGAGAAGGCTACGACAGCGTGGGCGAAGCCACACTGACCCTGAACGAGA



TCAGAGAGATCTACCTGATTTGGCTGGTGGACATCTACCACAAGAAGCCCAACCAGCGGGGCACCAACTGTCCTAAT



GTGGCCTGGAAGAAAGGCTGCCAAGAGTGGGAGCCCGAGGAATTCAGCGGCAGCAAGGACGAGCTGGACTTCAAGT



TCGCCATCGTGGACTACAAGCAGCTGACCAAAGTGGGCATCACCGTGTACAAAGAGCTGAGCTACAGCAACGACCGG



CTGGCCGAGTACAGAGGCAAGAAAGGCAACCACAAGGTGCAGTTCAAGTACAACCCCGAGTGCATGGCCGTGATTT



GGGTGCTCGACGAGGACATGAACGAGTACTTCACCGTGAATGCCATCGACTACGAGTACGCCAGCAGAGTGTCTCTG



TGGCAGCACAAGTACAATATGAAGTACCAGGCCGAGCTGAACAGCGCCGAGTACGATGAGGACAAAGAGATCGACG



CCGAGATCAAGATCGAGGAAATCGCCGACCGGTCCATCGTCAAGACCAACAAGATCAGAGCCAGGCGGAGAGGCGC



CAGACACCAAGAGAATTCTGCCAGAGCCAAGAGCATCAGCAACGCCAATCCTGCCAGCATCCAGAAGCACGAGGAC



GAGATCGTGTCCGCCGACAACGACGACTGGGACATCGATTACGTGTGA (SEQ ID NO: 152)





tnsC
ATGAGCGAGACAAGAGAGGCCAGAATCAGCAGAGCCAAGCGGGCCTTTGTGTCTACACCTAGCGTGCGGAAGATCC



TGAGCTACATGGACAGATGCCGGGACCTGAGCGACCTGGAATCTGAGCCTACCTGCATGATGGTGTACGGCGCTTCT



GGCGTGGGCAAGACCACCGTGATCAAGAAGTACCTGAACCAGAATCGGAGAGAGAGCGAGGCTGGCGGCGATATCA



TTCCCGTGCTGCACATCGAGCTGCCCGACAATGCCAAGCCTGTTGACGCCGCTAGAGAACTGCTGGTGGAAATGGGC



GATCCCCTGGCTCTGTACGAGACAGACCTGGCCAGACTGACCAAGAGACTGACCGAGCTGATTCCTGCCGTGGGCGT



GAAGCTGATCATCATCGACGAGTTCCAGCACCTGGTGGAAGAACGGTCCAACCGGGTGCTGACCCAAGTCGGCAATT



GGCTGAAGATGATCCTGAACAAGACCAAGTGTCCCATCGTGATCTTCGGCATGCCCTACAGCAAGGTGGTGCTGCAG



GCCAATTCTCAGCTGCACGGCCGGTTCAGTATTCAGGTGGAACTGCGGCCCTTCAGCTACCAAGGTGGAAGAGGCGT



GTTCAAGACCTTCCTGGAATACCTGGACAAGGCCCTGCCTTTCGAGAAGCAGGCCGGACTGGCCAATGAGAGCCTGC



AGAAGAAGCTGTACGCCTTCAGCCAGGGCAACATGCGGAGCCTGAGAAACCTGATCTACCAGGCCAGCATCGAGGC



CATCGACAACCAGCACGAGACAATCACCGAAGAGGACTTCGTGTTCGCCAGCAAGCTGACCAGCGGCGACAAGCCC



AACAGCTGGAAGAACCCTTTCGAAGAGGGCGTCGAAGTGACCGAGGACATGCTCAGACCTCCACCTAAGGACATCG



GCTGGGAAGATTACCTGCGGCACAGCACCCCTAGAGTGTCCAAGCCTGGCCGGAACAAGAACTTCTTCGAGTGA



(SEQ ID NO: 153)





tnsD
ATGTTCCTGCAGCGGCCCAAGCCTTACTCCGACGAGAGCCTGGAAAGCTTCTTCATCAGAGTGGCCAACAAGAACGG



CTACGGCGACGTGCACAGATTTCTGGAAGCCACCAAGCGGTTTCTGCAGGACATCGACCACAACGGCTACCAGACAT



TCCCCACCGACATCACCCGGATCAACCCCTACAGCGCCAAGAATAGCAGCAGCGCCAGAACCGCCAGCTTTCTGAAA



CTGGCCCAGCTGACCTTCAACGAGCCTCCTGAACTGCTGGGCCTCGCCATCAACCGGACCAACATGAAGTACAGCCC



TAGCACCAGCGCCGTCGTTAGAGGCGCTGAAGTGTTCCCTAGAAGCCTGCTGCGGACCCACAGCATCCCTTGCTGTCC



TCTGTGCCTGAGAGAGAATGGCTACGCCAGCTACCTGTGGCACTTCCAAGGCTACGAGTACTGCCACAGCCACAACG



TGCCCCTGATCACCACATGCAGCTGCGGCAAAGAATTCGACTACAGAGTGTCCGGCCTGAAGGGCATCTGCTGCAAG



TGCAAAGAGCCCATCACACTGACCAGCAGAGAGAACGGACACGAGGCCGCCTGTACCGTGTCTAATTGGCTGGCCGG



ACATGAGAGCAAGCCCCTGCCTAATCTGCCCAAGAGCTACAGATGGGGCCTCGTGCATTGGTGGATGGGCATCAAGG



ACAGCGAGTTCGACCACTTCAGCTTCGTGCAGTTCTTCAGCAACTGGCCCCGGTCCTTCCACTCCATCATCGAGGACG



AGGTGGAATTCAACCTGGAACACGCCGTGGTGTCCACCAGCGAGCTGAGACTGAAAGACCTGCTGGGCAGACTGTTC



TTCGGCAGCATCAGACTGCCCGAGAGAAACCTGCAGCACAACATCATCCTGGGCGAGCTGCTGTGCTACCTGGAAAA



CAGACTGTGGCAGGACAAGGGCCTGATCGCCAACCTGAAGATGAACGCCCTGGAAGCTACCGTGATGCTGAACTGCA



GCCTGGACCAGATCGCCAGCATGGTGGAACAGCGGATCCTGAAGCCTAACCGGAAGTCCAAGCCTAACAGCCCTCTG



GACGTGACCGACTACCTGTTCCACTTCGGCGACATCTTTTGCCTGTGGCTGGCTGAGTTCCAGAGCGACGAGTTCAAC



CGCAGCTTCTACGTGTCCCGGTGGTGA (SEQ ID NO: 154)





Cas5/8
ATGCAGACCCTGAAAGAGCTGATCGCCAGCAATCCCGACGACCTGACCACCGAGCTGAAGAGAGCCTTCAGACCCCT



GACACCTCACATTGCCATCGACGGCAACGAGCTGGATGCCCTGACCATCCTGGTCAACCTGACCGACAAGACCGACG



ACCAGAAGGACCTGCTGGACAGAGCCAAGTGCAAGCAGAAGCTGCGGGACGAAAAGTGGTGGGCCAGCTGCATCAA



CTGCGTGAACTACCGGCAGAGCCACAATCCTAAGTTCCCCGACATCAGATCCGAGGGCGTGATCAGAACACAGGCCC



TGGGAGAGCTGCCTAGCTTTCTGCTGAGCAGCAGCAAGATCCCTCCTTACCACTGGTCCTACAGCCACGACAGCAAAT



ACGTGAACAAGAGCGCCTTCCTGACCAACGAGTTCTGCTGGGATGGCGAGATCAGCTGTCTGGGCGAGCTGCTGAAG



GACGCCGATCATCCTCTGTGGAACACCCTGAAGAAGCTGGGCTGCTCCCAGAAAACCTGCAAAGCCATGGCCAAACA



GCTGGCCGACATCACCCTGACCACAATCAACGTGACACTGGCCCCTAACTACCTGACTCAGATCAGCCTGCCTGACA



GCGACACCAGCTACATCAGCCTGTCTCCAGTGGCCAGCCTGAGCATGCAGTCCCACTTTCACCAGAGACTGCAGGAC



GAGAACCGGCACAGCGCCATCACCAGATTCAGCCGGACCACCAATATGGGCGTGACCGCCATGACATGCGGAGGCG



CCTTCAGAATGCTGAAGTCCGGCGCCAAGTTCAGCAGCCCTCCTCACCACAGACTGAACAGCAAGAGATCCTGGCTG



ACCAGCGAGCACGTGCAGAGCCTGAAGCAGTACCAGCGGCTGAACAAGTCTCTGATCCCCGAGAACAGCCGGATCG



CCCTGCGGAGAAAGTACAAGATCGAGCTGCAGAACATGGTCCGAAGTTGGTTCGCAATGCAGGATCACACCCTGGAC



AGCAACATCCTGATCCAGCACCTGAACCACGACCTGAGCTATCTGGGCGCCACCAAGAGATTCGCCTACGATCCTGC



CATGACCAAGCTGTTCACCGAACTGCTGAAGCGCGAGCTGAGCAACTCCATCAACAACGGCGAGCAGCACACCAACG



GCAGCTTTCTGGTGCTGCCCAACATCAGAGTGTGCGGCGCTACAGCTCTGAGCAGCCCTGTGACAGTGGGCATCCCAT



CTCTGACCGCCTTTTTCGGCTTCGTGCACGCCTTCGAGCGGAACATCAACAGAACCACCAGCAGCTTCAGAGTGGAAA



GCTTCGCCATCTGCGTGCACCAGCTGCACGTGGAAAAGAGAGGACTGACCGCCGAGTTCGTCGAGAAAGGCGACGGC



ACAATTAGCGCCCCTGCCACCAGAGATGATTGGCAGTGCGACGTGGTGTTCAGCCTGATCCTGAACACAAACTTCGC



CCAGCACATCGACCAGGACACCCTGGTCACAAGCCTGCCTAAGAGACTGGCCAGAGGCTCTGCCAAGATCGCCATCG



ATGACTTCAAGCACATCAATAGCTTCAGCACCCTGGAAACCGCCATCGAGAGCCTGCCAATTGAGGCCGGAAGATGG



CTGAGCCTGTACGCCCAGAGCAACAACAACCTGTCCGATCTGCTGGCCGCTATGACCGAGGATCACCAGCTGATGGC



CTCTTGCGTGGGCTACCATCTGCTGGAAGAACCCAAGGACAAGCCCAACAGCCTGCGGGGCTATAAGCACGCCATTG



CCGAGTGTATCATCGGCCTGATCAACAGCATCACCTTCAGCTCCGAGACAGACCCCAACACCATCTTTTGGAGCCTGA



AAAACTACCAGAACTACCTGGTGGTGCAGCCCCGGTCCATCAACGACGAGACAACCGATAAGTCCAGCCTGTGA



(SEQ ID NO: 155)





Cas7
ATGAAGCTGCCCACCAACCTGGCCTACGAGAGATCCATCGATCCCAGCGACGTGTGCTTCTTCGTCGTGTGGCCCGAC



GACAGAAAGACCCCTCTGACCTACAACAGCAGAACCCTGCTGGGCCAGATGGAAGCCGCCTCTCTGGCCTATGATGT



GTCCGGCCAGCCTATCAAGAGCGCCACAGCTGAAGCTCTGGCTCAGGGCAATCCCCACCAGGTGGACTTTTGCCATG



TGCCTTATGGCGCCAGCCACATCGAGTGCAGCTTCAGCGTCAGCTTCTCCAGCGAGCTGAGACAGCCCTACAAGTGC



AACAGCAGCAAAGTGAAGCAGACCCTGGTGCAGCTGGTGGAACTGTACGAGACAAAGATCGGCTGGACCGAGCTGG



CCACCAGATACCTGATGAACATCTGCAACGGCAAGTGGCTGTGGAAGAACACCCGGAAGGCCTACTGCTGGAACATC



GTGCTGACACCCTGGCCTTGGAACGGCGAGAAAGTGGGCTTCGAGGACATCCGGACCAACTACACCAGCCGGCAGG



ACTTCAAGAACAACAAGAATTGGAGCGCCATCGTCGAGATGATCAAGACCGCCTTCAGCAGCACAGACGGCCTGGCC



ATTTTTGAAGTGCGCGCCACACTGCATCTGCCTACCAATGCTATGGTCCGACCTAGCCAGGTGTTCACCGAGAAAGAG



AGCGGCAGCAAGTCCAAGAGCAAGACCCAGAACAGCAGAGTGTTCCAGAGCACCACCATCGACGGCGAGAGAAGCC



CTATCCTGGGCGCCTTTAAAACAGGCGCCGCTATCGCCACAATCGACGACTGGTATCCTGAGGCCACCGAGCCTCTGA



GAGTGGGCAGATTTGGAGTGCACCGCGAGGACGTGACCTGCTACAGACATCCTAGCACCGGCAAGGATTTCTTCAGC



ATCCTGCAGCAGGCCGAGCACTACATCGAAGTGCTGAGCGCCAACAAGACCCCTGCTCAAGAGACAATCAACGATAT



GCACTTCCTGATGGCCAACCTGATCAAAGGCGGCATGTTTCAGCACAAGGGCGACTGA (SEQ ID NO: 156)





Cas6
ATGAAGTGGTACTACAAGACCATCACCTTTCTGCCCGAGCTGTGCAACAACGAGTCTCTGGCCGCCAAGTGCCTGAG



AGTGCTGCACGGCTTCAACTACCAGTACGAGACACGGAACATCGGCGTGTCCTTTCCACTTTGGTGCGACGCCACCGT



GGGCAAGAAGATCAGCTTCGTCAGCAAGAACAAGATCGAGCTGGACCTGCTGCTGAAGCAGCACTACTTCGTGCAGA



TGGAACAGCTGCAGTACTTCCACATCAGCAACACCGTGCTGGTGCCCGAGGATTGCACCTACGTGTCCTTCAGACGGT



GCCAGAGCATCGACAAGCTGACAGCTGCTGGCCTGGCCAGAAAGATCAGACGGCTGGAAAAGCGGGCCCTGTCTAG



AGGCGAGCAGTTCGATCCTAGCAGCTTCGCCCAGAAAGAGCACACCGCTATCGCCCACTATCACAGCCTGGGCGAGA



GCAGCAAGCAGACCAACCGGAACTTCCGGCTGAACATCAGAATGCTGAGCGAGCAGCCCAGAGAGGGCAACAGCAT



CTTTAGCAGCTACGGCCTGAGCAACAGCGAGAACAGCTTCCAGCCTGTGCCTCTGATCTGA (SEQ ID NO: 157)





DR
GTGAACTGCCGAGTAGGTAGCTGATAAC (SEQ ID NO: 158)





RE
TGTTGATACAACCATAAAATGATAATTACACCCATAAATTGATAATTATCACACCCATAAATTGATATTGCCTCTTCA



TGGTCTAAACTTCAGTAAGTTTACGACATTTTCATGAAGAGGTCATTTCATGACAAGCTTACCTACGCCCTCAGCAAT



TACGACTTCGGCGTTAGAGTATGCATTCCATACTCCCGCTCGCA (SEQ ID NO: 159)





LE
AGTGTCCGTGACTGATGCAAGGTTATCGGAACTGTAATGATTATATGTTTTCTAATTTTGAAGTGGTTCTTTTGATGAG



TTTTGCCAGTTACTGAAAGTAACTTTCTTACTGCAGTAGTTTTGCTGAAATACTCGATTCACAAAAATATCAACTTATG



GTTGTTTTGTGAGATATCAATATATGGTTGTTTTGTGGTTAAGTTGCTGATTATAAATAATTATTAAATATCACTTTAT



GGTTGCATCAACA (SEQ ID NO: 160)









64545|3|GCA_000695255.1Phalotolerans2753_genomic|JMIB01000004.1|33903 8|PhotobacteriTm (ID: 110)










TABLE 20





Elements
Sequences







tnsA
ATGTACAAGCGGAACCTGAAGCACAGCAGAGTGAAGAACCTGTTCAAGTTCGTGTCCGCCAAGATGAACAGCGTGCT



GCTGGTGGAAGGCAGCCTGGAATTCGATACCTGCTTCCACCTGGAATACTCCCCACACATCCAGAGCTTCGAGGCCC



AGCCTGTGGGCTTCTTCTACCAGTACCTGAACCGGGACTGCCCCTACACACCCGACTTCAAGATCATCGAGAAGGGC



GTGATCAAGTACATCGAAGTGAAGCCCTGGGAGAAAACCCTGAAAGAGGACTTCCTGCTGCGGTTCCCTGCCAAGCA



GCAGAAAGCTGCCGAGCTGGGAATCACCCTGGTGCTGATCACCGAGAAGCAGATTAGAGTGAACCCCGTGCTGAACA



ACCTGAAGGCCCTGCACAGATACAGCGGCTTCCAGTCCTTCACACCCCTGCACACCCTGTTTCTGAGCCTGGTGCAGA



GACTGGGCAGAGTGTCCATCAATGAGGCCGCCAAACAGCTGATGATCGAGCGGCCCCTGATCCTGAAAACAGCCCTG



AGCCTGATCAGCAGCGGCGTGATCTCTGCCAACCTGGTCAATGAGGAACTGGGCCTGAACTCCGTCGTGTGGTCCAA



GAGCTACGAGAGCTGA (SEQ ID NO: 161)





tnsB
ATGAGCCACGAGAAAGAAGTGGGCGTTTTCGGCGACGAGTTCCAGACCGTGATCGAGTTCGACAAGCACAGCGAGG



GCAGCCTGTCTACACACGGCACCGTGAATAGAGATCTGGCCAGCTACAGCACCGAGATCCAGAGCGAAGTGATGCGG



CGGTACAGATTCATCGAGTGGATCCGGAAGAGAGTGAAAGGCGGCTGGACCGAGAAGAACCTGAACAGCCTGATTC



GGCAGGCCGCCATCGAGCTGAAACTGGAACCTCCTAGCTGCAGAACACTGGCCCGGTGGTGGAAGAGATACAGCGA



GGCCAACTTCAGCCTGATGAGCCTGCTGCCTAACAACAGCAACAAGGGCAACAGAAAGCAGAAGGTGGCCAACGAC



AGCGTGTTCTTCGAGCGGGCCATCGAGAGATACCTGGTGCCTGAGAGGCCTTCTATCGCCGCCGTGTACGAGTACTAC



AGCGACCTGATCAGAATCGAGAACCAGAGCCTGGTGGACGGCAAGATCAAGCCCGTGTCCTACAAGGGCTTCTACAA



CAGAGTGAAGAAGCTGCCCGCCTACGAGGTGGTGCTGGCTAGACACGGAAAGTACCAGGCCGACATGGAATTCAAC



AAGATCGACGCCCACATGCCTCCAAGCAGAGTGCTGGAAAAGGTGGAAATCGATCACACCCCTCTGGACCTGATCCT



GCTGGACGATGAGCTGAAGCTGCCTATCGGCAGACCCTACCTGACACTGCTGATCGACCAGTACAGCAAGAGCATCA



TCGGCTTCCACCTGGGCTACAACCAGCCTAGCTACTACTCCGTGATGAAGGCCATCCTGAACGCCATCAAGCCCAAG



GACTACGTGAAAGAGCGCTACCCCAGCATCGAGCACGACTGGTATTGCCAGGGCAAGATGGAAACCCTGGTGGTGG



ACAACGGCCCTGAGTTTTGGGGCGGATCTCTGGAACAGGCCTGCCTGGAAGTGGGCATCAACATCCAGTTCAACCCC



GTGCGGAAGCCCTGGCTGAAAGCTCTGGTGGAACGGATCTTCCGGACCATCAGCAGCAAGCTGCTGGTCAACATCCC



CGGCAAGACCTTCAGCAACATCATGGAAAGAGCCGGCTACGACCCCACCAAGGATAGCGTGATGACCTTCTCCGTGT



TCGACGAGCTGTTCCACAAATGGGTCATCGACGTGTACCACTACGAGACAGACACCCGGAAGCGGCTGATCCCTCAC



CTGAAATGGCAAGAGGGCGTGTCCATGATGCCACCTATCAGCTACCAGCCTGAGGACCTGGAAAAGCTGAGCGTGAT



CCTGGGACTGCAGGCCTTCAGAAAGCACAGAAGAGGCGGCATCCATCTGCACGGCCTGAGATACGACAGCCAGGATT



TCGCCGCCTACCGGCGGATGAACCCTAGAGACACAGTGATCCTGACCAAGACAGACCCCGACGACATCAGCTCCATC



TATGTGTACCTGGAAAGAGAGCGGCACTACCTGAAGGTGCCCTGCATCGATCCTATCGGCTACACCAAGGGCCTGAG



CCTGGACAACCACCTGAAGTTTAAGCTGCTGTACCGGGACTACATCAGCCGGCACACAGATCTGGATGGCCTGGCCA



AAGCCAGAATCTACATCCACGAGCGGATCGTGCGGGAAACCGAGGAACTGAACCAGCTGCACAGAAGCAGACCCAA



GAGAACCACAGGCGGCATGGCCAGACTGGCTAAGCACAATGGCGTGCGGAGCGATTCCGATGCCTCTTGTGTTCCTG



AGGCTCTGCCCGCTCTGAATGTGAAAGAACAGAAAAACCCTCAGAAGGCCCTGCCTGACAGCGACGAGTGGGACGA



CTTTATCTCCAAGCTGGACCCCTACTGA (SEQ ID NO: 162)





tnsC
ATGTTCTCTCTGAGCCCCGAGAACGAGTTCAAGTACCAGATGTTCGTGGACGTGTTCGTCGAGCTGCCTATCGCCACC



ACCGTGATGAACGACTTCGACCGGCTGCGGTACAACAGAAAGTTCGGCGGCGATCAGCAGTGCATGCTGCTGACAGG



CGATACAGGCAGCGGCAAGAGCTTCCTGATCCAAGAGTACTGCAGACGGGTGCTGCAGACCAGCCAGAATCCTGCTG



CTGTGCTGAGCAGCAGAATCCCCAGCAAGCCCACACTGGAAAGCACCATCATCGAGCTGCTGAAGGACCTGGGCCAG



TTTGGCGCCGTGTACAGAAAGGGCAAGAGCAAGGATCAGAGCCTGACCGAGAGCCTGCTGAGAAGCCTGAAGTCCA



AGAACACCGAGCTGATCATCATCAACGAGTTCCAAGAGCTGGTCGAGTTCCAGTCCGGCAGAGCCCTGTCTGAGATC



GCCACACGGCTGAAGTACATCAGCGAAGAGGCCACCGTGCCTATCGTGCTCGTTGGAATGCCTTGGGCCGCCAAGAT



TGCCGAGGAACCTCAGTGGTCTAGCCGGCTGCTGATCAGAAGAGAGCTGCTGTACTTTAAGCTGAGCCAAGAGCCTG



AGCAGTTCATCAGATTCGTGAAGGGCCTGCTGAAGCGGATGCCCTTCAATGAAGCCCCTCAGCTGGACGGCAAGCAG



ATGATTCTGGCCCTGTTTAGCGCCAGCCACGGCCAGATTAGAAGGCTGAAGCAGATCCTGAACCTGGCCGTGCAGCA



GGCATTGGCCGAAGAGGCTAGCACCGTGAATCAGCACCATGTGGCCAGCGTGTTCGGCATGCTGTTCCCTAGTACCA



AGAATCCCTTCCTGCTGTCCGCCAAAGAGATCGAGGGAACCGAAGTGGCCGTGCCTAGCCACTATGATGTGGGCGCC



GAGAATGAGTTTGACGCTGTGATCCCCACACAGTACACCGACCTGCTGCCTCTGAGTCAGCTGCTGCGGAAGTCCAG



AAAGACCAAGTGA (SEQ ID NO: 163)





tnsD
ATGTTCCTGATCACCCCTGACAAGCAGTACGCCGACGAGAGCCTGGAAAGCTTCCTGATTAGAGTGTGCGAGTGCAA



CGGCTTCGAGAGCTTCCAACTGCTGTCTGGCGTTCTGTGGGCCTGGCTGGTGGAAAATGATCATCAGGCTGCTGGCGC



CCTGCCTAGAAAGCTGAGCCAGATCAATCTGTACCACGCCAAGCACAGCAGCGGCTTTAGAGTGCGGGCTATCCAGC



TGCTGGACTCCCTGTTTGGCGGCGACATCAAGCCTCTGATGGGACACGCTGTGCTGCACTCCAGCGTGACCTTTTCTC



CTGGACTGGCCGCCGTGTTCAGAGATGGACTGCACATCCCCAGATGCTTTCTGAGCAGCCAGTGCGTGCCAGTGTGCT



CTCAGTGTCTGGCCGAGCAGACCTACATCCGGCAGTTCTGGCACCTGATTCCTTACCAGGCCTGCCATCTGCACGGCG



TGAAGATGCTGTACCAGTGTCCTGAGTGTCAGCAGCCCCTGAACTACCAAGAGAGCGAGCAGATCAGCCTGTGCGCC



TGTGGCTTTGAGCTGAGCAAGGTGGTCACAAAGCAGGCCAGCTGTGACCTGGTGGCCATCAGCAAGCTGATCGTGTC



CGGCGACCACGAGGGCAACAGAGATAGCAGCATCTCTCACTGGCTGGGAGCCCTGCTGTGGTTCAGCAGAAGGCAG



AAGTCTAGCCCCAAGCGGGACGTGATGGACGAGAGCATGCTGTCTGAGGCCGTGGACTTCTTCAGCAGATGGCCTGT



GGCCATGGTGGAAGAACTGGACCAGATTGTGCAGGGCGCTGCCCTGAAGCTGACAAAGAACTACAACCACACCAAG



TTCAGCGACGTGTTCGGCGATCTGCTGACCGCCACAAGAAAGCTGCCTAGCTCCGACCTGCACCGGAACTTCGTGCTG



AAAACCATCGTGGACTACCTGGAACAGCTCGTGCGGAGCAACCCCAAGAAAGGCGAGGACAATATCGCCGATCTGC



AGCTGAGCATCCTGGAAGCCTCTGCTCTGCTGAGCAGCAGCACCGAACAGGTGTACCGGCTGTACGAAGAGGGCTAC



CTGCAGTGCAGCAAGAGACTGAAGCTGCACAGCAAACTGAGCAGCGACGATGCCGTGTTCTACCTGCGGCAGATCAT



CGAACTGCGGAGAGCCGGAATCGCCAGCGACTACAGCACCAACACAGTGTACCTGCCAAGCTGGTGA (SEQ ID NO:



164)





Cas5/8
ATGGTCAAGCCCATGCACCTGAGCGAGCTGATCAAGATCTCCGATATCGCCGAGCGGAACCAGCAGCTGAGAAAAGC



CCTGGTGGCCTTCACCGAGAACGTGGAAGTGTCCGGATGCGAGCTGGAACTGCTGACAGTGGCCGCCAATCTGACCC



TGCCTAGAGATCAGGTGGAAGATCTGCGGGATGTGTCCCTGGCCAAGAGCCTGTTCCAGAACAAGACCCACCTGAAG



CACTGCATCGAAGAGGTGCAGTGGTTTCACACCCACAACCTGAAGTACCCCGACGCCAGAGTGTCCAAGCAGAGAAT



CCTGGTGCAGAGCCCTGAGCTGTGTAGCGGAGTGATCACCGGCGCCAACCTGCCTTTTCAGCTCGGCTGGTCCCACAA



CAGCGCCCAAGTGAATCCTGCCAAGCTGTTCCTGATCCAGTTCATCTGGCGGGGAGAGAACAACACCCTGCTGGACG



TGCTGGCCAACCTGGACAAAGTGTGGAAGAACGCCTTTCTGGCCCTGGGCGTTGCACCAGGCCAACTGAATGAGCTG



AAGAGACAGGTGCTGGAAGTGCAGCTGGTCAACAGACTGCCTGAAGAGGTGTCCGAGTTCAGCAAGCAGATCAGAA



TCCCCATCCACGACGACTACTGCGCCCTGACACCTGTGGTGTCTCATAGCGTGCAGGCCTACCTGCACCAGCTGATCT



ACGACAGACAGTTCCAGAGCAAGCTGACCGAGCACTCTCACCCTGCCTCTGTGGGATCTCTGGTGGCTTCTGTTGGCG



GCAACACCCGGATCCTGTTCTACCCTCCTAGAGTGCGTAGAGCCGGCGCTAAGAGCTTCTTCGATCGGAGAGCCGAG



AATGGCCTGGCCGTGTACGATCACTCTGTGCTGAAGGGCAGAAGCTTCATCAACGCCCTGTCCTGCATTGCCGGCGAA



CACCCAGCTCCTATCCTGAGACAGCGGAGACAGCTGAGGATTAGCGCCCTGCGGTACATCAGAAAGCAGCTGGCTCT



GTGGCTGGCCCCTATGATGGAACTGAGAGACAGCCTGGACAGCAACCAGGCCGACGTGTCCTCTATTCACGCCCTGG



AAGAGAAGCTGCTGTACCTGCCTATCGAGCAGCTGCCCACCGTGCTGAACGAACTGAACATTCAGCTGCACCTGGGC



CTGCAGAAGGCCAAATACGCCGCCAGATACGCCTACCATCCTAACCTGATGGCCCCTCTGAAACACCAGCTGTCCTG



GCTGCTGAGATACCTGGCCAGACCTGAGGGCAGAATGAGCCAGGATGGCGTGCAGTCCCTGTTCATCCACTTCCGGC



AGCTGAAGGTGCACGACGCCAGCCTGATGAGCAACCCTTATGTGGCCGGCATTCCCAGCCTGACAGCTCTCGGAGGA



CTGATGCACCACTACCAGCGCAGACTGACCGACATGCTGGAACAGCCATGCAAGGTGGTCAAAGGCGCCTGGTTCAT



CAGCCAGTACCACATCCAGACCGAGAAGAAGCTGCCCGAGCCTAGCCTGCTGCACCACAGATCCAAGGTGTCCAACG



TGCAGAGGCCCGGCATCATCGATGGTGTTCACGGCGACCTGGAAATGGACCTGGTGCTCGAGATCCGGTTCACCGAC



ACAACCCAGCTGCCTGACCTGATGTGCTTTCAGGCCGCCTTTCCTAGCAGATTCGCTGGCGGAACAATGCACCCTCCA



AGCCTGTACGAGCAAGTGAACTGGCTGAACATCTACAGAGACAAGGCCGAGCTGTTCCGGGTGCTGAGCAGACTGCC



AAGAAGCGGCTGTTGGATCTACCCCGAGGATAAGGGCACCGAGAGCTTTGAGGCCCTGGCCTTTAGACTGAAGGCTG



AGCCTGATCTGCGGCCTATCGGCATGGGATTTCTGCCACTCGAGCAGCCCAGAGAGCGGAAGAATAGCCTGTCTCCT



CTGCACTGCTACGCCGAGCCTTGTCTGGGCGTGATCAGATGCATGAACCCCATCGACGTTCGGCTGGCCGGCAAGAA



GGCCTTTTTCGAGTCTGCCTTCTGGCACTTCGACACCGCCATGGACGCCATGCTGATGAAGAAGGCCCCTTGA (SEQ



ID NO: 165)





Cas7
ATGCAGATCTGTCGGCACCTGAACTACGTCAGATCTCTGAGCCCTGGCAAGGCCGTGTTCTTCTACCAAACACCTGAG



CGGGACTTCATCCCAATCCAGGTGGAAACAAACCGGATCAGAGCCGCCAAGAGCGGCTTTAGCGAGGCCTACGACA



AGAATCAGACCCTGAAGAATCTGGCCCCTCAGGACCTGGCCTACAGCAACCCTCAGTGTATCGACGCCTGCTACGTG



CCACCTAACGTGTCCGAGATCCAGTGCCGGTTCAGCCTGAGAGTGGAAGCCAACAGCATGCAGCCAGAGAGCTGCGA



GGACGAGAAAGTGCGGAGATACCTGAGCAAGCTGGCCTGCACATATGCCCAGGCTGGCGGATATCACGAGCTGGCC



AGAAGATACTGCCAGAACATCCTGCTCGGCACATGGCTGTGGCGGAACTCTCACACAAGAGGCACCCTGGTGGAAGT



GCTGACCAGCAACGAGAACAGATACGTGATCAGCGACGCCAGATACCTCGGCTGGACAGTGATCTGGCCCGAAGAG



GAACAGGCCGTGCTGGAAGGACTGGCCTCTGAAATGGCAGTGGCCCTGTCTGAGCCTCGGCAGTATTGGTTCGCCGA



CATCACCGCCAGACTGAAAACCGGCTTCTGCCAAGAGATTCACCCCAGCCAGAAGTTCATCGACGGACACCAGCCTG



GCGAGAGCAGCAAGCAGTATGCTACAGTGCAGTGCGAGGATGGCAGACAGGCCGCCTGTTTTCACGCCGAAAAAGT



GGGAGCCGCTCTGCAGATGATCGACGATTGGTGGGATGTCGAGGCCGACAAGAGACTGAGAACCCACGAGTACGGC



GCCGACAGAGAGTACCTGATTGCCAGAAGGCACCCCAAGAACAAGCAGGACTTCTACACCCTGCTGACCCAGACCGC



CGTGTTCATCCGGCAGCTGAGAAAAGTGCGCGACAACGGCGGAGAGATCCCTCCTCACATCCACTACCTGATGGCTG



TGCTGTGCAAGGCCGGACTGTTTCAGAGAGGCGGCCAGTAA (SEQ ID NO: 166)





Cas6
ATGAGAGAGCGGCACTACTTCTGGATCAGATACCTGCCTCGCGACGTGGACGTTGGACTGCTGGCCGGAAGATGCAT



CAAGGTGCTGCACGGCTTTCTGAGCGCCGAGGACCACGTGTTCTACGACGAAGTGGGCGTGTCCTTTCCACAGTGGA



ACATCGAGAGCGTGGGCCAGTCTATCGCCTTCGTGTCCCACAATGCCAAGGCTCTGAACTACTTCCGGCAGCACCCCT



ACTTCCAGATGATGAGCACCGACCGGCTGTTCGAGGTGTCCCCTATCCTGAAGGTGCCCCAAGAGCTGCCTGAAGTG



CGGTTCAAGCGGAACCAGAATATCGCCAAGTGCTTCAGCGGCGACAAGCGGAGAAGGCTGGCCAGAGCTATGAGAA



GGGCCGAGTCTAGAGGCGAGCTGTTCCAGCCTGAGCTGAGCATCACCGACAGAGAGATCGAGCCCTTCCACCGGGTG



CTGATGTCCTCTCAGTCTAGCCAGCAGCACTACCTGCTGCACATCCAGAAAGAGGAACACGTTTCCAGAGCCGAGGG



CCAGTTCAGCAGATATGGCCTGGCCACCAACAAAGAATACCGGGGCACAGTGCCCGACCTGAATCTGTGTGTGCCTT



GA (SEQ ID NO: 167)





DR
GTGACCTGCCGTGTAGGCAGCTGAGAAA (SEQ ID NO: 168)





RE
TGTTGCTTGCACCATAAGCTGACATATCTTCCCAATTTCTTGTCATAATTTGCAGTATAAGCTGTCATAGCCTACTTTT



TATGTAGTTTTACTACAAAAATGGTTGCGTCATGTACAAGCGTAATCTCAAGCATTCCCGTGTAAAAAATCTATTTAA



ATTTGTCAGTGCCAAGATGAATAGTGTACTTCTTGTTGAAGGA (SEQ ID NO: 169)





LE
GAAATGGGTTTGAGCAATAGTTCTAACTCATTTTTGTCCAGAACCGTGTTGAGATTTTCCACAGCCCGGGCATAGTTT



CGTCGTAGTGACGATACGAAAGAAAAAATCTTACACACTCTGGAGCAGGTGTTAAGCGAAGGGAAGGTTATGTCATC



TTATGCTTCATTTCTATGTCAACTTATGGTGCAAATCGTTCGATAACCTTCTGATATATAGAGCGTGTTTATGTCAGCT



TATGGTGAAAGCAACA (SEQ ID NO: 170)









75502|1|GCA_001048675.1VDIABv1_PRJEB5898_genomic|CCKK01000002.1|1038212|Vibrio (ID: 111)










TABLE 21





Elements
Sequences







tnsA
ATGAGCAGCCTGAGACTGCCTAGCGCCATCACAATCAGCGCCCTGGAACAGGCCTTCGACACCCCTGCCAGAAACCT



GACAAAGAGCCGGGGCAAGAACATCCACAGATTCACCAGCGCCAAGATGGGCAAGAGAATCAGCGTGGAAAGCACC



CTGGAATGCGACGCCTGCTACCACTTCGACTTCGAGCCTAGCATCGTGCGGTTCTGCGCCCAGCCTATCAGACTGAGC



TACTTCATCAACGGCAAGCACCATACCTACGTGCCCGACTTCCTGGTGCAGTTCGATACCCACGAGTTCGTGCTGTAC



GAAGTGAAGTCCGACTACGCCAAGAACAAGAGCGACTTCGGCAGCGAGTGGGAAGCCAAAGTGCAGGCCGCTTCTG



CCCTGGGAGTTGAGCTGGAACTTGTGGGCGAGAGCGACATCCGGGACAAAGTGATCCTGAAGAACCTGAAGCTGATG



CACAGATACGCCAGCAGAGCCGACCTGAACAACGTGCAGAAGTCCCTGCTGAGCACCCTGAAACAGGATGGCGCCC



AGACAGCCAAGTGTCTGGGAGAACAGCTGGGCCTGAAGGGCAGAACCATCCTGCCTATCCTGTGCGACCTGCTGTCC



AGATGCCTGCTGGACACCAGACTGGACATGCCCCTGAGCCTGGAAAGCCAGTTTGAGCTGGGCAGCTACGCCTGA






(SEQ ID NO: 171)





tnsB
ATGCCCAAGACCTTCAGCAGCTTCCACAGAAAGAGCGTGCCCAGCGAGCTGAAGCCCGAAGTGAACAAGGCCGTGA



TCAGAGCCAGCAGCCTGGAAGATGTGACCTACCAGGACATCAGCGCCTTTCCAGAGAAGATCAGCACCGAGATCACC



TTCCGGCTGAATATCCTGCGGTTCCTGGGCAGAAAGTGCGAGAGAATCGTGCCCAAGAGCATCGAGCCCCACAGAAT



CGAGCTGCAGAGAAACCACGTGCGGAAGATCCCTAGCGCCATCACCATCTACAGGTGGTGGCTGGCCTTCAGAGAGA



GCGACTACAACCCCACATCTCTGGCCCCTGACTTCAAAGGCAGAGGCAACCGGGATACCAAGGTGTCCACAATCGTG



GACGCCATCATGGAACAGGCCGTGGAAAGAGTGATCAGCGGCCGGAAGATCAACGTGAACAGCGCCCACAAGCGCG



TGCGGAGAAAAGTGCGGCAGTACAACCTGAAGCACGGCACCAAGTACAAGTACCCTAAGTACGAGAGCGTCCGGAA



GCGCGTGAAGAAGAAAACCCCTTACGAACTGCTGGCCGCCAAAAAGGGCGAGAGAGTGGCCAAGCGCGAGTTCAGA



AGAATGGGCAAGAGAATCCTGACCAGCAGCGTGCTGGAACGCGTGGAAATCGATCACACCGTGGTGGACCTGTTCGC



CGTGCACAAAGAGCACAGAATCCCTCTGGGCAGACCCTGGCTGACACAGCTGGTGGATTGCTACAGCAAAGCCGTGA



TCGGCTTCTACCTGGGCTTCGAGCCTCCTAGCTACGTGTCAGTGTCACTGGCCCTGAAGAACGCCATCCAGAGAAAGG



ACGACCTGGTGTCCAGCTACGAGTCCATCGAGAACGAGTGGCTGTGCTACGGCATCCCCGATCTGCTCGTGACCGAC



AACGGCAAAGAGTTCCTGAGCAAGGCCTTCGACAAGGCCTGCGAGTCTCTGCTGATCGTGGTGCATCAGAACAAGGT



GGAAACCCCTGACAACAAGCCCCACGTGGAACGGAACTACGGCACCATCAATACCAGCCTGCTGGACGATCTGCCCG



GAAAGGCCTTCAGCCAGTACCTGGAAAGAGAAGGCTACGACAGCGTGAACGAGGCCACACTGACCCTGGACGAGAT



CAAAGAGATCTACCTGATCTGGCTGGTGGACATCTACCACACCAAGCCTAACAAGCGGGGCACCAACTGTCCCAACG



TGGCATGGAAAAGGGGCTGCCAAGAGTGGGAGCCCGAAGAGTTTAGCGGCACAAAGGATGAGCTGGACTTCAAGTT



CGCCATTGCCGACCACAAGCAGCTGAACAAAGGCGGCATCACATTCTGCAACGGCCTGGTGTACAGCAGCGAGAGGC



TGGCCGAGTACAGAGGCAAGAAAGGCAACCACAAAGTGAAGTTCAAGTACAACCCCGAGTGCATGGCCGTGATTTG



GGTGCTCGACGAGGAAGAACACGAGTACTTCACCGTGCCTGCCATCGACTACGAGTACGCCAGCGGAGTTTCTCTGT



GGCAGCACAAGTACAATATGAAGCACCAGGCTGAGCTGAACTCCGCCGACTACGACGAGGACAAAGAAATCGACGC



CGAGCTGCGGATCGAGGAAATCGCCGATCAGAGCATCGTGAAGAACTGA (SEQ ID NO: 172)





tnsC
ATGGACAAGGACCGGGAAGTGCGGATCAGCAAGGCCAAGAAAGCCTTCGTGTCTACCCCTAGCGTGAAAACCGTGCT



GCGGTACATGGACAGATGCCGGGATCTGAGCGACCTGGATAGCGAGCCTACCTGCATGATGGTGTTTGGAGCCACAG



GCGTGGGCAAGACCACCATCATCAAGAAATACCTGATGCAGAACAAGCGGGACAGCGACGCCAAGGGCGATATGAT



TCCTGTGCTGCACATCGAGCTGCCCGACAACGCCAAACCTGTGGATGCCGCTAGAGAACTGCTGCTGGAAATGGGCG



ATCCCCTGGCTCTGTACGAGACAGACCTGGCCAGACTGACCAAGAAGCTGACCGATCTGATCCCTGCCGTGGGCGTC



AGACTGATCATCATCGACGAGTTCCAGCACCTGGTGGAAGAGAAGTCCAACCGGGTGCTGACCCAAGTCGGCAACTG



GCTGAAGATGATCCTGAACAAGACCAAGTGTCCCATCGTGCTGTTCGGCATGCCCTACAGCAAAGTGGTGCTGCAGG



CCAACTCTCAGCTGCACGGCAGATTCAGCATCCAGTTCGAGCTGCGGCCCTTCAGCTACGAGGAAGGCAACGGCGTT



TTCAAGACCTTCCTGGAATACCTGGACAGAGCCCTGCCTTTCGAGAAAGAAGCCGGACTGGCCAGAGAGAGCCTGAC



CAAAAAGACCATCTGCCTGTTCAGCCGGAAGCACGCCTTCATCGAGAAGCCCAACCTGAGCAGCATCTACTGA (SEQ



ID NO: 173)





tnsD
ATGACCGACAAGAAAACCATCAGCACCAAGAGCAGCAACAACAACCACAAGGCCACCAGCACCGTGTCTAGCTGGC



TGGCCGGAAATACCAGCAAGGTGCTGCCCAATCTGCCCCAGAGCTATAGATGGGGACTCGTGCACTGGTGGTGCCAC



ATCAGCGACAACAAGTTCGAGCACTTCAGCTTCGTGCAGTTCTTCAGCAACTGGCCCAGCAGCTTCCACAGCATGATC



GACAGCGAGATCGAGTTCAACCTGGAACACGCCATCGTGGGCAGAAAGGGCCTGAGAGTGAAGGACCTGCTGGGCA



GAATCTTCTTCAACAGCGTGCGGCTGCCCGAGAGAAACCTGCAGCATAACATCGTGCTGCAAGAGCTGCTGCGGCAC



ATCGAGACACACCTGTGGGACAACAATGGCCTGCTGGCCAACCTGAGAATGAACGCCCTGGAAGCCGCCGTGTTCCT



GAACTGCAACATCGATGAGGTGGCCAGCATGGTGGAACAGCGGATCCTGAAGCCTAGCAGAAAGACCAAGCCTAAC



ACACCCCTGGCCGTGAACAACTACCTGTTCTACTTCGGCGACATCTTCTGCCTGTGGCTGGCTGAGTTCCAGACCGAC



GAGTTCAATCGGAGCTTCTACGTGTCCCGGTGGTGA (SEQ ID NO: 174)





Cas5/8
ATGGGCAGCCTGAAGGACCTGCTGCAGAGCAGACCCGACGACCTGAACATGGAACTGAAGCGGGCCTTCAGACCCCT



GACACCTCACATCAACATCGACGGCAAAGAGCTGGACGCCCTGACCGTGCTGGTCAACCTGACAGATAAGACCGCCG



ACCAGAAGAACCTGCTGGACAGAGTGAAGTGCAAAGAGAAGCTGCGGGACGAGAAGTGGTGGGGCCTGTGCCTGAA



TACCATCGAGTACATCCAGAGCCACAACCTGAAGTTCCCCGACATCAGATCCGACGGCGTGATCAGAGCTACCACAC



TGGGAGCCCTGCCTGAGCATCTGCTGTCTAGCAGCAAACTGCCCCAGCACTTTTGGAGCTACAGCCACGACGCCAAA



TATGTGAATACCAGCGCCTTCCTGACCAGCGAGTTTTGTTGGGCCGGCTCCATCTCTTGTCTGGCCCTGTTCCTGAAGG



ATGAGAGCCACGTGCTGTGGTCCAAGCTGCTGAAGCTGGGCTGCTACAAAAAGACCAAGCAGAGCGTGATCAAGCA



GCTGAAGTCCTTTGAGGAACAGAAGGTGGACGTCAAGCTGACCGACAACTACCTGACACAGCTGAGCCTGCCTGACG



ACGACGACAGCTACATCTCTCTGAGCCCTGTGGCCAGCCAGAGCATGCAGAGCCACTGTTATCAGGCCCTGGAAAAC



GAGTACCGGAACACAGCCCTGACCAGATACAGCCGGTCCACCAATATGGGCGTGCTGCCTATGGCTTGTGGCGGAGC



CCTGAGAATGTTCACCAGCGTGTCCAACTTCAGCAAGACCCACCACCACAAGCTGAACAGCAACAAGCACTGGCTGA



GCAGAGAGAGCATCCAGTCTCTGAAGGACTACCTGCAGCTGAACCGGCTGCTGATCCCCGAGAATAGAAAGCAGGCC



CAGCGGAAGCTGGTCACCGACAACATCCTGATCATGATTAGAGCCTGGCTGTCCAGACAGGACGCCGGCATGGATGC



TCAGACACTGACCGAGCACCTGAACTACGACCTGAGCCAAGAGAAAGAGACAAAGCACTTCGCCTACATTCCTAAGC



TGACCAGACTGTTCCACAGCCTGCTGAAACAGAAGCTGAACTCCCCACTGCCTCAGCTGCACGTGGACGAGCCTAGC



TCTAATAGCGGCAGCTTCCTGCTGCTGCCCAACATCACAGTGTCTGGCGCCACAGCTCTGAGCAGCTCTGTGACAATC



GGCATCCCTAGCCTGACCGCCTTCTACGGATACGTGCACGCCTTCGAGAGAAAGCTGAGAGAACTGCAGGCCGCCAC



CAAGATCGAGAGCTTCGCCATCTGTATCCACCAGCTGCATCTGGACAAGCGGGGCCTGACCAAAGAATTCGTGGAAA



AGGCCAACAGCGCCATCTCTCCACCTAGCACCAACGACGATTGGCAGTGCGACTTCACCTTCAGCTTCATCCTGAAGT



TTCTGCACAAGCCGAACATCCCCAACGACAGCATCATCAAGGCCCTGCCTAAGAGACTGGCCAGAGGCACCACAAAG



ATCTCTATCGCCGACTTCCACCGGATCCAGCCTTTCGATTCTCTGGCCTCCGCCGTGAAATACGTGCCAATCCAGACC



GGCAAGTGGCTGTCCCTGTATAAGGGCCACCTGGGCAGCTTCGACGATCTGATTGAGAGCGTGCGCGAGAAGCGGTG



GTTCACCCCTTCTTGCGTGGGCTTCCATCTGCTGGAACGGCCTGTGGAAAAGAAGGATGCCCTGCGGGATTACAAGCA



CGCCTTTAGCGAGCCCATCATCGGCCTGATCAACCCCATCATCTTCGGCAACACCACCGATCCTAACAAGATCCTGTG



GCGGTACAAGTACCACCAGAACCACATTGCCCTGCAGACCGAGGCTTGA (SEQ ID NO: 175)





Cas7
ATGGAACTGCCCACCAACCTGGCCTACGAGCGGAGCATCAATCCTAGCGACGTGTGCTTCTTCGTCGTGTGGCCCGAT



GGCACCAAAGAGCCCCTGAGATACAGCAGCAGAACCGTGCTGGGCCAGATGGAAACAGCCAGCCTGGCCTATGACA



GCAGCGGCAACATCAAAGAGAGCGCCACAGCCGAGAAACTGGCCCACGGAAATCCTCACACCGTGGATTTCTGCAG



CCTGCCTTTTGGCGCCAGCCACATCGAGTGCTTTTTCAGCGTGTCCTTCAGCAGCGAGCTGCGGAAGCCCTACAAGTG



CAACAGCGAAGTGATCCGGGACACCCTGATCCAGCTGATCGAGCTGTACGAGAAGCGGATCGGCTGGCAAGAGCTG



GTGTCCAGATACCTGATCAACGTGTGCAACGGCAGCTGGCTGTGGAAGAACACCAAGAAGGCCTACAGATACGACGT



GGAACTGATCCCCTGGCCTTGGAGCGAGAAGCCTGTGCTGTTCGAGGACATCCGGGCCAACTATACCGGCAAGGCCG



ACTTCTTCAGCCACCAGCATTGGAGCGCCATCTCTCAGCTGGTCACCAACGCCTTCAGCCAGCCAAATGGCCTGGCCA



TCTTCGAAGTGAAGGCCACACTGGTGCTGCCTACCAACAGCGAGATCTACCCTAGCCAGGCCTTCATCGAGAAGGAC



ACCAGAAAGAGCGGCGACAAGGCCCGGACCTTCCAGAATACCCAGATCGAGAACAGCAGAAGCCCCATCATCGGCA



TCTACAAGGCAGGCGCCGCTATCGCCACCATCGACGACTGGTATCCCAACACACTGGAAACCCTGAGAGTGTCTAGA



TTCGGCACCCACAAGGGCGACGTGACCTGCTACAGACACCCCAGCACACGGAAGGACCTGTTCAGCATCATCCAGAA



CGCCGAGCAGTACATCGAGCACCTGTCTGAGCCTGGCATCCTGAGCCAAGAGCTGACCAGCGATCTGCACTACCTGG



TGGCCAACATCATCAAAGGCGGCATGTTCCAGCACAAAGGCGACTGA (SEQ ID NO: 176)





Cas6
ATGAAGTGGTACTACAAGACCATCACCTTTCTGCCCGAGCGGTGCAACAATGAGTCTCTGGCCGCCAAGTGCCTGAG



AATCCTGCACGGCTTCAACTATAAGTACGAGACACGGAACATCGGCGTCAGCTTCCCACTTTGGAGCGACGATACCA



TCGGCTGCAAGATCAGCTTCGTGTCCACCAGCAAGGTGGAACTGGACCTGCTGCTGAAGCAGCGGTACTTCAGCCAG



ATGAAGGCCCTGCACTACTTCGACATCAGCACCACAGCCGTCGTGCCCAACGATTGCGAGTACGTGTCCTTCAAGCG



GTGCCAGAGCTTCAACAAGGCCACACCAGCTGGCCTGGCCACCAAGATGAGAAGGCTGGAAAAGCGGGCCATCGAC



AGAGGCGAGAGCTTCGATCCTAGCCTGATCATCCAGCGGGGCACCATCATCCTGCACCACTACCACAGCCTGGAAGA



GGTGTCCAGATCCAGCAAGTGCCGGTTCAGACTGAACGTGCGGATGAGCAGCGAGAACAGCCTGAAAGGCGACGGC



AGCTTTAGCAGCTACGGCCTGAGCAACAGCGCCAACAGCTTTCAGCCTGTGCCTCTGATCTGA (SEQ ID NO: 177)





DR
GTGTACTGCCGCATAGGTAGCTGATAAT (SEQ ID NO: 178)





RE
TGTTGAAACAACCATAAAATGATAATTACAACCATAAATTGATAATTATCACAACCATAAATTGATATTGCCTCTTCA



TGGTCTAAACTTTAGTAAGTTTACGACACTTCCGTGAAGAGGCCATTATATGTCCAGCCTACGATTACCCTCTGCAAT



TACTATTTCTGCTCTAGAGCAAGCATTTGATACGCCAGCTCGTA (SEQ ID NO: 179)





LE
TTCTAAGTAACTTAATAGGTTTTAGCGGACGCACGGTCCTATGCAATGGAGATCGGTAACAAGGGAAGGACTCAGTT



TCTTGAATTTAAATGCTGAAAGTAACTTTCTTACCGATAGCACTGAACTAAATTTGTAAACTCACAAAAATATCAATT



TATGGTTGTTTTATGCAATATCAACATATGGTTGTTTTTTTGTAACTGACTGAAATCTATTCCATTACAATTATCAATTT



ATGGTTGTTTCAACA (SEQ ID NO: 180)









87347|8|GCA_001293805.1_ASM129380v1_genomic|BCAI01000009.1|190431|PseTdoalteromonas (ID: 112)










TABLE 22





Elements
Sequences







tnsA
ATGTACCGGCGGAAGCTGAAGCACAGCAGAGTGAAGAACCTGTTCAAGTTCGCCAGCCAGAAGAACAAGGCCACCT



GTCTGGTGGAAAGCGCCCTGGAATTCGACGCCTGCTTCCACTTCGAGTACAGCCCTGCCATCGTGGCCTTTGAAGCTC



AGCCCCTGGGCTTTAAGTACGACTTCGAGGGCAGAACATGCCCCTACACACCCGACTTTCTGCTGACCCACTCTGACG



GCACCCAGAAGTACATCGAGATCAAGCCCGTGAAAGAGCTGGCCAAGGACGAGTTCCGGCAGAGATTCGAGCTGAA



ACAGCTGGCTAGCAAGCAGCTGGGCATCGAGCTGATCCTGGTCACCGACAAGCAGATCAGAGTGTTCCCCGTGCTGG



ACAACCTGAAGCTGCTGCACAGATACAGCGGCTTCCAGGTGCTGACCGAGCTGCACACAGTGGTCGTGGGACTCGTG



AAGTCTACCGGCCTGGTCAAAGTGGCCCAGCTGGTCAACTACCTGAAGGTGTCAGCTGGCGAGGTGCTGTCTATCGT



GGCCAGACTGCTGTGTATCGGACAGCTGGCCACCGACCTGACAACAGATGCCCTGAGCCTGGACTCTGTGATCTGGG



CCTCTGACGAGCAGTGA (SEQ ID NO: 181)





tnsB
ATGAACAGCAAGAGCCTGGGCCTGTTCGACGACGAGTTTCAGCACCCCATTCCTCAGGTGGAAGCCCCTAAGAGCAC



CAAGGCCGAGAAGGACCTGAGCGCCTATCCTCAAGAGATCCAGCAGACCACCTACGCCAGACTGAAGTACATCCGGT



GGCTGAAAGAGCGGATCGTCGGCGGATGGACCGAGAAGAATCTGGCCCCTCTGATCAACGAGATGCCCAAGGTGGA



AGGCGCCGACAAGCCCAATTGGAGAACAGCCGCCAGATGGTTCAAGAGCTACAGCGAGAGCGACGAGAGCATCTTC



GCTCTGATCCCCAAGCACCAGAAGAAGGGCAAGAGAACCCAGCGGACCGACACCGACAAGTTCTTCGAGAAGGCCC



TGGAACGGTTCCTGGTCAAAGAGAGGCCTAGCGTCAGCAGCGCCTACCAGTACTACAAGGACCTGGTGGTCATCGAG



AACGAGAAAGTGATCGGCGAGGACCTGCGGCCTCTGACCTACAAGGCCTTCAAGAACCGGATCGACAAGCTGCCCCA



CTACGAGGTGCTGAGAGCCAGATACGGAAAGCGGATTGCCGACCTGGCCTACAACAAAGTGGAAAGCCACAAGCGG



CCCACCAGAGTGCTGGAACGAGTGGAAGTGGATCACACCCCTCTGGACCTGATCCTGCTGGACGACGAGCTGCAGAT



TCCTCTGGGCAGACCCACACTGACCATCCTGATCGACGTGTACAGCCACTGCATCGTGGGCTTCTACCTGGGCTTCAA



CGAGCCCAGCTACGACGCCATTAGACGGGCCATGCTGAACGCCATGAAGCCCAAGAACTGGATCAAAGAGCAGTAC



CCCGACATCACCCACGACTGGCCTTGCTGCGGAAAGATCGAGACACTGGTGGTGGACAACGGCGTGGAATTCTGGTC



CAACAGCTTCGAGAGCGCCTGCGCTCAGATCGGCATCAGCCTGCAGTATAACCCCGTGGGCAAGCCCTGGCTGAAGC



CCTTCGTGGAAAGAATCTTCGGCGTGATCAACACCCAGCTGCTGGACCCTATTCCTGGCAAGACCTTCAGCAACATGA



TGAAGAAAGAGGGCTACGACCCCAACAAGGACGCCATCATGAGATTCAGCGCCTTCATGGAAGTGTTCCACCACTGG



ATCATCGACGTCTACCACCAAGAGGCCGACAGCCGGTTCAGCTACATCCCTGCTCTGGAATGGGACCGGGGCTACAA



TCAACTGCCTCCTGCTCCTCTGAGCAGCGACGACATCCAGAGACTGGAAATCGTGCTGGGCATCAGCACCTGGCGGC



ACATCAGAAAAGGCGGCATCCACTTCGAGAACCTGAGATACGACAGCAACGAGCTGGCCGACTACCGGAAGAGGTT



TAGCCCTAAGGCCAGCGTGAAGCTGCTGCTGAAAGTGAACCCCGAGGATCTGAGCCGGGTGTACGCCTTTCTGCCTG



AGCTGGACCACTACATTGAGGTGCTGTGCATCGACCCCAATGGCTACACAGCCGGACTGTCTCTGCACCAGCACAAA



GTGAATGTGCGGCTGCAGCGGGACTTCATCGGCAGCCATATGGATGTGGCCGCTCTGGCCAGGGCCAGAATGCTGAT



CCACGAGAAGATCCAGAGCGAGGTGGAACTGCTGGCCAACTCCACCAGAAAGCCCAAAGTGCGCGGAGGAAAGGCA



CTGGCCAAGTACCAGAATGTGGCCAGCGACAACCTGGTGTCCGTGAAGCCTTCTCCACCTACCAAGAAACTGCCTAA



CAAGGTCGAGACAGAGGAAGCCCAGAACAAAGGCGACTGGGACGACTTCGTGTCCGACCTGGAAGGCTTCTGA (SEQ



ID NO: 182)





tnsC
ATGCTGAGCGAGATCCAGACACAGCGGCTGAACGAGTTCATCGACGTGTTCATCGAGTACCCTCTGATGAAGACCAT



CCTGAACGACTTCGAGCGGCTGAGAGCCGGACAAAAACTGGCCGGCGAGAAGCAGTGTATGCTGCTGACAGGCGAT



ACCGGCTGTGGCAAGAGCAGCGTGATCAACCACTACAAGAACAAGCACCCCGCCTGCCACATCGACGGTGTCTATCA



TCACCCCGTGCTGGTGTCTCGGATCCCCTCTAGACCTACACTGGAAAGCACAATCGCCCAGCTGCTGTCCGATCTGGG



ACAAGTGGGAGCCGCCAAGCGGAAGCTGAAGAGAAACGACGCCAACCTGACCGACAGCCTGATCGCCAATCTGAAG



TCCTGTGGCACCGAGCTGATCATCATCAACGAGTTCCAAGAGCTGGTGGAAAGCAACCAGGGCAAGAAGCGGAACG



AGATCGCCAACCGGCTGAAGTACCTGAACGAGGAAGCCGGCATTCCCATCGTGCTTGTGGGCATGCCTTGGGCCGAA



CAGATTGCCGAAGAACCCCAGTGGTCCAGCAGACTGATGATCCGCAGATTCATCCCCTACTTCAAGCTGTCCGAGGA



CGTGACCCTGTTCGTGCGAGTGCTGATGGGACTTGCCGCCAGAATGCCCTTCAGAGAGAAGCCCAGAATCCAGCAGC



AGGACATCGTGTACGCCCTGTTCGCCGTGTCCAAGGGCTGCTTCAGAACCCTGAAGCACTTCCTGAATGAGGCCGTGA



AGCAGGCCCTGATGTGTGGATCTGAGGCCCTGACAAAGCAGCACCTGTCTGCCGCCTTCGAGGTGTTCTATCCCGGCA



TCGAGGACCCTTTCAAGCTGAGCGTGGACGAGATCACAGCCTGCGAGGTGGAACACTACAGCGTGTACCACACCGAC



AGCTCCAGCGACAACGAGGCCCACAATCCTACCAGATTCACCGAGAGAGTGGCCATTTCTCAGCTGCTGAAGAGGAA



CTGA (SEQ ID NO: 183)





tnsD
ATGCACTTCATCGTGCAGACCAAGCCTTTCAAGGACGAGACACTGGAAAGCTACCTGCTGCGGCTGACCAGAGACAA



CGCCTACGCCGATTATCACGAGCTGGCCGACATCATCTGGCAGAGCCTGGTGGAATGCGACCACGAACTGGAAGGCG



CTTTCCCTCTGGACCTGAAAACCGCCAATCTGTACCACGCCAGCCAGAGCAGCAGATTCAGAGTGCGGGCCTTTAAG



CTGGTGGCCCAATGGGCTGCTCTTGCCCCACTGGAACTGATCAGACTGAGCTGGCTGCGGAGCAACACCCAGTTTGG



ACATCTGACAGCCCTGATCCGGGACCAGCTGCTGATCCCTAGAATGCTGCTGCGCGAGAACTACGTGCCCATCTGCA



GCGAGTGCCTGAAAGAAGAGAGCTACTTCCCCTACTACTGGCACCTGAAGCCTTACAAGGCCTGCCACAAGCACAAG



GTCCAGCTGCAGTCTCACTGTGCCGAGTGTGGCGAGCTGATCGACTACAGAGCCAGCGAGCAGTTCAGCCAGTGTAG



CTGTGGGGCCAAGCTGAAAACAATGGCCCCTGCCTCTGAGGCCGATATCGCCGTTTCTGAAGGACTGTCTGGCGCCG



ATGCTCACCACTGGGTTGGAAAGCTGGCTTGGTTTGCCTACCAGTACGGCCACGATCAAGAGCACGCCAGCTTCAAC



GAGGCCTTCATCAGCTACTTCAAGCACTGGCCCGACAATTTCTTCGCCGAGCTGGACGAGAAGGTGTTCCGGGCCAG



AGAGAAACAGCTGCGGCCCTTCAACCACACCAAGTTCGATAGCGTGTTCGGCGACGTGATCAAAGTGGGCAAAGTGG



CCGCTCCTAACGTGCTGAGAAGCAACTTCGTGGTGGACAGCCTGCTGTCCTACTTCAGCGATCTGGTGGAAAAGAAC



CCCAAGCAGAAGCACCCCAATATCGCCGACCTGCTGCTGAACAGCCTGGACTTTGCTACCCTGCTGGGCACCACACT



GGAACAGGTGTTCAGACTGTACCAAGAGGGCCAGCTGACCTGTTGCGAGCGGCTGAACAAGAACGAGCGCCTGCAG



CCTGACAGATGCGTGTTCTACCTGAGACAGGTGGTGGAACTGGCCCAGAGCCAGGGCAGATATGTGGGCGACTTCAA



GAACCAGCTGATCACCCCTTGGTGA (SEQ ID NO: 184)





Cas5/8
ATGGATCTGGCTGAGGCCCTGGCCATCAAGAGCGTGCGGGAAAAATCTGACGCCCTGCGGAAGCTGTTCGCCCCTTA



TGCTCCTAGCGTGGTGGTGGATGGCTACGAACATCAGGTGGCCACAGTGCTGATCAACCTGGTGTACAAGCGGAACG



AGCAGATCGACCTGACCAGCATCAAGGCCGCCAAGGACGTGCTGAAGGACACAGAGCTGATGGCCAAGTGCATCAG



CGAAGTGAAGTGGTTTCACACCCACAACCTGAAGTACCCCGACATCAGAGTGTCCCACCAGCGGCTGATCGCCCAAG



TGATCGACAAGGACATCCCCGCCATCACCAGCGCCAGTCTGCCTAAACTTCTCGGCTGGTCCCACAACAGCGCCGAG



ATCAATCACGCCAAGCTGTTTCTGACCTCCTTCAAGTGGCAGGGCGAAGTCAACAATCTGGCCGGCGTGCTGGTGGA



CGAACATCCTGCTTGGGTCGAAGCCATGAGAAACCTGGGCCTGACCAAGAAAAGCGTGATGGCCATTGCCACACACA



TCAGAGAGCTGCTGCCTGCCACAGACCTGCCTGGCGAAGTGTCTGAGTTTACCCCTCAGCTGATGATGCCCTACGGCA



AGGACTACCTGAGCGTGTCCCCTGTGGTGTCTCATGCCATGCTGGCTAGAGTGCAGCAGCTGGCCAGAGACAAGGCC



GTGAATTGGGGCACCGTGGAACACACCAGACCAGCCAATGTGGGCGATCTGCCTTCTAGCCTCGGTGGCAATGTGCG



GGTGCTGAGATACTTTCCTGCCACCTCTCTGAAGGGCAGCCTGGGCGAGTACATCGAGAACGACCCCAACGAGCGGC



TGTTCAAGCACAAGGTGCTGACCTCCAAGAGCTTCAAGACCAGCCTGATCATCCTGACCGGCAAGTCCGTGTACAAC



ACCCTGCGGCAGAAGAGACTGGCCAGAATCGCCGCCATTCGGCAGCTGAGAAGAACCCTCATGCACTGGCTGGACAA



GATCATCGAGTTCCAGAACAACGGCAACCACAATCTGGTGCCCGAGCCTATGAAGTCCCTGATCGAGAACCTGAAGC



CTAACCTGAACGGCGTCGTGTGCGAGCTGTCTGGCCTGCTGAATGAGCAGCTGAGCAGCCACCACAGCCTGAAGAAG



TTCGCCTACCATCCAGACCTGATGTCTGTGCTGAAGCGGCAGCTGCAGTACGTGCTGATGCATGAGGAAACCGTGGA



CGAGACACTGGTGGACCCTCAGATCCTGTACGTGCACTGCAAGGGCCTGAGAATCTTCGACGCCGAGGGCATGCCTA



ATCCATACCTGCAGGGCATCCCTAGCCTGACAGCTCTTGCTGGCGTGGCCCACAAGTTCCAGAGAAAGCTGCAGAGC



ATCGTGTCTCCCAGCATCGAGTGTATCGGCAGCGCCGTGTTTCTGCACAGCTACCAGCTGCACACAGGCAAGCCTCTG



CCTGAGCAGAACCAGCTGAAAACAAACCAGGGCATCACCTCCGCCAAGAGGCCCGGCATCATCGACAGACCCAAGT



GCGACATGACCATCGACCTGGTGTTCCGGTTCTTCGTGCCCCACGAGAGCACCAGGACACAGCTGACCGACAACATG



TTTAAGGCCGCCTTTCCAACCAGCTTCGCTGGCGGAACAATGCACCCTCCTAGCCTGTACGAGACAGTGGAATGGTGC



CAGGCCTTCACAAGCCCCACACAGCTGTTCGGAGAGCTGAGCCTGCTGCCATCTAGAGGCTGTTGGCTGTACCCCAGC



AAGCACCAAGTGCGGACCTTCGAGGACATGGTGGAACTGCTGGACGCCGATCCTAATCAGAGGCCTGCCGGACTGGG



ATTCGCTAGCCTGGAACAGCCCACACAGAGAAAAGGCGCCCTGGGCTCCAAGCACTGCTATGTGGAACCTGCCATCG



GACTGCTGGAATGCTTCAACCCCATCACCACCAGAATGGGCGGAGCCAAGGCCTTCTTCCACAACGCCTTTTGGGTCA



TCGGCGTGGAAAAGACCTCCATGCTGATGAAGAAAGCCAAGTTCGAGTACACCCAGTGCGACTCCCGGGACATCTAA



(SEQ ID NO: 185)





Cas7
ATGAGACTGCCCAGACACCTGAGCTACACCAGATCTCTGAGCCCTGGCAAGGCCGTGTTCTTCTACAAGACCCCTGA



GAGCGACTTCGAGCCCCTGCAGATCGAGCAGAACAAGCTCGTGGGCCAGAAGTCCGGATTCGCCGACGCCTATCAGA



AGCCTGGCGAGCCTAAAAGCCTGGCTCCTCAGGATCTGGCCTTCGGCAATCCCCAGACACTGGACGTGTGTTACGTGC



CACCTACCGTGACCGAGGTGTTCTGCAGATTCAGCCTGAGAGTGGAAGCCAACAGCGTGGAACCCTACGTGTGCGAC



GATCCCAAGGTGTCCTACTGGCTGAAGAGATACGTGGAAACCTACAAAGAGCACGGCGGCTTCAAAGAGCTGGCCTC



CAGATACGCCAAGAACATCCTGATGGGCAACTGGCTGTGGCGGAACAAGCAGAGCCCCGGCTTTGATATCGAGGTGC



TGACAGAGCACCCCGAGCCTATCGTGATTGAAGGCGCCCAGAGACTGAAGTGGAATGGCGTGTGGGGCAACGATGA



AGCCGCTCTGGCTACCCTGACCGACGTGATCGAAAGCGGACTGGCCAATCCTCGGGCCTACTGCTACCTGGATGTGA



CCGGCAAGATCAAGACCGCCTTCTGCCAAGAGATTCACCCCAGCCAGAAATTCGTGGACAACGTGGAACAGGGCATG



AGCAGCAAGCAGCTGGCCTACACACAGATCAACGGAAAGCAGGCCGCCAGCCTGAACGCCCAGAAAGTGGGAGCTG



CCATCCAGACCATCGACGACTGGTACACCGAGGACTTCAAGCGGCTGCGGATCCACGAATACGGCGCCGATAAGCAG



GTCCTGATCGCCCACAGAACCCCTAAGAACGGCCTGGACTTCTACAGCCTGCTGCCTAAGGTGGCCATCTACATCCGG



TACATGGAACGGAATGGCCTGGCCTGCGACGAGGAATCCAAGTGCATTCACTACCTGGCCAGCGTGCTGCTGAAAGG



CGGACTGTTTCAGCGGACCAAGGGCTGA (SEQ ID NO: 186)





Cas6
ATGAAGCGGAGCTACTTCACCGTGACCTACCTGCCTATCAACTGCGACTACAGCCTGCTGGCCGGCAGATGTATCGG



AATCCTGCACGGCTACCTGAGCAGATTCGAGCTGGATAGCATCGGCGTGTCATTCCCCAACTGGAACGACGAGACAG



TGGGCAACCAGATCGCCTTCGTGTCTGAGAGCCAGAGCCATCTGCAGGCCCTGAGACAGCAGAACTACTTCCAGATG



ATGAGCCACGACGACCTGTTCAAGCTGAGCGAGATCAGAGCCGTGCCTGGCTTCGATGACGAGGTGCAGTTTGTGCG



GAACCAGAGCATCAGCAAGGCCTTTGCCGGCGAGAGAAGAAGAAGGCTGGCCAGAGCTAAGCGGAGAGCCGAAGCT



AGAGGCGAAGAGTACAACCCCAGCTACGAGTTCGTGCCCAAAGAGATCGAGCACTTCCACAGCATCCCCGTGACCAG



CAACAGCAACAAGAACGAGTTTGTGCTGCATGTGCAGCTGTCCGAGAAGCCCACAGTGCTGAGCTGCCAGTTCAACA



AATACGGCTTCGCCACCAACGAGCACTACCTGGGCACAGTGCCTTCTCTGTCTGGCCTGCTGATCTCCTGA (SEQ ID



NO: 187)





DR
GTGAACTGCCGAGTAGGCAGCTGAAAAT (SEQ ID NO: 188)





RE
TGTTGTTTGAAGTATAAGTTGACAAATTTGAAGTTAAAGTTGACATAAATTTGAACAATAAGTTGTCATAGCCTATTT



TTTAGTCAGTGCGCTAAAAAAAGAAACGGCTATGTACCGACGTAAACTCAAACACTCCAGAGTAAAAAACCTTTTTA



AGTTCGCCAGTCAAAAGAACAAGGCTACCTGTCTCGTAGAGTCGG (SEQ ID NO: 189)





LE
GAATAAATACTCTAACTTATTTCTGTCCAAAAATGAGCTGGTGTGAACGTCTGATTATTTAATTGGTTGTATGATGCA



CTAGCCGAACGACTGAAAATGTACAAAAGGGACGCGTGAGGGTCAATATCAGGAAAGCAAGGGACTTTATGCCAGC



TTTTACTTCAAACTTATGTCAACTTATACTTCCATAATATCCAAATAGAGCCCGGAGCTAGGGCTCGTCTTATGTCAAC



TTATACTTCAAACGACA (SEQ ID NO: 190)









98326|0|GCA_001543505.1_ASM154350v1_genomic|JNTX01000001.1|444259|Vibrio (ID: 113)










TABLE 23





Elements
Sequences







tnsA
ATGTACGTGCGGAACCTGAGAAAGCCCAGCGCCACCAAGAACGTGTACAAGTTCGCCAGCAGCAAGAACCGGAACG



TGATCCTGTGCGAGAGCAGCCTGGAACGGGATTGCTGTTACCACCTGGAATACTCCAAGGACGTGTTCAGCTTCCAGT



CTCAGCCCGAGGGCTTCTACTACAGCAGCGGCAACAAGCGGTGCCCCTACACACCCGATTTTCTCGTGCGGAATCAG



GACGGCAGCGAGTACTACCTGGAAGTGAAGCCTCTGGCCAAGACCTTCAGCGAGGACTTCAAGCACAGCTTCGCCCT



GAAGAGAATCGCCGCTCAGCACCAGGGAAAGCCACTGGTGCTGGTCACCGACAAGCAGATCAGAAACGGCGTGTAC



CTGGAAAACCTGAACCTGATCCACAGATACGGCGGCCTGGTGGACTTTAGCCTGAGCAGCACACGGATCGTGGAAGA



ACTGTCTGCCGCCGGACGGATGTGCATCAGAAGCCTGGCCGACAACCTGAAGCTGAGCATCGGAGAAGTGATCGCCG



TGGTGTTCAGACTCGTTGGCCTGGGCAGAGTGAACGTGCCACTGGACTCTGCCATCAACGAGATGAGCGTGATCAGC



GTGAACTGA (SEQ ID NO: 191)





tnsB
ATGGTCATCCCCTTCGACGACGAGTTCGAGTTCATCACCGACGACACCCAGGCCGAGTACGATAGCACATCTGAGGC



CAAGCTGGCCCGGAAGCAGTACCTGCCTCTGGATAGCGTGACCATCCACGAGAGAGGCCTGAGCAGCTTCAGCGAGG



AACAGAAGAACAAGGCCCTGGAACGGTACAAGCTGATCTCCGCCGTGGCCAAAGAGATCAGCGGAGGCTGGACCCC



TAAGAACATCAACCCTCTGATCGACAAGTACAGCCCCAACCTGAGCATCAAGCGGCCCAGCTACAAGAGCGTGATCC



GGTGGTACAAGAGCTTCTGCGAGAACGACGGCAACATCGTGTGCCTGGTGGACCACAACCACAGCAAGGGCAACCG



CACCAAGCGGATTATCGACGATGAGGCCTTCTTCGTGGAAGCCACCGAGAGATTTCTGGACGCCAAGAGGCCCAACT



ACAGCCAGGCCTACCAGTTCTACTGCGACCGGATCGAGATCGAGAACAGCAACATCATCAGCGGCCAGATCAGCAAG



GTGTCCTACCAGGCCTTCAAAGAGCGGCTGAAGAAGCTGCCTCCTTACGAGGTGGCCCTGAAGAGATTCGGCCCCAA



TTACGCCAACAAGCTGTTCAACTACTACCAGAGCAGCGTGCGGACCAGCCGGATCCTGGAAAGAGTGGAAATCGATC



ACACCCCTCTGGACCTGATCCTGCTGGACGACGATCTGCTGATCCCTCTGGGCAGAGCCTACCTGACACTGCTGGTGG



ATGTGTTCAGCGGCTGCATCATCGGCTTCCACCTGGGCTTCAACCCTCCAAGCTATGTGTCTGTGGCCAAGGCCATCA



TCCACAGCGTGAAGTCCAAGGACTACGTGCACGACCTGAACATCGAGCTGACCAACGACTGGCTGTGCCACGGCAAG



ATGGAAACCCTGGTGGTGGATAACGGCGCCGAGTTCTGGTCCAAGTCTCTGGATCAGGCCTGCATGGAAGCCGGCAT



CCACTACGAGTACTGCAAAGTGGGACAGCCCTGGGAGAAGCCTAGAGTGGAACGGAAGTTCCTGGAAATCATCCAG



GGCATCGTCGGCTGGGTGCCCGGAAAGACCTTCTCCAACATTCTGGAAAAGGACCGCTACGACCCTCAGAAAGACGC



CGTGATGCGGTTCAGCAGCTTTGTGGAAGAACTGCACCGGTGGATCATCGACGTGCACAACGCCTCTCCAGACAGCC



GGAACACAAAGATCCCCAACTACCACTGGAAGAAGTCCGAGGAAGCCCTGCCTCCTGCCGCTCTGTCTGATAGAGAT



GAGAAGCAGTTCCGGATCATCATGGGCGTGATCCACGAGGGCGTCGTGACCACAAAGGGCATCAAGTACAAGCACCT



GATGTACGACAACGTGGCCCTCGAGCAGTACAGAAAGCAGTATCCCCAGACCAAAGAGAGCCGGAAGAAAACCATC



AAGATCGACCCCGACGACCTGTCCAGCATCTTCGTGTACCTGGAAGAGATCGATGGCTACATCGAGGTGCCCTGCAA



ATACGATCCCCTGGGCTACACCAAGAACCTGAGCCTGTCTGAACACGTGCGGATCACCAAGATCCACCGCGACTTCA



TCAAAGGCCAGGTGGACGCACTGAGCCTGGCCAAAGCTAGACAGGCCCTGCACGAGAGAATCAAGACCGAGCAAGA



GCACCTGTCTCTGATGAGCGTGGAAAGCAGAGCCAAGAAGGCCAAGCACGGAAAGAAGATGGCTGCCCTGAGCGGC



ATCAGCAACGAGCAGCCTATGAGCATCCAGAACGCCCTGGAAAACAAGAACAAACCCCTGGACGACAACCTGGACG



AGCCCACACCTGTGGACAACCTGAAGTCCCTGTGGAACAAGCGGAAGGCCATGAAGCGGAGCAAAGAGTGA (SEQ ID



NO: 192)





tnsC
ATGAACCTGAGCGCCAAGCAAGAGATCGCCGTGGATGAGCTGCTGACCCAGTACCACAACAGCTTCGTGATCTACCC



CGACGTGCAGCAGATCTTCGACGGCCTGGATTGGATCGTGCGGAGAAGCCAGTTCGGCAACTTCACCCCTAGCATGC



TGATCACCGGTGGAACAGGCGCCGGAAAGACCAGCCTGATCAACCACTACGTGAAGTACCACTTCAACGACAACGA



GGTCCTGATCACCAGAGTGCGGCCCAGCTTCATCGAGACACTGATCTGGGCTATCGACAAGCTGGGCATCCCCTACA



ACACCAGAAGCAAGCGGAGCGAGATCGGCCTGCAGGACTACTTCATCAACAGCGTGAAGAAGTCCAACCTGAAGCT



GCTGGTCATCGAGGAAGCCCAAGAGCTGTTCGAGTGCGCTAGCCCCAAAGAGCGGCAGAAGATCCGGGACAGACTG



AAGATGATCAGCGACGAGTGCAGACTGCCCATCGTGTTCATCGGCATCCCTACCGCCAAGCTGATCCTGGAAGATAG



CCAGTGGGACAGACGGATCATGGTCAAGAGAGAGCTGCCCTACATCCGGATCACCAGCGAGTCTAGCCTGGACGTGT



ACATCGACCTGCTGGAAGAACTGGAAAAGCAGCTGCCTATCAGCGTGCAGCCCGACCTGAGCGAGATGGATATCGCC



ATGAGACTGCTGTCCGCCACCAAGGGAATGCTGGGCGCCATCAAAGAACTCGTGGGCTACGCTCTGGAACTGGCCCT



GCTGTCTGGAAAGAGCGCCATCACCAACGACGAGTTCGCCCTGGGCTTCGAGAGAATCAACGGCCCCGATGTGACAA



ACCCCTTCACCACCGAGCTGGAAAAACTGCTGGTGCCCCAAGTGATCGAGTACGAGGGCTTCATCATCGACCCCGAG



AACGGCGAGATCAAGTTCACCAAGCAGATTTTCAAGGACATCCCTCTGGCCGCTCTGCTGGGATAA (SEQ ID



NO: 193)





tnsD
ATGGACATCCAGCTGTACCCCGACGAGAGCCTGGAAAGCTTCCTGCTGAGACTGAGCCAAGAGCAGGGCTACGAGCG



GTTCTCTCACTTCGCCGAGGACATTTGGTTCGACACCATGGAACAGCACGAGGCCATTGCCGGCGCTTTCCCTCTGGA



ACTGAACCGGATCAACATCTATCACGCCCAGACCACCAGCCAGATGAGAGTGCGGGTGCTGATCCACCTGGAAAACC



AGCTGAAGCTGAACAACTTCGGCGCCCTGAGACTGGCCCTGTCTCACTCTAAAGCCCAGTTCAGCCCCGAGTACAAG



GCCGTGCATAGACTGGGCAGCGACTACCCCTTTGTGTTCCTGGCCAAGCGGTTTACCCCTATCTGCCCTCTGTGCATC



AGCGAGGCCCCTTACATCAGACAGCAGTGGCAGTTCCTGAGCCAGCAGGCTTGTGAAAGACACGGCTGCAAGCTGGT



GCACCTGTGTCCTGAGTGTCAGAGCCGGCTGGAATACCAGACAACCGAGAGCATCAGCCAGTGCGAGTGTGGCTTCG



AGCTGAGAAACAGCCCCGTGGAAGATGCCCCTGTGGCTGTTCTGCTGGTGGCCAGATGGCTGAGCGGCAACGATTCT



AAGCCTCTGGGACTGCTGAAGGCCGAGATGACCCTGAGCGAGAGATACGGCTTTCTGCTTTGGTACGTGAACCGCTA



CGGCGACATCGAGAACATCAGCTTCGAGAGCTTCGTGGAATACTGCAGCTGCTGGCCCAGAGTGCTGAAAGAGGAAC



TGGACGAGCTGGTCAACAAGGCCGACCTGATCAGAATCAAGGACTGGAAGAAAACCTTCTTCAACGAGGTGTTCGGA



GCCCTCCTGAAGGACTGCAGACAGCTGCCTTCTCGGCAGCTGGAAAGAAACAGCGTGCTGACTCAGGTGCTGGCCTA



CTTCACCAAGCTGATGGCCACACTGCCCAGCAGCAGCAAGGGCAATGTGGGAGATGTGCTGCTGAGCCCACTGGAAG



TGTCTACCCTGCTGAGCTGCACCACCGATGAGGTGTACCGGCTGTACGAGTTCGGCGAGATCAAGGCCGCCATCAGA



CCCAGAATGCACACCAAGATCGCCAGCCACGAGAGCGCCTTCACACTGAGAAGCGTGATCGAGACAAAGCTGACCC



GGATGTGCAGCGAGAACGATGGCCTGTCTGTGTACCTGCCTGAGTGGTGA (SEQ ID NO: 194)





Cas5/8
ATGACCAAGCTGAGCGACCTGCTGGCCATTGAGGACGAGGCCATTAAGCAGACAGCCCTGAAGAAAATGTTCATGCC



CTACACCGAGGACGTGTGCGTGGACGGCTATGAGCAAGAGACACTGACCATCCTGCTGAACCTGAGCAGCAGCCACC



AGGCCGATAGATGCAGCGATTGGCTGGATGTGGCCAGGGCTCAGCGGTACTTCAAGGACAGAGAGAACCTGGACGC



CAGCCTGGCCGAGATCCAGTGGTTTCACACCCACAACCTGAAGTTCCCCGACTGCAGAGTGAAGGACCAGCGGATCA



TTGCCAGACCTCTGAGCACCGCCGAGGAATTCATCAGCTCTGCCGTGCTGGATCAGAGACTCGGCTGGGCCCATAAT



AGCGCCGTGTACAGACACACCCTGTGGCTGCTCAACCCCTTCAAGTGGCAGAGCCAGCCTGTGTGCATCCTGAGCCTG



ATTCAGCAGAAAAACCCCGTGTGGCTGGACCTGCTGACCGAGTTTGGACTGGACGTGAAGTCCCTGGCTAGGCTGCA



GAGAGCCATCGAGGAACAGCTGCCCGAGAACAGCTTCCCCGATAGCGTGTCCACCTACAGCAAGCAGCTGAGATTCC



CCTGGGGCGACGACTACGTGTCCATCACACCTGTGGTGTCTCACGCCCTGCAGTGCGAGCTGGAAATCAGAGCCAGA



TCTCCTGAGAACAAGTTCAGCTTCGTGTCCAGCAGCCTGCCTAACGCCGCCTCTATCGGCAATCTGTGTGGAAGCCTC



GGCGGCTACATGCGGGTGCTGAATTATCCTCTGGGCGTGAAGCAGGCCAAAGGCGGAACACTGACCGGCAACAGAC



AGAAGTCCGGCCACTACTTCGACGATTACCAAGTGACCAACGCCAAGATCTGCCAGGTGCTGAACAGACTGATCGGC



AGCGAGCCTAGCAAGACCCAGCGGCAGAGAGAAAGGGCCAGAAAAGTGCGGAGCAAGATCCTGCGGAAGCAGATC



GCTCTGTGGATGCTGCCTCTGATCGAGCTGAGAGATATCGCCGAGAGCGAGCCCAATCAGCAGCAGCTGGAACACGA



CGATACTCTGGCCCAGGCCTTTCTGTCTCTGCCTGAGTGGGAACTGGGCTCTCTGGCCAGCGAGTTCAACAGAAGGCT



GCACCTGACCTTCCAGAACAACATGTACAGCGCCAAGTTCGCCTACCATCCTAAGCTGATGCAGGTCGCCAAGGCTC



AAGTGACCTGGGTGCTCGAACAGCTGTCCAAGCCTATCAACAACCAGGACATCGTGACCGGCGAGCAGTACATCTAC



CTGTCCAGCATGAGAGTGCAGGACGCCGTGGCCATGAGCAATCCTTGTCTGTGTGGCGTGCCAAGCCTGACAGCCAT



CTGGGGCTTCATGCACGACTACCAGCGGAAGTTCAACCAGCTCGTGAACAACGGCAGCCCCGTGGAATTCAGCTCCT



TCGCCTTCTACGTGCGGAACGAGAACATCCAGTCCACCGCCAAGCTGACTGAGCCCAACTCTGTGGCCAAGGCCAGA



ACCGTGTCCAATGCCAAGAGGCCCACCATCAGAAGCGAGAGACTGGCCGACCTGGAAATCGACCTGGTCATCAGAGT



GCACAGCGAGAGCCGGATCAGCGACTTTAGAAGCGCCCTGAAAACAGCCCTGCCTGTGGCTTTTGCTGGCGGAGCAC



TGTATCAGCCCCAGCTGTCTATGCAGATCGAGTGGCTGAGAACCTTCACCGGCAGATCCGAGCTGTTCCACGTGCTGA



AAGGACTGCCTGCCTACGGACGGTGGCTGTACCCTTCTGAGAAGCAGCCCACAAACTTCGATGAGCTGGAACGGCTG



CTGACCCAGGACGATGACAATCTGCCTGTGTCTCTGGGCTACCACCTCCTGGAACACCCCACCAAGAGAGACAACGC



CATCACAGGCTGTCACGCCTACGCCGAGAATGCCATCGGACTGGCCAAGCAAGTGAACCCCATCGAAGTGCGGTTCA



GCGGCAGGGACCACTTCCTGAATCACGCCTTCTGGTCCATCGAGTGCTCCAGCGAAACCATCCTGATCAAGAACTACC



GGGACTGA (SEQ ID NO: 195)





Cas7
ATGGAACTGTGCACCCAGCTGAACTACGTGCGGAGCCTGTCTGCCGGCAAGGCCTACTTTTACTACCTGAGCGAGAG



CGGCGAGATGTGCCCTCTGAATGTGGACCGGACCAGACTGAGAGCCCCTAAGGGCAGCTACAGCGAGGCCTACAAG



GGCAACAAGTTCGTGGACAAGAACGTGGCCCCTCAGGACCTGGCCTACAGCAACCCTCAGTTCATCGAGGAATGCTA



CGTGAAGCCCGGCGTGGACGAGATCTACTGCGCCTTCAGCCTGCGGATCAGAGCCAACAGCCTGACACCTGACATCT



GCAGCGACGACGAAGTGCGGAGCAAGCTGAGCATGTTCGCCAAGATCTACAAAGAGCTGAACGGCTACAAAGAACT



GGCCAACAGATACGCCAAGAACATCCTGCTCGGCACCTGGCTGTGGCGGAACAGAGAGTGCAGAAACATCACCATC



GAAGTGACCACCAGCGAGCTGGACACCTTCGTGGTGGAACACGCCCAGAAGCTGTCTTGGTACGGACACTGGGATGG



CGACAGCACCGAGTGCCTGGAAAGACTGACAGCCTACCTGGAAAGGGCCCTGAGCGATCCCACCGAGTACTTCTACA



TGGACGTGAAGGCCAAGATGAGAGTCGGCTGGGGAGATGAGGTGTACCCCAGCCAAGAGTTCCTGGACAGCAGAGA



GGATGGCATCCCCACAAAGCAGCTGGCCACAGTGGAACTGCTGAGCGGCAAAGAAACCGTGGCCTTCCACGGCCAG



AAAGTGGGAGCTGCCCTGCAGAGCATCGACGACTGGTGGCATGAGGAAGCCGACAAGCCCCTGAGAGTGAATGAGT



ATGGCGCCGACCGCGAGTACGTGATCGCTAGAAGGCATGTGGCCTACGGCAATGACTTCTACCAGCTGCTGCGGAAC



ACCGAGAACTGGATCGAGAGCATGACAGCCAGCGAGAGCATCCCCAACGACGTGCACTTCATCATGAGCGTGCTGAT



CAAAGGCGGCCTGTTCAACTGCGCCAAGGCCAACTAA (SEQ ID NO: 196)





Cas6
ATGAGCCAGCGGTACTACTTCCTGATCCGGTACACCAACGCCAACGCCGATTATGGACTGCTGGCCGGCAGATGCAT



CAGCCAGATGCACCTGTTCATGGTCAACCACCACCAGGCCATGAATAGAGTGGGCGTCAGCTTCCCCGACTGGAACG



AATCTTCTGTGGGCCAGACAATCGCCTTCGTGTCCGAGGACAAAGAAATGATGATCGGCCTGAGCTTCCAGCCTTACT



TCAGCCTGATGGTCAACGAGGGCCTGTTCGAGATCAGCAGCGTGTACGAGGTGCCCGACACCAGCGAAGAAGTCCGC



TTCGTCAGAAACCAGACTATCGGCAAGAACTTCCTGGGCAGCAAGAAGCGGAGAATCAAGCGGTCTATGGCCAGAG



CCGAGCTGTTCGGCATTCAGCAGTCTCTGCCCGTGACCAACGAGGACAGAGTGATCGACAGCTTTATCCGCAGCCTGT



TCCTGGCCGCTCTGCACGGCAGAATCATCTTTTGCCTGTTCAAGCGGAACTCCCAGATGAGCGTGCTGAATCTGGCCC



TGATCGCCATGGTGCTGCAGCCTATCAAGAAGAAAGAGCGGAGATACCTGACCTACGTGCTGACCCTGCTGACCAAG



ACACTGTTCTGA (SEQ ID NO: 197)





DR
GTGTTCTGCCGAATAGGCAGCCAAGAAA (SEQ ID NO: 198)





RE
TGTCGCTGAAAGCATAAAGTGTCCAATTTAAAGCATAAGCTGTCCTTTTAAAACTCATAAAGTGTCCTAAACTTAATT



TGGTTGTTTTATTACAACGTTAAGGGACAAGTTATGTACGTTCGAAATCTCCGCAAACCATCTGCAACAAAAAATGTG



TACAAGTTTGCGAGTTCTAAAAACCGAAATGTCATTTTGTGTGA (SEQ ID NO: 199)





LE
CTTATTAAATTCGTAACAAGCTTTTGTCCAAAAAATTTTTATACGTAAGATGCCAGTATTTGTTCAATGTTAATGCTGA



AAACACTCATTTTTCGTAAGTAAGTTTCTTTCGTACCCTGATATCGCTTGTTATAACGAACAATTAATGGGACACCTTA



TGCTTTCAGTTTAGGACGCTTTATGGTTTTAGATTGATTTTAACCATTTGATTTTCTGTGAGCGCATAGGACATCTTAT



GCTTTCAGCGACA (SEQ ID NO: 200)









98597|16|GCA_001550135.1_ASM155013v1_genomic|LRTE01000024.1|519275|PseTdoalteromonas (ID: 114)










TABLE 24





Elements
Sequences







tnsA
ATGATCATGATTCGGCGGAAGCTGAAGCACAGCAGAGTGAAGAACCTGTACAAGTTCGCCAGCCAGAAGATCAACG



CCACCTGTCTGGTGGAAAGCAGCCTGGAATTCGACGCCTGCTTCCACTTCGAGTACAGCAGAGAGATCAAGACCTTC



GAGGCCCAGCCTCTGGGCTTTGAGTACGAGTTCGAGGGCAGAATCTGCCGGTACACCCCTGACTTTCTGATCACCCAC



GACGAGAACTCCCAGAAGTTCATCGAGATCAAGCCCTACAGCAAGATCGCTAACCCCGAGTTCAGAGCCAGATTCGC



CCAGAAGCAGCTGATCGCCAAAGAGCAGATCGGCATCGAGCTGATCCTGGTCACCGACAAGCAGATCTGTGTGTACC



CCGCTCTGGACAACCTGAAGCTGCTGCACAGATACAGCGGCTTCCAGAGCCTGACCGATCTGCAGCTGAGCATCATC



CAGCTGCTGAGCCAGTGGCGCAAGCTGACCATTCAGGATCTCGTGCGGACACTGAAGGCCAGCATTGGAGAAGTGCT



GGCCTCCGTGTACAGACTGCTGTCTCTGGGCAGCGTGAACAGCGACCTGAATACCGAGCTGACACTGGAAAGCGTGA



TCTGGGCCGACGAAGTGTGA (SEQ ID NO: 201)





tnsB
ATGAAGTTCGAGGACGAGTTCAGCTTCGAGGAAGCCCCTCAGAAGCTGGCCGAGACAGCCAAGCCTGAGGAACACA



AGTACCAGGACCGCGACCTGGAAAGCCTGCCTAAAGAGGTGCAAGAGGCCACACTGGCCCGGCTGAAATACGTGAA



GTGGCTGAAGCAGAGACTGATCGGCGGCTGGACCCAGAAAAACCTGGTTCCTCTGCTGGCCGAAATGCCCGAGTTTC



AGGGCCAAGAGAAGCCCAAGTGGCGGACAGTTGCCGGATGGCACAGCGGCTATATCAAGGCCGAAGAGGACATCCA



CGCTCTGATCCCCAAGTACCACCGGAAGGGCAACAGAAAGCCCAGAACCGACACCGACAAGTTCTTCGAGCTGGCCC



TGACCAGATACCTGACCAAAGAAATCCCCAACGTGGCCAGCGCTCACCGGTTCTACTGTGACCAGATCGTGCTGGAA



AACGACAAGGTGCTGGGCGAGCCTCTGAAGCCCCTGACCTACAAGGCCTTCAAGAACCGGATCGACAACCTGCCTCA



GTACGAAGTGATGCTGGAAAGATACGGCAAGCGGCTGGCCGACATCGAGTACAGCAAAGTGATGAGCCACAAGCGG



CCCACCAGAGTGCTCGAGAGAGTGGAAATCGATCACACCCCTCTGGACCTGATCCTGCTGGACGATGAGCTGGATGT



GCCACTGGGCAGACCTACACTGACCCTGCTGATCGACGTGTACAGCCACTGCGTCGTGGGCTTCTACCTGGGCTTCCA



GTCTCCTTGCTACGACGCTGTGCGGAGAGCCATCTCTCACGCCATGAAGCCTAAGAGCTACCTCAAGAGCATCTACCC



CGAGATCGTGAACGAGTGGCTGTGCTGCGGCAAGATCGAGACACTGGTGGTGGATAACGGCGCCGAGTTCTGGTGTC



AGAGCCTGGAACTGGCCTGCGAGGAAGTGGGCATCAACATCAGCTACAACCCCGTGGGCAAGCCCTGGCTGAAACCC



TTCGTGGAACAGTTCTTCAAGACCATCAACGAGATGATGCTGAGCAGCTTCCCCGGCAAGACCTTCAGCAACATGCT



GGCCAGACACGACTACAACCCTAAGAAGGACGCCATCCTGAGATTCGGCACCTTCACCATGCTGTTCCACAAGTGGA



TCGTGGACGTGTACCACAAGACCCCTGACGCCAGATTCCGGTACATCCCCTACGAGGACTGGAACAAGGGCTTCGCT



TTGCTGCCTCCTGCTCAGCTGACCGAGCAGGACATCGATAAGCTGGACGTGGTCATGTGCATGGCCAAAGAGAAAAC



CCTGCGGAAAGGCGGCATCAAGAACCTGCACATCAACTACGACAGCGACGAGCTGAGCCTGTACAGAAAGCAGTAC



AGCAGCAAGAAGTCCATCAAAGTCAAAGTGAAGATCAACCCCGACGACCTGAGCTACCTGTACGTGTACCTGGACGC



CCTGGAACACTACATCAAGGTGCCCAGCATCGACCCTGAGGGCTACACAATGGGCCTGAGCCTGATCCGGCACAAGA



TCCACCTGAAGTTTCACAAGGACTACATCCAGGGCAAAGTGGAACTGCTGGGCCTCGCCAAGGCCAGACAGTTCATC



GACGAACGCGTGAAAGAAGAGGCCCGGCAGCTGAAGAATGTGGGCAGCAAGATCAAAGTGACCGGCACCAAGGCC



ATTGCCAGAGTGCAGGGCATCGACAACACCCAAGTGAAGTCTATCGCCAAGACACCCGAGACAAAGCAGGCCGAAC



CTACACCAGCCGACACCAAGCCAAAAGAGGACGAAGGCAGCTGGGACGACTTCATCAGCGATCTGGACGGCTACTG



A (SEQ ID NO: 202)





tnsC
ATGCTGACCGACCAGCAGAAAGAGCGGCTGAACGAGTTCAGAAACGTGTTCATCGAGTACCCCATCATCACCACCGT



GTTCAACGACTTCGACCGGCTGAGACTCGGCAAAGGACTGGCCGGCGAGAAGCCTTGCATGCTGCTGAATGGCGATA



CCGGCACAGGCAAGACAGCCCTGATCAAGCAGTACAAAGAGAGACATCTGCCCCAGTTCATCAACGGCGTGGTCAAT



CACCCCGTGCTGGTGTCTAGAATCCCCAGCAATCCCACACTGGAAAGCACCCTGGCCGAGCTGCTGAAGGATCTGGG



ACAAGTGGGCAGCACCGAGCGGAAGCTGAGAATGAATGGCACCAGACTGACCAGCAGCCTGATTAAGTGCCTGAAA



ACCTGCGGCACCGAGCTGATCATCATCGACGAGTTCCAAGAGCTGATCGAGCACAACCAGGGCAAGAAGCGGAGAG



AGATCGCCAACCGGCTGAAGTACATCAACGATGAGGCCGGCGTGTCCATCGTGCTCGTTGGAATGCCTTGGGCCGAG



AAGATCGCCGATGAGCCTCAGTGGTCTAGCAGACTGCTTGTGCGGAGACAGCTGCCCTACTTCAAGCTGAGCGAGAA



CCCCAAGCACTTCGTGCAGCTGATTATCGGCCTGGCCAACAGAATGCCCTTCACCGAGAAGCCCAACCTGAGCGAAC



AGGCCACAGTGTTCGCCCTGTTCAGCCTGAGCAAGGGCTGCTTCAGAACCCTGAAGTACTTTCTGGACGACGCCGTGC



TGTACGCCCTGATCGACAATGCCAAGACACTGACAGCCCAGCACCTGGTCAAGGCCTTCGAGGTGCTGTTCCCCGAC



GTGTCCAACCTGTTTACCCTGCCTGTGTCCGAGATCACCGCCAGCGAGGTGGAAAGATACAGCCTGTACAAGCCCGA



GAGCGACCAGGACGAGGACCCTTTTATCGCCACCAAGTTCACCGACAGGATGCCCATCAGCCAGCTGCTCAAGAAGT



GA (SEQ ID NO: 203)





tnsD
ATGCACTTCCTGGTGCAGACCAAGCCTTTTCCAGACGAGGCCCTGGAAAGCTACCTGCTGAGACTGGCCCGGAACAA



CAGCTACCACGGCTATTCTGAGCTGGCCGACATCCTGTGGCAGTGGCTGGCTGAACAGGACCACGAACTTGAAGGCG



CCCTGCCTCTGGAACTGAACAAAGTGGACGTGTACCACGCCAGACAGGCCAGCAGCTTCAGAATCAGAGCCCTGAAA



CTGGTGGCCCAGCTGGCTGATGTGAACGCCGGCGATATTCTGGAACTCGCCTGCAGAAGAAGCAACTTCAAGTTTGG



CAACCTGGCCGCCGTGTCCAGAAACGAGCTGACAATCCCACTGGAACTGCTGCGGACCGAGAACATCCCTGTGTGCA



TCGAGTGTCTGAGCGAGAGCAGCTACATCCCCTTCTACTGGCACCTGAAGCCTTACAAGGCCTGCCACAAGCACAAG



ACCCAGCTGACCACACAGTGCGGCGAGTGCCACAACCTGATCGACTACAGAGCCTCTGAGGCCCTGCTGGAATGTGG



CTGTAGCTGCAAGCTGACCTGCAGCGAGCAGCTGAACGACGCCGACTTCAAGATCGCCAGCGCTCTGGTGTCCAACA



ACAGCCAGAAGATTGCCGGCCTGATCAGTTGGTTCGCCAAAGTGAAGCAGCTGGACGTGGGCGACGCTGATTTCAAC



AGAGCCTTCGTGGACTACTTCAGCACCTGGCCTGATGGCTTTACCGCCGAGCTGGATCTGCTGACCAACAACGCTCGG



CTGAAACAGCTGAACCCTCTGAACAAGACAAAGCTGAACAGCGTGTACGCCGACCTGATCCGGGATGCTCAGAGAGC



CGCCACCAGCAACAGAAAGAACATCGTGCTGGACGAGATCATCAACTACTTCGTGGAACTGGTGGACAGCAACCCCA



AGAGCAAGCACCCCAACATTGCCGACCTGCTGCTGTGCACCTTTGACACAGCCGTGCTGCTGAACACCACCACCGAA



CAGGTGTACCGGCTGCACCAAGAGGGCTTTCTGAACTGCGCCTATCCTCAGAAGAAACACGAACAGCTGCGGGCCGA



CAGCCACGTGTTCTATCTGAGACAGGTGTTCGAGCTGCAGCAGGCCTTTGCCGCTGAAAGACCCCAGACCAAGAAGC



AGTTTATCGCCCCTTGGTGA (SEQ ID NO: 204)





Cas5/8
ATGAACCTGCAGGACGCCTTTGCCATCGAGAGCCCCAAAGAGAAAACCACCACACTGCGGAAGCTGTTCGCCCCTTA



CACACCTCATGTGGCCGTGGACGGACTGGAAGAACAGGCTCTGACCGTGCTGATCAACCTGGTGTACAAGCGGAGCG



AGATCGACGACCTGACATCTGTCAGAGCCGCCAAGAGCGTGCTGGGAGATGAGGTGCTGTTCAGCAAGTGCATCAAC



GAAGTGAAGTGGTTTCACACCCACAACCTGAAGTACCCCGACATCAGAGTGTCCCACCAGAGACTGATCAGCAAGGT



GGTGTCCGAGGATATCGCCGGCATCTGCAGCAGAAGCCTGCCTCTGTCTTTTGGCTGGTCCCACAACAGCGCCGAGAT



CAACCACGCCAAGCTGTTTCTGACCAGCTTCATCTGGCAAGGCAAAGTGACCTGCCTGGCCAAGCTGCTGATCACCG



AAGAACCCGTGTGGATCGACCTGATCAGAGCCTACGGCTACACCAAGAAAGTGGTGCTGGACATTGCCGGGAAGATC



AAGCAGCAGCTGCCTGTGGCTGAGCTGCCCCTGGAAATCAGCTCCTTCAGCATCCAGCTCCAGATGCCTTACCTGCAG



TGCTACCTGGCCGTGACACCTGTGGTGTCTCATGCCATGCAGGCCAAGATCCAGCAGCTGACCACCGAGAGAAAGCT



GAACTCCGGCCTGGTGGAACACAGCAGACCTGCCAATGTGGGCGATCTGGCCTCTTCTGTCGGCGGCAATATCCGGG



TGCTGCGGTACTTCCCCAAGACCAATAGCAAGGCCGTGAACCGGTCCAAGGTGGCCAACAACGATATCGAGAAGGCC



TTTAAAGTGCGGGCCCTGCTGAGCAGCCAGTTCCAAGAAGCTCTGCTGGTCCTCGTGGGCATCAAGCAGTTCAACACC



CTGCGGCAGAAACGGCTGGCTAGAGTGGCCGCCATTCGGCAAGTTCGAGTGTCTCTGCAGCTGTGGCTGGACAACAT



CCTGGAAGCCAAGAACAACGTGCAAGAGCAGGCTTACCCCGAGTGGGCCAAGCACTACCTGGATCAGACCATCACC



AACTGCATCAGCCAGTTTAGCAACATCCTCAACGAGAGCCTGTCCAGCCTGAGCAAGCTGAAGAGATTCGCCTACCA



TCCTAACCTGATGGGCCTGTTCAAGGCCCAGCTGAACTACGTGTTCACCCACTGTGCCGCCGAGGAAGAAACCCTGA



ACGACGAGCAGATCGTGTACGTGCACTGCCAGGACATGAGAGTGTTCGACGCCGAGGCCATGGCTAACCCTTACATC



CAGGGCATGCCTAGCCTGACAGCCCTGAATGGACTGGCCCACAACTTCGAGCGGAAACTGAAGAACTTCATCGACCC



CAGCATCAAGTGTATCGGCAGCGCCATCTACATCGAGAACTACCAGCTGCACACCGGCAAGCCTCTGCCTGAGCCTT



CCAAGCTGAAACAGGTCGTGGGCCGCAGCCACGTGATCAGATCTGGCATCATCGACAAGCCCAAGTGCGACATCACC



CTGGACCTGGTGTTCAGACTGTTCGTGCCCAACGAGGAAATCCTGAACAAACTGAACAGCCAGCTGATCAAGCCCGC



TCTGCCTAGCACATATGCCGGCGGAACAATGCACCCTCCTAGCCTGTACCAGAACATCGACTGGTGCCGGCTGTACAC



CAAGCCTAGCGAGCTGTTTAAGGACCTGAAGGCCAAGCCAAGCAACGGCTCCTGGCTGTACCCCAGCAAGAAGGTGG



TCAAGAGCTTCGAGCAGCTGATCGATGCCCTGAACGGCAACTTCAACCTGAGGCCTGCCGCCATCGGATTTGCCGCTC



TTGAGGAACCCGTGAAGAGGGACGCCACACTGCACGAGTACCACTGCTACGTGGAACCTGTGATCGGCCTGCTGGAA



TGCGTGATCAACACCAGCGTGAAGTACGCTGGCGCCAAGCAGTTTTTCCACGACGCCTTTTGGGTCATGGACGTGCAG



AAAGAATCCATGCTGATGAAGAAGTCCAAGTTTGAGTACGAGTGA (SEQ ID NO: 205)





Cas7
ATGCAGCTGCCTAGACACCTGAGCTACACCAGATCTCTGAGCCCCAGCAAGGCCGTGTTCTTCTACAAGACCCCTGAG



AGCGACTTCGAGCCCCTGCAGATCGAGCAGAACAAGCTCGTGGGCCAGAAGTCCGGCTTTAGCGACGCCTACCAGAA



ACAGAGCGTGGCCAAGAATCTGGCCCCTCAGGATCTGGCCTTCGGCAACCCTCAGACCATCGACGTGTGTTACGTGC



CACCTACCGTGAATGAGCTGTTCTGCCGGTTCAGCCTGAGAGTGGAAGCCAACAGCAACGAGCCTCACGTGTGCGAC



GACCCCAAAGTGATCTACTGGCTGAAGCGGTTCTTCGAGACATACAAGAAGCACAACGGCCTGAACGAGGTGGCCAT



CAGATACGCCAAGAACATCCTGATGGGCAACTGGCTGTGGCGGAACAGACAGAGCCCCAACGTGGACATCGAGATC



CTGACAGAGCACAGCGCCCCTATCATTGTGGAAGGCGCCCAGAAACTGAAGTGGCAAGGCAATTGGCAGCACAACC



AGACAGCCCTGATCACCCTGAGCGAGGCCATTCAAGAGGGCCTGAGCAATCCCCAGAACTACTGCTACCTGGACATC



ACCGCCAAGATCAAGAATGCCTTCAGCCAAGAGGTGCACCCCAGCCAGAAATTCGCCGACAATGTGGAACAGGGCA



TGAGCAGCAAGCAGCTGGCCTACACACAGATGGGCGATAAGAAGGCCGCCTGCCTGAACTCCCAGAAAGTGGGAGC



CGCCATCCAGACAATCGACGATTGGTACGAAGGCGGCTACAAGCCTCTGCGGACACACGAATATGGCGCCGACAAGC



AGATCCTGGTGGCCCACAGAACACCCAAGAGCCACAGCGACTTCTACAGCCTGCTGCCTAGGATCGCCCTGCACATC



AAGCACATGGAAAAGCACGGCCTGGACCAGAGCGAGGAATCCAACGTGATCCACTTTATCGCCGCCGTGCTGATCAA



AGGCGGCCTGTTCCAGCGGAGCAAAGTGTGA (SEQ ID NO: 206)





Cas6
ATGAAGCGGTACTACTTCACCATCACCTACCTGCCTAAGAACTGCGACGTGTCCCTGCTGGCCGGCAGATGTATCGGA



ATCCTGCACGGCTTCATGAGCAGCAGAGAGATCAGCAACATCGGCGTGTGCTTCCCCAAGTGGAACGACCAGAATAT



CGGCGAGCAGATCAGCTTCGTGTCCACCGACAAGAAGCAGCTGACCAACCTGAGCCAGCAGAGCTACTTCGAGATGA



TGGCCCACGACAAGCTGTTCTACCTGAGCAAGATCTTCGAGGTGCCCACCAACCAGAGCGACGTGATGTTCGTGCGG



AACCAGTCTATCGCCAAGGCCTTCGTGGGAGAGAAGCAGCGGAGACTGAAGCGGGCCAAGAAGAGAGCTGAAGCCA



GAGGCGAGGTGTACACACCCGAGTACAAGTTCGAGGCCAAGGACATCGGCCACTTCCACAGCATCCCCGTGTCCAGC



AAAGGCAACGGCAACAACTTCATCCTGCACATCCAGAAGATCGAGAAGGCCGAGCCTATGCACAACCACTTCAACAA



CTACGGCTTCGCCACCAATCAAGAGTTCCAGGGAACCGTGCCTAATCTGATCCCCTTCTGA (SEQ ID NO: 207)





DR
GTGTACTGCCGAGTAGGCAGCTGAGAAA (SEQ ID NO: 208)





RE
TGTTGTTTGAAGTATAAGTCTGCAAATTTGTATCAAAACCCTGCATAAAATTTGAATAATAATCCTGCATAGTCTAAT



TTTAGATCATCTCACATCGTTGGTGATGATTATGATAAGGCGTAAACTAAAGCACTCCAGAGTCAAGAATCTCTATAA



GTTTGCAAGTCAAAAGATTAATGCTACTTGTTTAGTTGAGTCAT (SEQ ID NO: 209)





LE
AACAGCCCTTCAGCTCTAACGCATTTTTGTCCACAATTTAGTTGCAAAGAATATGGTAAAGATCTCAGCGTGGGTTGA



TTTGGATTTGATATTTTAATTAATAGAATATTTATTTTTAGTTACGCTTAATCTTTAATCTGTAACTTTATGCAACCTTA



TACTTCAATCTTATGCAAAGTTATACTTCACTTGCGCCGCTGTGGCTCAATAAAACCGAGTTTGGCTATGTCAACTTAT



ACTTCAAACAACA (SEQ ID NO: 210)









98901|0|GCA_001558415.2_ASM155841v2_genomic|CP014034.211671895|Vibrio (ID: 115)










TABLE 25





Elements
Sequences







tnsA
ATGAGCGTGCTGAGCAGCCCATCACCTTCTCCAAGTCCAAGTCCATCACCAAGTCCATCTCCATCTCCAAGCACCGCC



GCTCTGATCGCCCTGGAATCTGCCTTTGTGACCCCTGCCAGAAACCTGACCAAGAGCCGGGGCAAGAACATCCACAG



ATACGTGTCCGCCAAGATGGGCAAGCGCGTGACCGTGGAAAGCTTCCTGGAATGCGCCGCCTGCTACCACTTCGACT



TCGAGCCTTCTATCGTGCGGTTCTGCAGCCAGCCTATCCGGTTCAGCTACTGCCTGAACGGCAAGACCCATACCTACG



TGCCCGACTTCCTGGTGCAGTTCGATACCGGCGAGTTCAAGCTGTACGAAGTGAAGTCCGACATGGAAAGCAGCAAA



GAGGAATTCCAGTGCGAGTGGGAAGCCAAGGTGCAGGGCGCCTTTGAACTGGGACTCGAGCTGGAACTGGTCACCG



AGGAAGAGATCCTGGACGAAGTGATCTTCAGCAACCTGAAGCTGCTGCACCGCTACGCCAGCAGAGACAACCTGAAC



CACTTCCACCAGACACTGCTGGCCACCTTCAAGCTGAATGGCACCCAGACAGCCAAGTCTCTGGGACACCACCTGGG



CCTGAATGGCCGGAAGATCCTGCCTTTCCTGTGCGACCTGCTGAGCCGGAATCTGCTGCAGACAAGCCTGGAAACCC



CTCTGTCTCTGGAAAGCGAGTTCGAGCTTGTGTGCCACGCCTGA (SEQ ID NO: 211)





tnsB
ATGCCCAAGAACAGCTTCAGCAGCTTCCACAGAAAGAGCGCCTTCCAGCAGGACAAGCTGGAAAGCAACGACAGAG



TGGTGGTGGACATCAACGACGTGGACGAGGCCACCTACCAGGACATCAGCGCCTTTCCAGACAACCTGGCCACACAG



ATCACCTTCCGGCTGAGCATCCTGAGATACCTGGCCAGCAAGTGCGAGCAGATCATCCCCAAGACCATCGAGCCTCA



CAGAGTGGCCCTGCAGAGACTGCACGACAGAAACATCCCCAGCAGCATCAGCATCTACCGGTGGTGGCTGGTGTTCA



GAGCCAGCGACTGTAACCCTGCCTCTCTGGCCCCTAAGAACAAGGACAAGGGCAACAGCAAAGTGAAGGTGCCCATC



TTCGTGGACGCTCTGCTGGAACAGGCCGTGGAAAGAGTGATCAGCGGCCGGAAAGTGCGCATCAGATCCGCCTATAA



GAGAGTGCGGCGGAAGCTGAGACAGCACAACCTGAACAACGGCACCGAGTACAAGTACCCCACCTACGAGAGCCTG



CGCAAGAGAGTGAAGAAGAAAACCCCTTTCGAGCTGCTGGCCGCCAAGAAAGGCGAGAGAGTGGCCAAGCGCGAGT



TCAGAAGAATGGGCAAGAAGATCCTGACCAGCTACGTGCTGGAACGCGTGGAAATCGACCACACCGTGGTGGATCTG



TTCGCCGTGCACGAGGAACACAGAGTGCCTCTTGGTAGACCCTGGCTGACCCAGCTGGTGGACTGTTACAGCAAGAC



CGTGATCGGCTTCTACCTGGGCTTCGAGCCTCCTAGCTACGTGTCAGTGTCACTGGCCCTGAAGAACGCCATCCTGAG



GAAGGACGATCTGCTGAGCAGCTTCGACTCCGTGCAGAACGAGTGGCTGTGCTACGGCATCCCTGATCTGCTGGTCA



CCGACAACGGCAAAGAGTTCCTGAGCAAGGCCTTCGACAAGGCCTGCGAGTCCCTGCTGATCAACGTGCACCAGAAC



AGAGTGGAAACCCCTGACAACAAGCCCCACGTGGAACGGAACTACGGCACCATCAATACCAGCCTGCTGGACGACCT



GCCTGGCAAAGCCTTTAGCCAGTATCTGCAGCGCGAGGGCTACGACTCTGTGGGAGAAGCTACCCTGACACTGGACG



AGATCAAAGAGATCTACCTGATCTGGCTCGTGGACATCTACCACAAGAACTCCAACCAGCGGGGCACCAACTGTCCC



AATGTGGCTTGGAAGAGGGGCTGCCAAGAGTGGGAGCCTGAAGAGTTTACCGGCAGCAAGGATGAGCTGGACTTCA



AGTTCGCCATCGTGGACCACAAGCAGCTGACAAAGGCTGGCGTGACCGTGTACAAAGAACTGGTGTACAGCAGCGA



GAGGCTGGCCGAGTACAGAGGCAAAAAGGGCAACCACAAGGTGCAGCTGAAGTACAACCCCGAGTGCATGGCCGTG



ATCTGGGTGCTCGACGAGGACCTGAACGAGTACTTCACCGTGAATGCCATCGACTACGTGTACGCCAGCAGGGTGTC



ACTGTGGCAGCACAAGTACAACATGAAGTACCAGGCCGAGCTGAACAGCGCCGAGTACGATGAGGACAAAGAGATT



GACGCCGAGATCAAGATCGAGGAAATCGCCGACCGGTCCATCGTCAAGACAAAGAAGATTCGGGCCAGAAGAAGAG



GCGCCAGACACCAAGAGAATAGCGCCAGAGCCAAGAGCATCAGCGACGCCAAACCTGTGCCTAGCCAGAAGCACGA



GGACGAGATTGTGGTGGTCGACAACGAGGACTGGGACATCGATTATGTGTGA (SEQ ID NO: 212)





tnsC
ATGAACGAGACAAGAGAGGCCCGGATCAGCAAGGCCAAGAGGGCCTTTGTGTCTACCCCTAGCGTGACCAAGATCCT



GTGCTACATGGACCGGTGCAGGGACCTGAGCGATTTCGAGTCTGAGCCTACCTGCATGATGGTGTACGGCGCTTCTGG



CGTGGGCAAGACCACCATCATCCGGAAGTACCTGAGCCAGAACAAGCGGGACTCTGAAGTCGGCGGCGACATCATTC



CTGTGCTGCACATCGAGCTGCCCGACAACGCCAAACCTGTTGACGCCGCTAGAGAACTGCTGGTGGAAATGGGCGAT



CCCCTGGCTCTGTACGAGACAGACCTGGCCAGACTGACCAAGAAGCTGATCGATCTGATCCCTCTCGTGGGCGTGAA



GCTGATTATCATCGACGAGTTCCAGCACCTGGTGGAAGAACGGTCCAACCGGGTGCTGACCCAAGTCGGCAATTGGC



TGAAGATGATCCTGAACAAGACCAAGTGTCCCATCGTGCTGTTCGGCATGCCCTACAGCAAAGTGGTGCTGCAGGCC



AACTCTCAGCTGCACGGCAGATTCAGCATCCAGTTCGAGCTGCGGCCCTTCAGCTACCAAGGCGGAAATGGCGTGTT



CAAGACCTTCCTGGAATACCTGGACAAGGCCCTGCCTTTCGAGAAGCAGGCCGGACTGGCCAATGAGAGCCTGCAGA



AGAAGCTGTACGCCTTCAGCCAGGGCAACATGCGGAGCCTGAGAAACCTGATCTACCAGGCCAGCATCGAGGCCATC



GACAATCAGCACGCCAGCATCACCGAAGAGGACTTCGTGTTCGCCAGCAAGCTGACCAGCGGCGACAAGCCTATCAG



CTGGAAGAACCCCTTCGACGAGGGCGTGAAAGTGACCGAGGATATGCTGCGGCCTCCTCCAAAGGATATCGGCTGGG



AAGATTACCTGCGGAACACCACACACAAGATCCGGAACAGCGGCGTGAAGAACAACTTCTTCGACTGA (SEQ ID NO:



213)





tnsD
ATGCTGCTGCAGAGGCCTAAACCTCAGGCCGACGAGAGCCTGGAAAGCTACCTGATCAGAGTGGCCAACAACAACG



GCTACGAGAATATCAACCGGTTCCTGGTGGCCCTGAAGCACTACCTGTGCCACATCGACAGCAAGCGGTTCACCACC



TTTCCAACCGACATCCGGCAGATCAACCCCAGCAGCAGCCAGAGATCTAGCGCTGCCAGATCTCACGCCCTGCAGTA



CATCAGCCAGCTGACCTTTACCGAGACAGCCGACCTGCTGAGACTGGCTATCAGCAGAAGCCCTCTGAAGTTCAGCC



CCAGCACCACCTCTGTGATTAGAGCCGGCGAGATCCTGCCTAAGAGCCTGATCCGGACCAAGCACATCCCCTGCTGT



AGCAGCTGTCTGATCGAGCAGGGCTACGCCAATTACCTGTGGCACTTCGAGGGCTACGACTGCTGCCACATCCACCA



GAAGCTGCTGACCTTCAGATGCGAGTGCGGCGAGCCCTACGACTACAGAATCAATGGCCTGAGCCTGCAGTGCAGCT



CCTGCGGCACAACAATCACCCAGAGCAAGAACGAGCCCGAGATCGACTCCCTGGAAATCTCTCTGTGGCTGGCCGGC



GAAACCATCAAGTGGCTGCCTGAACTGCCCGCCAGCTACAGATGGGGAACAATCCATTGGTGGATGCGGAACCAGAA



CACCGAGGTGCTGGAAACCTGCAGCTTCTCCACCTTTTGGAGACAGTGGCCCGAGAGCTTCCACAACCTGATTGAGC



AGACCCTGAGCCACAATCAAGAGTACAGTCTGCAGGCCCCTCAAGAGTGGCGGCTGAAGGATCTGATTGGCGAGCTG



CTGTTCGGCGCCATCAACCTGCCTCGGAGAAATCTGCAGTATAACCTGATCCTGCGCGAGCTGTTCTACTACCTGGAA



TCCCACCTGTGGGAGAACAACGGCCTGATCGCCAACCTGAAGCTGAACGCCCTTGAAGCCGCTCTGGTGCTGAACTG



CGATATCGAGCAGCTGGCCTCCATGGTGGAACAGGGACTGCTGGTGGCCATGCGGCATCAGAAACACGATGAGCCCC



TGAGCTACACAAACTACCTGTTTCACTTCGGCGACATCTTTTGCCTGTGGCTCGCCGAGTTCCAGACCGACGAGTTCA



ACCGGTCCTTCTACACCAGCCGGTGGTGA (SEQ ID NO: 214)





Cas5/8
ATGACCCTGGATGAACTGCTGGCCGCCACCGACTTTGAGGATCTGGTGTCCAGCACCAAGCGGGCCTTCAGACCTCTG



AGCCCTCTGATCGATATCACCAACAATCCTCTGGACGCCCTGACCATCCTGGTCAACCTGACAGAGAAGGGCATCAC



AAACAAGAACCTGATGGACCGGACCAGGTGCAAAGAGAAGCTGCGGGACGATAAGTGGTGGGCCGCTGTGCTGAAA



ACAGCCCAGTACAGACACAGCCACAACGTGAAGTTCCCCGACATCAGAAGCACCGGCACCATCAGAACAGCTGCCCC



TGATAACCTGCCTGCCTACTTCATCACCAGCAGCAAGCTGCCCAACATCGGCTGGTCCTACAGCAAGGACAGCAGCG



ACATCAACCGGTGCCTGTTCTTCACCAGCGAGTTTCTGTGGGCTGGCCAGGCCTGTTGTCTGGCCAAAGCTCTGGCCG



ATTCTGAGCACCCTCTGTGGAAGGCCCTGAAGAAGCTGGGCTGCTACGAGAACACCAAGAAACAGGCCGTGAAAGC



CCTGAGCCAGATCGCCAATGAGCTGACCGATGTGGACCTGACCGGCAACTACCTGAGCCAAGTGTCCTTTCCAGACG



GCCAGGACAGCTACCTGTCTTTCAGCCCTATTGCCAGCCAGGCCATGCAGTGCTTCGTGTACCAGAGCCTGGAACAGC



ACCACAGACAGACAGCCCTGATGAGCTTCGACAGAGCCCCTAACATGGGACTGCTGGCTGCTTCTTGTGGCGGCAGA



CTGAGACTGATCGAGACAAAGCCCTACATCAAGGATAAGCGGCACCAGTGCATCAGCAAGCAGGCCAACTGGCTGA



CCAAAGAGGCCATCAGAGCTATGGAACAGTACCTGCGGAGCGAGCAGTGGCTGGCCACACCTATCAAGAAACTGCG



GCACATGACCACCGTGAAGTCCGACATCCGGGCCATGATCAACAGATGGCTGACAACCGTGACCAAGACCGACGTGC



TGAGCCCTACAGCTCTGGCTGAGCAGCTGAACAACGATATCGCCAGCATCCGGATCGTCGAGAAGTACGCCTACCAG



CCTAGACTGACCCGGCTGTTTATCCAGCTGATCGAGTCCGATATCGAGAACAACAGCAGCAAAGAGGAACGGAAGCC



AGCCGCCACCAGCCAGTATCTGCTGATCCCTGAGCTGAGAATCTGTGGCGGCTCTGCCATGTCTAGCTCCGTGTCTGT



GGGCCTGTTTAGCATGATGAGCCTGTACGGCTTCATCCACGCCTTCGAGCGGAACGTGCACAGAGTGCTGACCAGCTT



CACCATCGACAGCTTCGCCATCTGCATCCACAACTACCACCTGGAAAAGCGGGGCCTGACAAAAGAAGCTATCAAAA



AGACCAAGGCCAACAAGGACGAGAAAGAGAAGATCGCCCCTCCTGCCATCTACGACGACTGGCAGTTCGACAGCTG



CATCTCCCTGATCATCAAGACCCCTGAGAGCAAGACCATCAGCACCGACAAGATCGTGGCCCTGCTGCCTAAGAGAT



TCGCCAGAGGCTCTATCTGGCTGCCCATCGACGACATCCAGAATATCGCCACCTTTCCTGAGCCTTTCACCGCCATTC



AGGCCATCAAGAACCCTCTCGGCACCTGGCTGTCCTTCGAGGCTGATCTGAGCCTGACCAGCACCGATAGCCTCGTGG



GAATCGCCGTGAACAGACGGAACCTGTGGCTGACAGGCATGGGCTATCAGTACCTGGAACCTCCTACCGTGAAGCCT



GACAGCCTGAGAGATTACCCTCACGCCTTTGTGGAAAACATCCTGGGCTACGTGAAGTCTCAGCCCGTGTCCAGGGC



CACCAACCTGGATGATCTGTTCTGGTGCTACCAAGTGAAGCCCTTCGGCGTGTGTCTGCTGCCCAGATCCATCAAGTG



A (SEQ ID NO: 215)





Cas7
ATGAAGCTGCCTACACACCTGGCCTTCGAGCGGAGCATCTCTCCTTCCGATGTGGCCTTTCTGGTCGTGTGGCCCGAC



GAGCACAAAGAGCCTCTGCCTTGCTACACCAGAACCATCGTGGGCCTGAATGAGGGCAGCCACGTGGGCTATGATGA



TTCTGGCGCCGTGCGGAGCAACCTGAAAACAAACACACTGGTGGAAGGCAACATCCACGAGCTGGACTACTGCAGCG



TGCCATACGGCGCCAAGAGCATCGAGTGCTGCTTCAGCGTGTCCTTCAGCTCTGCCCTGCTGACCCCTTACAAGTGTT



CTGATGCCGGCGTGAAGAAAACCCTGCAGGACTTCGTGCACCTGTACAACCAGCACACCGGCCTGGATGAGCTGATC



ACCAAGTACCTGGCCAATATCGCCCTCGGCACATGGCTGTGGCACAACACCAAGCGGAGCTACTGTATCGCCATCGA



GATCAGACCCTGGCCTTGGGAGGGCGAGCCCATCATCATCGACAACATCCAGAAGTACCTGAGCGGCCAGAGCAGCA



TTCACGAGCTGCCCTACTGGAACGAGCTGGTGGAAAAGATCCGGGAAGCCCTGTCTGTGCCTCTGGGCCTGTGTATCC



TGGAAGTGAAGGCCAACCTGCTGAAGCCCACAATGGCCCAGCTGTACCCCAGCCAGATGTTCAAAGAGGCCACACAG



AAGGGCAACAGCAGACTGTACCAGAGCAACGTGATCGAGGGCATCAAGAGCCCCATCATGGGCTGCTACAAAACAG



GCGCCGCTATCGCCAGGATCGACAGCTGGTATCCTGATGCCGAGGTGCCCATCAGAATCGGCCATTACGGCGTGGAC



AGAGAGAACTGCACCGCCTACAGACACCCCGACACCGGCAAGGATTTCTTCAGCATCCTGAAGCGGACCGACCAGTT



CGTGGACCGGCTGAAAGAGACAAAGAAGCTGAACCAGGACGAGCTGAACGATATGCACTTCCTGATGGCCAATCTG



ATCAAAGGCGGCCTGTTCCAAGAGAAGGGCGACTGA (SEQ ID NO: 216)





Cas6
ATGATCTGCACCAGCCTGTGGCTGACCAGCAGCAAGGTGGACTACTTCCGGAAAAAGGGCATCGAGAGCATGCTGTA



CTACCGGACCGTGACCTTCCTGCCTATCAAGAAGAACAACGAGGCCCTGATCGGCTGCTGCCTGAAAGTTCTGCACG



GCGTGTGCACCAAGTACACCATCAACACCATCGGCGTCAGCTTCCCCGAGTGGCGGAAAGAGACAATCGGCGACAAG



ATCAGCTTTATCAGCCCCAATCCTCTGGAACTGGACTTCCTGCTCCAGCAGGCCTACTTCGCCGATATGACAGCCCTG



GGCTACTTCAACATCAGCGAGAGCACAATGGTGCCCGAGGAATGTCACCTGGCCGTGTTCAGACGGAACCAGAAGAT



CGACCAGGCCACACCTAACGGCCAGAGAATCAGAGCCGAGCGGCTGGCCAAAAGAGCCAGAGATAGAGGCGACAGC



CCCACCAGATTCACCCCTGAGGATCTGCTGTTCGAGCACTACCACAGCATCCCCATCACCAGCACAAGAAGCGGCCA



GAGCTTCCGGCTGAACCTGCAGTATCAGCAGCTGGACACAGTGGCCCATGGCAGATGGGCCTTTAGCTCTTATGGCCT



GGCCAACAAAGAGCTGGAAAGCTGCCCTGTGCCTGTGATCTGA (SEQ ID NO: 217)





DR
GTTCACCGCCGCATAGGCAGCTGATAAT (SEQ ID NO: 218)





RE
TGTTGAAACAACCATAAATTGATATTTACAACCATATATTGATATTTGGTACAACCATAATTTGATATTGCCTCTTCAT



AGTCTAGACTTATGTAAGTTTACGACAAAATCGTGATGAGGCAATATTATGTCTGTTCTATCTTCTCCTTCTCCTTCTC



CTTCTCCTTCTCCTTCTCCTTCTCCTTCTCCTTCTCCTTCTA (SEQ ID NO: 219)





LE
CCGAAACTGATTTTTTGTCCAAAACCTTGTTAGCGCTGGTGGCGTTTAGATAAAGGATGAAGATCTGCGGACAAGGA



GTGTGAGCCAGAATGCTGAAAGTAACTTTCTTACCGGTGGAGTTTTAGTAAATCGTCGGGTTCACAAAAATATCAACT



TATGGTTGTTTTGAACGATATCAACATATGGTTGTATTTTTGTATCTAATTGAATTTAAATAAATTATGAATATCAAGA



TATGGTTGTATCAACA (SEQ ID NO: 220)









100329|0|GCA_001593245.1_ASM159324v1_genomic|CP012504.1|4923009|Aer omonas (ID: 116)










TABLE 26





Elements
Sequences







tnsA
ATGTACAGACGGCACCTGAAGCACAGCAGAGTGAAGAACCTGTTCAAGTTCGTGTCCGCCAAGATGAATACCGTGTT



CACCGTGGAAAGCGCCCTGGAATTCGATACCTGCTTCCACCTGGAATACTCCCCAAGCGTGAAGTTCTACGAGGCCC



AGCCTGAGGGCTTCTACTACGAGTTTGCCGGCAGACAGTGCCCCTACACACCCGACTTTAGACTGGTGGACCAGAAC



GACAGCGTGTCCTTCCTGGAAATCAAGCCCAGCAACAAGGTGGCCGAGCCTGACTTCCTGCACAGATTCCCTCTGAA



GCAGCAGCGGGCCATCGAGCTGTCTAGCCCTCTGAAACTGGTCACCGAGAAGCAGATCAGAATCGACCCCATCCTGG



GCAACCTGAAGCTGCTGCATAGATACAGCGGCTTCCAGAGCTTCACCCCTCTGCACATGCAGCTGCTGGGACTCGTGC



AGAAGCTGGGCAGAGTCTCTCTGCTGAGACTGAGCGACTCCATCGACGCCCCTCCAGAAGAAGTGCTGGCCTCTGCT



CTGAGCCTGATCGCCAGAGGCATCATGCAGAGCGACCTGACCGTGCAAGAGATCGGCATCAGCACACTCGTGTGGGC



CTCTGGCCACTCTGGAATCGATCACGGATGA (SEQ ID NO: 221)





tnsB
ATGGACGAGCACAACGGCCTGTTCGAGGACGAGTTCGTGATCCCTCAGCCTAGCGCCAGCACAAGCCCTATCGATGC



CATTCAGGCTGTGGTGCCTGCCACCGTGGATAGCTTTCCCGATGCTCTGAAGGTGGAAGCCCTGCACAGACGGGACT



ACATCCTGTGGGTCGAGAAGAATCTGGCTGGCGGCTGGACCGAAAAGAACCTGGCTCCTCTGCTGGCCGATGCTGCT



CTGGTTCTGCCTCCTCCTATTCCTAACTGGCGGACCCTTGCCAGATGGCGGAAGATCTACATCCAGCACGGCAGAACC



CTGGTGTCTCTGATCCCTAAGCACCAGGCCAAGGGCAACAGCAGAAGCAGACTGCCTCCAAGCGACGAGCTGTTCTT



CGAGCAAGCCGTGCACCGGTATCTCGTGGGAGAGCAGCCTTCTATCGCCAGCGCCTTTCAGCTGTACTCCGACAGCAT



CCTGATCGCCAATCTGGGCGTCGTGGAAAACAGCATCAAGACCATCAGCTACATGGCCTTCTACAACCGCGTGAAGA



AGCTGCCCGCCTACCAAGTGATGAAGTCCCGGAAGGGCAGCTATATCGCCAACGTGGAATTCAAGGCCATCGGCAGC



CACAAGCCACCTAGCCGGATCATGGAAAGAGTGGAAATCGATCACACCCCTCTGGACCTGCTGCTGCTGGACGATGA



TCTGCTGGTCCCTCTGGGCAGACCTAGCCTGACACTGCTGATCGATGCCTACAGCCACTGCGTCGTGGGCTTCAACCT



GAACTTCAACCAGCCTAGCTACGAGAGCGTGCGGAATGCCCTGCTGTCCAGCATCTCCAAGAAAGACTACGTGAAGA



ACAAGTACCCCAGCATCGAGCACGAGTGGCCCTGTTACGGAAAGCCCGAAACACTGGTGGTGGACAACGGCGTGGA



ATTTTGGAGCGCCTCTCTGGCCCAGGCCTGTCTGGAACTGGGCATCAACATCCAGTACAACCCCGTGCGGAAGCCTTG



GCTGAAGCCCATGATCGAGCGGATGTTCGGCATCATCAACCGGAAGCTGCTGGAACCCATTCCTAGCAAGACCTTCT



CCAACATCCAAGAGAAGGGCGACTACGACCCTCAGAAAGACGCCGTGATGCGGTTCAGCACCTTCCTGGAAATCTTC



CACCACTGGGTCATCGACGTGTACCACTACGAGCCCGATAGCCGGTGCCGGTACATCCCTATCATCTCTTGGCAGCAC



GGCTCCAAGAACGTGCCACCAGCTCCTATCATCGGCGACGACCTGACCAAGCTGGAAGTGATCCTGAGCCTGTCTCT



GCAGTGCACCCATAGAAGAGGCGGCATCCAGTGCCACCACCTGAGATACGATTCCGATGAGCTGGCCTACTACCGGA



TGAACTACAGCGACAAGACCCGGGGCAAGAGAAAGGTGCTGGTCAAGCTGAACCCCAGAGACATCTCCTACGTGTA



CGTGTTCCTGGACGAGATCGGCAGCTACATCAGAGTGCCCTGCATCGACCCTATCGGCTACACAAAGGGACTGAGCC



TGCAAGAGCACCAGATCAACGTGAAGCTGCACCGCGATTTCATCAACGAGCAGATGGACGTGGTGTCCCTGAGCAAG



GCCAGAACCTACCTGAACGACCGGATCAAGAACGAACTGGTGGAAGTGCGGCACAACCTGCGGCAGAGAAATGTGA



AGGGCGTGAACAAGATCGCCAAGTACCGGAACGTGGGCAGCCACGCCGAGACATCTATTGTGCACGAGCTGAACAT



CAGCGCCACCAACGACGTGATCAGCAAGATGGAAAACGCCTCTCAGCCCGAGCACTACGACGACTGGGATAAGTTCA



CCAGCGGCCTGGAACCTTACTGA (SEQ ID NO: 222)





tnsC
ATGGAACTGAGCTGCGACGACGCCAACAAGCTGCGGAGCTTCATCGAGTGCTACGTGGAAACCCCTCTGCTGCGGAC



CATCCAAGAGGACTTCGACCGGCTGCGGTTCAACAAGCAGTTTGCCGGCGAGCCTCAGTGCATGCTGCTGACAGGCG



ATACAGGCACAGGCAAGTCTAGCCTGATCCGGTACTACGCCGCCAAGTATCCTGAGCAAGTGCGGCACGGCTTCATC



CACAAGCCTCTGCTGGTGTCTCGGATCCCCAGCAGACCTACACTGGAAAGCACAATGGTGGAACTGCTGAAGGACCT



GGGCCAGTTTGGCAGCAGCGAGAGAATCCACAAGAGCAGCGCCGAGTCTCTGACAGAGGCCCTGATCAAGTGCCTG



AAGAGATGCGAGACAGAGCTGATCATCATCGACGAGTTCCAAGAGCTGATTGAGAACAAGACCCGCGAGAAGCGGA



ACCAGATCGCCAACCGGCTGAAGTACATCAGCGAGACAGCCAAGATTCCCATCGTGCTCGTGGGAATGCCCTGGGCC



ATTAAGATCGCCGAGGAACCTCAGTGGTCCAGCAGACTGCTGATCAGACGGGCTATCCCCTACTTCAAGCTGAGCGA



CGACAGAGAGAACTTCATCCGGCTGATCATGGGACTCGCCAACAGAATGCCCTTCGAGACACAAGTCCGGCTGGAAA



CAAAGCACACCATCTACGCCCTGTTCGCCGCCTGTTACGGATCTCTGAGAGCCCTGAAACAGCTGCTGGACGAGTCTG



TGAAACAGGCTCTGGCCGTGCACGCCGAGACACTGAAGCACGAACATATCGCCGTGGCCTATGGCGTGTTCTACCCC



GACCAAGTGAACCCATTCCTGCAGCCTATCGATGAGATCCAGGCCTGCGAAGTGAAGCAGTACAGCAGATACGAGAT



CGACGCCGTGGGCAAAGAGGAAATCCTGTCTCCTCTGCAGTTCACCGACAAGCTGCCCATCAGCCAGCTGCTGAAGA



AGCGGTAA (SEQ ID NO: 223)





tnsD
ATGCATCTGCTGATCAGACCCGATCCTAGCCTGGACGAGAGCCTGGAAAGCTACTTCCTGCGGCTGAGCCAAGAGAA



CGGCTTCGAGCGGTTCTACCTGTTCAGCGGCGTGATCAAGGACTGGCTGCACACCACAGATCATGCCGCCGCTGGCG



CTTTTCCCCTGGAACTGTTTCGGCTGAACATCTTCCACGCCAGCAGATCCTCTGGCCTGAGAGTTAGAGCACTGCAGC



TGGTGGACAGACTGACAGATGGCGCCCCTTTCAGACTGCTGCAACTGGCCCTGTCTCACAGCGCCATCAGCTTCGGCA



ATCACCACAAGGCCGTGCACAGATCCGGCGTGGACATCCCTCTGTGCTTTATCCGGACCAGCAAGATCCCTTGCTGCC



CCGACTGTCTGAGAGAAAGCGCTTACGTGCGGCAGTGCTGGCACTTCAAGCCTTACGTGGCCTGCCACAGACATGGC



GGCAGACTGATCGATAGCTGTCCTGCCTGTGGCGAGTCCCTGAATTACCTGGCCAGCGAGCTGATCAACTACTGCCAG



TGCGGCTTCGACCTGAGAACCGCCTCTACAGTTCCCGCTCAGCCCGATGAGATTCAGCTGTCTGCCCTGGCCTACGGC



TGCAGCTTTGAGAGCAGTAATCCCCTGCTGGCCATCGGCTGTCTGAGCGCTAGATTTGGAGCCCTGCTGTGGTATCAG



CAGAGATACCTGAGCGATCACGAGGCCGTGTGCGACGATAGAGTGCTGGCCAAAGCCATCGGCCACTTTGCCGCTTG



GCCTGATGCCTTTTGGGGAGAGCTGCAGCAGATGGTGGATGATGCCCTTGTGCGGCAGACCAAAGAGCTGAACCACA



CCGACTTCGTGGACGTGTTCGGCTCTGTGGTGGCCGATTGTCGGAGAATCCCCATGAGAAACACCGGCCAGAACTTC



ATCCTGAAGGACCTGATCGTGTTCCTGACCGACCTGGTGGTGTCTCACCCTCAGTGCAGAGTGGCCAATGTGGGCGAT



CTGCTGCTGAGCGCACTGGATTCTGCCACACTGCTGAGCACCAGCATCGAGCAAGTTCGCAGACTGCAGCACGAGGG



CTTTCTGCCTCTGGCCATTAGACCCGCCTCCAGAAATACCGTGTCTCCTCACCGGGCCGTGTTCCACCTGAGACATGT



GGTGGAACTGCGGCAGGCCAGAATGCAGAGCCACCACGATGACAGCAGCACCTATCTGCCTGCCTGGTGA (SEQ ID



NO: 224)





Cas5/
ATGGTCACCACCATGCACATCCAAGAGCTGCTGGGAATCGCCGAGCACGTGGAAAGAGACAGACAGCTGCGGAGAC


8
ACTTCGCCCCTTACAGCGCCGACATGGATGTGGACGATGCCGAGAGAAAGACCCTGGTGGTGCTGCTGAATCTGACC



CTGAAGCGGGACAGAGTGGACAACCTGTGCAACGAGAGACAGGCCCGGGACATCCTGAACGACGCCTCTCACATTG



CCCACTGCCTGCACACAGCCAGATGGCTGCACACCCACAACCTGAAGTACCCCGACACCAGAGTGTCCGGCCAGAGA



CTGATTGTGAACGCCCCTCCAGTGATCACCGGCATCATCACATCTGCCGGCCTGCCTATGAGAATGGGCTGGGCCCAT



GACAGCAGCGACATCAATCTGGCCAAGCTGTTCTGCACCAGCTTCAGATATCACGGCGACGCCACAAATCTGGCCCT



GCAGCTGGTGGCCAGAAACATGGTTTGGGTGCAAGCCCTGCTCGGCCTCGGAGGAACACAGCAGCAACTGGATATCT



GGTGCCAGCAGCTGGCTGGACATCTCGGCGGAGAAGTGATCCCCTCTGAGGTGTCCCCATACAGCAAGCAGACCAGA



TTTCCCTACCGGGGCCAGTACTGTAGCGTGACCCCTGTGGTTTCTCATGCCCTGCTGGCCCATCTGCAGGACGTGATC



CACGAGAAGAAGCTGCACCACACACTGATCCAGCACGATCACCCTGCCTCTGTTGGAGGACTTGTGGGAGCCCTTGG



CGGAAAAGTGGCCGTGCTCGATTATCCTCCACCTGTGTCCAAGGGCAAAGACCGGAACTTCAGCCAGGCCAGAGAGA



GCCAATACGCCGACGGCCAGAGCCTGTTCGACAGAGCCATCTTCAACGACCATGTGTTTCTGGACGCCCTGAAGCAC



CTGATCGTCAGACCTGGCCTGACCAGAAGGCAGCAGAGACAGCTGAGACTGAGCGCCCTGAGATACCTCAGAAGGC



AACTGGCTGCTTGGCTGGGACCCATCATCGAGTGGCGGGATGAAGTGGAAAGCGGCGGCAGCAATGATCCCAGCGA



ACTGCCTGTGGCCAGCCTGGAATTTGGCCTGCTGACACAGCCTCAAGAGGCCCTGCCTGACCTGATGCTGAATGTGGC



CTCCAGATTCCACCTGGAACTGCAGAATCACCCCGTGGGCAGAAGATACGCCTTCCATCCTGAGCTGATGGCCCCTAT



CAAGAGCCAGATCCTGTGGCTGCTGAGGCAGCTGGCCAATCACAAAGAAGGCGCCCAGCCTCCTAGCAGCAGCTACT



ATCTGCACCTGAGCGGCCTGACCGTGTATGATGCTGCCGCTCTGGCTAACCCTTACCTGTGTGGAATCCCTAGCCTGT



CTGCCCTGGCCGGCTTCTGTCACGATTACGAGAGAAGGCTGATCTCCCTGCTGAAGCAGCCCGTGTGCTTTACCGGAA



TCGCCTGGTATCTGAGCCGGTACAGCAGAGTGACAGGCAAGCACCTGTCCGAGCCTGACAGACCTGAACACGCCAGA



GCCGTGTCCGCCATTAGAAGGCCTGGCATGATCGACGGCAGATACTGCGACCTCGGCATGGACCTGGTTATCCAGGT



GCTGGTGCCTACCGATGGCACCCAGTCTCTGACCCACTGTCTGGACCTGCTGAGAGCTGCTCTGCCTGCTAGATTTGC



CGGCGGATGTCTGCACCCTCCAAGCCTGTACGAGGAACGGAACTGGTGCAACCTGTACCAGGACCAGGATGCCCTGT



TCACAGCCCTGAGCAGACTGCCTAGATACGGCTGCTGGGTGTACCCCTCCAATCGGGAACTGAGCAGCGTGGAAGAA



CTGACCGAAGCACTGGCCCTGGATAGAAGGCTGTGCCCAGTGTCTACCGGCTTCGTGTTCCTGGAAGAACCCACCGA



GAGAGCCGGAAGCCTGGAAAACCTGCACGTGTACGCCGAGAGCGCCATCTCTACAGCCCTGTGCATCAACCCCGTGG



AAATGAGGCTGGCCGGCAAGCCACCTTTCTACAAGAGCGCCTTTTGGCGGATGCGGGACGAGAATGGCACCATCCTG



ATGAAGGGCCCCGAGAACATGGGCTGA (SEQ ID NO: 225)





Cas7
ATGGAACTGTGCACCCACCTGAGCTACTGCAGAAGCCTGTCTCCTGGCAAGGCCGTGTTCTTCTACAAGACCGCCGAG



AGCGACTTCGTGCCCCTGAGAATTGAGGTGGCCAAGATCAACGGCCAGAAGTGCGGCTACACCGAGGGCTTCGATGC



CAACCTGAAGCCTAAGAACATCGAGCGGCACGAGCTGGCCTACAGCAACCCTCAGACAATCGAAGTGTGCTACGTGC



CACCTAACGTGGACGAGCTGCACTGCAGATTCAGCCTGAGAGTGGAAGCCAACAGCATGCAGCCTAGCGTGTGCAGC



AATCCCGAGGTGCTGAGAGTGATGGCCAGACTGGCTCAGGCCTATCAGAGACTCGGCGGCTACAATGAGCTGGCCAG



ACGGTACTCTGCCAACGTGCTGATGGGAACATGGCTGTGGCGGAACCAGTACACCCAGGGCACAGAGATCGAGATCA



ACACCAGCCTGGGCAGCACCTATCACATCCCCGATGCCAGAAGGCTGTCTTGGAGCGGAGGCTGGAGTGACCCTGAT



CAGCAGCAACTGGGACAGCTGGCTGGCGAGATGGCCAATGCTCTGAGCCAGCCTAATGTGTTTTGGTTCGCCGACGT



GACCGCCAAGCTGAAAACCGGCTTCTGCCAAGAGATCTACCCCAGCCAGAAGTTCACCGAGAGAACCGACGATCACG



CCGTGGCCTCTAGACAGCTCGCCACAACAGAGTGTCTGAGCGGACAACTGGCCGCCTGCATCAATCCCCAGAAGATT



GGAGCAGCCCTGCAGCAGATCGACGATTGGTGGGCCGATGATGCCGACCAGCCTCTGAGAGTGCATGAGTACGGCGC



CAATCACGAAGCCCTGACCGCCTTTAGACACCCTGCCAGCGAGCTGGACTTCTACCATCTGCTGACCAGAGCCGACC



AGTACCTGACCGACATGGAAAGCCACGACAGAGGCTGTGAACTGCCTGGCGACGTGCACTTTCTGATGGCCGTGCTT



GTGAAAGGCGGCCTGTTCCAGAAAGGCAAGGGCAGATAA (SEQ ID NO: 226)





Cas6
ATGACCGAGAGCCGGTACTTCTTCGCCGTGCGCTACCTGCCTGACGATGTGGATTGTGGACTGCTGGCCGGCAGATGC



ATCAGCACACTGCACGGCTTTAGCCGGGCTCACCCCAATATCCAGATCGGCGTGGCATTCCCCGAGTGGTCCAATAG



AAGCCTGGGCAGATCTATCGCCTACGTGTCCACCAACCGGTCCATGCTGGAACGGTTCCGGTCTAGAAGCTACTTCCA



AGTGATGCAGGCCGACAACCTGTTCGCCCTGTCTGCTGTGCTGGAAGTGCCTGAGACATGCCAGAACGTGCGGTTCAT



CCGGAACCAGAACCTGGCCAAGCTGTTCGTGGGCGAGAGAAAGCGGAGACTGACCAGAGCTAAGCGGAGAGCCGAA



GCCAGAGGCGAAGTGTTCCAGCCTCAGATCCCTGCCGGCACAAGAGAAGTGGGCATCTTCCACACCGTGCACATGCA



GTCTGCCAGCAGCGGCCACTCTTGCATCCTGCACATTCAGAAGCAGCAGACCGAGCTGAACGAGGGCATCGACAGCT



ACAGCTCTTACGGCCTGGCCAGCAACGAGGTGTACACAGGGGATGTGCCTGAGCTGGGCGAGTTCGTGTTCACCCTG



TTCCACAACGAGCTGTCCCTGGCCAGATGA (SEQ ID NO: 227)





DR
GTGAACTGCCGCATAGGCAGCCAAGAAA (SEQ ID NO: 228)





RE
TGTCGTCTAAATCATAAGTTGACATATCCAAAGCATAAGCTGACATGATCTTGCATCATAAGCTGACATAGCCTAAAC



CTGTAGTAAAGTAACAACAGGTTGGTGGTGTGTTATGTACCGTCGGCATCTCAAGCACTCCCGTGTCAAAAACCTCTT



CAAGTTCGTCAGCGCTAAAATGAACACTGTATTTACAGTGGAAT (SEQ ID NO: 229)





LE
TTTACATGAAGCACGGCTGGTTACCCCTAACACGGGACCATACAGGAAGCCGAGAAGCTTCATGCTGGGTATGAAGG



CGGAACAGACTTCTGAAGTGGTAAAATAACAACCCCGCAGGGGGAGGGTGTAGGGGTTGATGTCACTCTATGTCAGC



TTATGGTTTATTTTTATGTCAACTTATGGGTTATAAAACTCTCGTAAGTTACTGATTTATGGCTATACGTTATGTCAGC



TTATTGTTTAGACGACA (SEQ ID NO: 230)









102222|43|GCA_001639725.1_ASM163972v1_genomic|LTAW01000005.1|4216 76|Marinomonas (ID: 117)










TABLE 27





Elements
Sequences







tnsA
ATGTACAACCGGAACCTGCGGAAGCCCTCTCCAAACAAGAACATCTACAAGTTCGTGTCCCGGAAGAACCGGTCCAC



CGTGATGTGTGAAAGCGGCCTGGAATTCGACGCCTGCTTCCACCTCGAGTTCAGCCCTTCTATCGCCAGCTTCGAGAG



CCAGCCTACCGGCATTGAGTACCCCGCCGATAACAAAGTGCGGCGGTACACCCCTGACTTCAAGATCGTGAAGGACA



CCGGCGAGATCGAGTACATCGAAGTGAAGCCCGAGCGGATCCACAGCACCAAGAAGTTCAGGGACGAGTTCGAGCA



CAAGAGGGCCGCCTATTCTGCCCTGGGCTTCAAGCTGATCCTGGTGTCCGAGAAGCAGATCAGAAGCGACAAGCTGC



TGAGCAACCTGAAGATCCTGCACCGGTACAGCAGCACCAACCTGAGCGAGCTGCACAAGCTGGCCCTGACACACATC



CAGAAGTTCAAGAGCCTGAGCATCCGGCAGCTGGCCATCAAGCTGGGCATCCTGATCTGCGACTGTATCGCCGCTTGT



GCCCTGCTGATCGGAATCGGAGCCATCAAGGCCGACCTGGAAAGCGACTTCCTGTGCGAGAACAGCCTGCTGAACGA



GGCCTAA (SEQ ID NO: 231)





tnsB
ATGTTCGACGACGAGTTCGACGATAACCCTCTGAGAGAGGACGCCCAGAGCAGCAGCGATCAGCCTGACGAGATCA



GCTTTCTGGACCCCGACCTGGACAGCTACCCCAGCAATAGCAGAATCGAGGCCATTGCCAGATACGAGCTGATCCTG



TTCATCAGAGAGCGGCTGGCTGGCGGCTGGACCCAGAGAAATATCGACCCTCTGACCGACGAGTACTTCAGCGAGAA



CAGAGAGATCAACAAGCCCAACTGGCGGACCGTGACCAGATGGCACAAGAAGCTGCTGGAACAGGGCGACACCCCT



AAGGCTCTGATCGAGCGGCACCACAACAAGGGCAACAGAAACCGGAAGCTGGAACTGGAACACGAGCGGTACTTCG



AGGCCGCCATCGACAGATTTCTGAAGGCCGAAAGACCCAGCGTGGCCAGCGCCTACAGATTCTACAAGGACCAGTGT



CTGCTGCAGGGCCAGAACATCAACCCCATGAGCCAGAGAGCCTTCTACGACCGGATCGACAAGCTGAACTTCTACGA



GGTGGCCGTGAAGAGATTCGGCAAGTACAAGGCCGACATTATGTACGGCTACAAGGGCAGCACCATCAGACCCGAG



CGAGTGATGCAGAGAGTGGAAATCGATCACACCCCTCTGGACATCATCCTGCTGGACGACGAGACAAGCCAGCCTAT



CGGCAGACCCTACCTGACACTGCTGAAGGACGTGTACAGCGGCTGTCTCGTGGGCTACCACCTGACCTTTAAGGCCCC



TAGCTATGCCTCTGTGGCCAAGGCCATTTGCCACGCCATCCAGCCTAAGAACCAGAGCTTTGAGGCCTGGGGCGTCGT



GTGGCCTTGTTACGGAAAGATCGAGGTGCTGGTGGTGGACAACGGCGCCGAGTTTTGGAGCAAGAGCCTGGAACAGA



TGTGCTACGAGCTGGGCATCAACGTGCAGTACAACCCCGTGCGGAAGCCCTGGCTGAAGCCCTTTATCGAGCGGAGC



TTCCGGACCATCAATGACCTGATCCTGATTGAGCTGCCCGGCAAGACCTTCCGGTCCATCGATACCAGGGACGAGTAC



AATGCCGTGGAACACGCCAGCATCAAGTTCAACCGGTTCATCCACGGCTTCGAGAAGTGGATGGCCGAGGTGTACAA



CTGCAGCGCCGATAGCAGAGGCCTGAAGGTGCCAAGCGTGAAGTGGCAAGAGGGCATCGAGACAATGCCTCCAGCC



ACACTGAACGACGATGAGATCAGCGAGCTGCCTAAGCTGGCCGGCCTGAAAGAGTCTAGAGCCATCCAGTCTAGCGG



CATCACCTACCACTACCTGAGATACGACTCTGACGCCCTGGCCGACTACAGAAAGCAGAGCCTGAGCAGCGACCGGT



CCTACACCGTGACAATCAAGGTGGACGTGGACGACCTGAGCCACATCTACGTGTACCTGCCTGAGCTGGAAAAGTAC



CTGACCGTGCCTTGCGTGGACCAGAGCTACACCAAGAACCTGAGCCTGGATCAGCACCTGGTCAACAGAAGCTTCGC



CAAGGCTCACAACCGGCTGATCGGCAAGAGCGACACCGATCTGGCCATGGCTCGGCAAGAAATCCAAGAGATCCTG



GCCGATCAGGACGACAAGGCCAAGTCCAGCACCAAGATCAAGACCAGCAAGAAGGCCGCTCAGTACAAGGGCTACA



GCAACGAGAGCGTGAAGAACAAGGTGGCCAATCCTAGCAGCGACGACGAAAAGAGCAACGCCGAGCACTCTGAGGT



GTCCGAACTGGAAACCCTGTGGAACAGCCTGCGGAAGTGA (SEQ ID NO: 232)





tnsC
ATGGGACTGACCGATGCCGATAAGGCCAAGCTGAGAGAGTTCAAGGACTGCTTCTGCCCCTACACACCCGTGAACGC



CATCCTGAACGACCTGGAAAGCCTGTACCAGAGCAGCGAGATTGGCGGCGAGCAGCTGTCTATGCTGCTGAGAGGCG



ATACCGGCACAGGCAAGAGCGCCATCATCAACCACTTCAGCCACGCCAAGAACGGCAGCCAGAGCGAGTCTATTCCC



GTGCTGCTGTCCAGAGTGCCCAGCAAGCTGACCGTGGAAGATATGACCAGGCAGCTGCTGAGCGACCTGGGAGTGTT



TGGCAGCACAACCCACAGAGCCAGAAACTCCCAGTCTGACGCCCACCTGACCAACAGACTGCTGGACGCCCTGAAAG



TGAAGCGGACCAAGATGATCATTATCAACGAGTTCCAAGAGCTGATCGAGTTCAAAGGCGCCAGAGACAGACAGGC



CATCGGCAACAGGCTGAAGCTGATCTCTGAAGAGGCCGCCGTGCCTATTGTGCTGGCTGGAATGCCTTGGATCGACG



AGATCCTGAATGACAGCCAGTGGGCCAGCAGACTGGCCACCAGAACACACACCCTGCAGTACTTTAGCCTGAGCAAG



CGGCCCCAAGAGTACAGAGAGTTCCTGGAAGCTATCGAGCAGTACATCCCCTGCGATCTGGAAACCAGCCTGACCGA



CTTCGAGATCTCTCTGGCCCTGTTTGCCGCCAGCTGTGGCGAAATGAGACAGCTGAAGGCCATTCTGACCGAGACAAT



CCAGCTGTGCCTGATCAACGGCAAGCCCCTGTCTAAGCAGGCCCTGAGCAACAGCTTCGCCAACCTGTATAGCGGCG



CTGACAACCCCTTCGAGACACCCAAAGAGAAGATCAAGATCCAAGAGGTCGAGATGCACAGCCAGTACATCAGAGG



CGACAGCACCCACAGGGCCTCCATCCAGCCTAGAAAGCTGAGCGAGATCATGACCCTGAGCCAGATCCTGTCCAAGA



AGTGA (SEQ ID NO: 233)





tnsD
ATGAACTTCCTGCCGAATCCTATCGAGCTGTACGAGAACGAGACACTGGAAAGCGCCCTGCTGAGACTGTGCAGAGC



CAACCACTTCGAGCACTACAACGACCTGAGCATCGAGATCAGAAGCTGGCTGGAAGAACATCACCCCACCATTGCCG



GCGCATTCCCTCTGGCTCTGGATGCCGTGAATGTGTACCACAGCAAGCAGAGCAGCGCCAAGAGAGTGCAGTCTCTG



CAGCTGCTGGAACAGCTCGTGGGCCTGCCTAAGTTTAGCCTGCTGGACGTGTCCTTCAAGCACACCAACGCCGTGGAT



AGCGGCCACTTTGCCGAAGTGCGGTACAAGCAGATCACAATCCCCAAGAGCTTCGTGCGGGCCTGCAATGTGCCTGT



GTGCATCGAGTGCCTGCGCGAGAGCAACTACGTCAGATTCGACTGGCACATCAGCAAAGTGACCTGCTGCGACAAGC



ACAAAGTGAAGCTGCTGACCAACTGTCCCAGCTGCAACACCACACTGAACTACATGATCAGCGAGGACCCCAGCAGA



TGCGTGTGTGGCTACTCTCTGTTTGGCGTGGACTCTAGCGAGGCCGGCATTGATGGATGGCGAAGATGGCCCAGCTTC



GATCAGCAGGGAAAGCAGCCTTTCAGCGAGCAGCTGGCCATGCTGTTCTTTCTGGACCGGCACTTCCCCAAGCTGGG



GCACGAAGAGTTCAACGACGATCTGAAGGGCCACATCGAGGGCCATCTGCAGAAGCTGATCGACCACAGCCTGCTGA



TTGCCACCGACAAGATCAACCGGCTGACCTTCAGCTACCTGACCAACAACTTCCTGAGCGACGTGGCCCAGATCAGC



TGCCTGCCTGACTGCATCAAAGAATCTATCGCCAGCGTGGTCATCGAGCTGGCCCTGGAAACACCCAGAAGCACAAT



CGCCAACCTGGGCGATAGCCTGGTGTCCATTAGAGAGGTGGCCCTGATCACCGGCAGCACCGTGGAAGATATTTTCA



GACTGTACGAGTCCGGCATCCTGATGCTGGGCAAGAGAATCAGAGATGAGGGCCGCCTGGAAAGCTTCAACCCCGCC



TTCAGACTGAGAGATGTGGCCGCCATCGTGCTGAGCTACAGCAGATATGGCTACAGCCAGAGCGCCTGGTGA (SEQ



ID NO: 234)





Cas5/
ATGCACCTGAAGGATGAGCTGCAGGCCGTGAAAACCCTGAAGGCCAAAGAGAGATACGACCTGCTGAAGAAACAGT


8
TCGAGCTGTGCAGCGAGGGCATCGATGTGACAGGCTCTGAGGTGGACTGCCTGACCATCCTGGTCAACCTGATCGGC



AAAGAGGCCGAGGAACTGAACAGCAGCCTGCACGCCAAGTGGATTCTGGAAGATGAGACATTCTGGGTCAAGTTCC



AGAAGGTGGCCAGCCAGCTGCACACCCACAATCTGAAGTGGCCCGACAGCAGAGTGAACCTGCAGCACCAGATCAG



AGTGATCCCCGAGACAGGCGCCCTGCCTAAATTTGGCTGGAGCGGCAACAGCAGCGACTACAGAGTTGGCAGACTGC



TGACCAGCACCTTCAACTGGCAAGGCGCCGAGCACTCTCTGGTGTCTGTGTGGCTGGAAGATTTCGTGGAATGGCGG



AAGGCCAGCTACAAGCTGGGCATCACCAAGGCCTTTTGGTATCAGATCAAGCGCGAGCTGGAAAACCTGTTCCAAGA



GTCTCACTTCCCCGACGTGGTGGACAGCTACTCTCCCGAGCTGCTGTTTCCCTACAAGGACCACTACCTGACCGTGAC



ACCTGTGGTGTCTCACAGCACACAGCTGAGCGTGCAGCATCTCGTGGGACTGCCTACACACTCCCTGAGCTTCCCTCA



TCCTAGCGCTCTGGGCATCCTGTGTGGATCTCTCGGAGGACATGTGCGGATGCTGAAGCTGAGCCCCGTGCACAACCT



GAGAAGCAGACAGAGCAGCCTGAACAGCCTGCGGAGCTACCTGGAACCTTACAGCCTGACCGCCAAATACGCCACC



AACATCTACCGGGAAGTGACCGACGTGAAGATCTACAGCTCCCTGCGGCTGAAGAGAAAGGCCAGACTGAGAGTGC



TGTGCGCCCTGGACAACATCCTGGAAGAGTGGATGAGCCCTCTGATCCAGGCCAAGCTGGCCTCCAAGAACATCAGC



AAGATCGAGGGCCTGAGCCAAGAGGAACAGAACTTCCTGAAAACCAGCTTCGTGGACATCGAGGACTTCAGCAGAT



ACCTGAACCGGAAGCTGCACGGCGAACTGGAAAGCAACAAGTACACCCGGCACTTCAGCTACCACCAGAGACTCGT



GGGCGTGACACAGAAACGGCTGATGAGCTTCCTGAAGCACGTCCTGAGCGAGAAGTCTAGCAGCGACGCCAGCGAC



GAGACATTCCTGGTGTTCAAGAGCCTGAGAATCAACGAGGCCAACGGCCTGAACAACCCTTTCGTGGCCGGCATGCC



TAGCATGATCGGCCTGTATGGCTTCCTGCACCAGTTCGAGAGACAGCTGAACGAGATCTGCAGCGACGTGTCCGTGG



TGTCTTTCGCCCTGTACTGCAGCCACTACAGCAGCCACGGATCTATCGCTCTGCCCGCTCCTAGCATCCCCGACAAAG



AGATGCGGATCAAGAGAAGCGGCGTGATGCCCGAGTTCAAGTTCGACGGCAAGTTCAGCATCATCGTGAAGCTGAAC



CGGCTGACCGACAACGACGACCCTCTGGATATCGAGCTGATCAAGGCCGCACTGCCCGAGAGACTTTGGGGCGGATC



TGTGCACCCTCCTTACCTGTACGAGGATACCGAGTGGGCCAGCATTGTGTCCGGCGCCAACAACCTGAAGCAGTACA



TGGCCCGGCACATGTTCTTCGGCAACTGGATCAGCCCCGAGAAACAGAACAAGCTGGACCTGAACGACTACGTGGAA



CTGCTGAAAGCCAACCACGACCTGAGCCTGTGTCTCGTGGGCTACGATCTGCTGGAACCCATCAAGCCCCGGAACGT



GATCTCTGGCATCCACGCCTTTTGCGAGCCCCTGATCGACCTGTGCAGACTGAAGCAGACCTTCAAAGTGATCCGGGG



CAGCAAGCCTCTGGAACAGGGACTGTTTTGGCAGTACGTGCCCGTGTCTCAGAACTGCACCACTCTGAGAGTGTCCCC



AGTGTGCGGAGAAACACATGCCGCTAGCCAGTCTGCCGAGCTGTAA (SEQ ID NO: 235)





Cas7
ATGCAGCTGCCCAACCAGCTGAGCTACAAGCGGAGCATCAACCCCAGCAAGGCCATCTTCTACTACCGGCGGGACGA



CGAGCTGTACCCTCTGCCTGTGGAACGGATGAAGATCCGGGGCAGCAAGAGCGGCTTTAGCGAAGCCCATACAGCCA



AGGGCATCAAAGAGAGCGCCACCATTCACAGCCTGGCCACCGGAAATCCCCACACCATCGATACCTGCTACCTGCCT



CCTGTGGCCGAGTGCCTCGTGTGTAGATTCAGCCTGAGAATCAGCGCCAACAGCCTGAAGCCTGACCGGTGCAGCGA



CATGACCTTCAAGGATACAGCCCAGCAGTTCCTGAACAGCTACATCGACAAGGACGGCTTCAAAGAGCTGGCCATCA



GATACGCCAAGAATATCGCCATGGGCACCTGGCTGTGGCGGAACAGAGAGGCCAATACCTTCGACGTGTTCGTGAAA



ACCAGCCAGGGCACCGAGTACAAGTTCGAGAACGCCCACCAGCTGTTCTGGGATGCTGCTTGGCCTGCCGAGAAGTC



CGATCTGCTGAATGGACTGGCCAGCGAGCTGGCTACAGCTCTGTCTAGCGCCAGATACGTGTGGCACTGCGACATCT



GGGCCGAAGTGAAGATGCCCTTCTGCAGCGAGGTGTTCCCCAGCCAGTGCTTCGTGGACCACAACGATAAGCTGAGC



GCCAGCAAGGTGCTGCTGACCACCGATATCGATGGCGTGATGACCGCCTGCTACAGCAGCGACAAAGTGGGAGCCGC



CATCCAGATGATCGACGATTGGTGGGATGAGAGCTGCGACTTCCCACTGAGAGTGAACGAGTACGCCGCCGACTACG



AGAACCTGATCGCCAGAAGGCACCCCAGCACCGACAGAGACTTCTACCAGTGCCTGCAGAAGCTGCCCTACTACACC



GAGAAGCTGGTTAAGGCCGCCGTGACCGAGGACATCGATCCCGATGCTCACTTTGTGGCCAGCGTGCTCGTGAAAGG



CGGCATGTTTCAAGGCGGCAAGAGCTGA (SEQ ID NO: 236)





Cas6
ATGAAGCTGTACTCCATCAGCATCCGCTACCTGCCTGAGAAGTGCGATCATGCCCTGCTGGCCGGCAGATGCATTAAG



GTGCTGCACGGCTTCATGAGCCGGAACGGCCAGCTGAATATCGCCGTGTCCTTTCCACGTTGGAGCGCCAAGACAGT



GGGCAACCAGATCGTGTTCGTGTCCCCTGACAGCAACCTGCTGGACTTCCTGCTGGAACAGCCCTACTTCCAGATGAT



GATCGACAACGGCCTGTTCGAGGCCAGCGACGTGGAAGATGTGCCTAAGAGCGAGAGCTTCGTGAAGTTCGTGCGGA



ACCAGAGCATCGACAAGATGACCCCTGCCGCCAAAGCCAGAAGGCTGAGAAGGGCCCAGAAGCGGGCTATTGCCAG



AGGCGAGGAATTCGACCCCATTCCTCCACAGAGCAAAGAGGTGGACTTCTTCCACAGCATCCCCATGGAAAGCAGCG



AGAGCGGCATGAGCTACATGCTGCGGGTGCAGAGATTCGAGGCCCACAGAGCCTCTAAGGTGGAACCCTTCAAAGTG



TGCAGCTACGGCCTGAGCACCAACGAGTCTCACAAGGCCCTGATTCCTTACTGCGTGACCTGA (SEQ ID NO: 237)





DR
GTGACCTGCCGCATAGGCAGCTGGAAAA (SEQ ID NO: 238)





RE
TGTAAATTAAAGCATAAAATGACAAATTTGAACCATAAGTIGTCAAATTTGCAGTATATGCTGACATAACCTATTTTT



AAGTTGTTATTTAGTTACAACTTGCAGGTATCGGTTATGTACAATCGCAATCTCCGCAAACCCAGTCCAAACAAAAAC



ATCTACAAATTTGTTAGTAGAAAAAATCGCTCAACTGTTATGTG (SEQ ID NO: 239)





LE
ATCTTTAATACGGGTTTTGAAAGCTGATACTGGTATGTAGTTTGAAGACGTCTAAGCCAATGATGGCTTCTGATCAGG



TGTTTGAGTGGTGATTTTATTACATCGTTCATACTGAGGGGTCTTGGACTATTGGTAAAAAGAAAGAATTTGTCATCTT



ATGGTTTAATTATTTGTCATCTTATGATCCAAAATGTTGCGTAACTCATTGATTCTTCGTTTTCCAATTTGTCACCTTAT



GCTTCAATCAACA (SEQ ID NO: 240)









103676|46|GCA_001675935.1_ASM167593v1_genomic|LZFV01000047.1|194540|Shewanella (ID: 118)










TABLE 28





Elements
Sequences







tnsA
ATGTACATCCGGAACCTGCGGAAGCCCTCTCCAAACAAGAACGTGTTCAAGTTCGCCAGCGCCAAAGTGATCGAGAC



AGTGATGTGCGAGAGCACCCTGGAATTCGACGCCTGCTTCCACCACGAGTACAACGAGACAATCGAGGCCTTCGGCT



CTCAGCCCGAGGGCTTCTACTACTACTTCGAGGGCAAGAGACTGCCCTACACACCCGATGCCATCCTGCGGTATATCG



ACGGCACCACCAAGTTCCACGAGTATAAGCCCTACAGCAAGACCTTCGATCCCGTGTTCCGGGCCAAGTTCTTCGCCA



AGAAAGACGCCGCCAGAGAGCTGGGCAGAGAACTGATCCTGGTCACCGACAAGCAGATCAGAGTGAACCCCATCCT



GAACAACCTGAAGCTGCTGCACCGGTACAGCGGCATCTACGGCGTGACCGATATCCAGAGAGAACTGCTGCAGCTGA



TCAGAAAGAGCGGCAAGCTCCAGCTGCACGATATCGCCAGCGAGTACAAGTTCCCTATCGCCGAGACAAGAAGCTTC



CTGTACAGCCTGATCAACAAGGGACTGATCAAGGCCGACCTGAACCAGGACGACCTGAGCTGCAATCCTAGCGTGTG



GTGCAACGGCTGA (SEQ ID NO: 241)





tnsB
ATGATGGACTTCGAGGACGAGTTCACCGAGAGCACCAGCGTGAAGAAGCCTGCCTCTCCTGCTCAGTACGTGAAGCT



GGTGGATAGCGAGCTGGTCAAGCGCGACCTGGATACCTTTCCTGACTTCCTGAAAGAGAAGGCCCTGGACAAGTACA



AGCTGATCTCCGTGATCGAGCTGGAAAACAGCGGCGGCTGGACCCAGAAGAAGCTGGACCCTATCCTGGATAAGCTG



TTCGAGGGCAACACCGAGAAGAGGCCCAATTGGAGAACAGTCGTGCGGTGGCGGAAGTCCTACATCGAGAGCAATG



GCGATCTGGCCAGCCTGGTGGACAAGAGCCACAAGAAGGGCAACAGAAGCAAGCGGACCGAGGGCGAAGAGGTGTT



CTTTGAGAGAGCCCTGCTGCGGTTCCTGGACGCCAAAAGACCTAAAGTGACCACCGCCTACCAGTACTACAAGGACG



CCATCACCATCGAGAACGAGAACATCGTGGACGGACAGATCCCCATCATCAGCTACAAGAGCTTCAACCAGCGGATC



AAGAGCCTGCCACCTTATCCTATCGCCGTGGCCAGACACGGCAAGTTCAAAGCCGATCAGTGGTTCGCCTACTGCAG



CTCTCACATCCCTCCAACCAGAATCCTGGAACGCGTGGAAATCGATCACACCCCTCTGGACCTGATCCTGCTGGACGA



TGAACTGCTGCTGCCTCTGGGCAGACCCTACCTGACACTGATCGTGGATGTGTTCAGCAACTGCGTGCTGGGCTTCCA



CCTGAGCTATAAGGCCCCTAGCTATGTGTCTGCCGCCAAGGCCATTGTGCACGCCATCAAGCCCAAGACACTGAACG



ACGTGGGCATCGAGCTGCAGAACGACTGGCCTTGCTATGGCAAGTTCGAGACACTGGTGGTGGATAACGGCGCCGAG



TTCTGGTCTAAGAGCCTGGACCACGCCTGTAAAGAGGCCGGCATCAACATCCAGTACAACCCCGTGCGGAAGCCCTG



GCTGAAGCCCTTCGTGGAAAGATTCTTCGGGATGATCAACCAGTACTTCCTGACCGAGATTCCCGGCAAGACCTTCAG



CAACATCCTGGAAAAAGAGGACTACAAGCCCGAGAAGGATGCCATCATGCGGTTCAGCGTGTTCGTGGAAGAGTTCC



ACAGATGGGTCGTCGACATCTACCACCAGGACAGCGACAGCCGGGACACACGGATCCCTATTAAGCAGTGGCAGCAC



GGCTTCGATATCTACCCTCCACTGCAGATGACCGTGGAAGAAGAGAAGCGGTTCAACGTGCTGATGGGCATCACCGA



CGAGCGGACCCTGACCAGAAACGGCTTCAAGTTTGAGGAACTGATGTACGACAGCACAGCCCTGGCCGACTACCGGA



AGCACTACCCTCAGACCAAGGATACCATCAAGAAGCTGATCAAGATCGACCCCGACGACCTGAGCAGCATCCACGTG



TACCTGGAAGAACTCGGAGGCTACCTGAAGGTGCCCTGCACCGATACAACAGGCTACGTGTCCGGACTGAGCCTGCA



CGAGCACAAAGTGATCAAGAAGATCAACCGGGAAACCATCCGCGAGAGCAAGGACAATCTGGGCCTCGCCAAAGCC



AGGATGGCCATTCATGCCAGAGTGCAGCAAGAGCAAGAGCTGTTCAACAAGTCCAAGACCAAGGCCAAGCTGCCCG



AGCTGAAGAAGAAAGCCCAGCTGGCCGACATCAGCAACACAGGCCAGGGCACAATCCGGCTGGAAAAGTCTGATAC



CCTGAGCGCTATCCCCAACAAGCCTGAGCCTAACATCAGCGATATCCTGGACAACTGGGACGACGACATCGAGGGCT



TCGAGTGA (SEQ ID NO: 242)





tnsC
ATGAACACCCTGACAGCCCACCAGATGGAACAGCTGCGGAAGTTCAGCGACTGCTACGTGATGCACCCTCAGGTGTC



CGTGATCTTCAACGACTTCGACGAGCTGCGGCTGAACCGGAACTTCCAGAGCGATCAGCAGTGTATGCTGCTGATTG



GCGATACCGGCGTGGGCAAGAGCCACCTGATCAACAACTACAAGAAACGCGTGCTGGCCTCTCAGACCTACAGCAGA



ACCAGCATGCCTGTGCTGGTCACCAGGATCAGCAGCCACAAAGGCCTGGACGCCACACTGAGACAGATGCTGACCGA



CCTGGAAAGCTTCGGCAGCCAGCAGAGAAAGGGCAAGAATTACAAGATCGACCTCAAGACCCAGCTGGTCAAGAAC



CTCGTGCGGGCCAATGTGGAACTGCTGATTTTCAACGAGTTTCAAGAGCTGATCGAGTTCAAGACCCCTAAAGAGCG



GCAGACAATCGCCAACGAGCTGAAGTTCATCAGCGAAGAGGCCAGAGTGCCCATCGTGCTCGTTGGAATGCCTTGGA



CAGAGCAGATCGCCGAGGAACCTCAGTGGTCCAGCAGACTGATCAGACGGCGGAGACTGGAATACTTCAGCCTGCA



GAAGGACAGCAAGTACTACCGGCAGTACCTGATCGGCCTGGCCAAGCACATGCCCTTCGATGAGCCTCCAAAGATCG



AGGACAAGCACATTGCCATTCCTCTGTTCGCCGCCTGCAGAGGCGAGAACAGAGCCCTGAATCATCTGCTGAGCGAG



ACACTGAAGCTGGTCATGGTCAACGGCGACAGAAGCCTGGACATCAGACATCTGGCCCACACCTACCGGAAGCTGTA



CGAGTCTCACGAGAGCGAGGCCACCTCTATCTTCGTGAACCCCTTCCTGGAACCTCTGGACAAGGTGCTGATCTCCGA



GGTGGTCAAGCCCAGCAGATACAACCCCAACGCCATGACACCCGAGGACATGCTGATCCCCAGAGAGTTTAGCGAGC



CCTTCACACTGGCCCAGCTGCTGTCTAAGTGA (SEQ ID NO: 243)





tnsD
ATGGCCTTCCTGTTCAGCCCTAAAGTGCGGGCCTACAGCGACGAGAGCCTGGAAAGCTATCTGCTGAGAGTGGTGGC



CGAGAACTTCTTCGACAGCTACGAGCAGCTGAGCCTGGCCATCAGAGAGGAACTGCACGAGCTGGATTTTGAGGCCC



ACGGCGCCTTTCCAATCGAGCTGGAAAGACTGAACGTGTACCACGCCAAGCACAACAGCCACTTCCGGATGAGAGCC



TTCAGCCTGCTGGAAAGCCTGCTGAACCTGCCTCCTCACGAGCTGCAGAAACTGGCCCTGCTGCGGAGCAACAAGAG



ATTCGTTGGCGGCATGAGCGCCGTGCACAGAAACGGCGTTGACATCCCTCTGAGCTTCATCAGATACGCCGACGACG



GCATCGAGACAGTGCCTGTGTGTCCCCAGTGCCTGAAAGAGGAAGCCTACATCCGGCAAGTGTGGCACCTGAAGCCT



GTGAACGTGTGTGCCAAGCACGAGTGCGAGCTGCTGCACCACTGTCCTGAGTGTCAGCAGCCCATCAACCACATCGA



GAACGAGAGCATCAATCACTGCGCCTGCGGCTTCGATTTCACCACCGCCTCTAGCAAGAAGGCCGACAATCAAGAGG



TGGCCCTGGCCAGATCTCTGTTTGAAGGCGACGCCCTGAGCAACAACCCTCTGCTGTTTATGGGCACCAGCGCCACAC



AGAGATTCGCCGCTCTGCTGTGGTACAAGAAGCGGCACGCCAAGAACATCGAGTGCAAGCTGGACGAGAGCGTGAA



CTACTTCGAGGCCTGGCCTAAGAACTTCTACCAAGAGCTGGATGAGTTCGTGGCTGGCGCCGAGCTGAAGCTGATCG



ACCTGTTCAACAGAACCAGCCTGTCCTTCATCTTCGGCGAGCTGATCCTGCAGAGCCAGTGTCTGCTGCCCGAGGATA



AGACCCCTCACTTCATCTACATGGGCCTGATGGAATACCTGAGCAAGCTGGTGGAATCTCACCCCAAGAGCAAGAAA



CCCAACGTGGCCGACATGCTGGTGTCTGTGGCTGAAGCAGCTGTGCTGCTGAGCACCTCTCACGAACAGGTGTACCG



GCTGTACCAGGACGGCATCCTGACAAGCGCCATCCGGCAGAAGATCCGGACCAGAATCGATCCCCACATCGGCGTGT



TCTACCTGCGGCAAGTGATCGAGTACAAGACCAGCTTCGGCAACGACAAGCAGGGCATGTACCTGTCCACCTGGTGA



(SEQ ID NO: 244)





Cas5/
ATGGTGGACAAGAACACCTTCCAAGAGCTGCTGAACATCGACGACATCAGCGAGCGGAATATCGCCATCAGACGGGT


8
GTTCACCGCCTACAGCGAGCCTATCGAGGTGTCCGGATTTGAGGCCGACGTGCTGGTCATCCTGCTGAACCTGACATA



CCCCAGAAAGAACGTGGACGACCTGCTGGACATCAAGATCGCCAGAAAGACCCTGAAGAACGACATCCACTTCGAC



GAGTGCATCGAGGAAGTGAAGTGGCTGCACACCCACAACCTGAAGTACCCCGACATCCGGGTGTCCAAGCAGAGACT



GAATGTGCCCGTGCCTATTCTGTACCCCAACGTGCTGTCTGGCGCCAACTGCACAAAAACCCTCGGCTGGTCCCACGA



CAGCGCCAAAGTGAACAAGAGCAAGCTGTTCGTGTCCCCGTTCATCTGGCAAGGCGACGTGTGTTGTCTGGCCACAC



TGCTGTGCGAGCCTCCAAAAGAATGGCAGGTCGCCTTCAAGAGCCTGGGAATGCCCGTGAAAGAATTCCTGAACGTG



TGCGGCAGAGTGCGGGACAGCCTGAAGAATGAGATCCCCAGCATCGTGGACAAGCACTCTATCCAAGTGCGGCTGCC



CTACAGAGATGGCTACCTGAGCATCACCCCTACCATCAATCACGCCCTGCAGAGCGAGATTCAGCAGGCCGCCATGG



CCAAGCTGGGCAGATTCACCAACATGGAATTCACCCGGCCTGCCAGCGTGTCCGAACTGTCTGCTTCTCTCGGCGGCA



ATGTGAAGGCCCTGCACTACCCACCTAAAGTGGGCAACGTGATCTACGGCCTGAGCGACAGCTACCTGCTGAGAGTT



CAAGCCGGCGAGGCTGTGCTGAATCAGGTGGCCCTGAGCAAGCCCCAGTTCAAGAATGCCCTGGAAGGCCTGCTGTC



CATCAACTTCGAGCTGGCCCTGAAGCAGCGGCGGCAGCAGAAAGTGGCTAGCATGAGACTGATCCGGACCACCTTTG



CCGAGTGGCTGTCTCCTCTTCTGGAATGGCGACTGGCCGTGCAAGAGAACAAGATCGACATGAACGAGCTGGAATGC



ATCTACGGCTCTATCGAGTACCAGTTCCTGAGCTGCGACAACGAGAAGCTGGTGGAACTGCTGATCCCCATCTTTAGC



CTGCTCAACAATGTGCTGAGCAACAGCAACACCCTGCAGAAGTACGCCTTCCACCAGAGGCTGATGAAGCCTCTGAA



GAACTCCCTGAAATGGCTGCTGGCCAACCTGGTCGAGGATAGCAATGTGGCCGCTATCGCCCTGGACGAGGAAAGCC



AGCAGAGATACCTGTACCTGAAGGGCATCAGAGTGTTCGATGCACAGGCCCTGTCTAACCCCTACTGCGTGGGAATC



CCAAGCCTGACAGCCATGTGGGGCATGATGCACAACTACCAGCGGAGGCTGAATGAGCTGCTGGGCACCCACCTGAG



AATGACCAGCTTCAGCTGGTTCATCCGGCAGTACTCTCCAGTGGCCGGCAAGAAGCTGCCTGAGTACGGAATGCAAG



GCGTGAACGAGAACCAGTTTCGGAGAGCCGGCATCCTGGACAACAGACACTGCGACGTGGAATTCGACGTGGTCATC



CACATCGATGGCCACGAAGAGGACCTGGAACGGCTGGAACATAGCGAGAGAGCCATCAAGGCCAGCTTTCCCGCCTC



TTTTGCTGGCGGAGTGATGCACGCCCCTGAGATCGATGCTGTGGACGATTGGTGCGAGCTGTTCAGCAACGAGGTGCT



GCTGTACTCCAAGCTGAGAAGGCTGCCTGCCTCCGGCAAGTGGATCATGCCTACAAAGCACCAGCTGGACTCCCTGG



ACAATCTGTTCCACCTCCTGAAGCTGAACGCCTCTCTGTGCCCTGTGATGAGCGGCTATCTGCTGCTGGATAGCCCCA



TTGCCAGAAAAAACGCCCTGGAAAGACTGCACTGCTACGCCGAGTCTACCATCGGCCTGGTGGAATGCAACACCGCC



ATCGACATCAGACTGCAGGGCATCTCCAGATTCTTCAGACGGGCCTTCTGGATGCTCGAGATCAAAGAAACCTCTATG



ATCATGAAGCGGATCTGA (SEQ ID NO: 245)





Cas7
ATGGAACTGTGCAACGTGCTGAAGTACGACAGATCTCTGTTCCCCAGCAAGGCCGTGTTCTTCTACAAGACCGCCGA



GAGCGACTTCGTGCCTCTGGAAGCCGAGATCAACCGGATCAGAGGACAGAAGGCCGGCTTCACCGAGGCCTTCACAC



CTCAGTTCAAGCCCAAGAATCTGGCCCCTCAGGATCTGGCCCACTGCAACCCTCTGATCATCGAGGAATGCTACGTGC



CACCTAACATCGAGCACATCTACTGCCGGTTCAGCCTGAGAGTGCAGGCCAACTCTCTGAAGCCTGCCGGCTGTTCTG



AGCCTACCGTGTTTGCCCTGCTGGAAGAACTGGCCGCCACCTATAAGGCCTGCGGCGGATACAAAGAGCTGGCCATC



CGGTACTGCAAGAACGTGCTGCTCGGAACATGGCTGTGGCGGAACCAGAATACCGGCAACAGCCAGATCGAGATCA



AGACCAGCAGCGGCAACTGCTACCAGATCGCCAACACAAGACAGCTGGCCTGGGATAGCTGCTGGCCTGAAGAAGC



TCAGCAGGTCCTGGATGAGCTGAGCGAGGAACTGCATGTGGCCCTGACAGATCCCGCCGTGTTTTGGGACGCCAACA



TCACCGCCAAGATCGAGACAGCCTTCTGCCAAGAGATCTACCCCAGCCAGAGCTTCGGAGAGAAAGTGGCTCAGGGC



GAAGCCAGCAAGCAGTTCGTGAAAGTGAAGTGCATCGACGGCAGATACGCCGTGTCCTTCAACAGCGTGAAGATCGG



AGCTGCCCTGCAGCTGATCGACGATTGGTGGGATGTCGACGGCTCCAAGCGGCTGAGAATCCACGAATACGGCGCCG



ACAAAGAACTGGGAATCGCCAGAAGAAGCCCCGAGAGCCAGCAGTCCTTCTACAGCCTGTTCATCAACACCGAGTTC



TACCTGAGCGAGCTGAAGGACCAGGTGTCCAAGAGAAAGCCCCAGATCAACAACAACATCTACTACCTGTTCGCCGT



GCTGATCAAAGGCGGCCTGTTCCAGAAGAAAACCGAGAAGAAGAAGGCCCAGCCTCAGAGCGGCAAGAAGATCAAG



GCCAAGGGCGACAGCTGA (SEQ ID NO: 246)





Cas6
ATGGACACCAAGCGGTTCTACTTCACCGTGCACTTTCTGCCCAAAGAGGCCAATCTGGCCCTGCTGATCGGCCGGTGT



ATCAGCATCATGCACGGCTTCATCTGCAAGCGGGACATCCAAGGCGTGGGAGTGTCTTTGCCTGCTTGGAGCGACGC



CAGCATCGGCAATGTGATCGCCTTTGTGCACGTGGACAAGACCGTGCTGAACGCCCTGAAGCAGCAGAGCTACTTCC



AGGATATGCAAGAGTGCGGCTTCTTCGAGGTGTCCGTGGTGGAAGTGGTGCCCGACGGCTGTAATGAAGTGCGGTTC



AAGCGGAACCAGAATATCGCCAAGATCTTCGTGGGCGAGACACGGCGGAGACTGAAGCGGCTGAAGAAAAGAGCCC



TGGCCAGAAGCGAGGAATTCAACCCCTACAAGAGCCCCAATCCTAGAGAGCGGGACGCCTTCCACAGAGTGCCTATC



AGCAGCAGGACCAACCAGCAGGACTACATCCTGCACATCCAGAAAGGCGTGGTCGAGAAGTGTTACGGCGCCAGCTT



CAACAGATACGGCTTCGCCACCAACGAGCACTTCGATGGCTCTGTGCCCGACCTGTCTTACCTCGTGGGCATCGATTG



A (SEQ ID NO: 247)





DR
GTGACCTGCCGAATAGGCAGCTGAAAAA (SEQ ID NO: 248)





RE
TGTCGCTGAACCCATAAGCTGACATAGTAAACCCATATGTTGACATAATTAACCCGTAAATTGACATAGAAATAGGC



TTTGTAGCTTAGTTACAAAACCTATTTTATTTATTATCAATTACTTATTTGTAAAATAACCCATAAGTTGACAATGTTT



TTCCTTGGCGTACACTTAATGTTCAAATATCGCATGGAATTTGAACATGTACATTCGAAATTTACGTAA (SEQ ID NO:



249)





LE
TAGAAGAGCTTTCATTTTAAAAACTCAATTTGATTGACTTAATAACCTAATATCACCCGATAACGCGCGAAAATCTAT



TGTAGTGGCATAGTGAATTTGTCCACCTAGCTCTAATTAGATGCATGTTGTTTTATTACAAATAAGGATTTGTCAGCTT



ATGGTTATATTTTATGTCTGGATATGATTATATCTTTAAGTTAAGTGGTTGAAACTCGGCTAAGGGTTATGTCAACTTA



TGCTTGCAGCGACA (SEQ ID NO: 250)









115518|23|GCA_001957135.1_ASM195713v1_genomic|MPHK01000004.1|2582 47|Shewanella (ID: 119)










TABLE 29





Elements
Sequences







tnsA
ATGTACATCCGGAACCTGCGGAAGCCCTCTCCAAACAAGAACGTGTTCAAGTTCGCCAGCGCCAAGGTGTCCGAGAC



AATCATGTGCGAGAGCACCCTGGAATTCGACGCCTGCTTCCACCACGAGTACAACGAAACCATCGAGACATTCGGCA



GCCAGCCTAAGGGCTTCTACTACTGCTTCGAGGGCAAGAGACTGCCCTACACACCCGATGCTCTGCTGCACTACATCG



ACGGCACCACCAAGTTCCACGAGTATAAGCCCTACAGCAAGACCTTCGATCCCATCTTCCGGGCCAAGTTCGTGGCC



AAGAAAGAAGCCGCTCAGGCCCTGGGAACAGAGCTGATCCTGGTCACCGACAAGCAGATCAGAGTGAACCCCATCC



TGAACAACCTGAAGCTGCTGCACCGGTACAGCGGCATCTACGGCGTGACCGATATCCAGAGAGAACTGCTGCAGCTG



ATCAGACACAGCGGCAAGATTCAGCTGGACGACGTGGCCGATGAGTACGAGCTGTCTGTGGGCGAGACAAGAAGCT



TCCTGTACAGCCTGATCAACAAGGGCCTGCTGGAAGCCGATCTGACCCAGGATGACCTGAGCTGCAACCCCTTCGTGT



GGTGCAATGCCTGA (SEQ ID NO: 251)





tnsB
ATGATCGAGTTCAAGGACGAGTTCACCGAGAGCACCAGCGTGAAGAAGCCCGATACACCCGGCCAGTACATCAAGCT



GGACGACGCCGAGATCCTGAAGCGCGACCTGGATACCTTTCCTGACTTCCTGAAAGAGAAGGCCTTTGACAAGTACA



AGCTGATCTCCTTCATCGAGCAAGAGAACAGCGGCGGCTGGACCCAGAAGAAGCTGGACCCTATCCTGGACAAGCTG



TTCGAGGGCAACAGAGACAAGAGGCCCAATTGGAGAACCGTCGTGCGGTGGCGGAAGTCCTACATCGACAGCAATG



GCGATCTGGCCAGCCTGGTGGTCAAGAGACACAAGATGGGGAACCGCAAGAAAAGAGTGGAAGGCGACGAGGTGTT



CTTCGAGAGAGCCCTGAGCAGATTCCTGGACGCCAAGCGGCCTAAAGTGACCACCGCCTACCAGTACTACAAGGACG



CCATCACCATCGAGAACGAGACAATCGTGGACGGCGAGATCCCCATCATCAGCTACACCGCCTTCAACCAGCGGATC



AAGAGCCTGCCTCCTTATCCTATCGCCGTGGCCAGACACGGCAAGTTCAAAGCCGATCAGTGGTTCGCCTACTGCAGC



TCTCACATCCCTCCAACCAGAATCCTGGAACGCGTGGAAATCGATCACACCCCTCTGGACCTGATCCTGCTGGACGAT



GAACTGCAGCTGCCTCTGGGCAGACCCTACCTGACACTGATCGTGGATGTGTTCAGCAACTGCGTGCTGGGCTTCCAC



CTGAGCTATAAGGCCCCTAGCTATGTGTCTGCCGCCAAGGCCATTGTGCACGCCATCAAGCCTAAGACACTGGGCATC



GTGGGAATCGAGCTGCAGAACGACTGGCCCTGCTATGGCAAGTTCGAGACACTGGTGGTGGACAACGGCGCCGAGTT



TTGGAGCAAGTCTCTGGACCACGCCTGCAAAGAGGCCGGCATCAACATCCAGTACAACCCCGTGCGGAAGCCCTGGC



TGAAGCCCTTCGTGGAAAGATTCTTCGGGATGATCAACCAGTACTTCCTGACCGAGCTGCCCGGCAAGACCTTCAGCA



ACATCCTGGAAAAAGAGGACTACAAGCCCGAGAAGGATGCCATCATGCGGTTCAGCGTGTTCGTGGAAGAGTTCCAC



AGATGGATCGTGGACATCTACCACCAGGACAGCGACAGCCGGGACACACGGATCCCTATTAAGCAGTGGCAGCACG



GCTTCGACGTGTACCCTCCACTGCAGATGAGCGTGGAAGATGAGAAGCGGTTCAACGTGCTGATGGGCATCACCGAC



GAGCGGACCCTGACCAGAAACGGCTTCAAGTTTGAGGAACTGATGTACGACAGCACAGCCCTGGCCGACTACCGGAA



GCACTACCCTCAGACCAAGGATACCATCAAGAAGCTGATCAAGATCGACCCCGACGACCTGTCCAACATCCACGTGT



ACCTGGAAGAACTGGAAGGCTACCTGAAGGTGCCCTGCACCGATACAACAGGCTACGCCAATGGCCTGAGCCTGCAC



GAGCACAAAGTGATCAAGAAGATCAACCGCGAGATCATCAGAGAGAGCAAGGACAACCTGGGCCTCGCCAAAGCCA



GGATGGCCATTCATGCCAGAGTGCAGCAAGAGCAAGAGCTGTTCAACGAGTCCAAGACCAAGGCCAAGATCAGCGC



CGTGAAGAAACAGGCCCAGCTGGCCGACATCAGCAATACCGGACAGGGCACAATCCGGCTGGAAAACAGCGACACC



CTGAGCGACATCACCAACAAGCCTGAGAGCAACATCAGCGACATTCTGGACAACTGGGACGACAACATCGAGGGCTT



CGAGTGA (SEQ ID NO: 252)





tnsC
ATGAACACCCTGACAGCCCACCAGATGGAACAGCTGGGCAGATTCAACGACTGCTTCGTGATGCACCCTCAGGCCAA



AGTGATCTTCAACGATTTCGACGACCTGCGGCTGAACCGGAACTTCCAGAGCGATCAGCAGTGCATGCTGCTGACCG



GCGATACAGGCGTGGGAAAGAGCCACCTGATCAACAACTACAAGAAACGCGTGCTGGCCTCTCAGACCTACAGCAG



AACCAGCATGCCTGTGCTGGTCACCAGAATCAGCAGCCACAAAGGCCTGGACGCCACACTGAGACAGATGCTGACCG



ACCTGGAAAGCTTCGGCAGCCAGCAGAGAAAGGGCCAGAATTACAAGATCGACCTGAAAACCCAGCTGGTCAAGAA



CCTCGTGCGGGCCAATGTGGAACTGCTGATTTTCAACGAGTTCCAAGAGCTGATCGAGTTCAAGACCCCTAAAGAGC



GGCAGACAATCGCCAACGAGCTGAAGTTCATCAGCGAAGAGGCCAGAGTGCCCATCGTGCTCGTTGGAATGCCTTGG



ACAGAGCAGATCGCCGAGGAACCTCAGTGGTCCAGCAGACTGATCCGGCGGAGAAAGCTGGAATACTTCAGCCTGC



AGAAGGACAGCAAGTACTACCGGCAGTACCTGATCGGCCTGGCCAAGCACATGCCCTTCGATGAGCCTCCAAAGATC



GAGGACAAGCACATTGCCATTCCTCTGTTCGCCGCCTGCAGAGGCGAAAGCAGAGTGCTGAATCATCTGCTGAGCGA



GACACTGAAGCTGGTCATGGTCAACGGCGACAGAAGCCTGGACATCAGACATCTGGCCCAGACCTACCGGAAGCTGT



ACGAGAGCCAAGAGTCTGAGGCCGCCAGCGTGTTCTTCAACCCCTTCCTGGAACCTCTGGACAAGGTGCTGATCTCCG



AGGTGGTCAAGCCCAGCAGATACAACCCCAACGCCATGACACCCGACGAGATGCTGATCAAGAGAGAGTTCAGCGC



CCCTAGCACACTGGCCCAGCTGCTGTCTAAATGA (SEQ ID NO: 253)





tnsD
ATGGCCTTCCTGTTCAGCCCTAAGGCCAGAAGCTTCAGCGACGAGAGCCTGGAAAGCTACCTGCTGAGAGTGGTGGC



CGAGAACTTCTTCGACAGCTACCAGCAGCTGAGCCTGGCCATCAGAGAGGAACTGCACGAGCTGGATTTTGAGGCCC



ACGGCGCCTTTCCAGTGGAACTGAAGAGACTGAACGTGTACCACGCCAAGCACAACAGCCACTTCCGGATGAGAGCC



CTGGGCCTGCTGGAATCTCTGCTGGATCTGCCTCCTCACGAGCTGCAGAAACTGGCCCTGCTGCGGAGCAACAAGAG



ATTCGTTGGCGGCATGAGCGCCGTGCACAGAAACGGCGTTGACATCCCTCTGAGCTTCATCAGATGCGCCGACGAGG



ACGGCATCGAGTCCCTGCCTATTTGCCCTCAGTGCCTGAAAGAGGAACCCTACATCAGACAGGCCTGGCACATCAAG



CCCATCGAAGTGTGCGCCAAACACGAGTGCGAGCTGATCCACCACTGTCCTGATTGCCAGCAGCCTATCAGCTACATC



GAGAACGAGAGCATCACCCACTGCAGCTGCGGCTTCGAATTTGCCACAGCCAGCAGCGAGAAGGCCGATTCTCAGGC



TGTGGTGCTGAGCAGAAGCCTGTTTGACGGCGACGCCCTGAGCAACAACCCTCTGCTGTTTATGGGCACCAGCGTGA



CCCACAGATTCGCCGCTCTGCTGTGGTATCTGAAGCGGCACGTGCAGAACATTGAGTGCAAGCTGGACGAGAGCGTG



AACTACTTCGAGGCCTGGCCAGAGAATTTCTACCAAGAGCTGGATGAACTGCTGGCAGGCGCCGAGCTGAAGCTGAT



CGACCTGTTCAACAGAACCAGCCTGTCCTTCATCTTCGGCGAACTGATCCTGCAGAGCCAGTGCCTGCTGCCTGAGGA



TAAGACCCCTCACTTCATCGACATGGGACTGATGGAATACCTGGGCAAGCTGGTGGAATCTCACCCCAAGAGCAAGA



AACCCAACGTGGCCGACATGCTGGTGTCCGTGACTGAAACAGCCGTGCTGCTGAGCACCAGCCACGAACAGGTGTAC



AGACTGTACCAGGACGGCGTGCTGACCGCCGGCTTCAAGCAGAAGATCCGGACCAGAATCGACCCTCACATCGGCGT



GTTCTACCTGCGGCAAGTGATCGAGTACAAGACCAGCTTCGGCAACGACAAGCAGGGCATGTACCTGAGCGCTTGGT



GA (SEQ ID NO: 254)





Cas5/
ATGGTGGACAAGCTGAAGTTCCACGAGCTGCTGGACATCGACGACATCAGCGAGCGGAATATCGCCCTGAGAAGGG


8
CCTTCACCGGCTACACCGTGCCTATGGATGTGACCGGCAATGAGGCCAGCGCTCTGACCATCCTGCTGAACCTGACAT



ACCCCAGAAAGAGAGTGGACGACCTGCTGGATAAGCGGCTGGCCAAGCAGACCCTGAACACAGATGCCCACCTGGA



CGCCAGCATCGATGAAGTGCAGTGGCTGCACACCCACAACCTGAAGTACCCCGACATCCGGGTGTCCAAGCAGCGGC



TGATTACAGCCTCTCCACTGAGCCACAGCCACATCCTGTCTAGCGCCAACTGCATCAGCACACTCGGCTGGTCCCACG



ACAGCGCCAAAGTGAATCTGGCCAAACTGTTCAGCTGCCACTTCAATTGGCAGGACCGCGTGTGCTGTCTGGCCACA



CTGCTTAGCGACCCTCCAAAGATCTGGAAAGAGGCCTTTCAGGCCCTGGGCATGCTGGTCAAGGACTTCATGAACCT



GTGCGGCCGGATCAAGGCCAGCCTGCCTTCTTATGAGAGCCCCAGCAGAGTGGACAAGTACAGCATCCAAGTGCGGC



TGCCCTACAGAGATGGCTACCTGGCCATCACACCCGTGGTGTCTCATGCCCTGCAGGCCGAAATTCAGCAGGCCGCC



ATGGCCAAACAGTGCCGGTACACCAACTTCGAGTTCACCAGACCTGCCGCCGTGTCTGAGCTGTCTGCTTCTCTCGGC



GGAAACGTGAAAGCCCTGAACTACCCTCCTCGGATCGGCAATGCTGTGCACGGCCTGTCTGATAGCTGGCTGCTGAA



GTTTCAGGCAGGCCAGACCGTGCTGAATCAGGGCGCTCTGTCTCAGCCCAGATTCAAGAGAGCCCTGGAAGGCCTGC



TGTCCAACGGATTTGAGCTGGCCCTGAAGCAGCGGAGACTGCACAAAGTGGCCAGCATGAGGCAGATCAGAGCCAC



ACTGACCGAGTGGCTGAGCCCTCTTCTTGAATGGCGGCTGGAAGTGGAAGAGAACAAGAACAACGTGTCCGAGCTGG



CCTGCATCCACGGCAGCTTCGAGTACCAGTTTCTGACCGCACAGAAAGAAAACCTCGTGGGACTGCTGAATCCCATG



TTCAGTCTGCTGAACACCATCCTGAGCAACAGCAACACCCTGCAGAAGTACGCCTTCCACCAGAGACTGATGCGGCC



CCTGAAGTGTAGCCTGAAATGGCTGCTCGACAACCTGAGCAAAGAGAGCAACGCCATCGACAGCGACGAGGACAAC



CAGCAGAGATACCTGTATCTGAAGGGCATCCGCGTGTTCGATGCACAGGCCCTGAGCAATCCTTACTGCGCCGGACT



GCCTTCTCTGACAGCTGTGTGGGGCATGGTGCACAACTATCAGCGGCGGCTGAACAAGAGACTGGGCACCCAACTGA



GACTGACCAGCTTCAGCTGGTTCATCCGGCAGTACAGCTCTGTGGCCGGCAAGAAGCTGCCTGAGTACGGAATGCAG



GGCCAAAAAGAGAACCAGTTTCGGAGAGCCGGCATCGTGGACAACAAGCACTGCGACCTGGTGTTCGATCTGGTGGT



GCACATCGACGGCTACGAAGAGGACCTGGATGCCATCGATAACAGCACCGACGCCATCAAGGCTAGCTTCCCTGCCA



CATTTGCCGGCGGAGTGATGCACCCTCCTGAGATCGGATCTGTGGACGAGTGGTGCGAGCTGTACCCTAGCGAGACA



AGCCTGTACAGCAAGCTGAGAAGGCTGCCCGCCTCTGGCAAATGGGTCATGCCTACCAGATACCAGATGGACAGCCT



GGACGGACTGCTGCAGCTGCTGAAACTGAACGTGGCCCTGTGTCCTGTGATGAGCGGCTACCTGATGCTGGGCCCTCC



AGAGAGCAGAAAGAACTCCCTGGAACCTCTGCACTGCTACGCCGAGCCTGCCATTGGAGTGGTGGAATGTGCCACCG



CCATTGACATCCGGCTGCAGGGAATGTCCAACTTCTTCAGACGGGCCTTCTGGATGCTCGACATCAAAGAAACCTCCA



TGCTGATGAAGCGGATCTGA (SEQ ID NO: 255)





Cas7
ATGGAACTGTGCAACGTGCTGAAGTACGACAGATCTCTGTACCCCGGCAAGGCCGTGTTCTTCTACAAGACCGCCGA



GAGCGACTTCGTGCCTCTGGAAGCCGAGATCAACCGGATCAGAGGACAGAAGGCCGGCTTCACCGAGGCCTTCACAC



CTCAGTTCAAGAGCAAGAATCTGGCCCCTCAGGATCTGGCCCACTGCAACCCTCTGATTCTGGAAGAGTGCTACGTGC



CACCTAACGTCGAGTACATCTACTGCCGGTTCAGCCTGAGAGTGCAGGCCAACTCTCTGAAGCCTGCCGGCTGTTCTG



AGCCTACCGTGTTTGCCCTGCTGGAAGAATTCGCCGCCATCTTCAAAGCCTGCGGCGGCTACAAAGAGCTGGCCACC



AGATACTGCAAGAACGTGCTGCTCGGCACATGGCTGTGGCGGAATCAGAATACCGGCAACAGCCAGATCGACATCAA



GACCAGCGCCGGCAACTGCTACCAGATCGCCAATACCAGACAGCTGGCCTGGGACAGCAGATGGCCTGCTGATGCTC



AGCAAGTGCTCGAGGAACTGAGCGACGAAGTGCATCAGGCCCTGACCGATCCAACCGTGTTCTGGCACGCCAACATC



ACCGCCAAGATCGAGACAGCCTTCTGCCAAGAGATCTACCCCAGCCAGAGCTTCGGAGAGAAAGCCGCTCAAGGCG



AGGCCAGCAAGCAGTTCGCCAAAGTGAAATGCGTGGACGGCAGATACGCCGTGTCCTTCAACAGCGTGAAGATCGG



AGCTGCCCTGCAGCTGATCGACGATTGGTGGGATGTCGACGACAGCAAGCGGCTGAGAATCCACGAGTACGGCGCCG



ACAAAGAACTGGGAGTTGCCAGAAGGGCCCCTGAGAGCAAGCAGAGCTTCTACAGCCTGTTCATCAACACCGAGCTG



TACCTGGCCGAGCTGAATCAGCAGCTGGCCGAGGATGAGTACAGCATCAGCCCCAACATCTACTACCTGTTCGCCGT



GCTGATCAAAGGCGGCATGTTCCAGAAGAAGGCCGAGGCCAAGTCTAAGAGCAAGGCCGAGACAAGCACAGCCAAG



ATCACACCCGCCAAGGCCTAA (SEQ ID NO: 256)





Cas6
ATGCACCGGTACTACTTCATGGTCCGATTTCTGCCCGAGCAGGCCAATCTGGCTCTGCTGATGGGCAGATGCATCAGC



ATCATGCACGGCTTCATCTGCAAGCACGACATCCAAGGCCTGGGCGTGTCCTTTCCAGCTTGGAGCGACGCCAGCATC



GGCAACATGATCGCCTTCGTGCACACCGATATCGCCGCTCTGAACGAGCTGAAGCTGCAGGGCTACTTCCAGGACAT



GCAAGAGTGCGGCGTGTTCAAGGTGGACAACGTGGAAGCTGTGCCCGACGACTGTGTGGAAGTGCGGTTCAAGCGG



AACCAGGGAATCGCCAAGATGTTCGTGGGCGAAGCCAGACGGCGGCTGAAGAGACTGGAAAAGAGAGCCCTGGCCA



GAGGCGAGGTGTTCAACCCCAACAAGAACGACGAGCCCAGAGAGCTGGACTGCTTCCACTGTATCGCCATCGGCAGC



ACCTCTACCGAGCAGGATTTTCTGCTGCATGTGCAGAAAGAGATCGTCCAGAAGTACGAGGAACCCGAGTTCAACCA



GTACGGCCTGGCCACCAACAAGCTGCTGAGAGGAACCGTGCCTGAGTTCAGCGAGTTCTGA (SEQ ID NO: 257)





DR
GTGAACTGCCGAATAGGCAGCTGAAAAT (SEQ ID NO: 258)





RE
TGTCGCTGAAAGCATACATTGACATAAGACAACCATAGTCTGACAAATTTAAAGCATAGTTTGACATAAAATAGCAT



TTTTGTATTTTAGCTACATAATTTAATATTATTAAAATCAATTACTTGAGTTAAAAGTTAAAGCGTAGTCTGACAAATT



TGACAAAACATCGAGCAGCTGTACACTAAGTGTACCTAAGTTGCTTGAGTTTTGCGCATGTATATTCGA (SEQ ID NO:



259)





LE
CGAGTTAGGAGTAGGTCTTGAGTTTTAAAGAATGAGAATAGCTAAATTATTGCCATTCTTCTAAATCATATAATGTAA



ATGATATTTGTCGCATTATGTTGTCATAAAAGTACATGGAAAAGTTTTGGCTCCAGAGATTGCTTCAATTTGTCAGCTT



ACGGTTATATTTTATGTCAGGATATGGTTATATTTTTCAACTAAGCTATTGAAAGTTTGAAGCGACCTATGTCAGGTTA



TGCTTCCAGCGACA (SEQ ID NO: 260)









123787|44|GCA_002156475.1_ASM215647v1_genomic|MVJE01000005.1|1421 59|Vibrio (ID: 120)










TABLE 30





Elements
Sequences







tnsA
ATGAGCGCCCTGCCTTTCCTGTCTATCGCCACACTGCTGGAACTGGAAACCGCCTTCGATACCCCTGCCAGAAACCTG



ACCAAGAGCCGGGGCAAGAACATCCACAGATACGTGTCCGCCAAGATGGGCAAGCGCGTGACCGTGGAAAGCTTCC



TGGAATGCGCCGCCTGCTACCACTTCGACTTCGAGCCTTCTATCGTGCGGTTCTGCAGCCAGCCTATCCGGTTCAGCT



ACAGCCTGAACGGCAAGACCCATACCTACGTGCCCGACTTCCTGGTGCAGTTCGATACCGGCGAGTACCGGCTGTAC



GAAGTGAAGTCCGACAAAGAGAGCAGCAAAGAGGAATTCCACTGCGAGTGGGAAGCCAAGGTGCAGGGCGCCTTTG



AGATCGGCCTGGATCTGGAACTCGTGGTGGAAGAGGAAATCCTGGACGTCGTCATCTTCAACAACCTGAAGCTGCTG



CACCGCTACGCCAGCCGGGACAATCTGAACGACTTCCACCAGATCCTGCTGACCACACTGAAGCGGAATGGCACCCA



GACAGCCAAGTCTCTGGGACACCACCTGGGCCTGAATGGCAGAAAGATCCTGCCATTTCTGTGCGACCTGCTGAGCC



GGAATCTGCTGCAGACAAGCCTGGAAACCCCTCTGTCTCTGGAAAGCGAGTTCGAGCTGGGCTGCTACGCTTGA (SEQ



ID NO: 261)





tnsB
ATGCCCAAGAAGTCCTTCAGCAGCTTCCACAGAAAGAGCGCCCTGCAGCAAGAGAAGCTGGAACAGAACGACAGAG



TGGTGGACAGCAACGACGTGGACGAGGCCACCTACCAGGACATCAGCGCCTTTCCAGAGAATATCGCCAACCAGATC



ACCTTCCGGCTGAGCATCCTGAGATTTCTGGCCGGCAAGTGCGAGAAGATCACCCCTAAGACCATCGAGCCCTACAG



AGTGGCTCTGCAGCAGCTGCACGACAAGAACATCCCTAGCGCCATCAGCATCTACCGGTGGTGGCTGGTGTTTAGAG



CCAGCGGCTACAACCCCGTGTCTCTGGCCCCTGACTTTAAGAGCAGAGGCAACAGAGGCGCCAAGGTGTCCCCTATC



GTGGACTCCATTATCGAGCAGGCCGTGGAAAGAGTGATCAGCGGCCGGAAGATCAACATCAGCTCTGCCCATCGGAG



AGTGAAGCGGAAAGTGCGGCAGTACAATCTGACCCACGGCACAAAGTACCCCTATCCTAAGTACGAGAGCGTGCGG



ATCAGAGTGAAGAAGAAAACCCCTTTCGAGGTGCTGGCCGCCAAGAAAGGCGAGAGAGTGGCCAAGCGCGAGTTCA



GAAGAATGGGCAAGAAGATTACCACCAGCGCCGTGCTGGAACGCGTGGAAATCGACCACACAATGGTGGACATCTT



CGCCGTGCATCCCGTGCACAGAGTGACACTTGGTAGACCCTGGCTGACCCAGCTGGTGGACTGTTACTCTAAGGCCGT



GATCGGCTTCTACCTGGGCTTCGAGCCTCCTAGCTACGTGTCAGTCAGCCTGGCTCTGAAGAACGCCATCCAGAGAAA



GGACGACCTGCTGAGCAGCTACGAGAGCATCGAGAACGAGTGGCTGTGCTACGGCATCCCCGATCTGCTGGTCACCG



ACAACGGCAAAGAGTTCCTGAGCAAGGCCTTCGACAAGGCCTGCGAGAGCCTGCTGATCAACGTGCACCAGAACAG



AGTGGAAGTGCCCGACAACAAGCCCGACGTGGAACGGAAGTACGGCACCATCAATACCAGCCTGCTGGACGATCTG



CCCGGAAAGGCCTTCAGCCAGTACCTGCAGAGAGAAGGCTACGACAGCGTGGGCGAAGCCACACTGACACTGGACG



AGATCCAAGAGATCTACCTGATCTGGCTGGTGGATATCTACCACAAGGACTCCAACCAGCGGGGCACCAACTGTCCC



AATATCGCCTGGCGGAATGGCTGCCAAGAGTGGGAGCCTGAAGAGTTCAGCGGCAGCAAGGACGAGCTGGACTTCA



AGTTCGCCATCGTGGATAGCAAGCAGCTGACCAAGGCTGGCGTGACCGTGTACAAGGGCCTGACATACAGCTCCGAG



AGACTGGCCGGCTACAGAGGCAAAAAGGGCAACCACAAGGTGCAGTTCAAGTACAACACCGAGTGCATGGCCGTGA



TTTGGGTGCTCGACGAGGACGTGAACGAGTACTTCACCGTGAATGCCATCGACTACGAGTACGCCTCTGGCGTGTCAC



TGTGGCAGCACAAGTACAATATCAAGTACCTGGCCGAGCTGAACAGCGCCGAGTACGATGAGGACAAAGAGATCGA



CGCCGAGATCAAGATCGAGGAAATCGCCGACCGGTCCATCCTGGAAACAAAGAAGATCAGAAGCCGGCGGAGGGGC



GCCAGACACCAAGAAAATTCTGCCAGAGCCAAGAGCATCAGCAACACCAAGCTGGTGCCTCCACAGAAGGACGAGG



AAGAGATCGTCATCGTCGACAACGAGGACTGGGACATCGGCTACGTGTGA (SEQ ID NO: 262)





tnsC
ATGAACGAGACAAGAGAGGCCCGGATCAGCAAGGCCAAGAGGGCCTTTGTGTCTACCCCTAGCGTGACCAAGATCCT



GGGCTACATGGACAGATGCCGGGACCTGAGCGATTTCGAGAGCGAGCCTACCTGCATGATGGTGTTTGGAGCCTCTG



GCGTGGGCAAGACCACCGTGATCAAGAAGTACCTGAGCCAGAACAACCGGGACAGCAAAGTGCGGGGAGAGATCGT



GCCTGTGCTGCACATTGAGCTGCCCGACAACGCCAAGCCTATCGATGCCGCTAGAGAACTGCTGCTGGAAATGGGCG



ATCCCCTGGCTCTGTACGATACCGACCTGGCCAGACTGACCAAGAAGCTGACCGATCTGATCCCTCTCGTGGGCGTGA



AGCTGATCATCATCGACGAGTTCCAGCACCTGGTGGAAGAGAGAAGCAACCGGATCCTGACACAAGTCGGCAACTGG



CTGAAGATGATCCTGAACCGGACCAAGTGTCCCATCGTGCTGTTCGGCATGCCCTACAGCAAGGTGGTGCTGAAGGC



CAACTCTCAGCTGCACGGCAGATTCAGCATCCAGTGCGAGCTGCGGCCCTTCAGCTATCAAGGCGGAGAGGGCGTGT



TCAAGAAATTCCTGGAAAACCTGGACAAGCTGCTGCCGTTCGTGAAAGAAGCCGGACTGGCCGAGAAGAACCTGCA



GAAGAAGCTGTACGCCTTCAGCGAGGGCAACATGCGGAGCCTGAGAAACCTGATCTACCAGGCCAGCGTGAACGCC



ATCGACAACCACAGAGCCACCATCATCTACGAGGACCTGGTGGTGGCCGCCGAGCTGACATGTAGCAACAAGACCTA



CACCTGGAAGAACCCCTTCGAGAACGGCGTGAAAGTGACCGAGGAAATGCTGCGGCCTCCTCCAAAGGATATCGGCT



GGGAAGATTACCTGAAGAACATCAACAGCCGGTCCAAGAGCAAGCTGAACGGCGGCAACATGTTCGAGTGA (SEQ ID



NO: 263)





tnsD
ATGCTGCTGCAGAGGCCTAAGCCTCACAGCAACGAGAGCCTGGAAAGCTTCTTCATCAGAGTGGCCAACAAGAACGG



CTACGAGGACGTGAACAGATTCCTGATGGCCACCAAGAGATACCTGCAGGACATCGACTGCAGCGGCTTCCAGACAT



TCCCCACCAACATCGGCAAGATGAACCCCGCCTCTGCCAAGTCTAGCAGCTCTGCCAGAATCGCCAGCCTGCTGAAA



CTGGCCCAGCTGACCTTCAACGAGCCTCCTGAACTGCTGGGCCTCGCCATCAACAGGACCAACCTGAAGTACAGCCC



TAGCACCAGCGCCGTGATCAGAGGCAGCGAAGTGTTCCCTAGAAGCCTGCTGCGGACCAAGAGCATCCCTTGCTGTA



GCCTGTGCCTGCAGCAGAATGGCTACGCCAGCTACCTGTGGCACTTCGAGGGCTACGATCACTGCCACATCCACAAC



ACCCCACTGATCACCGCCTGTAGCTGCGGCAGCGAGTTCGACTATAGAGAGTCTGGCCTGAAGGGCAACTGCTCCAA



CTGCAAAGAGCCCATTGCCATCAAGAGCAGCGAGGTGTCCCACGAAGTGATCTTCACCGTGGCCAACTGGCTGGCCG



GCAACGAGTCTAAGAACCTGCCTGATGTGCCCAAGAGCTACAGATGGGGACTCGTGCACTGGTGGCTGCACCTGAAC



GACAACAAGTTCGACCATCTGCTGTTCACCCAGTTCTTCAGCAACTGGCCCTCCAGCTTCCACAGCATGATCGACAGC



GAGATCGAGTTCAACGTGGACCACGCCATCGTGGGCAGAAAAGAACTGAGAGTGAAGGACCTGATGGGCCGCATCT



TCTTCAGCTCCATCAGACTGCCCGAGCGGAACCTGCAGCACAACATCGTTCTGGGCGAACTGCTGAGACACATCGAG



ACACACCTGTGGAACAGCAACGGCCTGATCGCCAACCTGAGAATGAACGCCCTGGAAGCTGCCGTGTTCCTGAATTG



CAGCATGGACGAAGTGACCAGCATGGTGGAACAGAGAATCCTGAAGCCTAACCGCAAGACCAAGCCTAACATGCCC



CTGGCCGTGAACGACTACCTGTTCTACTTCGGCGACATCTTCTGCCTGTGGCTGGCTGAGTTCCAGACCGACGAGTTC



AATCGGAGCTTCTACGTGTCCCGGTGGTGA (SEQ ID NO: 264)





Cas5/
ATGGAAAGCCTGAAAGAGCTGCTGCAGAGCAGACCCGACGACCTGAACAAAGAGCTGAAGCGGGCCTTCAGACCCC


8
TGACACCTCACATTGCCATCGACGGAAAAGAGCTGGACGCCCTGACCATCCTGGTCAACCTGACCGACAAGACCGAC



GACCAGAAGGACCTGCTGGACAGAGTGAAGTGCAAGCAGAAGCTGCGGGACGAGAAGTGGTGGGCCAGATGCCTGA



AAACCGTGGAATACCGGCAGAGCCACAACCTGAAGTTCCCCGACATTAGAAGCGAGGGCGTGATCAGGGCTACCCCT



CTGGGACAGCTGCCTGAGTTTCTGCTGAGCAGCAGCAAGCTGAAGCCTCACCACTGGGCCTACAGCCACGATAGCAG



CGACGTGAACAAGAGCGCCCTGCTGACCAACGAGTTCAGCTGGAACTGCGTGATCTCCTGCCTGGGCGACCTGCTGA



AGGATGTGGAACATCCCCTGTGGCAGAAACTGAACACCCTGGGCTGCTACCAGAAAACCCGGAAGGCCATTGCCAAG



AAGCTGGCCCCTATCAGCCAGACCACCATCAATGTGTCTCTGGCCCCAAACTACCTGACACAGCTGAGCCTGCCTGAC



AACGACAGCAGCTACATCTCTCTGAGCCCTGTGGCCAGCCAGAGCATGCAGTCCCACTGTTATCAGGCCCTGGAAAA



CGAGTACAGATACACCGCTCTGACCCGGTACAGCCGGTCCACAAATATGGGCGTGCTGCCCATGACATGTGGCGGAG



CCCTGAGAATGTTCAGAAGCGTGCCCAACTTCAGCAAGACCCCTCACTGCAACCTGAGCAACAACGAGCGGTGGCTG



ACCAAAGAGAGCATCCAGAGCCTGAAGGACTACACCCATCTGAACAAGCGGCTGATCACCGAGAACCAGAAGCAGG



CCTACAGAAAGAGCGCCACCGACAACATCCGGAAGATGATCAGAGCCTGGCTGAGCCACCAGAACAGCGAGATCGA



TGCCAACACACTGACCGAGTACCTGAACTACGACCTGAGCCAGATGCGGACCACCAAGAGATTCGCCTACATTCCCA



AGCTGACCCGGCTGTTCCACTCTCTGCTGAAGCAAGAACTGAACTGCCCTCTGACACAGAGCCCCGTGGATGAGCCT



AGCAGCAATAGCGGCTCCTTCCTGCTGCTGCCCAACATCACAGTGTCTGGCGCCACAGCTCTGTCCTCCAGCATCACA



ATCGGCATCCCTAGCCTGACCGCCTTCTACGGATACGTGCACGCCTTCGAGCGGAAGCTGAGAGAACTGCACGCCGC



CACCAACATCGAGAGCTTCGCCATCTGTATCCACCAGCTGCACCTGGACAAGAGAGGCCTGACAAAAGAATTCGTGA



AGAAGGCCAACAGCACGATCAGCCCTCCAAGCACACACGACGACTGGCAGTGCAACTTCACCTTCAGCTTCATCCTG



AAGTTTAGCCACAAGCCTAACATCCCCAACGACTCCATCATCAAGGCCCTGCCTAAGAGACTGGCCAGAGGCGCCAC



CAAGATCTCTATCGCCGACTTCCACAGCATCCAGCCTTTCGACAGCCTGACCAGCGCCGTGAAGTACATGCCTATCCA



GACCGGCAAGTGGCTGTCCCTGTATAAGGGCCACCTGAATAGCTTCGACGATCTGATCGAGAGCGTGCGCGAGAAGA



GATGGCTGACCCCTAGCTGCGTGGGCTTCCATCTGCTGGAAAGACCCGTGGAAAAGAAGGATGCCCTGCGGGGCTAC



AAGCACGCCTTTAGCGAGCCTATCATCGGCCTGATCAACCCCATCATCTTCGGCGAGACAACAGACCCCAACAAGAT



CCTGTGGCGGTACAAGTACCACCAGAATCATATCGCCCTGCAGACCGAGGCCTGA (SEQ ID NO: 265)





Cas7
ATGGAACTGCCCACCAACCTGGCCTACGAGCGGAGCATCAACCCCAGCGATATCTGCTTCTTCGTCGTGTGGCCCGAC



GGCACCAAAGAGCCTCTGAGATACACCAGCAGAATCGCCCTGGGCCAGATGGAAACAGCCAGCCTGGCCTATGACA



GCCTGGGCAACATCAAAGAGACAGCCACAGCCGGAAAGCTGGCCCACGGAAATCCTCATGCCGGCGATTTCTGCAGC



GTGCCCTTTGGCAGCAGCCACATCGAGTGCTTTTTCAGCATCAGCTTCAGCAGCGAGCTGCGGAAGCCCTACAAGTGC



AACAGCAAAGAAGTGAAGGACACCATCATCAAGCTGATCGAGCTGTACGAGAAGCGGATCGGCTGGGAAGAACTGG



TGTCCAGATACCTGATCAACGTGTGCAACGGCAGCTGGCTGTGGAAGAATACCAAGCGGGCCTACCGGCTGGACGTG



GAATTGTCTCCTTGGCCTTGGAGCGAGAAGCCCGTGTCCTTTAAGAACATCCGGACCGAGTACCGGGAAGAGAGCGC



CTTTAAAGCCCACCAGCAGTGGAGCGCCATCCGGCAGCTTGTGATCGATGCCTTTAGCCAGTCTGACGGCCTGGCCAT



CTTCGAAGTGAAAGCCAACCTGGTGCTGCCTACCAACAGCGAGATCTACCCTAGCCAGGCCTTCACCGAGAACGAGA



ACAAGAGCACCAACAAGGCCGGAAACAAGGCCCGGACCTTCCAGAACACCCAGATCGAGAACACAAGAAGCCCCAT



CATCGGCATCTACAAAGTGGGAGCCGCCATTGCCACCATCGACGACTGGTATCCCAACGCTCTGGAACCCCTGAGAG



TGTCTAGATTCGGCGTGCACAAGGGCGACGTGACCTGCTACAGACACCCTAGCACCGAGAAGGACCTGTTCACCATC



CTGCAGAACGCCGAGCAGTACATCGAGAGACTGTCTGCCCCTGGCAAGCTGAGCCAAGAAGTGACCAACGACCTGCA



CTACCTGGTGGCCAATCTGATCAAAGGCGGCATGTTCCAGCACAAAGGCGACTGA (SEQ ID NO: 266)





Cas6
ATGAACTGGTTCTACAAGACCGTGACATTCTTCCCGGAACGCTGCGACAATGAAGTGCTGGCCGCCAAGTGTCTGAG



CACCCTGCACGGCTTCAACTATAAGTACGACACCCGGTCCATCGGCGTCAGCTTCCCTGATTGGTGCGAGGATACCGT



GGGCAAGAAGCTGACCTTCATCAGCACCAGCAAGGTGGAACTGGACCTGCTGCTGAAGCACCACTACTTCATCCAGA



TGCGGCAGCTGAGCTACTTCGACATCAGCGCCACCACAAAGATCCCCGCCAATTGCGAGTACGCCGCCTTCACCAGA



AACCAGAGCATCGACAAGTCCTCTGCCGCCGGACAGGCCAGAAAACTGCGGAGACTGGAAAAGCGGGCCATTGCCA



GAGGCGAGGCCTTCAATCCTGCTCTGCTGAAACAGAAAGAACTGATCGTGCTGCCCCACTACCACAGCCTGGAAGTG



TCTAGCCAGAGCAAGAACAGCACCTTCCGGCTGAATATCCAGATGAAGGCCACACACAGCTTCGAGGGCAACAGCAT



GTTCAGCAGCTACGGCCTGAGCAACACCGACAACAGCTATCAGGCCGTGCCTCTGATCTGA (SEQ ID NO: 267)





DR
GTGAACTGCCGAATAGGTAGCTGATAAT (SEQ ID NO: 268)





RE
TGTTGAAACATCCATAAATTGATATTTACAACCATATATTGATTTTTGGTACAGCCATAATTTGATATTGCCTCTTCAT



GGTCTAAACTTGTGTAAGTTTACGACAAAATCGTGAAGAGGCAATATTATGTCTGCTCTACCTTTCCTTTCTATAGCCA



CCCTGCTTGAACTTGAAACTGCGTTTGACACTCCTGCTAGAA (SEQ ID NO: 269)





LE
TTTAGAGAGTTGGTGAACGTGACTGATACAAGGTTATCGGAACTGTAATGATTGTATGTTTTCTAATCTTGAGATGAG



TCTTACCAGTTAGCTGAAAGTAACTTTCTTACTGCAGTAGTTTTGCTGAAATACTTGATTCACAAAAATATCAACTTAT



GGTTGTTTTATGCGATATCAAGATATGGTTGTTTTTAGATTAAGTCTATGATTTTAATGAGTTCATTGTTGTCACGTTA



TGGTTGTTTCAACA (SEQ ID NO: 270)









151543|0|GCA_002892885.1_ASM289288v1_genomic|POSI01000001.1|744368|Vibrio (ID: 121)










TABLE 31





Elements
Sequences







tnsA
ATGTACGTGCGGAACCTGAGAAAGCCCAGCGCCAACAAGAACGTGTACAAGTTCGTGTCCGTGAAGAACGGCTGCA



ACATCATGTGCGAGAGCAGCCTGGAATACGACTGCTGCTACTACCTCGAGTACAGCGACGATGTCGTGCGCTACCAG



AGCCAGCCTAAAGGCTACAGATTCCCCTACCAAGGCAAAGAGCACCCCTACACACCCGACTTTCTGGTGCACAAGAA



GGACGGCACCAGCTACCTGCTGGAAGTGAAGCCTCTGAGCAAGACCTTCAGCAGCGAGTTCCAGGACGTGTTCCGGC



AGAAACAGATCATGGCCAGCGAACTGGGAGCCCCTCTGCTGCTGGTTACCGACAGACAGATCCGGAACGACGTGCAC



CTGAACAACCTGAAGCTGGTGCACCGGTACAGCGGCTGCATCGGCAATAGCAGCCACCTGGAATCTGTTTGGAGCGC



CGTGAACCAGAGCAGCAGCATCTGTATCAAGGCCCTGAGCGCCATCCTGAACCTGACAATCGGCGAGGTGTTCGCCA



GCGTGCTGAGACTGATCGGACTGGGCAAAGCCAAGACCAAGCTGGACGTGCTGCTGGACGAGAACAGCCTGATCTCT



GTGGCCTGA (SEQ ID NO: 271)





tnsB
ATGAGCTTCGGCCCCTTCGAGGATGAGTTCGGCAGCATCACCAACGACGTGCAGCAGCAGTATGAGGCCTCTCCTGA



GGCCAAGCTGAGCCGGCTGAAGTACTCTCCTCTGGAAACCACCAAAGTGATCGAGCGGGACCTGAGCAGCTTCCCCG



AGGAACAGAAACTGAAGGCCCTGGAACGGTACAAGCTGATCTCCCTGATCGCCAAAGAGATCAACGGCGGCTGGAC



CCCTAAGAATCTGATCCCTCTGATCGACAAGCACATCGAGACACTGAACATCCCCAAGCCTAGCGACCGGACCGTGA



AGAGATGGTACAAGGCCTTCTGCGAGAGCGACGGCGACATCAAGAGCCTGGTGGATAGCCACCACCTGAAGGGCAA



CAGACAGCCCAGAATCGAGGACGACGAGCCATTCTTCATCGAGGCCGTGGAAAGATTCCTGGACGCCGTGCGGCCTA



GCTACAGCAAAGCCTACCAGGTGTACTGCGACCGGATCGAGATCGAGAACAGCACCATCGTGTCCGGCAAGATCGCC



AAGGTGTCCTACGAGGCCTTCAAGAAGCGGCTGAAGAAGCTGCCTCCTTACACAGTGGCCCTGAAGCGGCACGGCAA



GTACTACGCCGACAAGCTGTTCAACTACTATGAGGCCGTGAAGATGCCCACACGGATCCTGGAAAGAGTGGAAATCG



ATCACACCCCTCTGGACCTGATCCTGCTGGACGATGAACTGCTGGTGCCTCTGGGCAGAGCCTACCTGACACTGCTCG



TGGATGTGTTCAGCGGCTGCATCATCGGCTTCCACCTGGGCTTTAAGGCCCCAAGCTACACCGCCGTGTCCAAGGCCA



TCATCCACAGCGTGAAGTCCAAAGAATACGTGAACGAGCTGCCCATCGGCCTGAGCAACCAGTGGATCTGCCACGGC



AAGATTGAGAACCTGGTGGTGGACAACGGCGCCGAGTTTTGGAGCAAGTCTCTGGACCAGGCCTGCATTGAGGCCGG



CATCAACATCATCTACAACAAAGTGCGGAAGCCCTGGCTGAAGCCCTTCGTGGAACGGAAGTTTGGCGAGCTGATCC



AGGGCATCGTTGGCTGGGTTCCCGGCAGAACCTTCAGCAACGTGCTGGAAAAAGAGGACTACGACCCTCAGAAAGAC



GCCGTGATGCGGTTCAGCGTGTTCGTGGAAGAACTGCACCGGTGGATCATCGACGTGCACAATGCCAGCGCCGACAG



CCGGCACACAAGAATCCCTAACTACCACTGGCAGAAAAGCGAGGAAGTGCTGCCACCTCCTGCTCTGACCGAGAGAG



ATGAGATCCAGTTCAGAGTGATCATGGGCATGGTGCACAAAGGCGCCCTGACCAGCAAGGGCATCAAGTTCAAGCAC



CTGATGTACGACAACGTGGCCCTCGAGCACTACCGGAAGCAGTACCCTCAGAGCAAGGACAGCCGGATCAAGACAG



TGAAGATCGACCCCGACGACCTGAGCCGGATCTTCGTGTTTCTGGAAGAGAAGAAAGGCTACATCGAGGTGCCCTGC



AAATACGATCCCCTGGGCTACACCAAGAAACTGAGCCTGTGCGAGCACCTGAGAACCGTGAAGGTGCACCGGGACTT



CATCAAAGGACAGGTGGACAGCCTGAGCCTGGCCAAAGCTAGACAGGCCCTGCACGAGCGGATCAAGCAAGAGCAC



GAGAACCTGCGGCAGATGAGCCTGCCTCACAGAGCCAAGAAGGCCAAGAACGGAAAGAAGATGGCCGAGCTGGCTG



GCGTGAACAGCGATAGCCCTAAGTCCATCACCACAGACTACCCCATCGAGGACACCATCCAGCTGCACGAGAGCACC



CCAGTGGATGATCTGCAGAGCCTGTGGAACAAGCGGAGAGCCCTGAGAAAGTCTGGCAAGTGA (SEQ ID NO: 272)





tnsC
ATGACAAGCCTGCAGCCTACCAACAACGACGTGGACGTGCTGCTGGCCGAGTTCCACCAGAGCTTTGTGGTGTACCC



CGACGTGGAAAAGGTGTTCGAAGGCCTGGATTGGATCGTGCGGAGAAGCCAGTTCGGCAAGTTCGCCCCTAGCATGC



TGATCACTGGCGGAACAGGCGCCGGAAAGACAAGCGTGGTGGAAATCTACCTGAACAACCACTTCAGCAGCAGCGA



GGTGCTGATTACCAGAGTGCGGCCCAGCTTCGTGGAAACCCTGATCTGGGCCATCGAGAAGCTGAACGTGCCCTACA



ACAGCAGAAGCAAGCGGAGCGAGATCGGCCTGCAGGACTACTTCATCAACAGCGTGAAGAAGTCCAAGCTGAAGCT



GCTGGTCATCGAGGAAGCCCAAGAGCTGTTCGAGTGCGCTAGCCCCAAAGAGCGGCAGAAGATCCGGGACAGACTG



AAGATGATCAGCGACGAGTGCAGACTGCCCATCGTGTTCATCGGCATCCCTACCGCCAAGCTGATCCTGGAAGATAG



CCAGTGGGACAGACGGATCATGGTCAAGCGGGACCTGCCTTACATCCGGATCACCAACGAGGAATCCCTGGACGTGT



ACATTGCCCTGCTGGAAGGACTGGAAAAGACCCTGCCTATCAGCGTGGCCCCTGAGCTGACCGATATGGATATGGCC



ATGAGACTGCTGGCTGCCTCCAGAGGAATGCTGGGCCTGATCAAAGAACTCGTGGGCTACGCCTTTGAGCTGGCTCT



GCTCGAGGGCAAGAGACAGATCACCCAGAACGAGTTCGTGCAGGCCTTCAAGAGCATCTTCGGCCCCGACATCAGCA



ACCCCTTCGAGATCGAGCTGGACAAGCTGCTGATCCCTCAGATCATCGAGTACGAGGGCTACCTGCTGGACAGCGAC



AGCGGCGATATCAAGTTCACCCACCAGATCTTCGAGGACATCCCTCTGACCGAGCTGCTGAGATGA (SEQ ID NO: 273)





tnsD
ATGGACACCGACATCGAGGTGTACAGCGACGAGAGCCTGGAAAGCTTCCTGCTGCGGCTGAGCAAGTTCCAGGGCTA



CGAGAGATTCGCCCACTTCGCCGAGGACATCTGGCAGACAACACTGCTCCAGCACGAGGCTATCCCTGGCGCCTTTCC



ATTCGAGCTGAGCCGGATCAACATCTACAAGGCCCAGACCACCAGCCAGATGAGAGTGCGGGTGCTGATCGACCTGG



AAAAGCGGCTGAAGTTCAACGACTTCGGCGTGCTGAGACTGTCTCTGGCCCACAGCAAAGCCAGCTTCAGCCCCGAT



TACAAGGCCGTGAACAGATACGGCGCCGACTATCCTCAGGCCTTCCTGCGGAAGAACTTCACCCCTGTGTGCCCCAA



GTGTCTGGATGAGGCCGCCTATATCAGACAGCTGTGGCACTTCATCCCTTACCAAGTGTGCCACAAGCACCATTCTCA



GCTGGCCCAGAGATGCCCTGAGTGTGGCAAGCTGCTGAACTACCAGAGCAGCGAGCTGATCGAGAACTGCGAGTGCG



GCTTCAGCCTGCTGAATGGCGAGAGCGAGAAAGAGAGCTGCAGCACCCTGTTTGTGGCCCAATGGCTGGCCGGCGAG



AAGCCTGTTGAAAGCGGCCTGATGAGCCAAGAGCTGACCCAGTCCAGCAGATTCGGCTTTCTGCTGTGGTACATCAA



CCGCTACGGCGAGCTGGACGACATCAGCTTCGATGGCTTCGTGGAATGCTGCAAGAGCTGGCCTAACAAGCTGAACA



CCGACCTGGACAGCATCGTGCAGAAGGCCGACATCGTCAGAATCCAGCCTTGGAACAAGATCTACTTCAGCGAGGTG



TTCGGCGACCTGCTGAAAGAGTGCAGAAGCCTGCCTAGCCGGGACCTGAGCAAGAACCCCGTGCTGAAGAACGTGGT



GCTGTACTTCAGAGCCCTGATCACCAACAATCCCAAAGTGAAGTCCGCCAACATCGGGGACGTGCTGCTGTCTCCTCT



GGAAGCCTCTACACTGCTGAGCTGCACCACCGACGAGATCTACCGGCTGTACCAGTTCGGACAGCTGAAGGCCCAGC



ACACCCCTAAGCTGCAGAGCAAGATCGAGAATCACCACAGCGTGTTCACCCTGCGGAGCATCATCGAGCTGAAACTG



AGCAGCATGTGCAGCGAGACAGACGGCCTGAACCACTACCTGCCTGAGTGGTAA (SEQ ID NO: 274)





Cas5/
ATGACCACACTGCAGGACCTGATCGACATCGAGGACAGCAAGCTGCGGTTCATCGAGATCAAGAAAGCCTTCATGCC


8
CTACACCAGACCTGTGGAAGTGGACGGCTCTGAGAAGCAGGCCCTGATTGTGCTGCTGAACCTGAGCCTGAGCAAGC



CCGAAGTGAAGGACTGGCTGGACTTCCCCAGAGCACTGGACTACTTCGCCGACAGCGACAATCTGTCTGCCGCCGAG



CAAGAGATCCAGTGGTTTCACACCCACAACCTGAAGTTCCCCGACTGCAGAGTGTCCGAGCAGCGGATCATTGCCAC



ACCTCTGTACACCGAGACACCCACACTGACCAGCCAGAGCCTGAATAGAGCCTATGGCTGGGCCCACAACAGCGCCG



TGTACAAGCACACAATCTGGCTGCTGAATGAGTTCCGGTGGCGGGGCAGAGTGGAAAACCTGCTGAATCTGATCTGT



GGCGGCGACGACTTCTGGCTGGAACTGCTGGCTGACATGGGCCTGAAGCCTAAGGCTCAGATCCAGCTGAAGGATCT



GATTGAGCACCAGCTGCCTCTGACACACTTCCCCGACGAAGTGAACCGGTACAGCAAGCAGCTGAGATTCCCTTGGA



GAGGCGACTACCTGAGCGTGACCCCTGTGGTGTCTCATGCCATCCAGCAGCAGCTGTCCGTGCTCTCTAGACAGGGCG



AGTGCAGCCTGAGGTTCAAGACCATGACATACCCCAACTCCGCCAGCATCGGCAATCTGTGTGGTAGCCTCGGCGGC



TACATCAACGTGCTGAACTACCCCATCGACGTGATCGCCAACCGGCACCAAACACTGGGCGCTAGCAGAAGCCGGAC



CAAGAGATACTTCGACGATTTCCAGCTGACCAGCAAGTCCACCTGTAGCGTGCTGGCCCACCTGACAGGATTTGAGC



AGCCCCAGATGCGGAAGGCCCAGAAACATGTGCGGCAGTATCAGCTGAAGATCATCCGGAAGCAGATCGCCCTGTG



GCTGCTGCCACTGATCGAGCTGAGAGACAACAGCGTGACAGACCCCATCGGCTTCTACGACGAGCCCGATGATGAGC



TGGCCAAGCGGTTCCTGACCATCAACGAGCTGGATTTCATTGAGCTGACCACCAGCCTGAACCAGCGGCTGAATATC



GCCCTGCAGAACAACAGATTCGCCAGCCGCTTCGCCTACCATCCTAAGCTGATGCGGGTGCTGAAAACCGAGCTGAT



CTGGGTGCTCACCCAGCTGTCTCAGCCTGAGCCAGAACCTCCTACCGTGTCCGATAGCAAGGTGCAGTACCTGTACCT



GAGCAGCATGCGGGTGTTCGATGCCGCCGCTATGAGCTGTCCTTACCTGTCTGGTGCCCCTAGCCTGACAGCCGTGTG



GGGATTTGTGCACAGATACCAGAGAGAACTGCAGGATCTGCTGAGCGACGGCGAGGGCCAGTTCGAGTTCAAGGACT



TCGCCTTCTTCATCCGGGACGAGAGCGTGCAGACAAGCGCCAAGCTGACAGAGCCTAGCGTGATCGCAAAGGCCCGG



TCCATCAGCCAAGTGAAGCGGACCACCATCATCCGCGAGGATTGCTCCGACCTGATCTTCGACATCGTGATTGCCATC



GAGAGCGACCAGAGAATCTCCGACTACCAGAGCCAGTTCAAGGCCGCTCTGCCCACCAATTTTGCCGGCGGAGCACT



GTTCCAGCCTGAGATCAACAGCGGCATCAACTGGCTGCGGACCTTCGTGTCTAAGAGCGAGCTGTTCCAGGCCGTGA



AAGGCCTGCCTGGCTATGGCACATGGCTGAGCCCTGATAGCTTCCAGCCTCAGAATCTGGCCGAGCTGCAAGAGTGC



CTGACAATCGACAGCTCTCTGATCCCCGTGTCCAACGGCTTCCACTTTCTGGGCAGCCCTCAAGAGAGAAAAGGCGCC



CTGACCAAGCTGCACTGCTACGCCGAGAACAACATTGCCCTGGCCAAGAGAACAAACCCTATCGAAGTTCGCTTCGC



CGGCTCCGACCACTTCTTCGAGCAAGTGTTCTGGTCCCTGGAAGTGACCGAGCAGACCATCCTGATCAAGAACAAGC



GGATCTGA (SEQ ID NO: 275)





Cas7
ATGGAACTGTGCAGCCAGCTGAACTACGTCAGATCTCTGAGCCCCGGCAGAGCCTACTTCTACTACCTGGACGAGGA



CAACAAGATGCGGCCCCTGCAGATCGACAGAACCCATCTGAGAGCCCCTAAGAGCGGCTACAGCGAGGCCTTCAGCG



GCAACTTCAAGAGCAAGAATATCGCCCCTCAGGACCTGAGCTACAGCAACCCTCAGTTCATCGAGGAATGCTACGTG



CCACCTGGCGTGAACGACATCTACTGCGCCTTCAGTCTGAGAGTGCGGGCCAACAGCCTGTCTCCTGAAGTGTGCGTG



GACAACGAAGTGCGGGACATCCTGTGCAACTTCGCCGCTCTGTACAAAGAACTCGGCGGCTATAGAGAGCTGGCCAG



AAGATACGCCAAGAACATCCTGATGGGCACCTGGGTCTGGCGGAACAGAGAGTGCAGAAACATCCGCGTGGAAGTG



AAAACCGAGGACAAAGAGTGGGTTATAACAGACGCCCGGTTCCTGGATTGGTACGGCAGCTGGGAGAAAGATTCCC



AGCTGGCCCTGGATGAGTTCACCGACTATCTGTCTCAGGCCCTGTCCGACCGGACCTGCTACTTCAACATGGACATCA



AGGCCAAGCTGACCGTCGGATGGGGCGACGAAGTGTACCCTAGCCAAGAGTTCCTGGACGTGAAAGAGGCCGGCAA



GCCTTCTAAGCTGCTGGCCAAAGTGACCGTGAACGGCGAAGAGTCTGCCGCCTTCCACAGCCAGAAAGTGGGAGCCG



CCATCCAGAGAATCGACGATTGGTGGGACGAGAACGCCGACAAGCCCCTGAGAGTGAATGAGTACGGCGCCGACAA



AGAATACGCCATTGCCAGACGGCACAGCAGCCGGCACAGAGACTTTTACAGCCTGATCGCCCACACCGAGAGCTACG



TGGAACTGATGCTGGAAACAAACCTGATCAGCGACGACGTGCACTTCATCATGGCCGTGCTGACAAAAGGCGGCGTG



TTCAGCGGCGCCAGCAAGAAGTCTAAGAAAGACGAGTGA (SEQ ID NO: 276)





Cas6
ATGGAAAGCCGGTACTACTTCAGCATCCGGTACATCCCCGAGCACGTGGACAATGAACTGCTGGCCGGCAGATGCAT



CAGCAACATGCACGGCTTTCTGAGCCACGAGCGGAACACCCAGTTCAAGAACAGCGTGGGCATCTGCTTCCCACTGT



GGAACGAGCAGACCGTGGGCAACGTGATCACCTTCGTGTCCACCAACGAGAGCATCCTGACCGGCCTGAGCTACCAG



CCTTACTTCTCCACCATGATGAACGAGAACCTGTTCGAGATCAGCGGCATCCGGATCGTGCCCGACGATGCCAAGGA



CGTCCGCTTCGTGTTCAACAAGACCATCCAGAAGATCTTTAACGGCAGCAAGAAGCGGCGGATCAAGCGGGCCATGA



AGAGAGCCGAGGAATTCGGCCACACCTTCACACCCATCAGCGTGGAAGTGCGCGAGTTCGAGCTGTTCCACGAGATC



CCCATCAACAGCAAGAGCAGCGGCAGAGACTTCGTGCTGCACATCCAGAGACAGAACCCCGTGGAAGCCGAGATCG



GCCAGGGCTTTAATGGCTACGGCTTCGCCAGCAATCAGCTGTGGCGAAGAACCGTGCCTCTGATCCTGTTCTGA (SEQ



ID NO: 277)





DR
GTGTTCCGCCGAATAGGCGGCTAAGAAA (SEQ ID NO: 278)





RE
TGTCGCTGAAATCATAAAGCGTCCCAAAAAAACCATAAAATGTCCCAATAAAACCCATAAAGTGTCCTAAACTTATT



TTGGTTGTTTTTTTACAACGAAAAAGGACATGTTATGTACGTTCGCAATCTTCGAAAACCTTCAGCAAACAAAAACGT



TTATAAGTTTGTTAGTGTAAAAAATGGCTGCAATATCATGTGCGA (SEQ ID NO: 279)





LE
AAACCTTGTTACATTGGCATGGTTAGTCGCTGTGATAGTTAGCCGTGTGATCACCAAGAGGTGTGGTTTTCTCTACTG



CACTTCTGCATAAAACAGTAAGTAGTTTTCTTTCACAATTTTCCTCAGTGTTAAACCGAAGCAGAAAATAGGACACGT



TATGCTTTCATCTTAGGACACTATATGGTTTTACTGTGTTGGTAATGGATTGATTTGTAATGGAGCGTTAGGACATCTT



ATGGTTTCAGCGACA (SEQ ID NO: 280)









154441|0|GCA_002966495.1_ASM296649v1_genomic|CP016490.1|3650492|Hal omonas (ID: 122)










TABLE 32





Elements
Sequences







tnsA






tnsB
ATGTACACCAGAACACTGCGGCCCTCTCCAATCAAGCACATCTACAAGTTCGCCAGCCACAAGAACGGCAACGTGCA



GACCGTGGAAAGCAGCCTGGAATTCAACGCCTGCTTCCACTTCGAGTACGCCAACGAAGTGCGGAGCTTTATCGCCC



AGCCTGAGGGCTTCTACTACCAGTTCGAGGACCGGACCTGCAGCTACACCCCTGACTTCGAGCTGTTCTGCCACAGCG



GCAAGAAAGTGTTCGTGGAAATCAAGCCTCCTCCAGAGGCTCTGAAGCACGACTTCATCCAGCGGTTCACCGCCAAG



AAAAAGGCCGTGGAAATGCTGGGCAAAGAGCTGATCCTGGTCACCGACAGACAGATCAGCAGCATGCCCAAGCTGA



AGAACCTGAAGCTGATCAACAGATACGCCGGCCTGTACACCGAGGTGGTGTCCCGGAAGAAAATCTACGAGTGGATC



CGGAAGTTCCAGGGCCTGACAATCGCCGACATCAGCGAACTGTCTGGCGCCGATAGCAGCGAGATCCTGGTGGATGT



GATGTGGCTGGTGGCCTCCGGCAAGGTGTTCATCAACATCGAGGAAATCTTCGGCTACGAGAGCTTCTTCGGCCTGGA



ACGGGCCATGAGCATCGATTTCTTCAACGACGAGTTCCCCGACTTCCAGAACTGGAAGGCCAGCGCCTTTGTGGACG



CCCAGTACATGACAGCCAGCGAGCACCTGAGCTACATCAGCTTCGACAGCCTGAGCAACAAGCTGCAAGAGGAAGC



CTACTACAAGTACAAAGTGATCATGCTCGTGGGCGAGAGACTGCAAGGCGGCTGGACCAAGAAGAACATCGAGCCC



ATCATCAACAGCCTGTTCGAGAAGGGCTACATCGAGAAGAAGCCCAGCTATCGGAGCGTGGCCAGATGGCACAAGA



GCTACGATCAGGACATCGGCCTGAAGTCCCTGGTGTCTGCCAAGGGCCTGATGAAGTCCCCTGGCAACAGCAAGAAG



GACGACGCCGACTTCTACAAGAGAGCCGTGGAAGAGAAGTTCCTGAAGCGCGAGAGGCCTCACGTGTCCACCGCCTA



CTACCACTACTTCAACAACATCCTGCTGTACAACCGGGCTCACCCCGACAACATCATCGAGCCTATTACCAAGAGCGC



CTTTTACAAGCGCGTGAAGAAGATGAGCCCCTACGAGGTGGAAGTGGGCAGATTTGGAAAGGCCGAGGCCGACAAG



AACTACCGGATCGTGAACAAGTTCAGCAGCCCCGAGCGCGTGATGGAAAGAGTGGAAATCGATCACACCCCTCTGGA



CCTGATCCTGCTGGACGATACCCTGCTGATCCCCATCGGCAGACCCTACCTGACCATCCTGATCGACTGCCTGTCCAG



ATGCATCATCGGCTTCTACCTGAGCTTCCAAGAGCCTAGCTACAACAGCGTGCGGAGCGGCATCATGAACGCCTGCCT



GAACAAAGAAGGCGTGATCGAGAAGTACCAGATGATCAAGAAGGATTGGCCCTGCCAGGGCAAGATCGAGACACTG



GTGGTGGATAACGGCGCCGAGTTCTGGTCCAGCAACCTGGAATACTTCTGCGCCAGCGTGGGCATCAATATCGAGTT



CAACCCCGTGGGCAAGCCCTGGAAGAAACCCCTGGTGGAAAGACTGTTCGCCATCTACAACTCCAAGTTCGTGAAAG



AGATCCCCGGCACCACCTTCAGCAACGCCCAAGAGCTGAGCGGCTACAAGCCTGAGAAAGACGCCGTGCTGCCCTTC



AGCTACTTCATCGAGCTGATGCACGTGTGGGTCGTCGATATCTACAATCAGAGCCCCAACAGCCGGATGACACGGAT



CCCTGCTCTGTCTTGGGAGATGGGCTGCAAGAAGTACCCTCCACCTCTGTACAGCGGCTTCGAGGAAAAGATCTTCAA



GATTGAGGCTTTCCCCACCGAGAGCCGGATCCTGAGAAAAGGCGGCATCAGCATCGACGGCATCGACTACACCAACG



AGGAACTGGTGGAATACCGGAAAGTGACCCCTCCACCACCTGGCAGCAAGGTGGTCAAGGTCGTGATCAAGAGGGA



CCCCGAGGACGTGTCCTACATCTACGTGTACCTGGTCGAGCGGAAAGAGTACATCAAAGTCACCGCCGTGGATCCCG



ATTGCCTGTACGATGGCCTGAGCATCTTCCAGCTGAAAGTGCGGCGGAAGCTGCGGAGAAACTTCATCAATAGCAAG



ACCGACTACCTGGGCGTCGCCGAAGCCGAGAAGCTGATTGACGATCGGGTGTCCGAGATCGCCGAGGAAGTGTCTGC



CTCTAAGAAGAAGATCAAGGGCACCAAGAAGGCCGCTGCCTACTTCGGCATCTCCAGCGAGAATCCCAGCAGCATCA



TGGACGGCTTCGCCAGCAAAGAGATCGTTAATATCGAGGAAGAGAGCAAGAGCCACTCCGGCGTGAACCCCAACGA



TGAGGAATGGAAGCGGATCAGCGACGACCTGGAACCTTACAGCTGA (SEQ ID NO: 281)





tnsC
ATGAGCATGCTGATCTCCAACGAGAAGCTGGAACAGCAGATCTACTTCAAGAACTGCTACGTGAAGCACAGCAGCGT



GGCCAGAGCCATCAGCAGCCTGGAAATGCTGAAGGCCAATCACGCCCTCGGCGGAGAGCAACAGTGTATGCTGATCA



TCGGCGATCCCGGCAGCGGCAAAAGCAGACTGGTGCAAGAGTTCCAGTCTCAGTACCCCGAGTACGTGGAAAACGAC



ACCGTGATCAAGCCCGTGCTGGCCTCTAGAATCCCCAGCAAGCCTGACGTGGAATCCATGCTGATTCAGCTGATGATG



GACCTGGGCCAGTTTGGCGCCGACACCAGAAGAGAGAGAAGAAGAGAGGCCGGACTGGCCGAGGCTCTGGTCAAGA



TGCTGAAGAAATGCAAGACCGAGATGATCATTATCAACGAGTTCCAAGAGCTGATCGAGTTCAAGTCCGTGGAAGAG



AGACAGCGGATCGCCAACATCCTGAAGCTCGTGAACGAGAAGGCCAACATTCCCATCGTGCTCGTGGGCATGCCTTG



GGCCGCTGAGATCTCTAATGAACCCCAGTGGGCCAGCAGACTCGTGTGCACAATCGAGCTGCCTTACTTCAAGTTCCT



GAACCTGGAAGATCGGGTCGAGTTCACCCGGTTCATCAAAGGCCTGGCCAGCAAGATGGGCTTCGAGAAGCCTCCTG



GCCTGCACAGCAACGAGATCCTGTTTCCTCTGTTCAGCGTGACCAGGGGCGAGACACGGCAGATCAAGAGAATCCTG



GAAGCCGCTCTGTGCGTGGCCCTGAGCAAGAACGAGAACACCGTGTGCAAGTACCACTTCGTGGACGCCTGCGACAA



GATCTTTGTGGGCATGAACAACCCCTTCAAGCTCGAACTGGAAGATGTGCCCATCAGCGAGGTGTCCAAGTACAGCA



GCTACAACCGGTACAGCACCGTGGAAAGCGAGATGTTCGTGTCTACCCAGTTTACCCGGAAGATCCCCACCAAAGAG



CTGTTCAGCAAGACCTGA (SEQ ID NO: 282)





tnsD
ATGAAGCTGCTCGTGCGGCCCAGACCTTTCATCAACGAGAGCCTGGAAAGCTACATGCTGCGGCTGAGCCAAGAGAA



CTTCTTCGAGTACTACCAGCAGCTGAGCCGGGCCATCAAGGATTGGCTGCAACTGCACGATCACGAGGCCGCTGGTG



CCTTTCCTGAGGAACTGAGCAGACTGAACGTGTACCACGCCGCTCAGAGCAGCAGCAGAAGAATCAGAGCCCTGAAG



CTGGTGGAAAGCCTGACCGACAACGAGAAGCTGCCTCTGCTGCATCTGGCCGTGATGCACAGCAGCGAGAAGTTCTG



CAGCCGGTACAGCAGCGTGTTCTACGCCGGATCTCACGTGCCAAGAGCACTTGTGCGGCAGAAAGGCATCCCTGTGT



GCCCTGATTGTCTGACCGAGGCCAACTACATCCGGCAAGAGTGGCACTGGATGCCCTACGAGGCCTGCATCAATCAC



GGCAAGCAGATGCTGCACGAGTGCCCCAAGTGCGAGGAAAAGCTGAACTACACCCACAGCGAGTGCCTGCACACCT



GTAGATGCGGCTTCGACCTGAGAAACGCCGATACCGAGCCTGCCGATGAGTGGCAGCTGATCGCCTCTAGACTGGTT



GTGGGCGAGCCCTCTCCTAGCAATCACCCTCTGCTGGACATCAGAAGCGTGTCCCTGAGACTGGCCTGCCTGCTGTGG



TATCAGCTGTACGCCTACAAGACCCTGGACGCCAGCAATCAGGTGCCCACACTGACAATCGAGCGGGCCATCGAGTA



CTTCACCCACTGGCCTGAGGTGTTCACCCAAGAGCTGGAACAGCAGGCTGCCCTGTCTGGCGAGAAGCTCGTGTGCG



ACTACAACAAGACCAGCTTCCGGGACGTGTTCGGCAACATCGTGGGCATCAGTCGGCTGCTGCTGAAGGCCTATCCT



GAGAGCGACTTCGTGCTGACCCCTCTGGAAAACTTCCTGGCCAGACTGGTGGACCAGAATCCACAGAGCAGAGTGCC



CAACGTGGCCGACCTGCTGATCTCTATGCCTGAGGCCGCTATCCTGCTGGGCACATCTTACGAGCAGGCCTACCGGCT



GTACGAAGAGGGCTATCTGAAGTGCGCCGTGAAGTTCAAGAGCCACGAGAAACTGGTCAACGGCATCGGAGTGTTCT



ACCTGCGCGAGATCATGGAACTGCGGCAGAGCAGAATCCCCGTGGAAGCCAGCAGCTACAACAACTACCTGCCTGCC



TGGTGA (SEQ ID NO: 283)





Cas5/
ATGAGCCTGAGCACCCTGCTGGAACTGGACGAGCCCAATAGAAGCGAGGCCATCAGAAAGGCCTTCGCTCCCTACAC


8
ACAGCCCCTGGAAGTGTCCGAGGATGTGAATGCCGCCATCCTGGTGCTGCTGAACCTGAGCCACAAGAGACAGGACG



CCCCTGACCTGCTGAACAAGAAGAGAGCCATCGAGACACTGAAGGACTGGCAGTACATCGAGAGCTGCGCCCAAGA



GGTGCAGTGGCTGCACAGCCACAATCTGAAGCACCCCGATACCAGAGTGGCCCACCAGAGACTGCTGGTCAAGGCCG



AGAAGCCCAGCGATAGCATCGTGTCCAGCTACAACAGCGTGTCCAGACTCGGCTGGTCCCACAATTCTGCCGCCGTG



AACAAGGCCAAGCTGTTCGGCGCCAACTTCATCTTCAAAGGCGTGGTGTACTGCCTGGCCGCCATCTTCCTGGACAAC



AACAAGCAGTGGCGGAAAGAATTCATGAACCTGGGCATGAGCGACGGCCAGTGGACATATCTGCAGAGCCTGTTCG



ACAACTACTTCACCAAGAATCTGAGCCCCAGCTACGTGGAACGGCACAGCGTGCAAGTGACCTTCCTGTACCAAGGC



AAGGACGTGTCCATCACACCCGTGACATCTCACAGCCTGCTGGCCGACATCCAGATCGCCAGACGGAACAAGTGCGG



CGACTTCGCCACAATCAAGCACTGGCACTCTAGCAGCGTGGGCGACCTGGCTAGTTCTCTCGGCGGAAATATCAGCG



CCCTGAGCTACCCTCCTAGGCTGCTGGCTTGCTCCCAGAACAAAGAGAACGAGAACAGCAGCGGCGTGTTCTTCGTG



GACTTCCACCACAGCAGCCTGCGGAGCAAGAGCTTCATCCTGGCCTGTACCGAGATCGTGGAAAGCAAGAGCCTGCT



GACCGGCAAGAAGCGGAGGGACCATAGAAGAAGCGCCATCAAGCTGCTGCGGCAGTCCCTGTCTGAATGGCTGAGC



CCTGTGTCCTACTGGCGGAATGTTGGCGGAGAAGCCCTGAGCGAGAGACAGAACAATAGCGCCTGCCTGCTGATCTC



TGCCCCTGACGAAGATCTGCTGGAAATCCTGCCTGAGATCAACAAAGAGCTGCACTCCATCCTCGTGCGCTACCCTCA



GACACAGAGCTTCGCCTACCATCCAGAGCTGCTGATCCCTTTCAAGGCCCAGCTGAAGTCTCTGCTGATCGGGATGAA



GATCAAAGAGGACGAAGCCATGGCCGAGGAACCCTACTACTACCTGCACCTGAAGAACCTGCACGTGTTCGATGCAC



AGGCCCTGTCTTGCCCTTACCTCGTGGGACTGCCTTCTCTGCTGGCTGTGTGGGGCACCGTGTACAACTACCAACTGC



GGCTGCGGTCCATCCTGAAGCGGAATATCGCTTTCGAAGGCGTGGCCTGGTTCCTGAGACAGTACGAGAGTAGCTCC



GGCGCCAAGATTCCCGCTCCTTATCTGGCCCCTACAAAGCCTGGCGAGGCCCCTAAAAGACCCGGCCTGATCGACAT



GAGATTCTGCGACCTGCGGATGGACCTGGTCATCCGGTACAGACTGGAAGATGGGCACGATACCCCTCTGGGCAACG



ACGAACTGCCTATGCTGCAGTCTGCCCTGCCTGGCAGATTTGCCGGTGGAACAATGCAGCCTCCTCCACTGTATGAGG



CCCTGCAGTGGTGTCAGCTGCATGGCGACGCCAATAGTCTGCTGGCAGCCATCTCTCTGCTGCCCGATGAAGGCAGAT



GGGTCGTCGACAGCGAGAAACAGGTGCAGAGCATCGATAGCCTGGTGGCCTGGCTGTCTAAGCACCCTCATCATCTG



CCTGCCATGAGCGGCTACCAGCTGTTCGAGGAACCTTGCTACAGAAGCGGCAGCCACAGGGAACTGCACGCCTATGC



AGAACCTCTCGTGGGCCTGACCGAAACACTGTCTCCAGCCTCTGTGCGGCTGAACGGCAAGGCCGACTTTCTGAAGA



ATGCCTTTTGGCGGCTGAAGTCCCAGAACCTGACAATGCTGATGAAGAAGGCCTGA (SEQ ID NO: 284)





Cas7
ATGATGAACAGCTTCCGGCACCTGAGCTACGAAAGATCTCTGAACCCTGGCAAGGCCGTGTTCTACTACAGAACCGA



CAGCAGCGAGTTCGAGCCCCTGCAGGCTGAAGTGACCAGATTCAGAGGCCCCAAGGCCACCTTTAGCGACGGCTATA



TGGCCAGCGGAACCGCCAGAGCCAAAGAGACAAGCGATCTGGGCTTCAGCAACCCCATCATGCTGGAAACCTGCTAC



GTGCCACCTCTGGTGGACACCCTGTACTGCAGATTCAGCCTGAGAATTATCGCCAACAGCCTCGAGCCTAACATCTGC



GACAATGCCGAGGCCACAAAGGCCCTGAAAGAGTTCAGCGACACCTACAGAAACCTCGGCGGCTACCAAGAGCTGG



CCACCAGATACGCCAAGAACATCCTGTCTGCCGAGTGGCTGTGGAAGAACAAGGTGGCCAGAGGAATCGCCGTGGA



AGTGTCCACCTCCAACCTGAAGAACTACTGCATCAAGGACGCCCAGTACAAAGAGTGGGGCTCTAGCTGGGAAGGCG



ACGAGCTGAAGTCTCTGGAAGGACTGGCCGTGGAATTCGAGGAAGCCCTGAGCTGCCCTCAGAAGTTCCTGTTTGCT



GACGTGGCCGCCAAGATCAAGACCGAGTTCTGCCAAGAGATCTTCCCCAGCCAGCTGTTCGTGGAAAAGGACGACAG



AGGCAATGGCAGCGCCAGCCGGCAGTTTATGAAGTCCACCATGAACGACGGCCGGCAGGCCGTGTCTTTTGGCGCTT



ACAAAGTGGGAGCCGCCATCCAGAAAATCGACGACTGGTGGCTGGATGAGGGCGCCGAGTATCCTCTGAGAGTGTCT



GAGTACGGCGCCGACAGATCTAGAGTGCTGGCCATGAGAGAACCCGTGACCAAGAAGGACTTCTACAGCCTGCTGAA



CGAGATCACCAACATCACCGAGGAAATGATTAAGACCCGGCAGGCTAGCCCCAACGCTCACTACGTGATGAGCGTGC



TGGTCAAAGGCGGCATGTTCCAGAAGGGCATCAAGAAAGGCGAGAAGTGA (SEQ ID NO: 285)





Cas6
ATGCGGTACTTCTTCTGCATCAAGTATCTGATGCCCAGCGGCAACCACGCCTTTCTGGCCGGAAGATGTATCGCCTGC



CTGCACGGCTTTATCAGCGGCCCCAAGATCACCAATAGCGGCATCGGCGTGTCATTCCCTAGCTGGGCTACTGGCACA



GTGGGCGACTCTATCGCCTTCGTGTCCAAGGACATCAACGCCCTGAGCTACCTGAGCAGCGCCCGGTGCTTTAAGAAC



ATGGCCGACGAGGGCTTCATCGACGTGTCCGACATCAAGATGGTGCCCGAGAAGCTGGAAGAAGTGCGGTTCATCCG



GAACCAGCACATTGCCAAGAGCTTCCCCGGCGAGATCAAGCGGAGACTGATCAGAAGCAAGAACCGGGCCGAGAAG



CGGGGCGAGACATTCATGCCTAGCAGCGCCGTGTCCGATAGATTCGTGGATCAGTGCCACGTGATCCCCATCGACAG



CAGATCTAGCGGCCAGCGGTTTCCCCTGTACGTGCAGCTTGAAGCCCTGGGCGAAGAGAGCAAGTACAACAACTACA



ACAGCTACGGCCTGGCCACACAGTACACCTACTCTGGCAGCGTGCCCAACCTGAAGCAGATCACCTAA (SEQ ID NO:



286)





DR
GTGAACCGCCGAATAGGCAGCTGAAAAA (SEQ ID NO: 287)





RE
TGTCGTTTCTCCTTCAAAATGGCACAAAATGTCCTGCTGCTGTCATATTTTGCCTTTTCTGTTGGCATAACCTACTTTTG



TAGTAATAAAACAAAAATAGGTGTACTGCCATGTATACCCGTACCTTGCGTCCTTCCCCTATCAAGCACATCTATAAA



TTTGCCAGTCACAAGAATGGCAATGTCCAGACTGTTGAGTCC (SEQ ID NO: 288)





LE
AAAGCCTGAATTCAACGAAAGGCATTGGGTATCCCATCTTAGCGGAATGCTCAGCAGTTTTGATCCTGTGCTGCGGCC



AAGAGCTGTTTATCATGATGTTTTTTTATAACGTCATTTTGCTACCGAAGCAAACGATCGTTTTACTTTATGTCATTTA



AAAGTGGAAAACTTATGTCATTTTGCGGTGGAATTCTTGGTGTAAGTGACTGTTTTTTCGTATTGGTTATGTCAAGTTG



AAGTGGAAACGACA (SEQ ID NO: 289)









156623|17|GCA_003025425.1_ASM302542v1_genomic|PYLX01000025.1|5240 1|PhotobacteriTm (ID: 123)










TABLE 33





Elements
Sequences







tnsA
ATGCAGCCTTCTCCTGCCACCACCTACCAGACAGACAGCCCTCTGGAATTCGCCTTCACACAGCCCGCCAGAAAGCTG



ACCAAGAGCCGGGGCAAGAACATCCACAGATACGTGTCCATCAAGATGAACACCATCATCAGCGTGGAAAGCACCC



TGGAATTTGACGCCTGCTTCCACTTCGACTTCAACAAGAATATCAGCCGGTTCTGCAGCCAGCCTATCCGGTACAGCT



ACGTGATCGACGGCATCATCAGAACCTACGTGCCCGACTTCCTGTGCGAGTTCGATTGCGGAGAGATGGTGCTGTAC



GAAGTGAAGGCCCCTAACGCCGTGAACAGCAAGCGGTTCACCAAAGAGTTCGAGGCCAAGCGGCAGTACGCCCGGA



AGCTGTTTGATGTGGACCTGGAACTGATCGAGGAACACGACATCCGGCACATCCCTCTGCTGAAGAACCTGAAGCAC



ATGCACCGCTACGCCAGCCACAGCGAGCTGACATACGAGCAGACCACCATCCTGAAGTATCTGAACAAGCACGGCAG



CACCAAGCTGGAAACCATCATCGACCACTTCAGCAACTCTAAGAACATCATCCCCATGATCTACGACCTGCTGAGCA



AGTACCTGATCAACACCGACCTGCGGGTGCTGCTGAACAACCAGACCGAGCTGAAAACCACCTACGTGTGA (SEQ ID



NO: 290)





tnsB
ATGAGCAGAACCAGCTTCAGCAGCTTCCACGGCACCCCTACAAGCGACAGCGAGAATGCCAGCAGCAAGCTGACCTT



CATCGAGAACGACGACCTGCAGGACCTGACCAGCTTCTCCAAGAAGGCCCAGAACGAGGCCAAGTTCCGGCTGAGC



ATCCTGCGGAACATCCTGAACAAGAGCAGCGAGATCAACCTGGTGCTGATCGAGAGACTGCGGGCCGATCTGCAACA



ACAGGGCGAGAGATCTATCCCCAGCGCCATCACCATCTACCGGTGGTGGCTGACCTACAAGAAGTCCAACTTCAGCA



TCCTGAGCCTGGTGCCTAAGACCAAGCAGAAGGGCAACAGAAACACCAAGGTGCCCAAGACAATCAGCGTGTACAT



CGACCAGGCCGTGGAACAAGTGATCAGCGCCAACAAGATCAACGTGTCCACCGCCTTTCGGAGAGTGCGGAGAAAA



GTGCGGCAGTACAATCTGACCCACAAGACGAAGCACACATACCCCAGCTACGAGGCCATCCGGAAGAGAGTGAAGA



AGATCACCCCTTACGAGAAACTGGCCGCCAGCAAGGGCGACAGAATCGCCAAGCGCGAGTTCAGACGGATGGGCAA



GAAGATCCAGACCGAGTACCTGCTGGAACGCGTGGAAGTGGATCACACCTGGCTGGATCTGTTCGCCGTGCACGAGG



AACACAGAGTGCCTATCGGCAGACCCTACCTGACACAGCTGGTGGACTGTCACAGCAAGAGCGTGATCGGCTTCTAC



CTGGGCTTCGAGCCTCCTAGCTACATGTCTGTGGCCCTGGCTCTGAAGAACGCCATCAAGCGGAAGGACAACCTGCT



GCAGAACTACCCCAGCATCCAGAATGAGTGGCTGTGCTACGGCATCCCCGATCTGCTGGTCACCGACAACGGCAAAG



AGTTCCTGAGCAAGGACTTCACCCTGGCCTGCGACAGCCTGCTGATCAACATCCACCAGAACAGAGTGGAAACCCCT



GACAACAAGCCCCACACCGAGAGACAGTACGGCACCACCAATACCGAACTGCTGAACGACCTGCCTGGCAAGACCTT



CAGCAACTACCTGCAGAGAGAGGGCTACAACAGCAGCGACGAGGCCTCTCTGACACTGTCCGAGATCAAGCAGATCT



ACCTGACTTGGCTGGTCGACATCTTTCACCCCAGACCTAACAGCCGGGGCACCAACTGTCCCAACAGAGTGTGGAAG



CACGCCGAGAAGAACTGGCCTCCTAACGAGTTCCTGGGCACCGACGAGGAACTGGACTTCTACTTCACCAAGCTGGA



CAAGCGGATGCTGCGGAAAGAAGGCATCGGACTGGCCACCGAGCTGTTCTACAGCTCTGAGAGACTGGCCGAGTACC



GGGGCAAGAAAGGCAATCACAAGGTGGCCATCAAGTACAACCGCGAGAACATGGGCTTCATCTGGGTGCTCGACGA



GGACACCGAGTCCTACTTTAAGGTGCCCGCCATCGACTACGAGTACGCCAGCACAGTGACCCTGTGGATGCACAAGA



AGAACCTGAAGATTAAGCAAGAGCTGAACATCACCGAGCACAACCTGGACTCCGAGATCGACGCCGAGCTGAGAAT



CGACGAGATCGTGGACCAGTCCATCCAGAAGAAGAAAACCACCATCACCAACAAGCGGAGAGCCGCCAGATACCAA



GAGAACGAGCAGATGGCCGCCAACGCCAGACAGCCCAAAGAGAAGAAGTCCGCCAACAACCAGAAAACCAGCACC



AAGAACATCGAGAAAGAGGACAGCAGCGGCTGGGACATCGATTACGTGTGAG (SEQ ID NO: 291)





tnsC
ATGGACGACAACATCACCAGAATCGCCAAGGCCAAGAAGGCCTTTATCAGCACCCCTGACGTGGCCGCCATCATCAA



CAACGTGGACAGATGCAGACGGCTGAGCAAGTTTGGCGCCGAGCCTAGCTGCATGATGGTGTATGGTGCTAGCGGCG



TGGGCAAGACCAGCATCATCCGGAAGTACCTGAAGGCCAACGACAAGGACAGCACCGCCAGACAGGATATCGTGCC



CGTGGTGTACATCGAGCTGCCCGAGAATGCCAAGCCTGTGGATGCCGCTAGAGAGCTGCTGCTGTACCTGGAAGATC



CCCTGGCTCTGTACGAGAGCGATCTGGCCATCCTGACCAAGCGGATCGTGGATCTGGTGCCCACCATGAAGATCGAG



CTGATCATCATCGACGAGTTCCAGCACCTGGTGGAAAAGAGCAGCAACCGGATCCTGAGCAGAGTCGGCGACTGGCT



GAAGATGCTGATCAACAAGACCAAGTGTCCCGTGATCCTGTTCGGCATGCCCTACAGCAAAGTGGTGCTGGCCGCCA



ACACACAGCTGCGGAGCAGATTCAGCATCCAGTTCGAGCTGAAGCCCTTCTCCTACATCAACAATTACGGAATCTAC



GCCGGCTTCCTGCGGAGACTGGATGAGGCCCTGCCTTTCGACCAGCTGAGCAATCTGGCCTCTGAGCCTATCGCCAAG



AAGATCTACGCCTTTAGCCAGGGCAACATGCGGAGCCTGAGAAACCTGGTGTTTCACGCCGCCGTGAACGCCATCGA



GAACGACAACAACTGCATCAGCAAGAACGACTGGGAGTTCGCCAGCAACCTGACCAGCGGCAACAAGCTGAGCACA



TGGAAGAACCCCTTCGTGCAGGGCGTGAAGATCACCGACAGAATGCTGCAGGACCAGCCTAACGATCTCGGCTGGGA



AGATTACATGCGGAACAACAAGGGCAAGCGCAAGCCCTTCGACGAGAGCAAGATCTTCAGCTGA (SEQ ID NO: 292)





tnsD
ATGTTCCTGCAGAGGCCTGAGCCTCACTCCGACGAGAGCCTGGAAAGCTTCTTCATCAGAGTGGCCAACAACAACGG



CTACGAGGACATCCACCGGTTTCTGATCGTGACCAAGAGATACCTGCAGGACGAGAACCACGACAGATTCGAGGCCT



TTCCTACCGACATCAAGACCATCAATCCCTACAGCAGCAAGAACAACCACGGCAGCAGAGTGGCTGCCCTGCACAAG



ATTGCCCTGATGACCTTCAACGAGCAGACCGAGATCCTGAGCCTGGCCATCAACAGAACCAGCCTGATCTACAGCCC



CAGCACCACAGCTCTTGTGCGGGGCTCTGAAGTGATCCCCAGAAGCCTGCTGCGGAAGAACACAATCCCTTGCTGCC



CCAGATGCCTGTACGAGGAAGGCTTTGGCCACTACCTGTGGCACTTCAATGGCTACAACCACTGCCACAAGCACAAC



GCCCTGCTGACCTACAAGTGTGCCTGTGGCGCCGACTACGACTACAGAATCGCCGGCCTGAATGGCCTGTGCAGAGA



GTGCGACACCTATCTGAACCCCAACCAGCAGCAGCCTGACAGCGCCGAGAACAAGACATCTGCTTGGCTGGCCGGCA



AGACAATCGAGCAGCTGCCTGATCTGCCCCAGTCCTATAGATGGGGCCTGATCCATTGGTGGGCCCATCTGACCCAG



AAAGAGTTTGACGGCGCCAGCTTCATCGATTTCTGGCACAGATGGCCCGAGAGCTTCCACCACCTGATCCAGCAGAA



GATCGAGTTCAACCTGGAACACAGCATCATCCACCACGACAACCTGAAGCTGAAGGACCTGCTGGGCGACCTGTTCT



TCAGCTGCATCAGACTGCCCGAGCGGAACCTGAAGTACAACATCGTGCTGAACGAGCTGCTGCGGTTCATCGACAAC



AACCTTTGGAGAGACAATGGCCTGCTGGCCAATCTGAAGATGAACGCCCTGGAAGTGTCCATCTTCCTGAACTGCAG



CCGCGAGCAGATTGTGCTGATGGTGGACCAGCGGTTCCTGAAAACCAGCCGGAAGGCCAAGCCTAACAAGCCCCTGA



GCTTCACCGACTACCTGTTCCATCTGGGCGACGTGTACTGTCTGTGGCTGGCTGAGTTCCAGACCGACGAGTTCAATC



GGACCTTCATCATCAGCGGCTGA (SEQ ID NO: 293)





Cas5/
ATGTCTACCCTGGCCGAGATCATCAACAGCAGCAGCTCCGACATCAACGTGGAATTCAAGCGGGCCTTCAGACCTCT


8
GAGCCCCAACATCGACATCACCGACAACGAGGATATCGCCCTGATCATCCTGACCAACCTGACCGCCAAGGTGGACG



CCAAGCAGATCCTGACCGACAGAGAGAACTGCCGGAAGAAGCTGAAGGACAACAACTGGTGGTCCCGGTGCATCAA



CACCATGAAGTTCCGGCAGAGCCACAACGTGAAGTTCCCCGAGATTAAGGCCACCGGCATCATCCGGGCCGATCCTA



TCGGAGAGATCCCCAAGTACTTCCTGAGCAGCAGCAAGCTGAAGCAGAAAACCCTGCCTTACGCCAACGACAGCAAG



GATGTGTCTATCGCCAACTTCCTGACCTCCGAGTTCATCCTGAACGGCAAGATCTGCTGCCTGGGAGTGCTGCTGGCC



GATGAACAACACCCTCTGTGGGACAGACTGACCAAGCTGGGCTGCTACCAGAAAACACGGAAATACGTGGCCAAGC



AGCTGGAAAAGATCCCTAACAGCTGCATCGAAGTGCACCTGGGCGCCAATTCTGTGCGCCAGATCTCTCTGCCCGAC



GGCAACAACAGCTACCTGTCTCTGTCTCCTGCCACCAGCCAGACCATGCAGTCCAGCTGTTACCAGAGCCTGCACAAG



CACTACTGGCTGAGCAAGACCACCAGATACAGCCGGGCCAGCAATATGGGCGTGCTGCCTATGACATGTGGCGGAGC



CCTGAGAATGCTGAGCCACACCATCAGCTTCGAGGACGTGAAGCACTGCCAGATCAGCCCCGACAGCTATTGGCTGA



CCAAGGATGCCATCCAGGCCTTCTACGACTACTTCGACTACAGCAACTGGCTGATGCCCCACACACAGAAGCAGCAG



AAACTCAAGACCCTGAAGATCACCATCACCGAGATGATCAGCCGGTGGCTGAGCCTGCAGAAGAAGTCCATCAAGG



ATAACAACCTGGACCTGGTGCACAAGCTGAACTTCGACCTGAGCAACACCAAGAGCCTGCGGCAGTTCGCCTACGAT



CCCAAGACCACACGGTTTCTGTTCACCCTGATCGAGAACCGGTCCAACACACAGCAGCCCTACACAAGCCCCAACGA



GAACTTCGATAACCAGTACCTGCTGCTGCCCCAGATCTCCGTGTGTGGTGCCAGCGCTCTGAACAGCTCTATCACCAT



CGGCATCCCCAGCCTGACAGCCTTCTTCGGCTTCATCCACGCCTTCGAGCGGAACATCCAGAAGGTGTTCCCCAACTT



CAAAGTGAAGTCCTTCGCCATCTGCATCCACACCTTCCATCTGCAAAAGCGGGGCATGACCCGCGAGAGCGTGGAAA



AGAGCAAGGACAATATCAGCCCTCCAGCCACACACGACGAGTGGTACTGCGACCTGAAGTTCTCCCTGGTGCTGAAA



ATCAACAACCTCACCAATCTGAACCAGAGCAAGATCCTGTACGCCCTGCCTAAGAGACTGGCTGGCGGATGTGCCAG



AATCAGCATCGACGACATCAAGACCATCCAGGTGTCCAGCAGCTTCAAGGACCTCGTGAAGCAGATTCCCACCTTCC



AAGGCCAGTGGCTGTCCCTGTACAAGGCCGAGATTGACTCCTTCGAGAACATCATCCAGCAGATCAAGGCCAGCCAG



AACATCACCCCTACCTGCGTGGGCTACCACTACCTGGAAAAGCCTACCGAGAGGCCCTTCAGCCTGCGGGACTACAA



TCACGTGTTCGCCGAGCCTATCATCGGCCTGATCAAGCCCATCACAATCAAAGAGGACACCAACCTGCACGACCTGTT



CTGGAATCAGATCAAGAAGCCCCACTACACCACCATCGAGACACGGAACATGAACAATGAGGACCCCTACTGA (SEQ



ID NO: 294)





Cas7
ATGAAGATCCCCATCAGCCTGGCCTACGAGCGGAGCATTCATCCTAGCGACGTGTGCTTCTTCACCATCTGGCCCGAC



GGAAACAAGGCCCCTCTGAGCTTCATGAGCAGAACAGCCCTGGGACAGATGGAAACCGCCAGCAGAGCCTACGACA



CCAAGGGCAACCCCAAGAAAACCGCCACACCTGAAGCTCTGGCCCAGGGCAATCCTCACCACATGGATTTCTGCAGC



GTGCCCTTTGGCGCCGAGCACATCGAGTGTGTGTTCAGCGTGTCCTTCAGCAGCGAGCTGCGGAAGCCTTACAAGTGC



AGCGAGCCCGAAGTGAAGAACACCCTGATCGAGCTGGTCAAGCTGTACGAGAGCAAGATCGGCTGGGATGAGCTGG



CCGGCAGATTCCTGACCAACATCTGCCAAGGCAAGTGGCTGTGGAAGAATACCAAGAAGGCCTACCAGCTGAACATC



GAGATCAAGCCCTGGCCTTGGAAGAACAACCCCGTGATCTTCGAGGACATCCGGACCAACTACAGCACCTACAACGA



CTGCCTGAGCGACCCCAAGTGGCAAGAGCTGAAGCACCTGATCATCAACGCCTTCTCCAGCCAGAACGGCCTGACCA



TCTTTGAGATCAAGGCCCAGCTGACCCTGCCTACCAATGCCGCTCTGTATCCTAGCCAGGCCTTCATCGAGAAGGACA



AGAAAGAGAAGAAACACCAGAGCAGCCGGATCTTCCAGCACACCAGCATCAACGGCCAGAAGTCCCCAATCATCGG



CTGCTACAAAGCCGGCGCTGGCATCTTCATGATCGACGACTGGTATCCCAACGCCGAGGAACCCATCCGGATCGGCA



GATTTGGAGTGCACCAGCAGGACGTGACCTGCTACAGACACCCTAGCACACACCAGGACCTGTTCAGCCTGCTGGAA



CAGAGCGAGAAGTATATCGCCCTGCTGAAACACAAAGAGAAAATCCCGCAGAAAACGATCAACGAGCTGCACTTCC



TGATGGCCAACCTGATCAAAGGCGGCCTCTTTCAGCACAAGGGCGAGTGA (SEQ ID NO: 295)





Cas6
ATGGACTGGTACTACAAGACCATCAGATTCGTGCCCACCAACTGCAACAACGAGTTCCTGGCCGCCAAGTGCATCAA



CATCCTGCACGGCTTCAGCTACAGATACGACACCAGATCCATCGGCGTGTCATTCCCCAACTGGTGCAACGAGACAG



TGGGCGACAGAATCAGCTTCGTGTCCATCGAGAAGATGACCCTGGACTACCTGCTGACCCAGAACTACTTCAAAGAG



ATGCAGGACCTGGGCTACTTCAACATCAGCAAGACCCTGATCGTGCCTATCGAGTGCAACTTCGCCTGCTTCAAGCGC



TACCAGAAGATCGACAAGAGCAGCGCCGCTGGCTTCCACCGGAAGATTAAGAGACTGGCCAAGCGGGCCCACAACA



GAGGCGAGGTGTTCGACAACAAGAAGTACAACATCTACAAGCAGTGCGACATCGGCCACTACCACAGCCTGGCCGA



GGAAAGCAAGAGCAAAGGCTACGGCTTCCGGCTGAACATCCAGCGGACCAACGAAGTGAACATCAACAACATCCCC



ATCTTCAGCAGCTACGGCCTGGCCAACACAGCCCACACACTGCAGAGCGTGCCCATCATCTAA (SEQ ID NO: 296)





DR
GTGTACTGCCGAGTAGGCAGCTGATAAC (SEQ ID NO: 297)





RE
TGTTGATACAACCATAAGTTGATATTTACAACCATAAGCTGATATTTAATACAACCATAACTTGATATTGCCTCTTTTT



AGACCATACTTATGTAAGTTTACTACATATGGTGAAAGAGGCAATTTTATGCAACCTTCTCCTGCAACGACATATCAA



ACAGACTCTCCTCTTGAGTTCGCATTTACTCAACCAGCTAGAA (SEQ ID NO: 298)





LE
ATCCCCCTAGTATCAGAATTGTTTCAACCACAGCGAGAATCTTACAATATTCAATACTAATGCCATAAATATACTTAA



ACAGTAAAAAAGATGTAAGTAACTTTCTTACAACCAATCTTCATAATTAGTAATAAACCTATGAAAATATCAACTTAT



GGTTGTTTTGAATAATATCAACATATGGTTGTATTTTTATTAAAAAATTGATTTATATGAAAATATTGAATATCAACTT



ATGGTTGTTTCAACA (SEQ ID NO: 299)









162445|18|GCA_003201885.1_ASM320188v1_genomic|QJJG01000019.1|12806 7|Klebsiella (ID: 124)










TABLE 34





Elements
Sequences







tnsA






tnsB
ATGTACAGACGGCATCTGCACCACAGCAGAGTGAAGAACCTGTTCAAGTTCGCCAGCGTGCGGATGGGCATCGTGCT



GACACTGGAAAGCAGCCTGGAATTCGATACCTGCTTCCAGCTCGAGTACAGCCCTGCCGTGAAAACCTACATCAGCC



AGCCTGAGGGCTTCTACTACGAGTTCGAGGGCAAGAGCTACCCCTACACACCCGACTTTCTGGTCAAGGACCAGAAC



GACCAAGAGTTCCTGCTGGAAGTGAAGCCCAGCAGCCAGATCGACGATATCGACTTCCTGCAGCGGTTCCCCGCCAA



GCAGAAGAAGGCCAAAGAACTGGCCTCTCCTCTGATCCTGATCACCGAGAAGCAGATCAGAAGCACCCCTCTGCTGG



ACAACCTGAAGCTGGTGCACAGATACGCCGGCTTCCACAGCATCATGCCCAGCTGCAACGAGATCATGGAACTGCTG



CGCGAGCAGAAAGAGGTGGCCATCTTCAACCTGTGCGAGAGCATCGACATCCCTCAGGGCGAGATGTACAGCAGCAT



CCTGCTGCTGCTGAGCAGGGGCCTGATCAGCGGCAATCTGATGGAAAGCGAGTTCGGCCTGGTCACCCTGCTGAAAT



ACGCCCAGCAGAACAGCCTGTTCATCTGCAGCTTCCCATTCGAGGACGAGTTCACCCTGAGCCAAGAGAACGAAGTG



AAGATGAGCACCGACGAGTCCAGCGACATCATCCTGCCTGCCACACTGGACTGCTACAGCGAGATCCTGAAAGAGGA



AAGCGTCCGGCGGCTGAACTACATCCAGTGGGTCGAGAAGAGAATCATCGGCGGCTGGACCGAGAAGAACATCACC



CCACTGATCAACGAGGTGGCCCAGACACTCAGACCTCCAGCTCCTCATTGGAGACAGCTCGTGCGGTGGCACAAGAA



GTACCTGCAGCACAGGCGGCAGATCACAGCCCTGGTGCCTAACCACAAGAACAAGGGCAACAAGACCCAGCGGGTG



TCCAGCCGGGAAGAGATCTTCATCGAGAACGCCATCCTGAAGTTCCAGAGCAAAGAGCGGCCCAGCATCAGCAGCAT



GTACTGCTTCTACTGCGACTCCGTGCGGATCTTCAATCTGAGCAACAGCACCGAGCGGATCAAGACCGTGTCTCTGAA



CACCTTCTACCGCCGGATCAAAAAGCTGAGCGTGTACCAAGTGATGAACGCCCGCGACGGAAGAGTGGCCGCCAACA



TGGAATTTCAGGCCATCGACAGCTTTCTGCCCACCTCCAGAGTGCTGGAAAGAGTGGAAATCGACCACACACCTCTG



GACCTGATTCTGCTGGATGACGAGCTGCTCCTGCCTCTGGGTAGACCTTCTCTGACACTGCTGATCGACGTGTACAGC



CACTGCGCCGTGGGCTTTAACCTGTGCTTTACCCAGCCTGGCTACGAGAGCGTCAGATGTGCCCTGCTGCACTCTCTC



GTGCGGAAGGACTATGTGCAAGAGCAGTACCCCTGCATCGAGAATAGCTGGATCAGCTACGGCAAGCCCGAGACACT



GGTGGTGGATAACGGCGCCGAGTTTTGGTCCTCTAGCCTGGAACACGCCTGCCTGGAACTGGGCATCAACACCCAGT



ACAACCCTGTGCGGAAGCCCTGGCTGAAGCCTCTGATCGAGAGAATGTTCGGAACAATCAACCGGAAGTTCCTCGAG



TCTATCCCCGGCAAGACCTTCAGCAACATCCTGGACAAGGCCGACTACAACCCTCAGAAAGACGCCGTGATGCGGTT



CAGCGTGTTCCTGGAAATCTTCCACCACTGGCTGCTCGATGTGTACCACTACGAGCCCGACAGCCGGTACAGATACGT



TCCAGCTCTGGCCTGGAAGTACGGCTGCAAGGTTTACCCTCCTGCCACCATCGAGAAGAATGAGCTGAAGAAGCTGG



AAATCATCCTGAGCATCAGCCTGCGGCGGCTGCATAGAAGAGGCGGAATCCATCTGCATCACCTGAGATACGACTCC



AAAGAGCTGTCTGCCCTGCGGATGCAGTACTCCCTGGAAGAGAAGGGCAAGAAAAAGGTGCTGGTCAAGCTGAACC



CCGCCGACATGAGCTACATCTACGTGTACATCGACAAGATCAAGTCCTACATCCGGGTGCCATGCGTGGACCCCTGC



AAGTACACACAGAACCTGAGCCTGCAGCAGCACCTGATCAACCTGCGGTTCCACCGGGACTTCATCAACGAGAACAT



CAACCTGGACAGCCTGAGCAAGGCCCGGATCTACATCTCCGAGAGAATCCAGGGCGAAATCGACAACGTGCGGCAG



TACGCCAAGCGGAGCAGCAAGAAAGGCATGAAGAAGATCGCCAGCCATCAGGGCGTGACCAGCCAGAACAAGAAA



ACAATCGCCAGCGACACCATTCACTTCCCCGCTCAGAAGGGAAAGAACCGGGACACCCACACACTGCCCGACGACTG



GGATGACTTCACCAGCGACCTGGAACCTTTCTGA (SEQ ID NO: 300)





tnsC
ATGAAGCTGAGCAGCCTGAAAGAGGAAAAGCTGATCTCCTTCATCAACTGCTTCGTCGAGACACCCTTCCTGAACGA



GATCGAGAAGGACTTCGACCGGCTGCGGTACAACAGATTTCTCGGCGGAGAGCCCCAGTGCATGCTGCTGACAGGCG



ATACCGGAACCGGCAAGACCTTTCTGCTGCACCACTACATGAGCAAGTACCCCGCTCAGAACGGCAGCGGCTACCTG



AGAAAACCCCTGCTGGTGTCTCGGATCCCCAGCAAGCCTAGCCTGGAAAGCACAATGGTGGAACTGCTGAAGGACCT



CGGCCAGTGGGGCAGCAACTACAGAAGAAACAGAAGCAGCGCCGAGAACCTGACCGAGAGCCTGATCAAGTGCATG



ATGAGATGCGAGACAGAGCTGATCCTGATCGACGAGTTCCAAGAGCTGATTGAGAACAAGACCAGAGAGCGGCGGA



ACCAGATCGCCAACCGGCTGAAGTACATCAGCGAGACAGCCAGAATTCCCATCGTGCTCGTGGGAATGCCTTGGGCC



GCCAAGATCTCTGAGGAACCTCAGTGGTCCAGCAGGCTGCTGATCAGAAAGACAATCCCCTACTTCAAGCTGACCGA



CGGCCTGAGCATCTTCGTGCGCGTGATCAAGGGATTCGCCGCCAGAATGCCCTTCAGAAAGCCTCCTGAGATCGAGG



GCAAGCACACCATCCTGGGCCTGTACTCTGCTAGCCAGGGCAGAATGCGGACCCTGAAGTTCCTGCTGAACGAGGCC



GTGAAGCAGGCCCTGAGCGAGGATTCTGAGACACTGACACACGAGCACATCGGCAAGGCCTTCCACATCTTCTACCC



CGAGCACGAGAACCCCTTCTACATCCCTCTGGAAAACATCAAGATCTACGAAGTGCGCGAGTACTCCGGCTATGAGA



TCGACGGCGCTGGCAAAGAGGATCGGCTGATTCCTCAGCAGCTGACAGACAGGATCCCCATCAACCAGCTGCTCCGG



AAGTGA (SEQ ID NO: 301)





tnsD
ATGCACTTCCTGATCAGACCCGAGCCTGTGTGCGACGAGAGCCTGGAAAGCTACCTGCTGAGACTGAGCCAGGACAA



CGGCTTCGAGCACTACAGAATCCTGAGCGGCAGCCTGAAAGAGCGGCTGCTGCAGTCTGATTATGAGGCCGCTGGCG



CCTTTCCTCTGGAACTGGCCAAAGTGAACATCTTCCACGCCAGCTACAGCTCCTACCTGCGGATCAGAGCCCTGTGCC



TGATCGCCGATCTGACAGGACAGCCCCACACCAACCTGCTGAAAGTGACCCTGATGCACAGCACCGTGACCTTCGGC



AGAGGACACAAGGCCGTGTCCAGAGACAACACACACATCCCTCTGTGCTTTATCCGGACCAACAGCATCCCTTGCTG



CCCTGAGTGTCTGGCCGAGCATGGCTACGTTAGACAGCTGTGGCACTACAAGCCCTACACCGCCTGCCACCGGCACA



GAAGAAAGCTGCTGACAAGATGCCCTGCCTGCCACGAGTCCCTGAACTACCTGTACAGCGAACTGCTGACCCACTGC



AGCTGCGGCTACGATCTGAGACAGGCCTTCACACCTCCTACCAGCAGCGACGATCTGCAGCTGAGCAGCATGGTGTC



CGACGACAAGTGCGAAGCCCTGTCTCCTGCTAGCGCCAGCCAGGATAAGAGCCTGAGATATGGCGCCCTGCTGTGGT



TCATCATGAGATACGGCGAGAGCAGCAACAACGAGGAAGGCATGCTGAGCGCCATGCACTACTTCAGAGCCTGGCC



AGACAACTTCACCGCCGAGCTGCTGGATATGATGGCTGCCGCCACCATCAAGCAGACCAAGAGCTTCAACCACATGA



GCCTGACCGACGTGTTCGGCAAGACCCTGAGCGACTGTCTGTACCTGCCAGCCAGAGACACCCACCGGAACTTTATC



CTGCACGCCTTTCTGGACTACCTGACCAACCTGGTCATGGAAAACCCCAGGTCCAATATCGCCAATCCTGGCGACCTG



CTGCTGAGCATTAGAGATGCCGCCTGTCTGCTGTCCACCAGCAATGCCCAGGTGTACAGACTGCTGGACGACGGCTTT



CTGAAGGTGGCCATCAGACCTAGAGCCGGCATGAAAGTGAAGATCAGCACCCCTGTGCTGCATCTGCGGCAAGTGAT



CGAGTTCCGGCTGACTCACATCCCCGGACCTCACGATAAGGGCCACACATACCTGTCCGCCAGATGA (SEQ ID NO:



302)





Cas5/
ATGCACATCAGAGAGCTGCTGAAGATCAAGGACCACAGCGAGAGAGACAGAGCCCTGAGACACGGCTTCAGCCCCA


8
TCCGCGAGAAGATCGACATGGAAGGCTTCGAGTACGAGACACTGGTGGTGCTGCTGAACATGACCCTGAAGCGCGAC



CTGGTGCACAACCTGTTTGATGTGCGGCTGGCCAGACAGCTGCTGTTCGACAAGAATCATCTGGCCCACTGCGTGAAC



GCTGTGCGGTGGCTGCACACCCACAACCTGAAGTACCCCGACAGCAGAGTGCGGGGCCAGAGACTGATTATCTGCAG



CCCTGCCGTGATTCCCGGCATCGTGTCATCTGCCGATCTGCCCCAAGAAATGGGCTGGGCCAACAACGGCGCCGACA



TCAATTTCGCCAGACTGTTCTGCAGCTTCTTCCGGCACAACGGCAGCATCACATGCCTGGCCAAGCTGCTGACAGAGG



GCTGTTCTGGAATCGTGAAGGCCCTGGAAAGACTGGGCACCAGCACCGACGATATCTGCCTGCTGAGAGTGGCCATT



GCCAACAACATCAGCGAGAGCGTGATCCCCAGCGACGTGTCCATCTACTCCAGGCAGCTGAGAGGCTTCCTGCAGGG



CAAAGACGTGGCCATCACACCCGTGGTGTCTCATGCCCTGATGGCCAGACTGCAGCAGCTGATCTACCAGCAGAGAA



AGCCCCACATCATCATCCGGCACGATCACCCTGCCAGCATGGGAAATCTGGTGGCCTCTACCGGCGGCAATATCGCC



GTGATGTACTACCCTCCTCTGGTGTCCGTGCACAAAGAGCGGAGCTTCATCCACTCCAGAGTGGGCCTGCTGCAAGAG



AGAGAGCACCTGTTCGATAACAACGTGCTGCGCGAGAAAGAGCTGTTCAACGCCCTGCAGAACCTGGTGTCCCACAA



TGGCGGAAGCCAGCGGCAGATTAGGCAGCAGAGACTGTCTGCCCTGCGCTACCTGAGATACCAGCTCGTGATCTGGC



TGAAACCCGTGATCGAGTGCATCGACGCCCTGGAAGAGAACAGAGAGGACATCCTGAGCCTGCCTGAGAGCATCGA



GAAGAAGGTGCTGACCCAGAGCGTGAACAGACTGGACGAGCTGTCTAGCGAACTGGCCGGACACTTCCACCTGTCTC



TGCAGCACCATCCTCTGTTCAGAAGATTCGCCTTCCACTCCGAGCTGGTGGTGTCTGTGGAAAGCCAGCTGAAGTGGA



TCCTGAAGAACATCAGCAGAAGCGACCCCGACACACCCATCACACAGTCCTGCAGAGAGTTCTACCTGCACCTGAGC



GGCCTGAACATCTACGATGCCAGCGCCATGAGCAACCCCTACCTGTGTGGAATCCCTAGCCTGACAGCCCTGGCCGG



CTTCTGTCACGACTACGAGAGAAGAGTGTCCGCTCTGATGGAACAGAAAGTGTGCTTCACCGAGGTGGCCTGGTACA



TCGGCCACTACAACCTGATCAGCGGCAGGCAACTGCCAGCCGCTATGATCCCCGAGCGGAAGAATACCATCAGCAGC



CTGAGAAGGCCCGGCATCACCGATGAGAAGTGCTGCGATATGGGCATCGAGCTGGTCATCAAGCTGCAGTTCCCCGA



GGAATGCAAGCTGCCAGAGAGCGGACTGCTGTACGCCGCCTCTCCTAGTAGATTTGCTGGCGGAGTGCTGCACCCTC



CTAGCTTCTCTGGCGAGAAGTCCTGGTGCCAGCTGTACTCCGATCAGGACGCCCTGTACAGCGTGCTGTCTAGACTGC



CTGGCAGCGGCTGTTGGATCTACCCTGTGCGGACCACCATCACCACACTGGAAGAAATGTTCACCGAGCTGAGCAGC



GACTACAGACTGAGGCCTGTGTCCAGCGGCTTCATCCTGCTCGAGGAAATGCAGTACAGAGCCGGCAGCCTGGCTTC



CCAGCATGTGTATGCCGAAAGCGCCCTGGGACTCGCCAGATGTCACAACCCCATCGAGATTAGACTGGCCGGCAAGA



AGAACTTCTACAATCAAGGCTTCTGGCCCCTGGACTACGAGGACAGAACCATCATCACCTGA (SEQ ID NO: 303)





Cas7
ATGGAACTGTGCACCCACCTGAGCTACATGCGGTCTATCAGCCCTGGCAAGGCCGTGTTCTACTACAAGAGGCCCGA



GTGCGAGTTCGTGCCCCTGGAAATCCAGACCAGCAAGATCAGAGGCCAGAAGTGCAGCTACAGCGAGGGCTTCAGA



GAGAACCTGCAGCCTAGAAAGCTGCAGCAGCACGACCTGGCCTACGCCAATCCTCTGACCATCGAGATCTGCTACGT



GCCCGCCGACGTGAACGAGATCTACTGCAGATTCACCCTGCGGATCGAGGCCAACAGCCTGAGGCCTTATGTGTGCG



GAGATCCCCACGTGCTGAACACCCTGACAGAACTGGCCCTCGAGTACAAGAAGCACGACGGCTACAAAGAGCTGGC



CAAGCGGTACAGCACCAACCTGCTGATGGGATCTTGGCTGTGGCGGAACAGGTTCACCCAGAGCACCCAGCTGGAAA



TCAAAACAAGCCTGAACAGCACCTACCGGATCCTGGACAGCAGAGAGCTGAATTGGAGCGAGGCCTGGCCTGAGTCT



GAGCAGAGACAGAGGGAACTGCTGGAAAGAGAGATCGAGACAGCCCTGTCTGAGCCCGGCGTTTTCTGGGGAGCTG



ATGTGATTGCTACCCTGCAGACCAGCTTCTGCCAAGAGATCTACCCCAGCCAGAAGTTCATCGAGAAAACCGTGGAC



TACTCTATCGCCAGCAGACAGCTGGCCACCACCGAGTGTTCTAATGGAAAGCAGGCCGCCTGCATCACAGCCCAGAA



AATTGGAGCTGCCCTGCAGCGGATCGACGATTGGTGGAGTGCCGACGCCGACTATCCTCTGAGAGTGCACGAGTATG



GCGCCGAGCCTGAGAGACTGACAGCTAGAAGGCACCCTGTGTCCGGCCACGACTTCTACCATCTGCTGACCAAGGCC



GACATCTTCCTGAACGACTTCAAGAGCAAGAAGATGAAGAAGATCAGCGGCGATATCCACTTCCTGATGAGCGTGCT



GGTCAAAGGCGGACTGTTCCAGAAAGGCAGAGGCGCCTAA (SEQ ID NO: 304)





Cas6
ATGCGGATGACCCGGTACTTCTTCAGCGTGTACTACCTGCCTGAGGACGCCGACTATCCTCTGCTGGCCGGCAGATGT



ATCAGCACCCTGCACGGCTACACCAGCCACCATCCTGATACCAGAATCGGCGTGTCCTTTCCTGACTGGACCGACACC



ACACTGGGCAGAACAATCGCCTTCGTGTCCGTGAACAGAAGCCACCTGGAACAGCTGAAAGAGCGGGCCTACTTCAA



GATCCTGAAAGAGGAAAAGATCTTCAGCATCAGCCCCGTGCTGAAGGTGCCCGAGTACTGCCCTGACGTGATGTTCA



TCCGGAACCAGACAATCGCCAAGTGCTTCGTGAAAGAGAGAAAGCGGCGGCTGGAACGGGCTAAGAGAAGGGCTGA



AGCTCGGGGCGAAGTGTTCCAGCCTAGAGTGAATAGCCCTCTGCGGAGCATCGAGGCCTTCCACGGCATCTTCATGC



AGAGCATCAGCAACGGCTGCAGCTTCCTGCTGCACATCCAGAAGAAAGAGGCCCGGATCCAGAGCAACCACATGTAC



TGTAGCTACGGCCTGGCCAGCAACGAGGTGTACACAGGACATGTGCCCGACCTGAGCAGCGTGGTCAAGAAGCTGTT



CTGA (SEQ ID NO: 305)





DR
ATGAACTGCCGTACAGGCAGCCAAAAAT (SEQ ID NO: 306)





RE
TGTCGTTTAATCCATAAGTTGACATATTTAATGCATAAGCTGACATAACTAGGCAGGATAAGCTGACATAGCCTACAT



TTGTAGTAAAGCAACTACATTAGGAGAGGTCTATTTATCGTCGGCACATAAATCATTATCGTGTAAATAATATATTTA



AATTCAGCAGTATACGGAAATGTCGTTCTTTGTCTGTCCAATCTTCACTTGAATATGATACCTGCTGTTGTAAGTATCC



CGCTAAAACCATTCA (SEQ ID NO: 307)





LE
GACCGGTCCGGGACGACATCATCAATTACTACCCGTTAAAAATCTTCATTATTATGTATATGTTGATGATATCCACGA



ATTAGCACACATTTAGAACGTGTAATTTTACTACATAAAAAATCTCGCGATGAGTGATGAACAACTTTATGCCATCTT



ATGTGATAAATTTATGTCAATTTATGCGTAAAATTAAACGCTTAACTTATTGATATTTAGTTCATCGTTATGTCAACTT



ATGAGTTAAGCGACA (SEQ ID NO: 308)









168540|5|GCA_003350295.1_ASM335029v1_genomic|QLYY01000006.1|32744 7|Vibrio (ID: 125)










TABLE 35





Elements
Sequences







tnsA
ATGTTCGACCAGACCAAGAAAAGCAGCCACGTGCACAACATCTGCAAGTTCATGAGCCTGAAGAACGACGCCGTCGT



GCGGACACTGTCTATCCTGGAATTCGACTTCTGCTTCCACCTCGAGTACAACGTGGACGTGGAAAGCTTCATCAGCCA



GCCTACCGGCTTCTACTACAAGTTCAACCAGCGGCAGTGCCGGTACACCCCTGACTTTCTGGCCATCGATCAGAACAA



GCAGAGCACCTTCTTCGAAGTGAAGCACAGCAGCCAGATCCTGAAGCCTGACTTCCGGGCCAGATTCAAAGAAAAAC



AGAACGTGACCCTGCAAGAGTTCGACCGGCGGCTGATCCTGGTCACCGAGAAGCAGATTAGACTGGGCCCCGTGCTG



ACCAACCTGAAGCTGCTGCACAGATACAGCGGCATGCGGACCATCACCAAGTTCCAGAAACAGGTGCTGGCCTACGT



GCAAGGCAAAGGCATGGTCAAGCTGCAAGAGATCGCCCACTACTTCGAGCTGAGCGAGGCCGAAACACTGGTGGCT



ACACTGCCTTGGGTGTCCTCTGGACACGTGCAGACCGATTACAAGAGCGCCGGCTTTGGCCTGGACACCTACGTGTGG



TGTTGA (SEQ ID NO: 309)





tnsB
ATGTCTAGCCAGGCCGCCTCTATCCTGGGCTTCTTCGACGAGTTTGAGAAGGCCGAGAAGGACAGCCAGCAGAGCAG



CCTGGAATTCTTCGAGGAAAGCCCCGAGATCAACCTGGCCATCGACGGCTACTGTGACGAAGTGCGGAAAGAGCTGA



TCCGGCGGCTGAAGGTGTTCAACTACGTGGAAAAGCGGCTGAGAGGCGGCTGGACCGAGAAGAACCTGGAACCTAT



CCTGAGCAGCGTGGAAAGCGACCTGGAACTGCCTGCTCCTAAGTGGCGGACACTCGTGTGCTGGAAGAAGATCTACC



TGGAAAGCGGCAGGGACCCCTACTCTCTGATCCCCAAGCACCTCCTGAAGGGCAACCGCGAGAAAGTGATCGACAGC



CAAGTGATCGTGGACGAGGCCATCACCAAGGTGTACCTGACCAGAGAAAGACTGAGCGTGGCCGAGGCCTACCGGT



ACTATACAGCTAGAGTGGTGCAGCTGAATCGGTTCATCATCGAGGGCAAGATCAAGCCCGTGTCCGAGCGGACCTTC



TACAACCGGATCAAGGACCTGCCTCCTTACGAAGTGGACGTGGCCAGATTCGGCAAGAGATACGCCGACAGACAGTA



CAGAGCCGTGGGCCAGCAGATCATTGCCACCAAGCCTATGGAATACGTCGAGATCGATCACACCCCTGTGCCTGTGA



TCCTGATCGACGACGAGCTGGACATCCCTCTGGGCAGACCCTACCTGACAATGCTGTACGACCGGTTCAGCAAGTGC



ATTGTGGGCCTGAGCGTGAACTTCAGAGAGCCCAGCTTTGACAGCGTGCGGAAGGCCCTGCTGAACAGCCTGCTGGA



TAAGAGCTGGATCAGACAGAAATACCCCATGATCAAGAACGACTGGCCCTGCCACGGCAAGATCGATTGCCTGGTGG



TGGATAACGGCGCCGAGTTCTGGTCTAAGAGCCTGGAAGATAGCCTGCGGCCTCTGGTGTCCGACATCCAGTATTCTC



AGGCCGCCAAGCCTTGGAGAAAGAGCGGCATCGAGAAGCTGTTCGACCAGCTGAACAAGGGCCTGAACAACGCCTT



TCCTGGCAAGACCTTCACAAACCCCACACAGCTGCACGACTACGACCCCAAGAAAGACGCCGTCGTCAGAGTGTCCG



TGTTCCTCGAGCTGCTGCACATCTGGGTCGTCGACTTCTACCACATGAAGTCCGACAGCAGAGAGCGGGCTATCCCCT



ACCACAAGTGGCAGCAGTCTCAGTGGGTGCCCAGCCACTATGATGGCGAGGAAGCCGAGAAACTGAAGGTGGAACT



GGGCCTGCTGCGGCACAGATCTATCGGAATCGCCGGCATCAGACTGCACAACCTGAGATACCAGAGCAACGAGCTGA



TCGAGTACCGGAAGTACCACAGCACCAAGAGCAATGAGAAACTGTTCGTGCGGACCAAGACAGACCCCAGCGACAT



CTCTCACATCCATGTGTATCTGGAACCCCAGAAAAAGTACATCAAGGTGCCCGCCGTGGACAACAGCGGCTATACAA



AGGGCCTGTCTCTGTTCGAGCACGAGCGGATCCAGAAGGTGCTGCGGCTGAACACAAGAGAGCTGGCCAACGAAGA



GGCCCTGGCCGACACCTTTATGTACATGAAGAACCGGATCCAGGGCGAGACAGACAGACTGTCCGCCAGCAAGAAG



AAGAAGCCTCGGCTGCCCAAGACCAGCAACACCAGCAAACTGGCCAAGTTCCAGGACGTGGGCAGCGACGGCCCTA



ATAGCATCACCACCAAGATCAACGAGGGCCCCGTGGTCATGGACTGCCTGGATGATACCCAGCTGATTGACGATGAC



TTCGAGAACGTGGAAGGCTACTGA (SEQ ID NO: 310)





tnsC
ATGAACCTGACCAGCTGCCAGATCGAGCGGCTGAAGGCCTTTGAGACATGCTTCATCGAGTACCCCGCCATCACCGA



GATCTACAGCATCTTCGACCAGCTGAGGTTCAATCAGACCCTCGGCGGAGAGCCTGAGAGCTTTCTGCTTACTGGCGA



GGCCGGCTCTGGAAAGACAGCCCTGATCAAGAACTACCTGAGCAGATTCGACGTGGGCAGCACCTGGGATAGACAG



CCTGTGCTGAGCACCAGAGTGCCCAGCAGAATCAACGAGCAGAACATGCTGAGCCAGTTCTGCGTGGACCTGAACGT



GAAGCTCGGCGGCAGAAGCTCTAGACAGAGAGGCGGAATTGCCCTGGGCGAAGCCCTTGTGAAGCAGCTGAAGAGA



AAGAGCGTGGAACTGATCATCGTGAACGAGATCCAAGAGCTGGTGGAATTCAGCACAGCCCAAGAGCGGCAGACAA



TCGCCAACACACTGAAGTACATCAGCGAGGAAGCCAGCCTGAGCTTCGTGCTCGTGGGAATGCCTTACGCCGAAGTG



ATCGTGAATGAGCCCCAGTGGAACAGCAGACTGAGCTGGCGGAGAAAGATCGACTACTTCAAGCTGCTGAAAGTGA



ACCAGAGCATGAAGTCTGCCCCTCGGTACAGCTTCGACCTGGAACAGAAGAAGCACTTCGCCAGATTCGTGGCCGGC



CTGGCCATGAGAATGGGCTTTGAGGAACCTCCTAAGCTGGCCAAGAACGAGACACTGTTCCCTCTGTTCGTGGCCTGC



AGAGGCGAGTGCAGACGGCTGAAGCACTTTCTGAAGGACGCCCTGGTCATGAGCTTCACCATGAAGGCCAACACCAT



CAACAGAGCCCTGCTGAGCGCCACCTTCAGCCTGAAGTTTCCCGAGCTGGCTAACCCCTTCGACTGCCAAGCCGAGG



ATCTGGACATCCACCAGATCGAAACCAGCAGCAGCTACAACCTGCAGGCTACCACCAGCGAGGACAAGATTCTGGCC



CCTAGATTCACCGACGCCATTCCTCTGAATATGCTGCTGAGCAAGAACGCCCTGAGAGTGTGA (SEQ ID NO: 311)





tnsD
ATGAACAACGGCATCGAGTACTACGAGGACGAGAGCCTGGAATCCATGCTGCTGAGACTGTCTCACGCCCTGGGCTA



CGAGAGATTCAGCCACTTTGCCGAGGACCTGTGGCTGGAAACCGTGGATGAACACGGCGCTATCAGCGGCGCCTTTC



CATTTGAGCTGACCCATGTGAACGTGTACCACGCTCAGACCACCAGCCAGATGAGAGTCAGAGTGCTGCTGGCCCTG



GAAAAGAAGCTGAAGCTGAGCAGCCTGGGCATCCTGAGATTTGCCCTGAGCCACAGCAAGGCCCAGTTCAGCCCTGA



TTACAAGGCCGTGCACAGATTCGGCAGCGACTACCCTTACGCCTTCCTGCGGAAGCGGTTTACCCCTATCTGCCCTCT



GTGCATCAGCGACACCCCTTACATCAGACAGCAGTGGCAGTTCATCAGCCACCAGGCCTGTGAACACCACGGCTGCA



AACTGGTGCATCAGTGCCCTGAGTGCCAGAGCAAGCTGGAATACCAGATCACCGAGAGCATCAACCAGTGCGAGTGC



GGCTTCGAGCTGAGAAACTCTCCTGTGGAAGGCGCCCCTGAGGCCGCTCTTATAGTTGCCAGATGGCTGAGCGGCTCC



GACCTGAAGTCTCTGGGCAGCCTGAAAGAAGAGATGACCCTGAGCGAGAGATACGGCTTCCTGCTTTGGTACGTGAA



CAGATACGGCGACATCGACGACCTGAGCTTCGAGAGCTTCGTGGCCTACTGCTGCAGCTGGCCTACACTGCTGTGGC



AGGATCTGGACGTGCTGAAAGAAAAGGCCAAGCTGGTGCAAGTGAAAGAATGGAACAAGGTGTTCTTCCACGAGGT



GTTCGGCACCCTGCTGAAGGACTGTAGACAGCTGCCTAGCAGACAGCTGAGCCAGAACAACGTGCTGACACAGGTGC



TGGCCTATTTCACCGAGCTGATGACAGCCGTGCCAAGCAGCACCAAGGGCAACTTCGGCAATATCCTGCTGAGCCCT



CTGGAAGTGTCCACACTGCTGAGCTGCACCACCGACGAGGTGTACAGACTGTACGAGTTCGGCGAGATCAAGGCCGC



CATCAGACCCAGAATGCACACCAAGATCGCCAGCCACGAGAGCGCCTTCACACTGAGAAGCGTGATCGAGACAAAG



ATCGCCCGGATGAGCAGCGAGTCCGATGGCCTGTCTGTGTACCTGCCTGAGTGGTGA (SEQ ID NO: 312)





Cas5/
ATGACCAAGCTGAGCGACCTGCTGAGCATCGAGGACGAGTCTGTGAAACAGGCCGCTCTGAAGAAAATGTTCATGCC


8
CTACACCGAGGACGTGTACGTGGACGGCTACGAGAAAGAGACACTGACCATCCTGTTCAACCTGAGCAGCAGCCACC



AGGCCGACAGATGTACCGACTGGCTGAATGTGGCCAGGGCTCAAGAGTACCTGAAGAACGCCGAGAACCTGGATGC



CAGCCTGGCCGAGATTCAGTGGTTTCACACCCACAACCTGAAGTTCCCCGACTGCAGAGTGAAGGACCAGCGGATCA



TTGCCCAGCCTCTGGCCACCGACGAGGAATTCATTTCTTCTGCCGCCGTGGAACCCAGACTCGGCTGGTCACATAATA



GCGCCGTGTACCGGCACATCCTGTGGCTGCTCAATCCCTTCAGCTGGCAGAGCCAGCCTGTGTGTGTGCTGAGCCTGA



TCCAGCAAGAGAACGCCATCTGGCTGGACCTGCTGCAGAAGTTTGGCCTGGGCACAAGAGCCGTGGCCAGACTGCAA



AAGACACTGGCCAGCGACTTCCCCGCCAACAGCTTTCCTGATAGCGTGTCCAGCTACAGCAAGCAGCTGAGATTCCC



CTGGGGCGACGACTACGTTAGCGTGACACCTGTGGTGTCCCACGCCATCCAGTCTGAACTGGAAGTGCGGAGCAGAA



GCCGCGAGAGCAAGCTGTCCTTCGTGTCTAGCAGCCTGCCTAACAGCGCCAGCATCGGCAATCTGTGTGGAAGCCTC



GGCGGCTACATGAAGGTGCTGAACTACCCTCTGAACGTGAAGTCCGTCAGAGGCGGCACCCTGCCTGAGAGAAGAGA



GAAAAGCGGCCAGTACTTCGACGATTACCAAGTGACCAACCAGAAAACCTGCCAGGTGCTGTCCCACCTGATCGGCT



CTGAGCCCCTGAAAACTAAGAAGCAGCGCGAGAGCCTGCGGAAAGTGCGGTCCAAGATCCTGAGAAAGCAGATCGC



CCTGTGGATCCTGCCTCTGGTGGAACTGAGAGACATCATCGACAGCGACCCCAACCAGCACAGAATCGAGCACGACG



ATACTCTGGTGCAGGCCTTCCTGACACTGCCAGAGTCTGAGCTGTCTAGCCTGGCCTCCGAGTTCAACAGACATCTGC



ACCTGACCTTCCAGAACAACAAGTTCACCGTGAAGTTCGCCTACCATCCGAAGCTGATGCAGGTCGTGAAGGCCCAG



ATTGTGTGGGTCCTGAAGCAGCTGTCCAAGAGCATGGGCAGCGAGGATAGAGCTGTGGGCGAGCAGTACATCTACCT



GTCCAGCATGAGAGTGCAGGACGTGGTGGCCATGAGCAGCCCTTATCTGTGCGGAGTGCCTAGCCTGACAGCCATCT



GGGGCTTCATGCACAACTACCAGCGGGCCTTCAACCGGCTGGCCAATTGCGAGGCCACCTTCGAGTTCTCCAGCTTCA



GCTTCTACGTGCGGAACGAGAGAATCCAGAGCGCCGCCAAGCTGACCGAGCCTAATTCTGTGGCCAAGACCAGAACC



ATCAGCCAGGCCAAGAGGCCCACCATCAGAAGCGAAAGACTGGCCGACCTGGAAATCGACTTCGTGATCAGAGTGC



AGAGCGACAGCAGACTGAGCGACTTCAAGCCCGCACTGAAAGCCGCTCTGCCTGTGGCTTTTGCTGGCGGCTCTCTGT



ATCAGCCACAGCTGTCCTCCAAGATCGATTGGCTGAAAACCTTCACCAGCCGCAGCGAGCTGTTCCACATCCTGAAA



GGCCTGCCTGCCTACGGACGGTGGCTGTACCCTAGCAACAAACAGCTGAAAGGCTTCGACGACCTCGAGCACGTGAT



CATCGAGGATACCGACTACCTGCCTGTGTCCATCGGCTACCATCTGCTGGAATACCCCACCAAGCGGGGCAACAGCA



TCACAAGCTGTCACGCCTATGCCGAGAGCGCCATTGGACTGGCCAAGAGAGTGAACCCCATCGAAGTTCGCTTCGGC



GGCAGGGACCACTTTCTGAAGCACGCCTTTTGGTCCATCGAGTGCAGCTCCGAGACAATCCTGATCAAGATCTTCCGG



GACTGA (SEQ ID NO: 313)





Cas7
ATGGAACTGTGCACCCAGCTGAACTACGTGCGGAGCCTGTCTGCCGGCAAGGCCTACTTTTACCACCTGAGCAAGAG



CGGCGAGATGTGCCCTCTGGAAGTGGACAGAACCAGACTGAGAGCCCCTAAAGGCGGATACGCCGAGGCCTACAAG



GGATCTCAGTTCGCCGCCAAGAATGTGGCCCCTCAGGATCTGGCCTACAGCAACCCTCAGTTCATCGAGGAATGCTAC



GTGAAGCCCGGCGTGGACGATATCTACTGCGCCTTCAGCCTGCGGATCCGGGCCAATTCTCTGGAACCCGATACCTGC



AACGACGACGAAGTGCGGAGCAAGCTGTCTCTGCTGGCCAAGACCTACAAAGAGTTCAACGGCTACCAAGAGCTGG



CCTATAGATACGCCAAGAACATCCTGCTCGGCACCTGGCTGTGGCGGAACAGAGAATGCAGAGATGTGACCATCGAA



GTGACCACCAGCGAGCTGGACACCTTCACAGTGGAACACGCCCAGAAGCTGTCTTGGTACGGCCACTGGAACGAGGA



CAGCACCGTGTGCCTGGAAAGACTGACCGCCTACCTGATCAGAGCCCTGAGCGATCCCACCGAGTACTTCTACATGG



ACGTGAAGGCCAAGATCAGAGTCGGCTGGGGCGACGAGATCTACCCCAGCCAAGAGTTCCTGGACAGCAGAGAAGA



TGGCGTGCCCACAAAGCAGCTGGCCACACTGGAACTGCTGAACGGCAAAGAAACCGTGGCCTTCCACGGCCAGAAG



ATCGGAGCTGCCCTGCAGAGCATCGACGACTGGTGGCATGAGGAAGCCGACAAGCCCCTGAGAGTGAATGAGTACG



GCGCCGACAAAGAATACGTGATCGCCAGACGGCACCTCGTGAATGGCAACAACTTCTACCAGCTGATCCGGAACACC



GAGAGCTGGATCGAGAGCATGAACGCCAGCCAGACAATCCCCAACGACGTGCACTTCATCATGAGCGTGCTGATCAA



AGGCGGCCTGTTCAACTGCAGCAAAGTGCGGTAA (SEQ ID NO: 314)





Cas6
ATGCGGAAGCGGTACTACTTCCTGATCCGGTACATCCCCAGCCACGCCGATTATGAACTGCTGGCCGGCAGATGCATC



AGCCAGATGCACCTGTTCATGGTCAACAACCAGCAGGCCATGAAGCGCGTGGGCGTGTCATTCCCTAATTGGAGCGA



GAGCACCGTGGGCCAGACAATCGCCTTTGTGGCCGACGACAAAGAGATCCTGATCGGCCTGAGCTTCCAGCCTTACT



TCAGCCTGATGGTCAACGAGGGCCTGTTCGAGATCAGCTCTGCCTGCGAGGTGCCAGATACCGCCGAAGAAGTCCGC



TTCGTCCGGAACCAGACTATCGGCAAGAACTTCCTGGGCAGCAAGAAGCGGCGGATCAAGAGAAGCCTGGCCAGAG



CCGAGCTGTTCGGCGTTGAACAAAGCCTGCCTCTGACCAACGAGGACAGAGTGATCGACCACTTCCACAGAATCCCC



ATCAGCAGCGGCAGCAGCGAGCAGGACTACATGCTGTTCGTGCAGAAAGAATGCAGCGAGGAATGCGTGGCCGCCA



ACTTCAATAGCTACGGCCTGGCCACCAATCAAGAGTCCAGAGGCACAGTGCCCGACCTGAGATTCTGA (SEQ ID NO:



315)





DR
GTGTCCTGCCGTATAGGTAGCCAAGAAT (SEQ ID NO: 316)





RE
TGTTGTTTGCAACATAAGTCTGCATAAATTGCAAAAGGTTTTGCAAATTTGCAGCATAAGGTTGCATAGTCTAATTTTT



GTTGTAGGTTTACAACAAAACGTTCTGATTATGTTCGACCAAACAAAAAAATCTTCCCATGTTCACAACATCTGTAAG



TTTATGAGTCTTAAAAACGATGCTGTTGTTAGAACACTCTCAA (SEQ ID NO: 317)





LE
ATCGGTTTATTAATGCTTTCCACATTTTTTACTGCAACTAGATCGCAGTTGCGATATCTAAAGTAATCCGAAACCTATC



GATAACCCCCCAACTAAAAAGATTTAATGTAGTAAATTTACAACCGGAAAAGCTCGTTAGGATTCATATTTGCAGACT



TATCTTGCAAAACTATGCAGGCTTATATTGCAATTTTACTCGTAACTTATTGAAATTGGTTTTTTGTTATGCAGACTTA



TGTTGCAGGCAACA (SEQ ID NO: 318)









175302|73|GCA_003585365.1_ASM358536v1_genomic|NOJI01000009.1|14946 1|Vibrio (ID: 126)










TABLE 36





Elements
Sequences







tnsA
ATGTCTGCCCTGCCTTCTCCTAGCACCACCACACTGATCGCCCTGGAAAGCGCCTTTGTGACCCCTGCCAGAAACCTG



ACCAAGAGCCGGGGCAAGAACATCCACAGATACGTGTCCGCCAAGATGGGCAAGCGCGTGACCGTGGAAAGCTTCC



TGGAATGCGTGGCCTGCTACCACTTCGACTTCGAGCCTAGCATCGTGCGGTTCTGCAGCCAGCCTATCAGATTCAGCT



ACGGCCTGAACGGCAAGACCCATACCTACGTGCCCGACTTCCTGGTGCAGTTCGATACCGGCGAGTTCAAGCTGTAC



GAAGTGAAGTCCGACATGGAAAGCAGCAAAGAGGAATTCCAGTGCGAGTGGGAAGCCAAGGTGCAGGGCGCCTTTG



AACTGGGACTCGAGCTGGAACTGGTCACCGAGGAAGAGATCCTGGACGAAGTGATCTTCAGCAACCTGAAGCTGCTG



CACCGCTACGCCAGCAGAGACAACCTGAACCACTTCCACCAGACACTGCTGGCCACCTTCAAGCTGAATGGCACCCA



GACAGCCAAGTCTCTGGGACACCACCTGGGCCTGAATGGCCGGAAGATCCTGCCTTTCCTGTGCGACCTGCTGAGCC



GGAATCTGCTGCAGACAAGCCTGGAAACCCCTCTGTCTCTGGAATCCGAGTTCGAGCTGGGCTGCTACGCTTGA (SEQ



ID NO: 319)





tnsB
ATGCCCAACAAGAGCTTCAGCAGCTTCCACAGAAAGAGCGCCTTCCAGCAAGAGAAGCTGGAACCCAACGACAGAG



TGGTGGACGACAACGATGTGGACGAGGCCACCTACCAGGACATCAGCGCCTTTCCAGACAATATCGCCACACAGATC



ACCTTCCGGCTGAGCATCCTGAGATACCTGGCCAGCAAGTGCGAGCGGATCATCCCCAAGACAATCGAGCCTCACAG



AGTGGGCCTGCAGAGACTGCACGACAGAAAGATCCCTAGCGCCATCAGCATCTACCGGTGGTGGCTGGTGTTTAGAG



CCAGCGGCTGCAACCCTGTGTCTCTGGCCCCTAAGAACAAGAACAAGGGCAACAGCAAGGCCAAGGTGCCCACCTTT



GTGGACGCCCTGATGGAACAGGCCGTGGACAGAGTGATCAGCGGCCGGAAAGTGCGGATCAGATCTGCCTACAGAA



GAGTGCGGCGGAAGCTGAGACAGCACAACCTGAACAACGGCACCAAGTACAAGTACCCCACCTACGAGAGCCTGCG



CAAGAGAGTGAAGAAGAAAACCCCTTTCGAGCTGCTGGCCGCCAAGAAAGGCGAGAGAGTGGCCAAGCGCGAGTTC



AGAAGAATGGGCAAGAAGATCCTGACCAGCTACGTGCTGGAACGCGTGGAAATCGACCACACCGTGGTGGATCTGTT



CGCCGTGCACGAGGAACACAGAGTGCCTCTTGGTAGACCCTGGCTGACCCAGCTGGTGGACTGTTACTCTAAGGCCG



TGATCGGCTTCTACCTGGGCTTCGAGCCTCCTAGCTACGTGTCAGTCAGCCTGGCTCTGAAGAACGCCATCCTGAGGA



AGGACGACCTGCTGAGCAGCTTCGACTCCGTGGAAAACGAGTGGCTGTGCTACGGCATCCCCGATCTGCTGGTCACC



GACAACGGCAAAGAGTTCCTGAGCAAGGCCTTCGACAAGGCCTGCGAGTCCCTGCTGATCAACGTGCACCAGAACAG



AGTGGAAACCCCTGACGACAAGCCCCACGTGGAAAGAAGCTACGGCACCATCAATACCAGCCTGCTGGACGATCTGC



CCGGAAAGGCCTTCAGCCAGTATCTGCAGAGAGAAGGCTACGACAGCGTGGGCGAAGCCACACTGACACTGGACGA



GATCAAAGAGATCTACCTGATCTGGCTGGTCGACATCTATCACCCCAAGAGCAACCAGCGGGGCACCAACTGTCCTA



ACGTGGCATGGAAGAGGGGCTGCCAAGAGTGGGAGCCCGAGGAATTCAACGGCAGCAAGGACGAGCTGGACTTCAA



GTTCGCCATCGTGGACCAGAAGCAGCTGACAAAGGCTGGCGTGACCGTGTACAAAGAGCTGACCTACAGCAGCGAG



AGGCTGGCCGAGTACAGAGGCAAAAAGGGCAACCACAAGGTGCAGTTCAAGTACAACCCCGAGTGCATGGCCGTGA



TTTGGGTGCTCGACGAGGACCTGAACGAGTACTTTACCGTGCACGCCATCGACTACGAGTACGCCAGCAGAGTGTCT



CTGTGGCAGCACAAGTACAATATGAAGTACCAGGCCGAGCTGAACAGCGCCGAGTACGATGAGGACAAAGAGATTG



ACGCCGAGATCAAGATCGAGGAAATCGCCGACCGGTCCATCGTCAAGACAAAGAAGATCAGGGCCAGAAGAAGAGG



CGCCAGACACCAAGAGAATAGCGCCAGAGCCAAGAGCATCAGCGACGCCAAACCTGTGCCTAGCCAGAAGCACGAG



GACGAGATTGTGATCGTGGACAACGAGGACTGGGACATCGATTACGTGTGA (SEQ ID NO: 320)





tnsC
ATGAACGAGACAAGAGAGGCCCGGATCAGCAAGGCCAAGAGGGCCTTTGTGTCTACCCCTAGCGTGACCAAGATCCT



GTGCTACATGGACCGGTGCAGGGACCTGAGCGACTTCGATTCTGAGCCTACCTGCATGATGGTGTACGGCGCTTCTGG



CGTGGGCAAGACCACCATCATCAAGAAGTACCTGAACCAGAACCGGCGGGACTCTGAAGTCGGCGGCGATATCATTC



CCGTGCTGCACATCGAGCTGCCCGACAATGCCAAGCCTGTTGACGCCGCTAGAGAACTGCTGGTGGAAATGGGCGAT



CCCCTGGCTCTGTACGAGACAGACCTGGCCAGACTGACCAAGAAGCTGATCGATCTGATCCCCGTCGTGGGCGTGAA



GCTGATTATCATCGACGAGTTCCAGCACCTGGTGGAAGAACGGTCCAACCGGGTGCTGACCCAAGTCGGCAATTGGC



TGAAGATGATCCTGAACAAGACCAAGTGTCCCATCGTGCTGTTCGGCATGCCCTACAGCAAAGTGGTGCTGCAGGCC



AACTCTCAGCTGCACGGCAGATTCAGCATCCAGTTCGAGCTGCGGCCCTTCAGCTATCAAGGCGGAGAGGGCGTGTT



CAAGACCTTCCTGGAATACCTGGACAAGGCCCTGCCTTTCGAGAAGCAGGCCGGACTGGCCAATGAGAGCCTGCAGA



AGAAGCTGTACGCCTTCAGCCAGGGCAACATGCGGAGCCTGAGAAACCTGATCTACCAGGCCAGCATCGAGGCCATC



GACAATCAGCACGCCACCATCACCGAAGAGGACTTCGTGTTCGCCAGCAAGCTGACCAGCGGCGACAAGCCTATCAC



CTGGAAGAACCCCTTCGACGAGGGCGTGAAAGTGACCGAGGATATGCTGCGGCCTCCTCCAAAGGATATCGGCTGGG



AAGATTACTACCACAACGTGAAGCCCAAGAACCAGCGGAGAAAGGGCAGCAACATGTTCGAGTGA (SEQ ID NO: 321)





tnsD
ATGCAGGTTTCCGGCATCCTGATGAAGACCATGCTGCTGCAGCGGCCCAAGCCTTTCGAGGATGAGAGCCTGGAAAG



CTACCTGATCAGAATCGCCAACCGGAACGGCTACCAGGACGTGGACAGATTTCTGAGCGCCCTGAAGCACTACCTGT



GCGACGGCGATAGCGAGAAGTTCAGCAGCTTCCCCACCGACATCAGACGGATCAACCCCTACAGCAGCAAGCACAG



CTCTGCCGCCAGATCTCACGCCCTGCACAAGATCGGACAGCTGACCTTTACCGAGAGCGTGGACCTGCTGAAGCTGG



CTATCAACAGAAGCCCTCTGAAGTACAGCCCCAGCGTGACCGCCGTGATTAGAGGCCATGAGGTGTTCCCCAGAAGC



CTGCTGCGGACCAACATCATCCCTGTGTGCCCCGTGTGCCTGCAAGAGAATGGCTACGCCAGCTACCTGTGGCACTTC



GAGGGCTACGACTACTGCCACATCCACGATCTGGCCCTGACCTACAATTGCCAGTGCGGCAAGCCCTGCGACTACAG



AGTTTCTGGACTGCAGCTCGTGTGCAGCTCCTGCGGCACAACACTGACCCATCTGCTGGAAAAGCCCACCGATCGGA



GCAGCGATATCTCTCATTGGCTGGCCGGCGAGACAATCAAGTGGCTTCCTGCTGTGCCCGTGTCCTACAGATGGGGAC



TTGTGCACTGGTGGATGAACAACAAGAAGTCCAAAGAGCTGGAAACCGAGAGCTTCACCATCTTTTGGAAGAACTGG



CCCAACAGCTTCCACAACCTGATCCAAGAGACACTGAGCTACAACCAGACCTACAGCCTGGTGGCCCCTACACAGTG



GCGGCTGAAAGATCTGCTGGGCGAGATCCTGTTCAGCTCCATCAACCTGCCTGGCCGCAACCTGCAGTACAATCTGAT



CCTGAGAGAGCTGTTCCACTACCTGGAAAACCACCTGTGGGAGAACAACGGCCTGATCGCCAATCTGAGACTGAGCG



CCTTTGAGGTGTCCCTGATCCTGGGCTGTAGCACCGAAGAGGTGGCCAGCATGTCTGAGCAGGGACTGCTGATCCCC



ATCCAGAACCGGAAGAGATACGAGCCCATGAGCCTGACCAACTGCATCTTCCACTTCGGCGACGTGTTCTGCATCTG



GCTGGCTGAGTTCCAGACCGACGAGTTCAACCGGTCCTTCTACACCAGCCGGTGGTGA (SEQ ID NO: 322)





Cas5/
ATGAACAGCACCGTGCACTTCATCCCTCACGACGGCGACAAGATGACCCTGGATGAACTGCTGGCCACCACCAAATA


8
CGAGGAACTGGTGTCCAGCACCAAGCGGAGCTTCAGACCTCTGAGCCCTCTGATCGACATCACCAACAATCCCATGA



CAGCCCTGACCATCCTGGTCAACCTGACCGAGAAGGGCATCAGCAACAAGAACCTGCTGGACAAAGAGCGGTGCAA



AGAGAAGCTGCGGGACGACAAGTGGTGGGCCGCTGTTCTGAAGCCCGCACAGTACAGACACAGCCACAACGTGAAG



TTCCCCGACATCAGAAGCACCGGCACCATCAGAACTGTGGCCCCTGATAACCTGCCTGCCTACTTCATCACCAGCAGC



AAGCTGCCCAATGTCGGCTGGACCTACAGCAAGGACAGCAGCGACATCAACCGGTGCCTGTTCTTCACCAGCGAGTT



TCTGTGGGCCGGACAGCCTTGCTGTCTGGCTAGAGCCCTGACAGATAGCGAGCACCCTCTGTGGTCTACCCTGAAGAA



GCTGGGCTGCTACGAGAAGAACAAGAAACTGGCCGCCAAGCTGCTGTCTCAGATCCCTGGCGAGCTGATCGATGTGG



ACCTGACCGGCAACTACCTGAGCCAGGTGTCCTTTCCAGACGGCAGAGACAGCTACCTGTCTTTCAGCCCAGTGGCCT



CTCAGGCCATGCAGAGCTGTGTGTACCAGAGCCTGGAACAGCACTACCGGCAGACTGCCCTGATGAGATTCGACCGG



GCCACCAATATGGGCCTGCTGTCTGCTTCTTGCGGCGGCAGATTCCGGCTGATCGAGACAAAGCCCTACATCAAGGAT



AAGCGGCACCACTACATCAGCGAGCTGCCTAACTGGCTGACCAAAGAGGCCATCCAGTCCGTCGAGCAGTTCCTGAG



ATCTGAGCAGTGGCTGGTCACCCACAACGACAAGCCCAGAAACATGGCCATCGTGAAGTCCAGCATCCGGTCCATGG



TCAACAGATGGCTGAGCAGCCGGACCAACACCGAGGCACTTTCTCCAGCTGAACTGGCCGAGCAGCTGAACAACGAT



ATCGCCAGCAAGCGGATCATCAAGCGCTACGCCTACCAGCCTAAGCTGACCCGGCTGTTTATCCAGCTGATTGAGAA



CACCGGCGAGGACAACGCCTACAAAGAGGACAGAAAGCCTACCACCAACAGCCAGTACCTGCTGATCCCCGAGCTG



AGAATCTCTGGCGGCAGCGCCATCAGCAGTTCCGTGTCTGTGGGACTGTTCAGCATGATGAGCCTGTACGGCTTCATC



CACGCCTTCGAGCGGAACATGCAGCTGGTGCTGACCAGCTTCACCATCGACAGCTTTGCCATCTGCGTGCACGACTAC



CACCTGGAAAAGCGGGGCCTGACAAAAGAGCCTATCAAGAAAGCCAAAGTGCGGAAGGACGAGCAAGAGAAGATT



GCCCCTCCTGCCATCTACGACGATTACCAGTTCGACAGCTGCATCAGCCTGATCATTAAGACCAGCGAGAGCAAGAC



AATCCCCGCCGAGAAGATGGTGGCCCTGCTGCCTAAGAGATTTGCCCGGGGAGCCATCAGACTGAGCATCGACGGAA



TCCAAGAGATCGGCGCCTTTCCTAAGCCTCTGCCTGCCATCCAGGCCATCAAGAATCCTCTCGGCAGCTGGCTGAGCT



TCGAGCCTGATCTGAGCCTGATTAGCACCGACAGCATCGTGGACATTGCCACCAACCACAACAACCTGTGGCTGACC



GTGATGGGCTACCAGTATCTGGAACCTCCAACCACCAAGCCTAGCAGCCTGAGAGACTACCCTCACGCTCTGGTGGA



AAACATCCTGGGCTTCGTGAAGCCTCGGACCGTGACCAAGAGCACCAACCTGGACGACCTGTTTTGGCGCTACCAGA



TCCAGCCTTTCGGCGTGTGTCTGCTGCCCCGGTCTATCAAGTAA (SEQ ID NO: 323)





Cas7
ATGAAGCTGCCTATCCACCTGGCCTACGAGCGGAGCATCTCTCCTTCCGATGTGGCCTTCCTGGTCATCTGGCCCGAC



GGCTACAAAGAGCCTCTGCCTTGCTACAGCAGAACCATCCTGGGCCTGAATGAGGGCAGCCACGTGGGCTATGATGG



ATCTGGCGCTGTGCGGAACAACCTGAAGATGAACACCCTGGTGGACGGCAACATCCACGAGCTGGATTACTGCAGCG



TGCCCTACGGCGCCAAGAGCATCGAGTGCTGTTTCAGCGTGTCCTTCAGCTCCGAGCTGCTGAAGCCCTACAAGTGTT



CTGATGCCGGCGTGAAGAAAACCCTGCGCGAGTTCGTGTCCCTGTACAACCAGCATGTGGGCCTCGAGGAACTGATC



ATCAAGTACCTGACCAATATCGCCCTCGGCACCTGGCTGTGGCACAACACCAAGAGAAGCTACTGCGTGTCCATCGA



GATCAGACCCTGGCCTTGGGAGGGCGAGACAATCATCATCGACGACATCCGGAAGTATCTGAAGGGCGACAGAGCC



ACCAACGACCTGCTGAACTGGAACAAGCTGATCGAGCAAGTGAAAGAGGCCTTCACAGACCCCATGGGCCTGTGCAT



CCTGGAAGTGAAGGCCAACCTGATCAAGCCCAGCATGGCCCAGCTGTACCCCAGCCAGATGTTTAAAGAGGCCGCCA



AGAAAGAGAACAACCGGCTGTACCAGAGCACCATCATCGATGGCATCAAGAGCCCCATCATGGGCTGCTACAAAAC



AGGCGCCGCTATCGCCACCATCGACACCTGGTATCCTGACGCCGAGGAACCCATCAGAGTGGGCCATTATGGCGTGG



ACAGAGAGAACAGCACCGCCTACAGACACCCCGACACCGGCAAGGATTTCTTCAGCATCCTGAAGCGGATCGACGA



GCTGGTGGACAGACTGAAGGACGCCAAAGAGCTGAGCCAGGACGAGCTGAAAGATATGCACTTCCTGATGGCCAAT



CTCATCAAAGGCGGCCTGTTTCAAGAGAAGGGCGAGTGA (SEQ ID NO: 324)





Cas6
ATGATCCTGTACTACCGGACCGTGACCTTCCTGCCTAAGATCAAGAACAACGAGGCCCTCGTGGGCCACTGCCTGAA



AGTTCTTCACGGCGTGTGCACCAAGTACACCATCAACACCATCGGCGTCAGCTTCCCCGAGTGGGGCGAAGAGACAA



TCGGCGACAAGATCAGCTTCATCAGCCCCAACCAGCTGGAACTGGACTTCCTGCTCCAGCAGACCTACTTCAGCGAG



ATGACAGCCCTGGGCTACCTGAACATCAGCCAGAGCAAGAGCGTGCCCGAGCAGTACAATCTGGCCGTGTTCAGACG



GAACCAGAAGATCGACCAGGCCACACCTAACGGCCAGAGAATCAGAGCCGAGCGGCTGGCCAAGAGAGCCATGAAT



AGAGGCGACAGCCCCATCCGGTTCACCCCTGAGGATCTGGTGTTCGAGCACTACCACAGCATCCCCATCACCAGCAC



CAGAAGCGGCAAGAGCTTCCGGCTGAACCTGCAGTACCAGCGGCTGGATACAGTGCCTGATGGCCAGTGGGCCTTTA



GCTCTTACGGCCTGGCCAATCAAGAGCTGGAAAGCAGCCCTGTGCCTGTGATCTGA (SEQ ID NO: 325)





DR
GTTCACCGCCGCACAGGCAGCTGATAAT (SEQ ID NO: 326)





RE
TGTTGAAACAACCATAAAGTGATATTTACAACCATATATTGATATTTGGTGCAACCATAACTTGATATTGCCTCTTCAT



AGTCTAGACTTATGTAAGTTTACGACAAAATCGTGAAGAGGCAATATTATGTCTGCTCTACCTTCTCCTTCTACTACCA



CCCTGATTGCACTTGAAAGTGCATTTGTTACTCCTGCTCGAA (SEQ ID NO: 327)





LE
AGTGTCCGTGACTGATGCAAGGTTATCGGAACTGTAATGATTATATGTTTTCTAATTTTGAAGTGGTTCTTTTGATGAG



TTTTGCCAGTTGCTGAAAGTAACTTTCTTACTGCAGTAGTTTTGCTGAAATACTCGATTCACAAAAATATCAACTTATG



GTTGTTTTGTGAGATATCAATATATGGTTGTTTTGTGGTTAAGTTGCTGATTATAAATAATTATTAAATATCACTTTAT



GGTTGCATCAACA (SEQ ID NO: 328)









183477|22|GCA_900099955.1_IMG-taxon_2619618960_annotated_assembly_genomic|FNEF01000006.1|191976|Halomonas (ID: 127)










TABLE 37





Elements
Sequences







tnsA
ATGTACACCAGAACACTGCGGCCCTCTCCAGTGAAGCACATCTACAAGTTCGCCAGCCACAAGAACGGCAACGTGCA



GACCGTGGAAAGCAGCCTGGAATTCAACGCCTGCTTCCACTTCGAGTACGCCAACGAAGTGCGGAGCTTTGTGGCCC



AGCCTGAGGGCTTCTACTACCAGTTCGAGGACCGGACCTGCAGCTACACCCCTGACTTCGAGCTGTTCTGCCACAGCG



GCAAGAAAGTGTTCGTGGAAATCAAGCCTCCTCCAGAGGCTCTGAAGCACGACTTCATCCAGCGGTTCACCGCCAAG



AAAAAGGCCGTGGAAATGCTGGGCAAAGAGCTGATCCTGGTCACCGACCACCAGATCAGCAGCATGCCCAAGCTGA



AGAACCTGAAGCTGATCAACAGATACGCCGGCCTGTACACCGAGGTGGTGTCCCGGAAGAAGATCTACGAGCTGATT



AAGAAGTCCCACGGCCTGTCTATCGCCGACATCTCTGAACTGTGTGGCGCCGATTCTGCCGAGGTGCTGGTGGATGTT



ATGTGGCTGGTGGCCTCTGGCAAGGTGCTGATCAATATCGACGAGACATTCGGCTGCGAGAGCCTGATCTGGGTTGG



AGGCGGACAGTAA (SEQ ID NO: 329)





tnsB
ATGAGCATCGAGTTCTTCAGCGACGAGTTCCCCGGCTTTCAGTCTGGCGAAGCTTCTGCCGTGGTGGACGGCCAGTAC



ATCAATGTGCCTGAGCGGCTGAGCTACATCAGCTTCGACAGCCTGAGCAAGAGCGTGCAAGAGGAAGCCTACTACAA



GTACAAAGTGATCGTGCTGGTCAAAGAGCATCTGCAAGGCGGCTGGACCAAGAAGAACATCGACCCCATCCTGGACA



GCCTGTTCGAGCAGGGACACATCGAGAAGAAGCCTAGCTGGCGCTCTGTGGCCAGATGGCACAAGAACTACGACCA



AGTGATCGGCCCCAAGAGCCTGGTGTCTGCCAAAGGCCTGGTCAAGAACCCCGGCAACAGCAAGAGAGATGACGCC



GACTTCTACAAGAGAGCCGTGGAAGAGAAGTTCCTGAAGCGCGAGAGGCCTCACGTGTCCACCGCCTACTACCACTA



CTTCAACAACATCCTGCTGTACAACCGGGCTCACCCCGACAATGCCATCGAGCCTATCACCAAGAGCGCCTTTTACAA



GCGCGTGAAGAAGATCAGCCCCTACGAGGTGGAAGTGGGCAGATTTGGAAAGGCCGAGGCCGACAAGGACTACCGG



GTCGTGAACAAGTTTTCTGCCGCCGAGCGCGTGATGGAAAGAGTGGAAATCGATCACACCCCTCTGGACCTGATCCT



GCTGGACGATACCCTGCTGATCCCCATCGGCAGACCCTACCTGACCATCCTGATCGACTGCCACAGCCGGTGCATCAT



CGGCTTCTACCTGAGCTTCCAAGAGCCAAGCTACAACAGCGTGCGGAGCGCCATCATGAATGCCTGCCTGTCCAAAG



AAGATGTGGCCAAGAAATACCCCATGATCAAGAAGAATTGGCCCTGCCAGGGCAAGATCGAGACACTGGTGGTGGA



TAACGGCGCCGAGTTCTGGTCCAAGAATCTGGAATTCTTCTGCGCCAGCGTGGGCATCAATATCGAGTTCAACCCCGT



GGGCAAGCCCTGGAAGAAACCCCTGGTGGAACGGCTGTTCAGCATCTACAACTCCCGCTTCGTGAAAGAGATCCCCG



GCACCACCTTCAGCAATGCCCAACAGCTGGCCGGCTACAAGCCTGAGAAGGATGCCATCCTGCCTTTCAGCTACTTCA



TCGAGCTGATGCACATCTGGATCATCGACATCTACAATCAGAGCCCCGACAGCCGGATGACAAGAATCCCTGCTCTG



AGCTGGGAGATCGGCTGCAAGAAGTACCCTCCACCTCTGTACAGCGGCTTCGAGGAAAAGATCTTCAAGATTGAGGC



TTTCCCCACCGAGCTGTGCACCCTGAGAAGAGGCGGCATCTCCATCGACCGGATCGACTACACCAACGAGGAACTGG



TGGAATACCGGAAGATCACCCCACCTCCACCTGGCAGCAAGGTGGTCAAAGTGGTGGTCAAGAGGGACCCCGAGGA



CGTGTCCTACATCTACGTGTACCTGGTCGAGCGGAAAGAGTACATCAGAGTCCCCGCCGTGGATCCCGACAGACTGT



ATGATGGCCTGAGCGTGTTCCAGCTGAAAGTGCGGCGGAAGCTGCGGAGAAACTTCATCAACTCCAAGACCGACTAC



GTGGGAATCGCCGAAGCCGAGAAGCTGATCGACGACAGAGTGTCCGAGATCGCCGAGGAAGTGTCTGCCTCCAAGA



AAAAGATCAAGGGCACCAAGAAGGCCGCTGCCTACTTCGGCATCAGCAGCGAGAATCCCAGCAGCATCGTGGACGG



CTTCACCAGCAGAGAGATCAGCGATATCGAGAAAGAGAACAAGAGCCACAGCGGCGTGAACCCCAACGACGAGGAA



TGGAAGCGGATCTCCGACGACCTGGAACCTTACAGCTGA (SEQ ID NO: 330)





tnsC
ATGAACATGCTGATGAGCAACGAGAAGCTCGAGCAGCAGATCTACTTCAAGAACTGCTACGTGAAGCACAGCAGCGT



GGCCAGAGCCATCAGCAGCCTGGAAATCCTGAAGGCCAATCACGCCCTCGGCGGAGAGCAACAGTGCATGCTGATCA



TCGGCGATCCTGGCAGCGGCAAGAGCAGACTGGTGCAAGAGTTCCAGTCTCAGTACCCCGAGTACGTGGAAAACGAC



ACCGTGATCAAGCCCGTGCTGGTGTCTAGAATCCCCAGCAAGCCCGACGTGGAATCTATGCTGATCCAGCTGATGAT



GGACCTGGGCCAGTTTGGCGCCGACACCAGAAGAGAGAGAAGAAGAGAGGCCGGACTGGCCGAGGCTCTGGTCAAG



ATGCTGAAGAAATGCAAGAGCGAGATGATCATTATCAACGAGTTCCAAGAGCTGATCGAGTTCAAGTCCGTGGAAGA



GAAGCAGCGGATCGCCAACATCCTGAAGCTCGTGAACGAGAAGGCCGGCATTCCCATCGTGCTTGTGGGCATGCCTT



GGGCCGCTGAGATCCTGAATGAACCTCAGTGGGCCAGCAGACTGATGTGCACCATCGAGCTGCCTTACTTCAAGTTCT



TCAACCTCGAGGACCGGATCGAGTTTACCCGGTTCATCAAAGGCCTGGCCAGCAAGATGGGCTTCAAGAAGGCCCCT



AGCATTCACGTGGACGAGATCCTGTTTCCTCTGTTCAGCGTGACCAGGGGCGAGACACGGCAAGTGAAGAGAGTGCT



GGAAGCCGCTCTGTGTGTGGCCCTGAGCAAGAACGATAGCACCGTGCGGAGACAGCACTTCCTGGAAGCCTGCGATA



AGTTCTTCCTGGGCGCCGATAATCCCTTCGAGCTGGAACTGGAAGATGTGCCCATCAGCGAGGTGTCCAAGTACAGC



AGCTACAACCGGTACAGCACCGTGGAAAGCGAGACATTCGTGGCCACACAGTTCACCCGGAAGATCAGCACCAGAG



AGCTGTTCAGCAAGAACTGA (SEQ ID NO: 331)





tnsD
ATGAAGCTGCTCGTGCGGCCCTCTCCATTCATCAACGAGAGCCTGGAAAGCTACATGCTGCGGCTGAGCCAAGAGAA



CTTCTTCGAGTACTACCAGCAGCTGAGCCGGGCCATCAAGGATTGGCTGCAACTGCACGATCACGAGGCCGCTGGTG



CCTTTCCTGAGGAACTGAGCAGACTGAACGTGTACCACGCCGCTCAGAGCAGCAGCAGAAGAATCAGAGCCCTGAAG



CTGGTGGAAAGCCTGACCGACAACGAGAAGCTGCCTCTGCTGCACCTGGCCGTGATCCACAGCAGCGAGAAGTTCTG



CAGCCGGTACACCAGCGTGTTCTACGGCGGAACACACGTGCCAAGAGCACTTGTGCGGCAGAAATCTATCCCTGTGT



GCCCCGATTGTCTGAGCGAGGCCAACTACATCCGGCAAGAGTGGCACTGGATGCCCTACGAGGCCTGCATCAATCAC



GGCAAGCAGATGCTGCACGAGTGCCCCAAGTGCGAGGAAAAGCTGAACTACACCGACAGCGAGTGCCTGCACACCT



GTAGATGCGGCTTCGACCTGAGAAACGCCGATAGCGAGCCTGCCGATGAGTGGCAGCTGATCGCCTCTAGACTGGTT



GTGGGCGAGCACAGCCCTAGCAGACATCCTCTGCTGGACATCAGAAGCGTGTCCCTGAGACTGGCCTGCCTGCTCTG



GTATCAGCTGTACGTGCACAAGACCCTGGACGCCTGCGATCAGGTGTCCACCAGAACAATCGAGCAGGCCATCGAGT



ACTTCACCCACTGGCCTGAGGTGTTCACCAAAGAACTGGAAGAACAGGTGTCCCTGTCCGGCGACAAGCTGATCTGC



GACTACAACAAGACCAGCTTCCGGGACGTGTTCGGCAACATCGTGGGCATCAGTCGGCTGCTGCTGAAGGCTTACCC



CGAGAACGACTTCGTGCTGACCCCTCTGGAAAACTTCCTGGCCAGACTGGTGGACCAGAATCCTCAGACCAGAGTGC



CCAACGTGGCCGACCTGCTGATCTCTATGCCTGAGGCCGCTATCCTGCTGGGCACATCTTATGAGCAGGCCTACCGGC



TGTACGAAGAGGGCTATCTGAAATGCGCCGTGCGGCTGAAGTCCCACGAGAAACTGGTTAACGGCATCGGAGTGTTC



TACCTGCGGGAAGTGATGGAACTGCGGCAGAGCAGAATGCCCATTGAGACAGGCGCCTACAACAACTACCTGCCAGC



CTGGTAA (SEQ ID NO: 332)





Cas5/
ATGAGCCTGAACACCCTGCTGGAACTGGACGAGCCTAGCAGAAGCGAGGCCATCAGAAAGGCCTTCGCTCCCTACAC


8
TCCTCTGCTGGAAGTGTCCGAGGATGTGAACGCCGCCATTCTGGTGCTGCTGAACCTGAGCCACAAGCGGCAGTATG



CCCCTGACCTGCTGAACAAGAAGAGAGCCATCGAGACACTGAAGGACTGGCAGCACATCGAGAGCTGCGCTCAAGA



GGTGCAGTGGCTGCACAGCCACAACCTGAAGTACCCCGATACCAGAGTGGCCCACCAGCGGATCCTGGTCAAGTCTG



AGAAGCCTCCTAGCAGCGTGATCAGCAGCTTCAACAGCGTGTCCAGACTCGGCTGGTCCCACAATTCTGCCGCCGTG



AACAAGGCCAAGCTGTTCGGCGCCCAGTTCATCTTCAATGGCGTGACCCACTGTCTGGCCACCGTGATCATCGACAAC



GAGGAACGGTGGAAAGAGGAATTCAAGAAGCTGGGCATCAGCGACGGCCAGTGGATCTACCTGCAGAGCCTGTTCG



TGAAGTACTTTACCGAGAACCTGCTGCCTAGCTACGTGGACCGGTACAGCGTGCAAGTGACCTTCATCTACCAAGGC



AAGGACGTGTCCATCACACCCGTGACATCTCACAGCCTGCTGGCCGACATCCAGATCAGCAGAAGAAACAAGGCCGG



CAGCTTCAGCACCATCAAGCACTGGCATCCTAGCTCCGTGGGCGATCTGGCTTCTTCTCTCGGCGGCAATATCAGCGC



CCTGAACTACAGCCCTCGGCTGCTGAGCAACAGCTGCTACAAGAACGGCAAGTTCAGCGAGAGCGTGTGCGTGGACT



TTCACCACAGCAGCCTGAGATCCCAGAGCTTCATCCTGGCCTGCAACGAGATCGTGGAAAGCAAGTCTCTGCTGGTG



GCCAAAGAGCGGCGGGACCATAGAAGAAGCGCCATCAAACTGCTGAGACAGAGCCTGAGCGAGTGGCTGAGCCCTG



TGTCCTATTGGAGAAATGTCGGCGGCGAGGTGCCCAGCGACAGAGAGAATTCTACCGCCTTCCTGCTGATTAGCGCC



CTGGACGAGGATCTGTTGGAGGTGCTGCCCGAAGTGAACAAAGAGCTGCACTCCATCCTCGTGCGCTACCCTCAGAC



ACAGAGCTTCGCCTACCATCCTGAACTGCTGATTCCCTTCAAGGCCCAGCTGAAGTCCCTGCTGATCGGCATGAAGAT



CAAAGAGGACGAGCCCATGGCCGAGGAACCCTACCACTACCTGCACTTCAAGAACCTGCACGTGTTCGATGCACAGG



CCCTGAGCTGTCCTTACCTCGTGGGACTGCCTAGTCTGCTGGCTGTGTGGGGCACCGTGTACAACTACCAGCTGCGGC



TGAGAAAGCTCCTGAAGCGGAACATCGTGTTCGAAGGCGTGGCCTGGTTCCTGAGACAGTACGAGCTTAGCAGCGGC



GCCAAGATCTCTGCCCCTTATCTGCCTCCTACCAAGCCTGGCGAGGCCCCTAAAAGAGCCGGCCTGATCGACATGAG



ATTCTGCGACCTGCGGATGGACCTGGTCATCCGGTACAGAGTGGAAGATGGCGACGATACCCCTCTGGGCAACGACG



AACTGCCTATGCTGCAGAGCGCCTTTCCTGGCAGATTTGCCGGCGGAACAATGCAGCCTCCTCCACTGCATGAGGAAC



TGCAGTGGTGTCAGGCCTACGCCGATGCTCATTCACTGCTGGCAGCCATTAGCCTGCTGCCAGACGAAGGCAGATGG



GTCGTCGACAGCGAGAAACAGGTGCAGAGAATCGAGAGCCTGGTGGCCTGGCTGAGCAAGTACCCCAATCATCTGCC



TGCCACCTCCGGCTATCAGCTGCTCGAGGAACCTTGCTACAGAAGCGGCAGCCACAGAGAGTGTCACGCTTACGCTG



AGTCTGTCGTGGGCCTGACCGAAACACTGTCTCCAGCCTCTGTGCGGCTGAATGGCAAGGCCGACTTCCTGAAGAAT



GCCTTTTGGCGGCTGAAGTCTCAGAACCTGACAATGCTGATGAAGAAGGCCTGA (SEQ ID NO: 333)





Cas7
ATGATGAACAGCTTCCGGCACCTGAGCTACGAAAGATCTCTGAACCCTGGCAAGGCCGTGTTCTACTACAGAACCGA



CAGCAGCGAGTTCGAGCCCCTGCAGGCTGAAGTGACCAGATTCAGAGGCCCCAAGAGCACCTTCAGCGACGGCTATA



TGGCCAGCGGAACCGCCAGAGCCAAAGAGACAAGCGATCTGGGCTTCAGCAACCCCATCATGCTGGAAACCTGCTAC



GTGCCACCTCTGGTGGACACCGTGTACTGCAGATTCAGCCTGAGAATCATCAGCAACAGCCTCGAGCCTAACATCTGC



GACAACGCCGAGGCCACAAAGGCCCTGAGAGAGTTCAGCGACACCTACAGAAGCCTCGGCGGCTATCACGAGCTGG



CCACAAGATACGCCAAGAACATCCTGAGCGCCGAGTGGCTGTGGCGGAACAAGTTTGCCAGAGGAATCGCCGTGGA



AGTGTCCACCTCCAGCCTGAAGAACTACTGCGTGAAGGACGTGCAGTACAAAGAGTGGGGCAGCTCTTGGGAAGGCG



GCGATCTGAAGTCTCTGGAAGGACTGGCCGCCGAGCTGGAAGAAGCTCTGTCTTGCCCTCAGAAGTTCCTGTTCGCCG



ACGTGACCGCCAAGATCAAGACCGAGTTCTGCCAAGAGATCTTCCCCAGCCAGCTGTTCGTGGAAAAGGACGACAGA



GGCAATGGCAGCGCCGCCAGACAGTTCATGAAGTCCACCATGAGCGACGGCAGACAGGCCGTGTCTTTCGGCGCTTA



CAAAGTGGGAGCCGCCATCCAGAAAATCGACGACTGGTGGCTGGATGAGGGCGCCGAGTATCCTCTGAGAGTGTCTG



AGTACGGCGCCGACAGATCTAGAGTGCTGGCCATGAGAGAACCCGTGACCAAGAAGGACTTCTACAGCCTGCTGAAC



GAGATCATCTCCATCACCGAGAAGATGATCGAGACACGGCAGGCTAGCCCCAACGCTCACTACCTGATGAGCGTGCT



GGTCAAAGGCGGCATGTTCCAGAAGGGCATCAAGAAAGGCGAGAAGTGA (SEQ ID NO: 334)





Cas6
ATGCGGTACTTCTTCTACATCAAGTACCTGATGCCTAGCGCCAACCACGCCTTCCTCGTGGGAAGATGTATCGCCTGT



CTGCACGGCCTGATGAGCGGCAGCAAGATCACATCTTCTGGCATCGGCGTGTCATTCCCTAGCTGGGCCACTGATAGC



GTGGGCGACTCTATCGCCTTCGTGTCCAAGGACATCAACGCCCTGAGCTACCTGAGCAGCGTGCGCTACTTCAAGAAC



ATGGTGGACGAGGAATTCATCGAGGTGTCCGACATCAAGATGGTGCCCGCCATCTCTGAGGAAGTGCGGTTCATCAG



AAACCAGCACGTGGCCAAGAGCTTCCCCGGCGAGATTAAGCGGAGACTGATCAGAAGCAAGAAGCGGGCCGAGAAG



AGGGGCGAGACATTCATGCCTAGCAGCGCCGTGTCCGATAGATTCGTGGATCACTGCCACGTGATCCCCATCGACAG



CAGATCTAGCGGCCAGCGGTTTCCCCTGTACGTGCAGCTTGAAGCCCTGGGCGAAGAGAGCAAGTTCGACAGCTACA



ACAGCTACGGCCTGGCCACACAGCACACATACCCTGGCTCTGTGCCTAGCCTGAAGCAGATCACCTGA (SEQ ID NO:



335)





DR
GTGAACCGCCGAATAGGCAGCTGAAAAA (SEQ ID NO: 336)





RE
TGTCGTTTCTCCTTCAAAGTGGCACAAATTGTCCCGCTGCTGTCATTTTTTGCCTTTTCTCGTGGCATAACCTACTTTTG



TAGTAATAAAACAAAAATAGGTGTACTGCCATGTATACCCGTACCTTGCGTCCTTCTCCCGTCAAGCACATCTATAAA



TTTGCCAGTCACAAGAATGGCAACGTCCAGACTGTTGAGTCC (SEQ ID NO: 337)





LE
TTATAGCTGAATTCAACGTAAGCCGTAAGGTGTCCATTTTAGTGGGATGCTCAGCAGTTTTGATCATGTGCTGCGGCC



AAGAGCTGTTTATCAGGATGTTTTTTTATGACGTTATTTTGCTACCGGAGCAAACGATCGTTTTACTTTATGTCATTTA



AAAGTGGAAAAGTTATGTCATTTTGCGGTGGAATTCCTGATGTAAGTGGCTGTTTTCTGGTTCTGGTTATGTCAGATTG



AAGTGGAAACGACA (SEQ ID NO: 338)









186156β2|GCA_900129155.1_IMG-taxon_2582581270_annotated_assembly_genomic|FQVF01000009.1|196850|Marinomonas (ID: 128)










TABLE 38





Elements
Sequences







tnsA
ATGTACAACCGGAACCTGCGGAAGCCCTCTCCAAACAAGAACATCTACAAGTTCGTGTCCCGGAAGAACCGGTCCAC



CATCATGTGTGAAAGCGGCCTGGAATTCGACGCCTGCTTCCACCTGGAATTTTCCCCATTCATTGCCAGCTTCGAGAG



CCAGCCTACCGGCATCGAATATCAGGCCGACAACAAAGTGCGGCGGTACACCCCTGACTTCAAGATCGTGAAGGACA



CCGGCGAGATCGAGTACATCGAGATCAAGCCCGAGCAGATCCACAGCACCCAGAAGTTCCGGGAAGAGTTCGAGTG



CAAGAGGGCCGCCTATAACACCCTGGGCTACAAGCTGATCCTGGTGTCCGAGAAGCAGATCCGGAACGACAACCTGC



TGGCCAACCTGAAGGTGCTGCACAGATACGCCAGCAGCAGCCTGTCTGAGCTGCACAAGCTGGTGCTGCATCACATC



AAGAGCGCCAAGAGCCTGAGCATCCGGCAGCTGGCTAACAAGCTGGACCTGCTGATCGGCGATTGCATTGCCGCCTG



TGCCATGCTGATTGGCATCGGCATGATCAAGGTGGACCTGGAAGTGGAACTGCTGTGCGAGCACAGCCTGCTGAATG



AGGCTTGA (SEQ ID NO: 339)





tnsB
ATGTTCGACGACGAGTTCGAGGACCAGATCATCAGCGAGGACACCAGCGACCAGCATCTGCAGACCAACGATCCCAT



CTTCTTCAGCAGCGACCTGGGCAGCTACTCCGAGGACATTAGCCAAGAGGCCACCGCCAAATACGAGCTGGTCATCT



TCCTGCGGAGCAGACTGACAGGCGGCTGGACCCAGAAGAACATCGACCCTCTGTTCGATGAGTACTTCAGCCAGAAC



CGGCTGATCACCATGCCTAGTTGGAGAACAGCCGTGCGGTGGCACAAGAAACTGCTGGAACAGTGTGATGCCCTGGT



GGCCCTGATCGACAGACACGACTGCAAGGGCAACAGAAACAAGAAGCTGCACCTGGACCACGACAACATCATCGAG



GTGCCCAACGACCTGTTCCTGAAGGCCAAGCGGCCTTCTATCGCTGGCGCCTACCGGTACTACAAGGACAAGTGCCT



GCTGCGGGACCAGTCTAAAGGCGGCGGAATCAGACCCATGAGCCAGAGAGCCTTCTACGACCGGATCTACAAGCAG



AACAGCTACGAGATGACCGCCAAGCGGAGAGGCAAGTACAAGGCCGACATGAAGTTCGGCTACAAAGGCGGCATCA



TCAAGCCCGAGCGCGTGATGCAGAGAGTGGAAATCGATCACACCCCTCTGGACATCATCCTGCTGGACGATGGCACC



GGCAAGCCTATCGGCAAGCCATTTCTGACCCTGCTGAAGGACGTGTACAGCGGCTGTCTCGTGGGCTACCACCTGACC



TTTAAGGCCCCTAGCTATGCCTCTGTGGCCAAGGCCATCTGCCACACACTGCTGCCTAAGAGCCAGAGCCAAGAGCT



GTGGGGAATCGAGTGGCCCTGCAACGGAAAGATTGAGGTGCTGGTGGTGGACAACGGCGCCGAGTTTTGGAGCAAG



AGCCTCGAGCAGATGTGCCTGGAACTGGGCATCAACATCCAGTACAACCCCGTGCGACAGCCTTGGCTGAAGCCCTT



CATCGAGCGGAACTTCCGGTCCATCAACGATCTGCTGCTGGATGAGCAGGACGGCAAGACCTTCAGATCCCTGGATG



TGCGGGACGAGTACGACAGCGTGAAAGAAGCCACCATCAAGTTCAGCAACTTCGTGCACGGCTTCGAGAAGTGGATG



GCCGAGGTGTACAACTGCAGCTCCGATAGCAGAGGCCTGAGAGTGCCTAGCCTGCTGTGGCAAGAGGGCTTCGATAA



GCTGCCTCCTGCCAAGCTGAACGAGCAGGATGCCATCGATCTGCCCAAGATCGCCGGCCTGAAGAAAACCAGAACAC



TGCAGCCTAGCGGCATCACCCACGAGCTGCTGAGATACGATTCTGAGGCCCTGAGCGACTACAGAAAGAGCTGTTGG



AGCCCCGACCAGCGGAAGAAAGTGATCATCAAGGTGGACATCGACGACGTGTCCAAGATCTACGTGTACCTGAGCGA



GCTGAACACCTACCTGACCGTGCCTTGCGTGGACAAGGTGTACACATACAACCTGAGCCTGGATCAGCACCTGATCA



ACAAGAGCCTGACCAGGGCCAAGAACCTGCTGCACGGCAAGAGCGATAAGGATCTGGCCGCCAGCCGGGAAGAGAT



CAGAGAAGTTCTGGCCGGACACGACGCCAACGTGAAAACCAGCACCAAAGTGACCACCAACAAGAAGGCAGCCCAG



TACAAGGGCTACAGCAGCGAGACAGTGCGGAATGCCGGCAATGCCGATAAGGGCCTGTCTACCCACGAGGGCAAGA



CCAGCGATTCCAGCGAGAACATCTCCGACCTGGAAGCCCTGTGGCAGAGCTTCAACAAGGACTGA (SEQ ID NO: 340)





tnsC
ATGAGCCTGACCGACGCCAACAAGAGCAAGATCCGGACCTTCAAGGACAGCTTCTGCCTGTACACCCCTGTGCGGGA



AGTGCTGGCCGATCTGGAAAGCCTGTATCAGTCTGCCGAGATCGGCGGCGATCAGCTGTCTATGCTGCTGTGTGGCGA



TACCGGCACAGGCAAGTCTGCCCTGATCCGGTACTTCAGCGAGACAAAGAACCAGAACCAGAGCGAGAGCCTGCCTA



TCCTGCTGAGCAGAGTGCCTAGCAAGCTGACCGTGGAAGATACCACCAGACAGCTGCTGTGCGACCTGGGAGTGTTT



GGCAGCAGCAGCCACCGGTACAAGAACACACAGTCTGACGCCCACCTGACCTCCAGACTGCTGGATGCCCTGAGAGT



GAAGAACACCAAGCTGATCATCATCAACGAGTTCCAAGAGCTGATCGAGTTCAAGGGCGCCAGAGACAGACAGGCC



ATCGGCAACAGACTGAAGCTGATCTCTGAAGAGGCCGGCGTGCCAATCGTGCTGGCTGGAATGCCTTGGATCGACGA



GATCCTGAACGACAGCCAGTGGGCCTCTAGACTGGCCACCAGAAGGCACACCCTGAACTACCTGAGCCTGAGCAAGC



GGCCCAAAGAGTACAACGAGCTGCTGAAGCTGCTGGAACAGAGCATCCCCTGCGAGGTGGAAAACTCCCTGACCGA



GTTCGAGATCAGCCTGTCTCTGTTCGCCGCCAGCTGTGGCGAAATCAGGCAGCTGAAAGCCCTGCTGACCGAGGCCA



TTAAGCTGTGCCTGATCAGCAGCAAGCCCCTGTCCAAGCAGAGCCTGTCCGACAGCTTCAAGAATCTGTACCCCGGC



AACGAGAACCCCTTCGACCTGCCTAAAGAGAAGATCAAGATCAGGGAAGTCGAGATGCACAGCCAGTACATCAGAG



GCGACAGCTCCCACAGAGCCAGCATCGAACCTCGGAGACTGAGCGAAGTGATGACCCTGACACAGATCCTGTCTAAG



AAGTGA (SEQ ID NO: 341)





tnsD
ATGAGCTTCCTGCCTAACAGCATCGACCTGTACGAGGACGAGGCCCTGGAATCTGCTCTGCTGAGACTGTGCAGAGT



GAACCACTTCGAGCACTACAGCGACCTGAGCATCGAAGTGAAGTCCTGGCTGGAAGAGAGACACCCCACAATTGCCG



GCGCTTTCCCACTGTCTCTGGACGCCGTGAATATCTACCACGCCAAGCAGTCTAGCGCCCAGAGAGTGCAGGCCATCC



AGCTGCTGGAACAGCTCGTGGGCCTGTCCAGATTCAGCCTGCTGGACATCTGCTTCAAGCACACCACCGCCGTGGATC



TGGGCCAGTATGCTGAAGTGCGGTACAAGCAGATCAATATCCCCAGAGAATTCCTGCGGAGCACGATCATCCCTATC



TGCCCCGAGTGCCTGAACGAGAGCAACTACGTCAGATTCGACTGGCACATCAACAAGGTGGAATGCTGCGAGAAGCA



CGGCATCAAGCTGCTGAGAAACTGCCCCAGCTGTCACATCCCTCTGAACTACATGAACAGCGAGGACCCCGGCAGAT



GTATCTGCGGCCTGAACCTGCTGCAGAACAGCCACAGAGAGTTCGGCTTCGACAGCTGGCGGGATCACTCTCTGTAT



GAGGCCATCGGCAGCTGCAGCCTGTCTGAAAAACTGGCCGTGCTGGTGTTCAGCGACAAGTTCTTTCCCCTGCTGGCC



TACGAGGACTTCATCGTGGATCCCAGACGGCACATCGACGAGTACCTGAATGGCCTGATCGAGCAGAATCTGCTGCT



GGCCACCGAGAAGCCCAACAGACTGAGCTTTGCCCAGATCAGCAACGACTTCCTGGACGACATCAGCGCCATCAGCT



GCCTGCCTCTGAAGATCAAAGAATTCATTGCTGGCGTGGTCATCACCCTGGCCATCAACGAGGAAAGAAGCACAATC



GCCAACATCGGCGACACCCTGGTGTCTGCCAGAGAAGCCGCCGTGATCATCGGCTCCGAGCTGGACGATATCTACCG



GCTGTACGAGAGCGGCATCCTGGTCGTTGGAAGAAGGCTGAGGAACGAGGGCAAGCTGGAATCTCACAACCCCGTGT



TCCGGCTGAGAGATGTGGCATCTCTGGCCCTGAGCTACAGCAAGTACCAGTTCAGCCAGAGCGCCTGGTGA (SEQ ID



NO: 342)





Cas5/
ATGGATTCTCTGCAGGCCCTGCTGAGCAGCGAGAATAGCCTGAGCCTGAAGGACTTCAACGATATCGCCAAGAAGCT


8
GTTCGAGCTGAACTCCGTGCTGGTGGACGTGACCGATCAAGAGCTGCTGTGTCTGGCCATCCTGGTCAACCTGACAAG



CAAGGCCGAGTGCCGGCTGGACAACATCCAGAACGCCAAGACCACACTGAACAGCGACCTGTTCTGGACCAAGTTCC



GGAAGGTGGCCAGCCAGCTGCACACCCACAATCTGAAGTGGCCCGACAGCAGAGTGTCCCTGAAGCACCAGATCAG



AGTGATCCCTCAGAACGGCGAGCTGCCTGAGTTTGGCTGGGCCGGCAATAGCAGCGACTACCGGATTGGCAGAATGC



TGACCAGCACATTCCTGTGGCGGGGCAGAAAGCACAGCCTGGTGTCTGTGTGGCTGGACGACGATGTGATTTGGCGG



AAGGCCGCCTACAAGCTGGGCATCAACAAGACCTTTTGGTACAGCATCAAGCAAGAGTTCCAAGAGCTGTTTAGCGG



CTCTCACTTCCCCGAGGAAATCGACCAGTACAGCCACGAACTGCTGTTCCCTTACAAGGACAACCACTACCTGACCGT



GACACCCGTGGCCTCTCATGTGGACCAGCTGCTGATCCAGAGCATCAGCGGCGTGCCAATCCAGACACTGAGCTTCC



CTCATCCTAGCGCTCTGGGCGTGCTGTGTGGATGTATGGGCGGACACATGCGGTTTATCAAGCAGAGCCCTCTGCTGC



GGAGGCCCGAGACAAAATGGTCTTACGCCGAGCAGCAAGAGGTGTTCAACGGCTACCCTGTGACCTGCAAACAGGCC



GTGTCCATCTACCGCGAGATCATCGACGTGAACACCTACAGCAGCCTGCGGCTGAAGAGAAGGGCTAGACTGCTGGT



GCTGAAGCAGCTGGACGATGTGCTGAGCCAGTGGATCGCTCCTTTCGTCCGGCTGAAGCTGATCGGAAAAGTGGCCG



CCGAGACTAACAAGCTGAGCGACGAGGAACACTACTTCCTCCAGAGCAAAGAGACAGACCTGCAGGACTTCTCCAG



ATACCTGAACCGGAAGCTGCACGGCGTGCTGGAACACAACAAGTACACCAGAAGCTACAGCTACCACCAGCGGCTG



CTGGGCGTGACCCAAAAAAGACTGGCCTCCATGCTGAAGCGGGCCTTCAGCATCAACGCCAAAGTGACCAGCGACCA



CGAAGAGGAACTGTACCTGGTCCTGAAGAACCTGAGACTGACCGAGGCCAACGGCCTGAACAATCCTTTTGTGGCCG



GCATGCCCAGCATGATCGGCCTGTATGGCTTCCTGCACAGATTCGAGCGGCAGCTGATCGACTGCTACCCCGAAGTG



ATCGTGGAAAGCTTCGCCCTGCAGTGCAACCAGTACCAAGTGATTAACAAGAACAAGCTGCCCGCCTACAGCATCCC



CGAGAAGGACATGGGCATTAGACGCAGCGGAATCGTGCCCGAGTGCTCCTTCGATGGCAAGTTCAGCATCGTGGTTA



AGCTGCACAAGCACAGCGGCTTCACCGACAAGCTGGACGTGGAACTGCTGAAACAGGTGCTGCCCGAGAGACTGTG



GGGCGGATCTCTGCATCCTCCATTTCTGTACGAAGAAACCGAGTGGGCCCAGCTGTTCTACGGCAGCAACAACCTGA



AGCAGTTTATCGCCATCAACCTGTTCGACGGCAACTGGCTGACCCCTGTCAGAGATAGCGGCTTCGACCTGAGCAGC



AACCTGCAGCTGCTCAAGCAGAAGGCCAAGCTGTCCCTGTGTCTCGTGGGCTACAGACTGCTCGAGCCCATCAAGAG



CAGAGAGGTGGACTCTGGCATCCACGCCTTTTGCGAGCCTCTGATCGGACTGTGCACCCGCGAGAGATCCATTGACGT



GATCAGAGCCGCCAGCAATATCGAGAAGCAGATCTTCTGGCAGTTCATGCCCATCAGCCAGAGCTGCACCACACTGC



AAGTGGGACCTGTGTGCGGAGAGAGCAATGCCACAAGCGAGAGCACCTGA (SEQ ID NO: 343)





Cas7
ATGCAGCTGCCCAACCAGCTGAGCTACAAGCGGAGCATCAACCCCAGCAAGGCCATCTTCTACTACAGACGCGACGG



CCAGCTGTTCCCTCTGCCTATCGAGCGGATCAAGATCCGGGGCAGCAAGAGCGGATTTTCTGAGGCCCACACCTCCA



AGGGCATCAAAGAGTCTGCCACACTGCACAACCTGAGCATGGGCAACCCTCACACCGTGGATACCTGCTACCTGCCT



CCTGTGGCCGAGTGCCTCGTGTGCAGATTCAGCATCAGAGTGTGCGCCAACAGCCTGACACCTGACAGATGTAGCGA



CCAGAGCGTGAAGTCCAACATCAGCGATTTCGTGCGGGCCTACGCTGACAAAGGCGGCTATATTGAGCTGGCCAGAC



GCTACGCCAAGAATATCGCCATGGGCACATGGCTGTGGCGGAACAAAGAGGGCAACGCCTTCGACGTGTTCGTGAAA



ACAAGCGAGGGCAGCGACTTCAGCTTCGTGAACGCCCACAGACTGTACTGGGACAGCGAGTGGCCCGACAATCAGA



GCCACGAGCTGGATAAGCTGGCCTCCGAACTGGCTCTGGCCCTGACCAATACCAGATACGTGTGGCACTGTGACGTG



TGGGCCGAAGTGAAGCTGCCTTTCTGTGCCGAGGTGTTCCCCAGCCAGTGCTTCGTGGACAACGACGATAAGAGCGC



CGCCAGCAAGGTGCTGCTGACCACAGATATCGATGGCGTGATGGCCGCCTGCTTCAACGCCGACAAAGTTGGAGCCG



GCATCCAGATCATCGACGATTGGTGGGACGAGCACTGCGACTTCCCACTGAGAGTGTCTGAGTTCGCCGCCGACCAG



GCCAATCTGATCGCTAGAAGGCACCCTCAGACCAAGCGGGACTTCTACCAGCTGCTGCAGAAACTGCCCAGCTACCT



GAAAGAGCTGGCCGCCTCTAGCAGCACCGCCAGCATCAATCCCGACATCCACTTTATCGCCAGCGTGCTCGTGAAAG



GCGGCATGTTTCAGGGCGCCAAGAGCTGA (SEQ ID NO: 344)





Cas6
ATGCTGTATGGCGTGGTGGTCACCTACCTGCCTAAGAGCTGTGATCACGCCCTGCTGGCCGGCAGATGTATCAAAGTG



CTGCACGGCTTCATGAGCCGGCACAGCCTGTCTAATATCGCCGTGTCATTCCCCAAGTGGTCCCAGATCAGCGTGGGC



AACCAGCTGATGTTCGTGTCCCCTATCGTGGACCAGCTGAACACCCTGATCCAGCAGCCTTACTACCAAGTGATGACC



GAGAACGGCCTGTTCGAGATCAGCGACCCCATCATCCTGGAACAGAGCAATACCTGCGTGAAATACGTGCGGAACCA



GAGCATCGACAAGCTGACCCCTGCCGCCAAAGCTCGGAGACTGAGAAGGGCCAAGAAGAGAGCCCTGGAACGGGGC



GAAGAGTTCAACCCCATTGACGCCCAGCCTAAAGAGATCGACTTCTACCACAGCATCCCCATGGACAGCAGCCAGAG



CGGCAGAGCCTATATGCTGAAGGTGCAGAGATACGACGTGGTGCAGAGCCAGGCCAACGACAGCTGCTTTGAAGTGT



GCAGCTACGGCCTGAGCACCAACTCTCAGCATCAGGCACTGCTGCCCATCTGA (SEQ ID NO: 345)





DR
GTGTCCTGCCGCATAGGCAGCTGGTAAA (SEQ ID NO: 346)





RE
TATTAATTGAAGCATAAGCTGACAAATTGGAAGCATAAGCTGTCAAATTTGCACTATATGATGTCATAGTCTATTTTT



AAGTTGTTATTTAGTTACAACTTACAGGTATGGGTTATGTACAATCGCAACCTCCGCAAGCCAAGTCCAAATAAAAAC



ATTTACAAATTCGTTAGTAGAAAAAATCGTTCAACTATTATGTG (SEQ ID NO: 347)





LE
GTGCAAAGCTAGAATTAGAAGGCATTTGGTTGTGAGTTTATTTGTTCTTTAATAGTCTAGCAAATAGATGAGATAATT



AGATTTTCTTGTAAAATTACAACAAACTCTTGGCGTGCTTTGAGTAAATACTTGAGTGTAACCAAAAAATTGTCAGCT



TATGCTTCATTTGTTTGTCAACTTATGCTTCAAAAAAGTGCGTAACTCATTGATTCTTAATTGGGTGGCTTGTCATTTT



ATGGTTCAAACAATA (SEQ ID NO: 348)









201025|11|GCA_003675895.1_ASM367589v1_genomic|ML014764.1|87048|She wanellaceae (ID: 129)










TABLE 39





Elements
Sequences







tnsA
ATGTGCAAGGACGACGAGAACAGAGGCAGACGGGACGTGAAGAAACTGATGAGCCGGTCCATCAACGTGTTCCCCG



CCAAGAAGTCCCTGGACGAGACAACCTTTACCGAGGGCACCCTGGAAGCCGACCTGTGCTACTACCTGGAATTCGAC



CCCAAGGTGGTGTCCTACCAGCCTCAGCCTCACTGCATCAAGTACTTTCTGAACGATGAGAAGCACTGCTACACCGCC



GACCTGCTGGTCAACTACTTCGACGGCAAGAAGCGGCTGATCGAGATCAAGTACAACCGGGACATCGACCGGATCAG



CGACTTCGACGATTGGCGGCTGGCCATCAAGACCGCCTGTGAATCTCAGGGCTTCGAGTTCGAGGTGCTGACCGAGG



ACGAGATCAGAAAGCAGCCCCTGTACGAGAATCTGACCCTGCTGTGGGCCAGCCACGATAAGGCTCTGGATAAGGGC



TTCCTGGTCAAAGTGATCAACACCCTGGACCAGAACGACGACGTGCTGATCTCCGATCTGCTGCCCAAAGTGAACTTC



GACAGCGAGCTGGAACAGGTGTACAAGCTGATCTTCGACCGGAAGATTCTGGCCCCTATCGATACCGAGTTCCTGAG



CACCCAGACCAGCATCAAGCACAGCGGCGAGAGCTACGAGTGCTACCTGTAA (SEQ ID NO: 349)





tnsB
ATGAACGCCACCTACGAGACAGGCGACTTCATCACCATCAAGAACCACGACGTGTCCCACCAGTACGAGATCATCTA



CAGCAGCCCCGACATCATCAAGCTGATCGATTCCTTCAGCGGAATCGCCAGCACCAGAAAGAGCAGAGAGCTGGACG



AGCTGATCGTGTCCGGGATCGCCATCATCCACCAGAAGGACCTGCGGACCAGAAAGCTGCTGGAAAACAACGTGATC



GACTTCGCCAGCTTTCCCGAAGAGAGCAAGCAGAAGGCCCGCGAGCGGTACATCTTTGTGTCCGGCATCCTGGAACA



GAACCTGAAGTCTCACAGCGGCACCATCCTGAAGCCTATCGTGGAACAGATCTACAACGCCAACAGCTTCACCACGC



TGACCAAGAAACCTGGCGTGCGGACAGTGCAGTACTGGCTGAAGTCCTTCAGGGACGCCAACTGCAGCATCAGAGCC



CTGCTGCCTATCCACCACGCCAAGGGCAACAGAAACGTGAAGCTGGATGAGATCAAAGAGCCCTATATCGCCGCTGC



CATCGAGTACTTCAAGACCCCTGAGAGGCCCAGCATCAGCAGCGCCTACGACTACCTGAAAACCCTGATCAACTACG



ACAACAAGATCCTGAGCAAGAGCGAGAAGATCAAGGTGCCCAGCCTGAGCGCCTTCATCAAGAGACTGGAAAAGTT



CGCCAAGAACGAGATCTTCGCCGCCAGACTGGGCAAAGACGAGGCCCGGAAGAGATTCAAGCTGAACCAGCTGAGC



CAAGAGATCAAGTTCATCCTGCAGCGCGTGGAAGTGGATCACACCCAGGCCGATCTGTTCATCGTGGACAGCAAGCT



GAGCATGATCCTGGGCAGACCCTACATCACCGTGCTGCTGGACTACAAGAGCAAGTCCATCCTGGGCTTCTACATCG



GCTTCGAGAAGCCCTCCTACCTGTCCGTGGCTAGAGCCCTGAAGCACAGCATCCTGCCTAAGACCTATCTGAAAGAA



CTGTACCCCGAGGTGGAAAGCGAGTGGGACTGTTACGGCATCCCCAAGACACTGGCCGTGGACAGAGGCAAGGATTT



CGAGTCTGTGGCCCTGATCGACGCCTGCCACGACCTGAACATCCGGATCGAGAGAAACCCCGCTAAGCACCCCTGGT



ACAAGGGCAGCGTGGAAAGCTTCTTCAAGAGCATCAACACCAAGCTGTTCGACGACATGAAGGGCAAAGTGTTCCCC



GACATTGTGGACACCAACCTGTACAACCCTCAAGAGCACGCCGTGATTACCATGGACCTGTTTCTGAAACTGTTTCAC



GTGTGGATCGTGGACGTGTACCAGCAGGATCTGGTGTCCAAGGGCACAATCATCCCCAGAGTGTCCTGGCAAGAGGA



CCTGAAATCTGTGCCTCGGAGAGTGATGAACAAGGACGACCTGGATATCGTGCTGAGCGAGACAACCGACCGGAAG



AATTCTCCTGCCGGCATCGTGTTCGACCACATTTGGTACGACAACGACGAGCTGCTGAAGTATCGGAGCGAAGTGGG



CTTCACCAAAGTGACCATGAAGTACAACCGCGAGGATCTGGGCTTCATCTACGTGCTGGACGAACGGAACCCCAGCT



ACAAGCACTACTTTAAGGTGCCCGCCGTGGACCAGAAGTATGCCAAGGGACTGTCTCTGCACCAGCACCAAGTGATC



AAGGCCTTCAACAAGAACAAGCTGCAGCAAGAGCACAATACCGAGAACCTGGCTGCCGCCAAGATGAAGATCATGC



AGCTGATCTCCAACTTCCTGGACAGCGCCAGCAGCAAGAAGATCAGCTCCAGCCAGAAACTGAGCCGCTTCATGAAC



GTGGGCCAGCAGACCGACCAGACCGTGAAGTCTAGCGTGACCGACATCAGCACACAGATCCCCACCGTGCAAGAGA



TCCACAGCGACACCGAGGAATCCAACGAGGTGCTGGAAATCTACGACGGGATCCACAACAGCCTGCCTGACAAGCTG



AATTTCTGA (SEQ ID NO: 350)





tnsC
ATGAAGCAGAAAGAGGACGACCTGATCGAGAGCCTGATCTTCTTCGTGCCCACCGACAGCCTGGAAAAGACCCTGAT



CGCCCTGAAGGACATCAGAGAGTACAGCAAGATCCACAACTACCGGGTGCCACCTAAGTGCATGCTGCTGACAGGCG



AAACAGGCGTGGGCAAGACCTTCTTCATCGAGCAGTACCTGGAATCTCACCCCAGCTACGACGTGTCCTGCGACGAT



GGCGAGAAAACCATCGTGCCCGTGCTGTACTGCCAGCTGCCTAAGGCTAAGCACCCCAAGCCTGTGGTGTCTCAGCT



GCTGTCTAAGCTGGGCGACCCTCTGAAGAGGCCTAAAGGGGATGTGCGGGAACTGACCCAGAGCCTGGTGTACCTGC



TGAAAGAAGTGAAAACCGAGCTGATCATCGTGGACGAGGTGCAGCACGCCATCGAAACCACCAACAAGAACGTGAT



CCAAGAGATCGGCGAGTGGTTCAAGATCCTGATCAACGAGAGCAGAATCCCTATCGTGCTCGTGGGCGTGCCATGGG



CCAAACCTGTGATCGATGTGAACGCCCAGCTGCGGAGAAGAGTGCGCTACCACTTCGAGCTGAGCAACTACACCCTG



AAGAACTTCAACAAGTTCCAGATGTTCCTGCAGAACGTGCAGAAGAAACTGCCCCTGAACGTGTACAGAACCCTGTG



GGAAGTCGAGATGGCCTTCAGACTGTTTGCCGCCAGCCACGGCAATATCAGCGAGCTGATGGACGGCACAATCATCC



CCGCCTGCGAGAATGCCATCCTGCAGGGCAAAAGCGTGGTGGAAGAGAGCAATTTCATCGAGGCCGTGAACGAGAA



CGCCAACTTCAAAGAGAAGAACCCCTTCAGCATCAAGAGCGTGCGGGACGTGATCGCCTACCAGCAGAAAACCAGC



AGCAAGTTCAAGAAGAATGCCAAGCGCAAAGAGGAACGGATCGTCGACGCCATCTACACCAAGATCAAGTTCGACG



ATCTGAAGCTGAGCGAGGTGCTGAGCAAGAAGTGA (SEQ ID NO: 351)





tnsD
ATGAAGTTCCTGAAGCGGATCAAGCTGTTCCCCGACGAGGCCCTGGAAAGCTACTTCATCAGATGCGCCCACAGCAA



CGGCTTCCAGAAGATCAGCCTGTTCCTGCAGAGCCTGAGCGCCTTCATCAGCCTGAGAGACAAAGAGCTGAAAGGCG



CCCTGTCTGCCAGCCTGTCCAGACTGAATCTGCACAAGGCCCACAACAGCAGCGCCTATAGAGTGCGGGCCATCAAG



CTGCTGGAAGAGTTCTGCGATCTGCAGCCCAGCTGCCTGCTGAGAGTTGCCGTGCTGAGGACCAACAGACACTTCGG



CAGCTATGTGGCCCTGGCCAGATCCAACGTGCTGTTCCCTAACATCATGCTGCGCGAGCACGTGATCCCTGTGTGCCC



TCTGTGTCTGCAAGAGCGGAACTACATCCGGTTCATCTGGCACCTGAAGCCTATCCAGAGATGCCCCAAGCACCAAG



TGAAGCTGATCTTTAACTGCCCCGAGTGCGGCAACGACATCAATTACATCCAGAGCGAGAACATCGAGCTGTGCAGC



TGCGGCTACGACTTCAGACAGATCAAGCCCAGCGAGAAAACCGAAGAGAGCATGAGCGCTAGCCTGTTCGAGAGCA



GCGAGAACGCCGATAAGCTGAGCCTGGAATTCGGCAAGTACCTGTGGTTCAGCAAGCACAGCGGCGTGGAACTGGA



CGACGACTACTTCCTGCCTAAGTTCAACCGGTACTTCAGCAACTGGCCCGACAACTACCTGAGCTACCTGAAAACCCA



AGAGTCCAAGGCCATCGAGAAGCAGACCAGCCGGTTCAACCAGATCAGCGTGAACGACATTTGGTGCGAGCAGCTG



CAGAACACCAGACTGGTCACCACCAACAGAGTGAACAACCTGGTGCTGGACCAGCTGGCCAATTACTTCATCGACCT



GGTCAACAGATACCCCAAGTGCCAGCACGCCAATATCGCCGACACACTGATCAACCAGGTGGACTCTGCCCTGCTGC



TGAGAACCTCTGTGGAACAGGTGTTCCGGCTGCTCGAGGACGGCTATCTGAAAGTGAAGTTCGGCGTGCCCACCGAG



GCCATCTACAAGCCTCACATCCCCATCTTCTACCTGCGGGAAGTGATCGAGCTGACACAGGCCCAGGGCAGCAACAC



CAGCATGTTCGAGCACATGATCAGCGCCTGGTGA (SEQ ID NO: 352)





Cas5/
ATGGACAACCTGAAAGAGCTGCTGAACATCGAGAAGGTGTCCCTGCGGAACAGCAAGATCCGGGACAGACTGAAGC


8
CCAGCAACCTGCCTATCGATGCCTCTGGCTATGAGGCCCAGATGTTCCTGATCCTGATCAACCTGGGCTACAGCAAGA



GCGAGCACATCGACCTGCTGGATCTGCACAGCGCCAAGCAGTTTCTGAACGACAAGAAATACTTCGGCGTGACCCTG



AGCGAGAGCAGCTGGATCCACACACACAACAGCAAGTACCCCGACATCAGAGTGCGCGAGCAAGTGATCAGAGCCC



GGATCCTGAACAAGGGCATCAACGGCGTGTGTAGCGAGGGCTGTACCGACAGCACAAGCTACGGCTACAGCCACAA



TGGCGGCAGAGTGACCAGAAGCTTCCCACTGATCACCGAGTTCTGCTGGAACGGCAAAGTGACCTGTCTGGCCGAGC



TGATCGCCAACTGTGAAGCTATCTGGATCGGCCAGTTCCTGGACCTGGGCTTTAGCCTGCAGTACATCGGCATCGTGG



TCAAGATCCTGAAGTCCAGCCTGGCCACACATCTGCCTAGCCAGGTGCACAACACCATCCAGCTGAGATTCCCTTACA



AGGACGACTACCTGACCATCACACCCGTGGTCAACCACAAGGTGCTGAGCGAGCTGCAGAAGGCCTTTGCCAACGAC



AACCTGCGGTACAGATGGATCTTCTACCCTCAAAAGGGCTACACCAACACCGGCAGCCTGCTGACAGCTCTCGGCGG



CAGAATCAACGTGCTGCGGTACTACCCCAACACCATGCACCACCACCGGGAACTCGAGAAATACGTGAACCAGCTGG



CCGACGAGAGCCTGTTCTACAACAAGAGCCTGGGATTCACCCGGTTCAAGAAGGCCCTGTACGAGATCACCTTCAGC



GGCAGATACCCCACACTGAGAGCCCAGAGACTGGCCAGAATCGACGCCATCAAAGTGATTCGGAGAGTGATCTACCT



GTGGCTGTTCCGGGTGCTGAGATACAAGAAGTACGCCAACCTGGACGAGGAAAAGCTGAGAGAGGGCAGCCTGATC



AAAGAGCTGGTCGAGTACGGCAACGCCGATGTGCCTTCTCTGGCCGTGAAACTGAGGGCCAAGCTGAACCTGCAGCT



GTCCGAGAACGACGCCACACAGAAGTTCGCCTACCATCCTAAGCTGCTCGAACTGCTGAAGCGCCAGATCAAATACG



TCCTGCAGCACAAGGATGCCTACGAGGAACACCTCCAGAGCAACTTCACCTACCTGCACGTGAAGAACATCACCGCC



GAGGACATCAATACCATGAGCAACAAGTACCTGTGGGGCATGCCTAGCATCATTGCCCTGGCCGGCTTCAGCCACGA



GTTCGAGCTGAATCTGCGGCGGAGCGGCATCTACCTGAAAGTGAAGGGCGTGTCCATCTTCGTGCACAGCTACCAAG



TGAAGTGCAACAGCAGCCTGCCTGAGTTCGACCGGATCAATGGAAAGGCCGGCCAGTACACCCCTAGCAGACCTGCT



CTGATCGATCTGCCCAAGAGCAAGATGAAGTTCGACCTGGTGTTCAGAGTGGCCGGACTGAACAACCTGCAGGCCAA



CATCAGCCTGGAAGTGCTGGCCAACAGCTTCCCCGAGAGAATTATGGGCGGCGAGATCTTCCTGAGCCAGAAGAAGA



TCAAGAAGCAGTTCTACCTCACCAGCAACATCCAAGAGCTGTTCAGCTCCCTGCGGTTCATCTCCCACGAAGGCTGTT



GGCTGTGCCCCACCGACCACAGAATCAGATGCATCAGCGACCTGAGTTCCCTGCTGAAGAGAGACAAAGAACTGAAG



CCTGTGCACATCGGATACGCCTATCTGGAACAGCCCAAGTCCAGAGAGGGCGCCATCAGCAGCAGACACTGTTTCGG



AGAGCCCATCCTGGGAATCGCCAAATGCGTGCACCCCATCGATGCCAACAAGAAGGGCCTGAAGTTCTTCTTCGACA



ACGCCTTCTGGGCCCCTCGGATCAGCGAGTTCAGCATCCTGATGACCAAGTGA (SEQ ID NO: 353)





Cas7
ATGGACATCCCTCTGAGCCTGAGCTACAGAGGCAGCCTGAGGCCTAGCGACGCCATCTTCTATTGCAAGAGCCCCGA



CAGCGACATCAAGCTGCCTGTGACCATCGTGAAGCGGATCGCCAATAGCAGCAGCAGCGCCTTTTCTGAGGGCCAGA



GAGATCAGAGCATCAAGGACATCAGCAGCTACCACCTGGGCAGAACCCAGCTGCACCCCACACTGTATTGCCACGTG



CCATACGAGGCCAAGTGGCTGTACTGCAAGTTCAGCCTGAAGTTCCTGTTCGAGAGCAGAAAGCCCCACGCTCACGA



CGACCTGAAGGTGTCCAAGTACCTGCAGAGATTCGCCAAGAGCTACAAGGACCGGAACGGCTATCACGAGCTGGCCA



AGCGCTACGCCAAGAACATCCTGAGAGGACAGTGGCTGTGGAAGAACATCGAGAGCGACTGGCCCATCACACTGAC



CATCAAGCGGAGAGGCAACCTGCTGATCAAAGTGAAGAATATCCAGTGCCTGCAGTGGAGCGACGGCTGGGAAGAT



TACCAGGACGAGCTGGATGAGCTGATCGACCTGATCGATACAGCCCTGAGCAGCACCGGCGTGATCACCCTGTCTAT



CAAGGCCAAGATCCGGGCCGAGAAGCTGCAAGAGGTTCTGCCTTCTCAGCTGGTGCACTCTGAAGCCGAGCGGAGAG



CCGGCAAAGAACCTACAGTGGCCGAGACAAGCCTGAACAGCGAGCAGATGACCGTGTGCTTCACCAAGTACAAAGT



CGGAGCCGGCATCCAGCTGATTGACGACTGGATCGACACCGAGGATCCCATCAGAGTGTCTGAGTATGGCGCCGTGC



ATGGCCTGCACATTGCCCTGAGAACCCCTCGGAACAAGCAGGACGTGTACAGCCTGCTGCCTAAGGTGCCCTTCTAC



ATCCGGTTTCTGCGGTACAACAAGCTGGGCGAAGATGAGATCAGCAACAAGATCCACTACCTGATGTCCATGCTCAT



CAAAGGCGGCGTGTTCAACAGAAAGAGCGACAAGGCCTGA (SEQ ID NO: 354)





Cas6
ATGCGGAACCGGTACTACTTCATGATCAAGTACCTGCCTGAGAACGCCAGCAACAGCCTGCTGGCCGCCAGATGTAT



TTCTGTGCTGCACGGCGTGGTGTCCCACAACGGCCAGACAAATATCGGCGTGACATTCCCCAAGTGGAGCGACAGCT



CTGTGGGCAGACAGATCGGCTTCGTGTCCAACGACTACCGGAACCTGGAAAGCTTCCGGCGGAACAGATACTTCAAC



ATGATGAACGAGGACGGCCTGTTCTTTGTGTCCGGCGTGGAAGAGGTGCCCAACAGAATCGACGAGGTGCAGTACGT



GCGGAACAACGGAATCGCCAAGTACACCCTGAGAGAGCGGCAGCGGAGAATCGAGAGATGCCAGAAGAGAGCCGA



GAAAGGCGGCAGAGAGTACCAGCCTAAGCTGGGCTACATCGAGAGAGAGTTCGGCAGCTTCCACAAGCTGATCCTG



ACCAGCAAGAGCAAGCAGACCAGCTTTCCACTGTACATCCAGAAGAAGTCCGGCGTCAACCACGTGAACTGCGACTT



TGGCCACTACGGCCTGGCCAGCAATCAGGTGCTGATGGGCACAGTGCCCGACCTGAGCTTTGAGCACTAA (SEQ ID



NO: 355)





DR
GTGACCTACCGCACAGGTAGCCGAAAAT (SEQ ID NO: 356)





RE
TGATGATTACACCATAAGCTTGCATTAATACACCATAAGCTTGCATTTTGCTACACCATAAGTTTGCGCATTAACAAA



GGTTAACTTGCTTTAACATAGTAAAAGGAAGAGTCTAGCGCTGTGACCACTCTGGAGCAACGCTAATGTGTAAAGAC



GATGAAAACAGAGGTAGGCGAGACGTCAAGAAATTGATGTCGAGA (SEQ ID NO: 357)





LE
TTCAGTGAAACATAGAAGTATCCAACATTCTTTTATATGGCTTTAGCTCTTTGCTAGAATAGAGCTCTTAATTCAGCAT



GAACGCTGACAAAAAACGAATATCTCTTTATGCACCTATATAGTAAATGTTACAAAATTTTGTGCAAACTTATGGTGT



ATAAACTGTAAATCTATGCAGATTTATGCCGAAATAGTAAGATTGTTGTAATTTTTGATGTCAAAGATAGCAAGAGCT



TAGAGAAGTTGTTTA (SEQ ID NO: 358)









201736|1|GCA_003691505.1_ASM369150v1_genomic|CP033138.1|2507977|Vib rio (ID: 130)










TABLE 40





Elements
Sequences







tnsA
ATGTCTGCCCTGCCTAGCCTGTCTACAGCCACACTGCTGGAACTGGAAACCGCCTTCGATACCCCTGCCAGAAACCTG



ACCAAGAGCCGGGGCAAGAACATCCACAGATACGTGTCCGCCAAGATGGGCAAGCGCGTGACCGTGGAAAGCTTCC



TGGAATGCGCCGCCTGCTACCACTTCGACTTCGAGCCTTCTATCGTGCGGTTCTGCAGCCAGCCTATCCGGTTCAGCT



ACAACCTGAACGGCAAGACCCATACCTACGTGCCCGACTTCCTGGTGCAGTTCGATACCGGCGAGTACAAGCTGTAC



GAAGTGAAGTCCGACAAAGAGAGCAGCAACGAGGAATTCCACTGCGAGTGGGAAGCCAAAGTGCAGGGCGCCTTTG



ACATCGGCCTGGAACTCGAACTGGTGGTGGAAGAGGACATCCTGGACGAAGTGATCTTCAACAATCTGAAGCTGCTG



CACCGCTACGCCAGCCGGGATAACCTGAATGACTTCCACCAGATCCTGCTGACCACACTGAAGCGGAATGGCACCCA



GACAGCCAAGTCTCTGGGACACCACCTGGGCCTGAATGGCAGAAAGATCCTGCCTTTCCTGTGCGACCTGCTGAGCC



GGAATCTGCTGCAGACAAGCCTGGAAACCCCTCTGTCTCTGGAAAGCGAGTTCGAGCTGGGCTGCTACGCTTGA (SEQ



ID NO: 359)





tnsB
ATGCCCAAGAAGTCCTTCAGCAGCTTCCACAGAAAGAGCGCCCTGCAGCAAGAGAAGCTGGAACAGAACGACAGAG



TGGTGGACAGCAACGACGTGGACGAGGCCATCTACCAGGACATCAGCGCCTTTCCAGAGAATATCGCCAACCAGATC



ACCTTCCGGCTGAGCATCCTGAGATTTCTGGCCGGCAAGTGCGAGAAGATCACCCCTAAGACCATCGAGCCCTACAG



AGTGGCCCTGCAGAGACTGCACGACACAAACATCCCCAGCAGCATCAGCATCTACCGGTGGTGGCTGGTGTTTAGAG



CCAGCGGCTACAACCCCGTGTCTCTGGCCCCTAACTTCAAGAGCAGAGGCAACAGAGGCGCCAAGGTGTCCCCTGTG



GTGGACTCCATTATGGAACAGGCCGTGGAAAGAGTGATCAGCGGCCGGAAGATCAACATCAGCTCTGCCCATCGGAG



AGTGAAGCGGAAAGTGCGGCAGTACAATCTGACCCACGGCACCAACTACAGCTACCCTAAGTACGAGAGCGTGCGG



ATCAGAGTGAAGAAGAAAACCCCTTTCGAGGTGCTGGTGGCCAAGAAAGGCGAGAGAGTGGCCAAGCGCGAGTTCA



GAAGAATGGGCAAGAAGATTACCACCAGCGCCGTGCTGGAACGCGTGGAAATCGACCACACAATGGTGGACATCTT



CGCCGTGCATCCCGTGCACAGAGTGACACTTGGTAGACCCTGGCTGACCCAGCTGGTGGACTGTTACTCTAAGGCCGT



GATCGGCTTCTACCTGGGCTTCGAGCCTCCTAGCTACGTGTCAGTCAGCCTGGCTCTGAAGAACGCCATCCAGAGAAA



GGACGACCTGCTGAGCAGCTACGAGAGCATCGAGAACGAGTGGCTGTGCTACGGCATCCCCGATCTGCTGGTCACCG



ACAACGGCAAAGAGTTCCTGAGCAAGGCCTTCGACAAGGCCTGCGAGAGCCTGCTGATCAACGTGCACCAGAACAG



AGTGGAAGTGCCCGACAACAAGCCCGACGTGGAACGGAAGTACGGCACCATCAATACCAGCCTGCTGGACGATCTG



CCCGGAAAGGCCTTCAGCCAGTATCTGCAGAGAGAAGGCTACGACTCCGTGGATGAAGCCACACTGACCCTGGACGA



GATCCAAGAGATCTACCTGATCTGGCTGGTGGATATCTACCACAAGGGCAGCAACCAGCGGGGCACAAACTGCCCTA



ATATCGCCTGGCGGAACGGCTGCCAAGAGTGGGAGCCTGAGGAATTCAGCGGCCCCAAGGACGAGCTGGACTTCAA



GTTCGCCATCGTGGATAGCAAGCAGCTGACCAAGGCTGGCGTGACCGTGTACAAGGGCCTGACATACAGCTCCGAGA



GACTGGCCGGCTACAGAGGCAAAAAGGGCAATCACAAGGTGCAGTTCAAGTACAACCCTGAGTGCATGGCCGTGATT



TGGGTGCTCGACGAGGACGTGAACGAGTACTTCACCGTGAATGCCATCGACTACGAGTACGCCAGCAGAGTGTCTCT



GTGGCAGCACAAGTACAATATGAAGTACCTGGCCGAGCTGAACAGCGCCGAGTACGATGAGGACAAAGAGATCGAC



AGCGAGATCAAGATCGAGGAAATCGCCGACCGGTCCATCCTGGAAACAAAGAAGATCAGAAGCCGGCGGAGGGGCG



CCAGACACCAAGAAAATTCTGCCAGAGCCAAGAGCATCTCCAACACCAAGCTGGTGCCTCCACAGAAGGACGAGGA



AGAGATCGTCATCGTCGACAACGAGGACTGGGACATCGATTACGTGTGA (SEQ ID NO: 360)





tnsC
ATGAACGAGACAAGAGAGGCCCGGATCAGCAAGGCCAAGAGGGCCTTTGTGTCTACCCCTAGCGTGACCAAGATCCT



GAGCTACATGGACCGGTGCAGGGACCTGAGCGATTTCGAGTCTGAGCCTACCTGCATGATGGTGTTTGGCGCCTCTGG



CGTGGGCAAGACCACCGTGATCAAGAAGTACCTGAGCCAGAACAACCGGGACAGCAAAGTGCGGGGAGATGTGGTG



CCTGTGCTGCACATTGAGCTGCCCGACAATGCCAAGCCTGTGGATGCCGCTAGAGAACTGCTGCTGGAAATGGGCGA



TCCCCTGGCTCTGTACGATACCGACCTGGCCAGACTGACCCAGAAGCTGACCGATCTGATCCCTGTCGTGGGCGTGAA



GCTGATCATCATCGACGAGTTCCAGCACCTGGTGGAAGAGAGAAGCAACCGGATCCTGACACAAGTCGGCAACTGGC



TGAAGATGATCCTGAACCGGACCAAGTGTCCCATCGTGCTGTTCGGCATGCCCTACAGCAAGGTGGTGCTGACCGCC



AATTCTCAGCTGCACGGCAGATTCAGCATCCAGTTCGAGCTGCGGCCCTTCAACTATCAAGGCGGAGAGGGCGTGTT



CAAGAACTTCCTGTGGAACCTGGACAAGGCCCTGCCTTTCGACAAAGAGATCGGCCTGGCCAACGACGACCTGAAGA



AGAAGCTGTACGCCTTTAGCCAGGGCAACATGCGGAGCCTGCGGAACCTGATCTATCACGCCTCTGTGGAAGCCATC



GACAACAACCACGACACCATCACCATCAAGGACTTCGTGTTCGCCGCCAAGCTGACCAGCGGCGATAAGCTGAGCAG



CTGGATCAACCCCTTCGAGAAGGGCACCAAAGTGACCGAGCAGATGCTGAGGCCTCCTCCAGAGGATATCGGCTGGG



AAGATTACCTGAGAAACAAGCCCAAGAAGAACCGGAAGAACCAGGACTCCAACATGTTCGACTGA (SEQ ID NO: 361)





tnsD
ATGTTCCTGCAGCGGCCCAAGCCTTACTCCGACGAGAGCCTGGAAAGCTTCTTCATCAGAGTGGCCAACAAGAACGG



CTACAGCGACGTGCACCGGTTTCTGGAAGCCACCAAGGGCTTTCTGCAGGACATCGACCACAACGCCTACCAGACAT



TCCCCACCAATATCGCCAAGATCAACCCCTGCCTGGCCAAGGATTCTAGCGGAGCCAGAACAGCCAGCCTGCTGAAA



CTGGCCCAGCTGACCTTCAACGAGCCTACAGAACTGCTGGGCCTCGCCATCAACCGGACCAACCTGAAGTACAGCCC



TAGCACCAGCGCCGTGATCAGAGGCAGCGAAGTGTTCCCTAGAAGCCTGCTGCGGACCAAGTCTATCCCTTGCTGCC



CTCTGTGCCTGCAAGAGAATGGCTACGCCAGCTACCTGTGGCACTTCGAGGGCTACGATCACTGCCACATCCACGATG



TGCCCCTGCTGAACAGCTGTAGATGTGGCGCCGAGCACGACTACAGAGTGTCTAGCCTGTCTGGCATGTGCGGCTCTT



GCGAAGCCACACTGGCCATCAAGAGCAGAGAGAAGTCCCACAGCGCCACACTGAGCGTGGCAAATTGGCTGGCCGG



CAACGAGTGCAAGAACCTGCCTCACGTGCCCCGGTCTTATAGATGGGGACTCGTGCACTGGTGGTCCCACATCAGCG



ACAACGAGTTCGACCACTTCAGCTTCGTGCAGTTCTTCAGCAACTGGCCTCGGGCCTTCCACAGCATGATCGACGACG



AGATCGAGTTCAACCTGGAACACGCCATCGTGGGCAAGAAAGAACTGAGAGTGAAGGACCTGTTCGGCCGGATCTTC



TTCAGCTCCATCAGACTGCCCGAGCGGAACCTGCAGCAGAATATCGTGCTGGGCGAGCTGCTGAGACACGTGGAAGC



TCACCTGTGGGACAATGAGGGCCTGCTGGCCAACCTGAGAATGAACGCCCTGGAAGCTACCGTGTTCCTGAACTGCA



GCCTGGATGAGATCGCCAGCATGGTGGAACAGCGGATCCTGAAGCCTAACCGGAAGCCTAAGCCTAACATGCCCCTG



GCCGTGAACGACTACCTGTTCTACTTCGGCGACATCTTCTGCCTGTGGCTGGCTGAGTTCCAGACCGACGAGTTCAAT



CGGTCCTTCTACGTGTCCCGGTGGTGA (SEQ ID NO: 362)





Cas5/
ATGGAAAGCCTGAAAGAGAGCCTGCAGAGCAGACCCGACGACCTGAACGTGGAACTGAAGCGGGCCTTCAGACCCC


8
TGACACCTCACATCAACATCGACGGCAAAGAGCTGGACGCCCTGACCGTGCTGGTCAACCTGACAGACAAGACCGCC



AACCAGAAGAACCTGCTGGACCGGGCCAAGTGCAAAGAGAAGCTGAGGGACGAGAAGTGGTGGCACTTCTGCCTGA



ACACCATCGAGTACATCCAGAGCCACAACCTGAAGTTCCCCGACATCAGATCTGGCGGCGTGATCAGAGCCAGCACA



CTGGGATCTCTGCCCGAGCATCTGCTGAGCAGCAGCAAACTGCCTCAGCACTTCTGGGCCTACTCTCACGACCCCAAA



TACGTGAACAAGAGCGCCTTCCTGACCAGCGAGTTCTGTTGGGAGGGCGTGATCTCCTGCCTGGCCATCTTCCTGCAA



GACGAGTCCCACATCCTGTGGACCAAGCTGCTGGAACTGGGCTGCTACAAGAAAACCCAGAAAGCCGTGCTGAAGA



AGCTGCGGAGCTTCGACGCCCAGAAAATCGATGTGGCCCTGACAGGCAACTACCTGACACAGCTGAGCCTGCCTAAC



GACGAGGGCAGCTATGTGTCTTTCAGCCCTGTGGCCAGCCAGAGCATGCAGTCCCACTGTTACCAGACACTGAGCCA



GAACTACCAGTACAGCGTGACCACCAGATTCAGCCGGATCACCTCTATGGGCGTGCTGCCTATGACATGCGGAGGCG



CCTTCAGAATGTTCAGAAGCGTGCCCAACTTCAGCCAGACACCACACTGCAACCTGAGCAACAACGAGCGGTGGCTG



ACCAAAGAGAGCATCCAGTCTCTGAAGGACTACACCCACCTGAACAAGCGGCTGATCACCGACAATCAGAAGCAGG



CCTACAGAAAGAGCGCCACCGACAACATCCGGAAGATGATTAGAGCCTGGCTGAGCCACCAGAACAGCGAGATCGA



TGCCGACACACTGACCGAGTACCTGAACTACGATCTGTCCCAGATGCGGACCACCAAGAGATTCGCCTACCTGCCTA



AGCTGACCCGGCTGCTGCACAGCCTGCTGAAGCAAGAGCTGAAGGACCCTCTGTTCGAGCCCAACAACGACAGCTGC



AACAGCAAGACCGGCGCCTTTCTGCTGCTGCCCAACATCAGAGTGTCTGGCGCCTCTGCTCTGAGCAGCTCTATGACA



GTGGGCATCCCTAGCCTGACCGCCTTCTACGGCTACGTGCACAGCTTCGAGTGCCACCTGAAAGAAAGCAACTCTGCC



GCCGAGATCGAGAGCTTCGCCGTGTGCATTCACCAGTTCCACCTGGACAAGAGAGGCCTCACCAAAGAGTTCGTCGA



GAAGGCCAACGGCACAATCAGCCCTCCAAGCACACACGACGATTGGCAGTGCGACTTCACCTTCAGCCTGGTGCTGA



AGTTCTCCCACCAGCCTAACATCCCCGACGACAGCATCATCAAGGTGCTGCCAAAGAGGCTGGCCAGAGGCACCGCC



AAGATCTCTATCGCCGACTTCCACAACATCCAGTCCTTCGACAGCCTGACCTCCGCCATTGAGCACGTGCCCATCCAG



AAAGGCAAGTGGCTGTCCCTGTACAAGAGCCATCTGAACAGCTTTGACGATCTGATCAGCAGCGTGCGCGAGAAGAG



ATGGCTGACCCCTAGCTGCGTGGGCTTCCATCTGCTGGAAAAGCCCTCTGAGAAGCGGGGCAGCCTGAGAGGATACA



AGCACGCCTTTAGCGAGCCCATCATCGGCCTGATCAACCCCATCGTGTTCGGCAACAAGACCGACAGCAACGAGATC



CTGTGGCGGTACAAGTACCACACCGACTACATCAGCATCCAGACCGAGGCCTGA (SEQ ID NO: 363)





Cas7
ATGACCATCATGGAACTGCCCACCAACCTGGCCTACGAGCGGAGCATCAATCCTAGCGACGTGTGCTTCCTGGTCGTG



TGGCCTGATGGCACCAAAGAGCCCCTGAGATACACCAGCAGAATCGCCCTGGGCCAGATGGAAACAGCCAGCCTGG



CTTATGACAGCCAGGGCAACATCAAAGAAGCCGTGACCGCCGAGAAACTGGCCCACGGAAATCCTCATGCCGGCGAT



TTCTGCAGCGTGCCCTTTGGAGCCAACCACATCGAGTGCTTTTTCAGCGTGTCCTTCAGCAGCGAGCTGCGGAAGCCC



TACAAGTGCAACTCCAAAGAAGTGAAGTCCACCATCATCAAGCTGATCGAGCTGTACGAGAAGCGGATCGGCTGGGA



GTACCTGGTGTCCAGATACCTGATCAACGTGTGCAACGGCAGCTGGCTGTGGAAGAACACCAAGCGGGCCTACAGAC



TGGACGTGGAACTGTCTCCTTGGCCTTGGAGCGAGAAGCCCGTGCTGTTCGAGAACATCCACAAAGAGTACCGGGAA



GAGAGCGCCTTCGAAGCCCATCAACGTTGGAGCGCCATCAGACAGCTGGTGGTGGATGCCTTCAGCCAGTCTAATGG



CCTGGCCATCTTCGAAGTGAAGGCTACCCTGGTGCTGCCCACCTCCAGCGAGATCTATCCTAGCCAGGCCTTCACCGA



GAAAGAGAACAAGAGCACCAACAACGCCGGCAACAAGGCCCGGACCTTCCAGAATACCCAGATCGAGAATGTGCGG



AGCCCCATCATCGGCATCTACAAAGTGGGAGCCGCCATTGCCACCATCGACGACTGGTATCCCAACGCTCTGGAACC



CCTGAGAGTGTCTAGATTCGGAGCCCACAAGGGCGACGTGACCTGCTACAGACACCCTAGCACCGAGAAGGACCTGT



TCACCATCCTGCAGAACGCCGAGCAGTACATCGAGAGACTGTCTGCCCCTGGCAAGCTGAGCCAAGAGCTGACAAGC



GACCTGCACTACCTGGTGGCTAATCTGATCAAAGGCGGCATGTTCCAGCACAAAGGCGACTGA (SEQ ID NO: 364)





Cas6
ATGAACTGGTACTACAAGACCGTGACATTCATCCCCGAGAGATGCGACAACGAAGTGCTGGCCGCCAAGTGCCTGTC



TATCCTGCACGGCTTCAACTATAAGTACGAGACACGGTCCATCGGCGTCAGCTTCCCCGAGTGGTGTGATGATACCGT



GGGCACCAAGCTGACCTTCATCAGCGCCAGCAAGGTGGAACTGGACCTGCTGCTGAAGCAGCACTACTTCATCCAGA



TGCGGCGGCTGGGCTACTTCGATATCTCTGCCACCGCCAAGATTCCCGAGGACTGCGAGTACGTGCTGTTCGTGCGGA



ACCAGAGCATCGACAAGTCTACCGCCGCTGGCCAAGTGCGGAAGCTGAAGAGACTGCAGAAAAGAGCCATGGCCAG



AGGCGAGAGCTTCAACCCTGCTCTGCTGCGGCAAGAGGAATCCATGATCGTGCCCCACTACCACAGCCTGGAAGTGT



CCAGCCAGAGCAAGAACAGCATCTTCCGGCTGAATATCCAGATGAAGGCCAACCACGGCTTCGAGGGCAACAGCAT



GTTTAGCAGCTACGGCCTGAGCAACACCGACGACAGCTATCAGGCCGTGCCTCTGATCTGA (SEQ ID NO: 365)





DR
GTGTACTGCCGAATAGGTAGCTGATAAT (SEQ ID NO: 366)





RE
TGTTGAAACATCCATAAATTGATATTTACAACCATATATTGATTTTTGGTACAGCCATAATTTGATATTGCCTCTTCAT



GGTCTAAACTTGTGTAAGTTTACGACAAAATCGTGAAGAGGCAATATTATGTCTGCTCTACCTTCCCTTTCTACAGCC



ACCCTGCTTGAACTTGAAACTGCGTTTGACACTCCTGCTCGAA (SEQ ID NO: 367)





LE
ATATTACTGTTGGGTTATCAATCACACATTAAAGTTCAGTTCAATGTATGAGCGCTTTGTATTAACCAAACTTGGTAC



AGCGACAGTTTTTATGTAAGAAACTTTCTTACATAAAAACTCAGCATTAATTCGGTTTATCACAAAAATATCAACTTA



TGGTTGTATTTGGTGATATCAATATATGGTTGTATTTTTTGTAACTAGTTGAAATTATGAGAGTTATAAATGTCAATTT



ATGGTTGTATCAACA (SEQ ID NO: 368)









209559|12|GCA_003947355.1_ASM394735v1_genomic|PSZI01000003.1|412992|Aeromonas (ID: 131)










TABLE 41





Elements
Sequences







tnsA
ATGTACAGACGGCACCTGAAGCACAGCAGAGTGAAGAACCTGTTCAAGTTCGTGTCCGCCAAGATGAATACCGTGTT



CACCGTGGAAAGCAGCCTGGAATTCGATACCTGCTTCCACCTGGAATACTCCCCAGCCGTGAAGGCCTTTGAGGCCC



AGCCTGAGGGCTTCTACTACACCTTCGAGGGCAGAGACTGCCCCTACACACCCGACTTCAGAGTGCTGAACGAGAAC



GGCAGCGTGGGCTACCTGGAAGTGAAGCCTTCTGCCAAGGTGCTGGAAAGCGACTTCCTGCAGCGGTTCCCATTCAA



GCAGCAGAGAGCCACCGAGCTGAGCTGCCCTCTGAAGCTGATCACCGAGCGGCAGATCAGAATCGACCCCATCCTGG



GCAACCTGAAGCTGCTGCACAGATACAGCGGCTTCCAGAGCTTCACCCCTCTGCACATGCAGCTGCTGGGACTCGTG



AAGGACTTCGGCAGAGTGTCACTGGCCAGACTGAGCGGATCTACAGGTGCTCCTCCTGGCGAAGTGCTGGCCACAGT



GCTGTCTCTGATTGCCAGAGGCCTGATCCACAGCGATCTGGCCGAACACGAGATGGGCTTCAGCACCATCGTGTGGA



TGCGGTGA (SEQ ID NO: 369)





tnsB
ATGTGTGCCCAGCCTACCACAGAGGTGCCCAGCGATCTGTTCGAGGACGAGTTCACACACCCTCATCCTCCAGAGAG



CCCTAACCTGGCCGCCACAACACCTACAGTGCTGAGCGCCACCGTGGATAGCTTTCCCGCCGATCTGAAAGCCCAGG



CTCTGCACAGACTGGACTACATCAGATGGATCGAGGACAACCTGGCTGGCGGCTGGACCGAGAAAAATCTGGCTCCT



CTGCTGGTGGAAGCCGCCAAAGTTCTTCCTCCTCCTGCTCCTAACTGGCGGACACTGGCCAGATGGCAGAAGAACTAC



AACCAGCACGGCCGGAAGCTGATGGCTCTGATCCCTAAGCACCAGGCCAAGGGCAACGTGAAGTCCAGACTGCCTAG



CAGCGACGAGGTGTTCTTCGAGCAAGCCGTGCACTGTTTCCTCGTGGGCGAGCAGCCTTCTATCGCCAGCGTGTACCA



GTACTACACCGACATCATCTGCATCGAGAACCTGAACGTGGTGGAAAACCCCATCAAGGCTATCAGCTACACCGCCT



TTTTCAACCGGCTGAAGAAGCTGCCTGCCTACCAAGTGATCAAGAGCCGGAAGGGCAGCTACATGGCCGACGTGGAA



TTCATGGCCATCAGCAGCCACATTCCTCCAAGCTGCGTGATGGAACGCGTGGAAATCGATCACACCCCTCTGGACCTG



ATCCTGCTGGACGATGATCTGCTGGTCCCTCTGGGCAGACCTTGTCTGACCCTGCTGATCGACAGCTACAGCCACTGC



GTCGTGGGCTTCAACCTGAGCTTCAACCAGCCTGGCTACGAGAGCGTGCGGAACGCCCTGCTGAATAGCATCCCTCCT



AAGAACTACGTGAAGGACAAGTACCCCAGCGTGGAACACGAGTGGCCTTGCTATGGAAAGCCCGCCACACTGGTGGT



GGACAACGGCGTGGAATTTTGGAGCAAGAGCCTGGAACAGAGCTGCAGAGAGCTGAACATCAACACCCAGTACAAC



CCCGTGCGCAAGCCTTGGCTGAAGCCCATGGTGGAAAGAATGTTCGGCACCATCAACCGCAAGCTGCTGGAATCTAT



CCCCGGCAAGACCTTCTCCAACCTGCTGGAAAGAGGCGAGTACGACCCTCAGAAAGACGCCGTGATGCGGTTCAGCA



CCTTCCTGGAAATCTTTCACCGGTGGATCATCGACGTGTACCACTACGAGCCCGACAGCAGAAGGCGGTACATCCCTA



TCCAGAGCTGGCAGTACGGCTGCAACAAACTGCCTCCAGCTCCTGTTGTGGGCGACGATCTGGCCAAGCTGGAAGTG



ATCCTGAGCATCAGCCTGCAGTGCACCCACAGAAGAGGCGGCATCCAGAGATTCCACCTGAGATACGACTCCGACGA



GCTGGCCTCCTACCGGATGAACTACCCCGATAAGACCCACGGCAAGAGAAAGGTGCTGGTCAAGCTGAACCCCAGGG



ACATCAGCTACGTGTTCGTGTTCATCAAAGAGGCCGGCAGCTTTATCAGAGTGCCCTGCATCGATCCCGAGGGCTACA



CAAAGGGCCTGAGCCTGCAAGAGCACCAGATCAACATGAAGCTGCACCGGGACTTCATCGACACCCAGATGGATGTG



GTGTCCCTGGCCAAGGCCAGAACCTACATCAACAGCCGGATCCAGAGCGAGCTGAGCGAAGTTCGGCAGACCCTGAA



GAAGAGAAACACCAAGGGCATCAACAAGATCGCCCGGTACAGAGACATCGGCAGCCAGACAACAACCGGCCTGCTG



TCTGGACCTCAGCTGTCCGAGAGCAAGGACGACGTGCCAATCCAGCCTAAGACCACACCTCCTCAGCTGGAAGATGA



CTGGGACAGCTTCACCAGCGGCCTGGAACCTTACTGAT (SEQ ID NO: 370)





tnsC
ATGGAACTGAGCAGCACCGACGCCGACAAGCTGAAGTCCTTCATCGAGTGCTACGTGGAAACCCCTCTGCTGCGGAT



CATCCAGGACGACTTCGACCGGCTGAGATACGACAAGCAGTTTGCCGGCGAGCCCATCTGCATGCTGCTGACAGGCG



ATTCTGGCACCGGCAAGAGCAGCCTGATCCGGCACTACATGGCCCAGTTTCCAGAGCAGCACGGCCACGGATTTGTG



CGGAAACCTCTGCTGGTGTCTCGGATCCCCAGCAAGCCTACACTGGAAAGCACAATGGTGGAACTGCTGAAGGACCT



CGGCCAGTGGGGCAGCGAGTATAGACTGCATAGAAGCAGCGCCGAGAGCCTGACAGAGGCCCTGATCAAGTGTCTG



ACCAGATGCGAGACAGAGCTGATCATCATCGACGAGTTCCAAGAGCTGATTGAGAACAAGACCCGCGAGAAGCGGA



ACCAGATCGCCAACCGGCTGAAGTACATCAGCGAGACAGCCAAGATTCCCATCGTGCTCGTGGGAATGCCTTGGGCC



GCCAAGATTGCCGAAGAACCTCAGTGGGCCAGCAGACTGATGGTGCAGCGGACAATCCCATTCTTCAAGCTGAGCGA



GGACGCCGAGTCCTTCGTCAGATTCGTGATGGGCCTCGCCAGACGGATGCCTTTTGCCACACCTCCTAAGCTGGAAGC



CAAGCACACCATCTTCGCCCTGTTCGCCTTCAGCTATGGCTGCGTGCGGCGGCTGAAACACCTTCTGGATGAGTCTGT



GAAGCAGGCCCTGGCCGCTCACTCTGAAACACTGCTGCACGAGCATATCGCCGTGGCCTTCGGCCTGTTCTACCCCGA



CCAAGAGAACCCATTCCTGCAGAGCATCGATGAGATCAAGGCCTGCGAAGTGACCCAGTACAGCAGATACGAGATC



AACGAGAGCGGCACCGAGGAAGTGCTGAACCCTCTGAAGTTCACCGACAAGATCCCCATCAGCCAGCTGCTGAAGA



AGCGGTGA (SEQ ID NO: 371)





tnsD
ATGCAGCTGCTCGTCAGACCTGCTCCTTTCAGCGACGAGAGCCTGGAAAGCTACCTGCTGAGACTGAGCCAAGAGAA



CGGCTTCGAGAGATACGCCCTGCTGTCTGGCGCCATGAGAGATGCTCTGCTCCAGCAGGATCATCAGGCCGCTGGCG



CTTTTCCTCTGGAACTGGCTCGAGTGAACGTGTTCCACGCCAACAGATCCAGCAGCCTGAGAGTCAGAGCCCTGCACC



TGATTGAGCAGCTGACAGATCTGGCCCCTCACAGCCTGCTGCAGCTGGCCCTTATCAGATCCGCCATGCCTATTGGAG



CCGGCCATGCCTGTGTTCAGAGAGGCGGAGTTGACATCCCTCTGAGACTCGTGCGGACCAGACAGATCCCTGTGTGTC



CAGTGTGTCTGAGCGAGAGCGCCTACATCAGACAGCATTGGCACTACGCCCCTTACGTGGCCTGTCATCTGCACGGAC



ACGAACTGCTGAGCGTGTGTCCTTCTTGTGGCAAGGCCCTGGACTACCAGTGCAACGAGAGCTTCACCCACTGCAGAT



GCGGCTTCGACCTGCGGCACTCTATTACACCACCAGCCAGCAACCAGGCCATCCAGATCTCTGCCCTGATCTGCGGAG



CCAGATGGGAGAGCACAAACCCTCTGCTGATCTGCCCTCATCCTAGCCAGCTGTTCGGCGCCATCTTCTGGTACTGGT



GCAGATACCATGCCGAAGCCGCTGGACAGCCTGCCTCTCATTCTCTGGTCCAGACCATCGACTACTTCGCCGCCTGGC



CTGCCAATTTTCACGCCGAACTGGATCAGTGGGCCCAGAGAGGACTGCTGAGGCAGACCAGACTGCTGAACGAGACA



CCTTTCGGCGAGGTGTTCGGAGCCGTGCTGAGTGATTGCAGACAGCTGCCATTCCAGGACCTGGGCGCCAACTTTATC



CTGAGAGCCCTGAGCGACTACCTGACAGCCCTGGTGGTCAATCACCCCAAGACCAGGCAGCCCAACCTGGGCGATAT



TCTGCTGTCCGCCTCTGATGCTGCCGCTCTGCTGAGCACATCTGTGGAACAGGTGTTCCGGCTGCAGCAAGAGGGCTA



TCTGACCCTGGCCTACAGACTGAGAAGGCACGCTGGCCTGACACCTTACGACCCCATGTTCCACCTGAGACAAGTGA



TCGAGTACCGGCTGGCCCACGGCGCTATGTATCCTCCAGCCTTCTACAGCTTCCTGCCTGCCTGGTAA (SEQ ID NO:



372)





Cas5/
ATGATGCAGCTGCGCGAGTGGTTCAACACCAGCGACAAGGCCGAGAGAGACAAGGCCCTGAGAAGGGCCTTCGTGC


8
CCTTCACACCCGATATCGAAATTGCCGGCGACGAGTGGCTGGCTCTGGTGGTTCTGCTGAATCTGACCCTGAAGAGAG



GCCAGGGCGACGAGCTGACCGATAAGAGACATGCCAAGGCTCTGCTGCTGGACCAGAAACACCTGGAAAAATGCGT



GAAGCAAGTGCGGTGGCTGCACAGCCACAACCTGAAGTACCCCGACAGCAGAGTGTCCCACCAGAGACTCGTGATCG



CCTCTCCACCTCAGATCCCTGGCGTTGTGACATCTGCCGGCCTGCCTATGAGACTCGGCTGGGCCAACAATAGCGCCG



ACATCAATCACGCCAAGCTGTTCTGCAGCAGCTTCCTGTATCACGGCGTGACCACCAATCTGGCCCTGCAGCTGGCTA



CAGATGTGCCTGCTCCTGCCTGGACCACCGCCTTTAGAAAACTGGGCCTCGCCGACTCTGCCATTGCCGCTCTGCAAT



CTCAGCTGGCACAGCTGCTGGCCACATCTACAGTGCCTGCCGAGGTGTCCCCTTACAGCAAGCAAGTCCGGTTCTGGT



ATCAGGGCGACTACTGCGCCATCACACCTGTGGTGTCTCACGGCCTGATGTCCCAGCTGCACCAGCTGATCTACGAGA



AGCGGATCCCTCACCTGATCATCAGCCACGATCACCCTGCCTCTGTGGGCTCTCTTGTGGGAGCTGTTGGCGGAAAGA



TTGCCGTGCTGCACTACCCTCCACCTGTGTCCGTGGAAAAGCGGCGGAATTTCAGCCAGAGCCGGGCCACCAGAATC



AACCAGGGCGATAGCCTGTTCGACCGGACCATCCTGAGGGACCAGATCTTCATTCACGCCCTGGAACACCTGATCGC



CCCTAGCGGACTGACCAGAAGGCAGAGAAAGCAGAGCCACCTGAGCGCCCTGAGATACCTGCGTAGACAACTGGCC



TGTTGGATCGCCCCACTGATCGAGTGGCGGGACGAAGTGGAACAGAATCAGGGCGCACTGCCCAGCATCGACCCTAG



CAGAGTTGAGTGGCAGGTCCTGAGCTGTCCTCAGAGCGAACTGCCTTCTCTGGGAATTGCCCTGGCCGAGTCTTGTCA



CCTGGCACTGCAGTCTCACCCCGCCACAAGAAGGCTGGCCTTCCATCCTAGACTGCTGATGCCCATCAAGACCCAGCT



CAGATGGCTGCTGAACAAGCTGGCCCTGGATGAGTCTGTGCCTCCTCAGACCGCCACCTGTTGTTACCTGCACCTGTC



TGGCCTGCGGGTGTACGATGCTGTGGCTCTGGCCAATCCTTACCTGTGCGGAATCCCTAGCCTGTCTGCCCTGGCTGG



CTTCTGCCACGATTACGAGAGAAGGCTGACCGCCGTGCTGAAGAGATCTGTCAGACTGACTGGCGTGGCCTGGTATC



TGAGAGACTGCCATCTGCAGCCCGCCAAGAATCTGCCTGAGCCTAGCTCTCCTCTGTCCGCTCATGAGGTGTCCGCCA



TCAGAAGGCCAGGCCTGATCGATAGCAAGCACTGCGACCTCGGCATGGATCTGGTTCTGGCTCTGCACGTGGACGCC



GATCATCCAGCCTTTTCTGCCGACGAGCAGAACCTGCTGCAGGCCGCCTTTCCTAGCAGATTTGCTGGCGGATGTCTG



CACCCTCCAAGCCTGTATGAAGGACAGCCCTGGTGCAACATCTACACCAACAGAGGGGCCCTGTTCAGCACCCTGTC



CAGACTGCCTAGAAGCGGCTGTTGGGTGTACCCACACCTGAGCCAAGTGACCGACCTGGAAGATTTCTTCGAGACAT



TCAGCACCGACCGGCGGCTGAGGCCTATCTCTGCCGGATATGTGTTCCTGGAACCTCCACAGCTGAGAGCCGGCAGC



GTGGAAAAACACCACGCCTATGCCGAAAGCGCCCTTGGACTGGCCCTGTGCATCAACCCCGTGGAAATGAGACTGAC



CGGCAACAACCACTTCTTTAAGCACGGCTTCTGGCAGCTGAACGTGTCCAACGGCGCCATGCTGATGACAGGCGTGG



GCAATAGAGAGCCTCCTCACAGGGGCACCATGTGA (SEQ ID NO: 373)





Cas7
ATGGAACTGTGCAGACACCTGAGCTACAGCAGATCTCTGAGCCCTGGCAAGGCCGTGTTCTTCTACACCACACCTGA



GTGCGACTTCGTGCCCCTGAGAGTGGAAGTGGCTAGAGTGCTGGGCCAGAAGTGCGGCTTTAGCGAGGGATTCGACG



CCCACTTCCAGCCTAAGACACTGGAAAGACACGAGCTGGCCTACGGCAACCCTCAGACCATCGAAGTGTGCTACGTG



CCACCTAACGTGCACGAGATCTACTGCCGGTTCTCTCTGAGAGTGAAGGCCAACGCTCTGGGCCCTACCGTGTGTAGC



GATAGCGAAGTGATGCAGACCCTGGTCAACCTGAGCCGGTGCTACCAAGATAGAGGCGGCTTCATTGAGCTGGCCAG



ACGGTACAGCCGGAACCTGATTATGGCCACATGGCTGTGGCGGAACAGACAGAGCCAGGGCACCAGAATCGAGATC



CACACAAGCCAGGGAAGCCGCTACATGATCGACGATGTGCGGCACCTGGACTGGCAAGGACAATGGCCTGCCTCTGC



TCAAGAGCAGTGGCTGCAACTGGCCGACGAAATGGCCACCGCTCTGACCAGACCTGACCTGTTTTGGTTCGCCGATGT



GACCGCCGTGATGAAGACCGCCTTCTGCCAAGAGATCTACCCCAGCCAGGCCTTCACCGAGAGGCCCGATAATCACA



CCGAGCCTAGCAAGAAGCTGGCCACCGTCGAGTGTACAGATGGACAGCTGGCCGCCTGTCTGACAGCCCAAAAACTT



GGAGCCGCTCTGCAGAAAATCGACGATTGGTGGGGCGAAGAGGTGGACGAGCCACTGAGAGTGCACGAGTATGCCG



CCGATCCTAAGCACCAGACCAGCATGAGACACCCTGTGTCCGGCCTGGACTTCTACCATCTGCTGAGCAGAACCGAC



GAGCTGGTGGCCCAGATGGAAAGCTCTCCTGAGAGCAGCGACATCCACCGGGACATCCACTATCTGATGGCCGTGCT



GGTCAAAGGCGGCCTGTTTCAGAAGGGCAGAAGCTGA (SEQ ID NO: 374)





Cas6
ATGAACAACGAGCGGTTCTTCTTCGTCGTGCGCTACCTGCCTAGCAGAGCCGATTCTGCACTGCTGGCCGGCAGATGT



ATCTCTCAGCTGCACGGCTACCTGCTGCGGAATAGCCATGTGCAGATCGGCGTCAGCTTCCCCGATTGGAGCGATACA



CAGCTGGGCAGCTACATCGGCTTTGTGTCCGCCGAGAAGGACCACCTGGACCACTTTAGACAGCGGGCCTACTTCCA



GATCATGCAAGAGGACGGCCTGTTCAGCCTGACCACCACACTGGAAGTGCCTATCGGCTGCGCCGAAGTCCGCTTCG



TCAGAAATCAGGGACTCGCCAAGCTGTTTGCCGGCGAGAGAAGAAGAAGGCTGGCCAGAGCTAAGCGGAGAGCCGA



AGCTCGGGGAGATGTGTTCCTGCCTCAGTCTCCTCCAGAGCACAGAGATGTGCTGCAGTTCCACCGGGTGCTGATGCA



GAGCCAGAGCAACAACCAGGACTTCGTGATGCACATCGAGAAAGAGCCCTACGACAACAGCGACAGCAACACCGGC



TTCAACAACTACGGCCTGGCCTGCAGAGTGCAGCACAGAGGATCTGTGCCTGAGCTGGCCTCTATCGTGGCCACACT



GTTCTGA (SEQ ID NO: 375)





DR
GTGACCTGCCGCATAGGCAGCCAAGAAA (SEQ ID NO: 376)





RE
TGTCGTTTAAACCATAAGCTGACATATCTTAAGCATAAGATGACATAATCTTGCATCATAAGCTGACATAGCCTAAAC



CTGTAGTAATGTAACAACAGGTTGGTGGTCTCATGTACCGTCGGCATCTTAAGCACTCTCGCGTCAAAAACCTCTTCA



AGTTCGTCAGCGCCAAGATGAACACTGTGTTCACAGTGGAATCG (SEQ ID NO: 377)





LE
CTATCCAGCCTTGGAGTTGATCAACAACGCCTCAAGCACGGTGAATGTGAAACAGGTAAGTGCACGTGAATCTTTAG



ATTTGGATTGTTTTCTGTGTAGTAAAATTACTAACCAAGATGATGCAGTGGGGAGACGAGTGTTTCTCTATGTCAGCT



TATGGTTCATTTTCATGTCAACTTATGGGTGAAAATCGTCTTGTAACATATTGATTTTATTGTGGTCGTTATGTCAGCT



TATGGTTATAACGACA (SEQ ID NO: 378)









212597|1|GCA_004022545.1_ASM402254v1_genomic|CP034971.1|1985753|Vib rio (ID: 132)










TABLE 42





Elements
Sequences







tnsA
ATGTCTGCCCTGCCTAGCCTGTCTACCGCCACACTGATTGCCCTGGAAAGCGCCTTCGATACCCCTGCCAGAAGCCTG



ACAAAGAGCCGGGGCAAGAACATCCACAGATACGTGTCCGCCAAGATGGGCAAGCGCGTGACCGTGGAAAGCTTCC



TGGAATGCGCCGCCTGCTACCACTTCGACTTCGAGCCTTCTATCGTGCGGTTCTGCAGCCAGCCTATCCGGCTGAGCT



ACTGCCTGAATGGCAAGACCCATACCTACGTGCCCGACTTCCTGGTGCAGTTCGACACCGGCGACTACAAGCTGTAC



GAAGTGAAGTCCGACATGGAAAGCAGCAAAGAGGAATTCCACTGCGAGTGGGAAGCCAAGGTGCAGGGCGCCTTTG



GAATCGGCCTGGATCTGGAACTGGTCACCGAGGAAGAGATCCTGAACGAAGTGATCTTCAGCAACCTGAAGCTGCTG



CACCGCTACGCCAGCAGAGATCACCTGAACGACTTCCACCAGACACTGCTGGCCACTCTGAAGCCCAATGGCACCCA



GACAGCCAGATCTCTGGGACACCATCTGGGCCTGAGCGGCAGAAAGATCCTGCCAATCCTGTGCGACCTGCTGAGCA



GAAACCTGCTGCAGACCAACCTGGAAACCCCTCTGAGCCTGGAATCCGAGTTCGAGCTTGTGTGCTACGACTGA (SEQ



ID NO: 379)





tnsB
ATGACCAAGAAGTCCTTCAGCAGCTTCCACAGAAAGAGCGTGCTGCACCAAGAGAAGCTGGAACAGAACGACAGAG



TGGTGGACATCAACGACGTGGCCGAGGCCACCTACAAGGACATCAGCGCCTTTCCAGAGAAGATCGTGGTGGAAATC



ACCTTCCGGCTGAGCATCCTGAGACTGCTGGGCAGAAAGTGCGAGAAGATTGTGCCCAAGAGCATCGAGCCCCACAG



AGTGGATCTGCAGAGAAGCCACGACCGGAAGATCCCTAGCGCCATCACCATCTACAGGTGGTGGCTGACCTTCCGCG



AGAGCGACTACAACCCTGTGTCTCTGGCCCCTGACTTCAAGAGCAGAGGCAACAGAGATCCCAAGGTGGCCCCTATC



GTGGACGCCATTATGAAGCAGGCCGTGGAAAGCGTGATCAGCGGCAGAAAGATCAACATCAACAGCGCCTATCGGC



GCGTGAAGCGGAAAGTGCGGCAGTACAATCTGACCCACAGCACCAAGTACAAGTACCCCGAGTACGAGAGCGTGCG



GATCAGAGTGAAGAAGAAAACCCCTTTCGAGATCCTGGCCGCCAAGAAAGGCGAGAGAGTGGCCAAGCGCGAGTTC



AGACGGATGGGAAGAAAGATCCTGACCAGCAGCGTGCTGGAAAGAGTGGAAATCGACCACACAGTGCTGGACCTGT



TCGCCGTGCACGAGGAACACAGAATCCCTCTGGGTAGACCCTGGCTGACCCAGCTGGTGGATTGCTACTCTAAGGCC



GTGATCGGCTTCTACCTGGGCTTCGAGCCTCCTAGCTACATGAGCGTTAGCCTGGCTCTGAAGAACGCCATCCAGCGG



AAGGATACCCTGCTGAGCAGCTACCCCAGCATCGAGAATGAGTGGCTGTGCTACGGCATCCCCGATCTGCTCGTGAC



CGACAACGGCAAAGAGTTCCTGAGCAAGGCCTTCGACAAGGCCTGCGAGAGCCTGCTGATCAACGTGCACCAGAAC



AAGGTGGAAACCCCTGACAACAAGCCCCACGTGGAACGGAACTACGGCACCATCAATACCAGCCTGCTGGACGACCT



GCCTGGCAAAGCCTTTAGCCAGTACCTGCAGCGCGAGGGCTACGATTCCGTGTCTGAAGCCACACTGACCCTGGACG



AGATCAAAGAGATCTACCTGATCTGGCTGGTCGACATCTACCACCGGAAGCCTAACCAGCGGGGCACCAACTGTCCT



AATGTGGCTTGGAGACAGGGCTGCCAGAACTGGGAGCCCGAGGAATTTCTGGGCAGCAAGGACGAGCTGGACTTCA



AGTTCGCCATCGAGGACCACAAGCAGCTGACCAAGGCCGGCATCACAGTGTCTAAGGGCCTGACCTACAGCAGCGAA



AGACTGGCCGGCTACATGGGCAAAAAGGGCAACCACAAGGTGCAGTTCAAGTACAACCCCGAGTGCATGGCCGTGA



TTTGGGTGCTCGACGAGGACGTGAACGAGTACTTCACCGTGAATGCCATCGACTACGAGTCCGCCAGACGAGTGTCT



CTGTGGCAGCACAAGTATAACATGAAGTACCAGGCCGAGCTGAACAGCGCCGAGTATGACGAGGACAAAGAAATCG



ACGCCGAGATCAAGATCGAGGAAATCGCCGACCGGTCCATCCTGGAAACAAAGAAGATCAGAAGCCGGCGGAGAGG



CGCCAGACACCAAGAAAATTCTGCCAGAGCCAAGTCCATCAGCAACACCAAGCTGGTGCCTCCACAGAAGGACGAG



GAAGAGATCGTCATCGTCGACAACGAGGACTGGGACATCGATTACGTGTGA (SEQ ID NO: 380)





tnsC
ATGGACGAGGACAGAGAGACACGGATCAGCAAGGCCAAGCGGGCCTTTGTGTCTACCCCTAGCGTGACCAAGATCCT



GGGCTACATGGACCGGTGCAGAGAGCTGAGCGATTTCGAGAGCGAGCCTACCTGCATGATGGTGTTTGGAGCCTCTG



GCGTGGGCAAGACCACCATCATCAAGAAGTACCTGAGCCAGAACAAGCGGGACAGCGAAGCTAGAGGCGACGTGGT



GCCTGTGCTGCACATTGAGCTGCCCGACAATGCCAAGCCTGTGGATGCCGCTAGAGAACTGCTGCTGGAAATGCGGG



ATCCCCTGGCTCTGTACGAGACAGACCTGGCCAGACTGACCAAGCGGCTGACCGATCTGATTCCTGTGACCGGCGTG



AAGCTGATCATCATCGACGAGTTCCAGCACCTGGTGGAAGAACGGTCCAACCGGGTGCTGACCCAAGTCGGCAATTG



GCTGAAGATGATCCTGAACCGGACCAAGTGTCCCATCGTGCTGTTCGGCATGCCCTACAGCAAGGTGGTGCTGAAGG



CCAACTCTCAGCTGCACGGCAGATTCAGCATCCAGTTCGAGCTGCGGCCCTTCAACTACCAGAATGGCGAGGGCGTG



TTCAAGACCTTCCTGGAACACCTGGACAAGGCCCTGCCTTTCGAGAAAGAAGTCGGCCTGGTTGAGCAGGGCCTGCA



GAAGAAGCTGTACGCCTTCAGCCAGGGCAACATGCGGAGCCTGAGAAACCTGATCTACCAGGCCAGCGTGGAAGCC



ATCGACAAGCAGCACGAGACAATCACCGAGCAGGACCTGATCTTCGCCAGCAAGCTGACCAGCGGCGACAAGAGCG



ACAGATGGGAGAACCCCTTTGAGAAGGGCGTGAAAGTGACCGAGGGCATGCTGAGAAGCCCTCCAAAGGATATCGG



CTGGGAAGATTACTACCACCACGTGACCAGCCTGAACGCCAAGAGAAACGGCGGCAACATGTTCGAGTGA (SEQ ID



NO: 381)





tnsD
ATGCTGCTGCAGAGGCCTAAGCCTCACAGCAACGAGAGCCTGGAAAGCTTCTTCATCAGAGTGGCCAACAAGAACGG



CTACGAGGACGTGAACAGATTCCTGATGGCCACCAAGAGATACCTGCAGGACATCGACTTCAGCGGCTTCCAGACAT



TCCCCACCAACATCTGCAAGATCAACCCCGCCAGCGCCAAGTCTAGCAGCTCTGCCAGAATTGCCAGCCTGCTGAAA



CTGGCCCAGCTGACCTTCAACGAGCCTCCTGATCTGCTGGGCCTCGCCATCAACAGGACCAACCTGAAGTACAGCCCT



AGCACCAGCGCCGTGATCAGAGGCAGCGAAGTGTTCCCTAGAAGCCTGCTGCGGACCAAGTCTATCCCTTGCTGCCC



TCTGTGCCTGCAGCAGAACGATTACGCCAGCTACCTGTGGCACTTCGAGGGCTACGATCACTGCCACATCCACGATGC



CCCTCTGCTGAACAGCTGTAGATGTGGCGCCGAGTACGACTACAGAGTGTCTGGCCTGTCTGGCATGTGCGGCGAGT



GCAAGAAAACCATCAGCACCAAGAGCAGCGAGAACAGCCACAAGGCCACCAGCACAGTGTCTAGCTGGCTGGCCGG



CAACGAGTCCAAGGATCTGCCTGATGTGCCCAAGAGCTACAGATGGGGCCTGATCCATTGGTGGGTGCACATCAGCA



AGAACGAGTTCGACCACGTGTCCTTCATCCAGTTCTTTAGCAAGTGGCCCTCCAGCTTCCACAGCATGATCGACAACG



AGATCGAGTTCAACCTGGAACACGCCATCGTGGGCAGAAGAGAGCTGCGGATTAAGGACCTGCTGGGCAGAATCTTC



TTCAGCAGCGTGCGGCTGCCCGAGAGAAATCTGCAGCACAACATCGTGCTGGGCGAGCTGCTGAGACACACCGAAAT



GCACCTGTGGGACAACAACGGCCTGATCGCCAACCTGAGAATGAACGCCCTGGAAACCACCGTGTTTCTGAACTGCA



GCAAGGACGAGCTGGCCTCCATGGTGGAACAGCGGATCCTGAAGCCTAACAGAAAGACCAAGCCAAACATGCCCCT



GGCCGTGAACGACTACCTGTTCTACTTCGGCGACATCTTCTGCCTGTGGCTGGCTGAGTTCCAGACCGACGAGTTCAA



TCGGAGCTTCTACGTGTCCCGGTGGTGA (SEQ ID NO: 382)





Cas5/
ATGGAAAGCCTGAAAGAGCTGCTGCAGAGCAGACCCGACGATCTGTCCGTGGATCTGAAGCGGGCCTTCAGACCTCT


8
GACACCCCACATCAACATCGACGGCAAAGAGCTGGACGCCCTGACCGTGCTGGTCAACCTGACAGATAAGACCGCCG



ACCAGAAGGACCTGCTGGACAAAGTGAAGTGCAAGCAGAAGCTGCGGGACGAGAAGTGGTGGGCCAGATGCCTGAA



AACCGTGGAATACCGGCAGAGCCACAACCTGAAGTTCCCCGACATTAGAAGCGAGGGCGTGATCAGGGCTACCCCTC



TGGGACAGCTGCCTGATTTTCTGCTGAGCAGCAGCAAGCTGGAACCCCACAATTGGGCCTACAGCCACGATAGCAGC



GACGTGAACAAGAGCGCCCTGCTGACCAACGAGTTCAGATGGAACGGCGTGATCTCCTGCCTGGGCGACCTGCTGAG



AGATGTGGAACATCCCCTGTGGCAGAAGTTCAACACCCTGGGCTGCTACCAGAAAACCCGGAAGGCCATTGCCAAGA



AGCTGGCCCAGATCAGCCAGACCACCATCAATGTGTCTCTGGCCCCTAACTACCTGACACAGCTGAGCCTGCCTGACA



ACGACAGCAGCTACATCTCTCTGAGCCCTGTGGCCAGCCAGAGCATGCAGTCCCACTGTTATCAGGCCCTGGAAAAC



GAGTACAGATACACAGCCCTGACCAGATACAGCCGGTCCACCAATATGGGCGTGCTGCCTATGACATGTGGCGGAGC



CCTGAAGATGCTGAAGGCCGTGCCTAACTTCAGCCTGGCTCCTCACTACCAGATCAATATCGGCAAGTTCTGGCTGAC



CTCCAGCCACATCCAGAGCCTGAAGCAGTACCAGCGGCACACCAGATACCTGATGCCTGAGAACAAGCGGATCGCCT



ACAGACGGACCGTGGAAAATGAGATCCACGAGATGGTCAAGGCCTGGCTGGCTACCCAGGACAACACCATGGATGT



GAATACCCTGGTGCAGCACCTGAACGACGACCTGAGCAGATTCAAGTCCGCCAAGTGCTTCGCCTACGAGCCCAACA



TCACCAAGCTGCTGCTGGGCCTGATCAAGAGAGAGCTGACCGAGCCTACCACCGTGTCCACCAACATCTGCAGAAGC



GAAGAGAAGAACAGCTTCTTCGCTATCCCGAACATCAGAGTGTGCGGCGCCTCTGCTCTGTCTAGCCCTATTACAGTG



GGCCTGCCTAGCCTGACAGCCTTCCTGGGCTTTACCCACGCCTTCGAGCGGAACCTGAATGAGAGCTTCCCCACACTG



GCCATCGACAGCTTCGCCATCTGTATCCACCAGCTGCACATCGAGAAGCGGGGCCTGACCAAAGAATACGTGCAGAA



GGCCAACCACACAATCAGCCCACCAGCCACACACGACGACTGGCAGTGCGATCTGGTGTTCAGCCTCGTGATCAAGT



TCAATCGGAGCCTGAACGTGGACGAGAACACCATCGTTCGGGCCCTGCCTAAGAGATTCGCCAGAGGCTCTGCCAAG



ATCGCCATTGCCGACTTCAAGTACATCCGGTCCTTCAGCACACTGGAAAAGACGATCCAGAGCTTTCCCCAGAAAGC



CGGCAAGTGGCTGAGCATGCACACCGAGCCAATCAAGAACATGAGCGACATCCTGAGCGAAGTGAAAGAGAACCGG



AAGCTGACCCCTAGCTGCGTGGGCTACCACTTCCTGGAAGAACCCACCGACAAGCCCAACAGCCTGAGAGGCTACAA



GCACGCCTTCTCCGAGTGCATCATCGGCCTGATCGAGCCCATCACCTTCGACCAGAACACCGACATCAACACCATCCT



GTGGCACCACAAGTGTTACCAGAACTACCTGTCCGTGCAGCCCAGAAGCACCTACCACGGCACCACAGATTGA (SEQ



ID NO: 383)





Cas7
ATGGAACTGCCCACCAACCTGGCCTACGAGAGATCCATCGATCCCAGCGACGTGTGCTTCCTGGTCGTGTGGCCTGAC



GGCAGAAAGACCCCTCTGACCTACACCAGCAGAACCGTGCTGGGCCAGATGGAAACAGCCGCTCTGGCCTATGATCC



CTCCGGCAAGATCAAAGAGAGCGCCACCGCCGAGATTCTGGCTCAGGGAAATCTGCACCAGGTGGACTTTTGTCACG



CCCCTTTTGGCGCCAGCCACATCGAGTGCTACTTCAGCGTGTCCTTCAGCAGCGAGCTGCGGAAGCCCTACAAGTGCA



ATAGCAGCACCGTGAAGCACACCCTGATGCAGCTGATCAAGGCCTATGAGGAAAACATCGGCTGGAACGAGCTGGT



GTCCAGATACCTGGTCAACATCTGCAACGGCAGCTGGCTGTGGAAGAACACCAAGAAGGCCTACTGCTGGGACATCG



AGCTGACCCCTTGGCCTTGGGCTGGCGGAGCTGTGAAGTTCCAGGACATCAGAGCCAACTACCTGGAAAGAAGCGAC



TTCGAGAACCACAAGGACTGGGAAGCTATCGCCCAGATGACCCGGAATGCCTTCAGCCACTCTAACGGCCTGGCCAT



CTTCGAAGTGAAGGCCACACTGCGGCTGCCTACCAACAAGCAGATCTTCCCCAGCCAAGCCTTCACCGAGAACGAGA



GCAACAACACCAACAAGAGCAAGAAGAAGTCCAAAGGCCGGATCTTCCAGAGCACCACCGTGGATGGCGAGAGATC



TCCTATCCTGGGCATCTACAAGACAGGCGCCGCTATCGCCACCATCGACGACTGGTATCCTGATGCCACAGAGGCCCT



GAGAGTGGGCAGATTCGGAGTGCACAAAGAAGATGTGACCTGCTACAGACACCCCAGCACACAGAAGGATTTCTTCA



GCATCCTGAAGCAGACCGAGAGCTACATCGAAGCCCTGACCAGCAGCGACAAGCCCAATCAAGAGACAATCAACGA



CCTGCACTTCCTGGTGGCCAACATCATCAAAGGCGGCATGTTCCAGCACAAGGGCGACTGA (SEQ ID NO: 384)





Cas6
ATGAAGTGGTACTACAAGACCGTGACCTTCCTGCCTGCCAGATGCAACAATGAGAGCCTGGCCGCCAAGTGCCTGAG



AATCCTGCACGGCTTCAACTACGAGTACGAGACACGGAACATCGGCGTGTCCTTTCCACTTTGGAGCGACGACACCA



TCGGCAACAAGATCAGCTTCGTGTCCACAAACAAGATTGAGCTGGACCTGCTGCTGAAGCAGCACTACTTCACCCAG



ATGAAGGACCTGCACTACTTTGACATCAGCAACACCAAGGTGGTGCCCGACGGCTGCGAGTACGTGTCCTTCAAGAG



ATGCCAGAGCATCGACAAGGCCACACCAGCCGGACAGGCCAGAAAGGCCAAGCGGCTGAAAAAGCGGGCCGAAGA



GAGAGGCGAGGAATTCGACCTGAGCAGCTTCAAGCAGCACGAGGTGGTGGCCCTGCACCACTATCATAGCCTGGAAG



AGGACAGCAAGAGCAGAGGCGGCAGCTTCCGGCTGAACATCAGAATCTTCAAAGAGGCCCGGCTGGACGGCGACGC



CCTGTTTTCTTCTTATGGCCTGGCCAACACCGAGAACACCAGCCAGCCTGTGCCTATCATCTGA (SEQ ID NO: 385)





DR
GTGTACTGCCGAATAGGTAGCTGATTAG (SEQ ID NO: 386)





RE
TGTTGATACAACCATAAATTGATATTTACAATCATATATTGATATTTGGTACAACCATAATTTGATATTGCCTTTTCAT



GGTCTAAACTTATGTAAGTTTACGACAAAATCGTGAAGAGGCAATATTATGTCTGCACTACCCTCCCTTTCTACAGCC



ACCCTAATAGCGCTTGAAAGTGCGTTTGATACTCCTGCCCGAA (SEQ ID NO: 387)





LE
GTGAACGTGACTGATACAAGGTTATCTGGACTGTAATGATTAGATGTCTTCTAAGCTTGAGGTGGTTCTTTTTATGAA



TCTTACTAGCTAGCTGAAAGTAACTTTCTTACCGCTGTAGTTTTGCCGAAATTCTCGTTTCACAAAAATATCAACTTAT



GGTTGTTTTATGCGATATCAAGATATGATTGTTTTTCGGTTAAGTGGCTGATTTTAAGTGATTCGAGATTATCACTTTA



TGGTTGTTTCAACA (SEQ ID NO: 388)









255403|0|GCA_004358445.1_ASM435844v1_genomic|CP037951.1|4222191|Par ashewanella (ID: 133)










TABLE 43





Elements
Sequences







tnsA
ATGGCCAAGAAGCAGAAAAGACGGGACGTGCGGAAGCTGATGAGCAAGAGCGTGAACGTGTTCCACGGCAGAAAG



AGCGAGGACTACCCCACCTACACAGAGAGCCCTCTGGAAGCCGATCTGTGCTACCACCTGGAATTCGACAAGAACGT



GGTGTCCTACCAGGCTCAGCCCTTTCCTATCACCTACTTTTTCGACGGCAAGCTGCGGAGCTACACCCCTGACTTCAA



AGTGACCTACCAGAACGGCAGCGTGGTGTACATCGAAGTGAAGTACGAGGCCGACAAGACCCGGATCGACAACTTC



GAGCAGTGGATCGAGGCCATCAACCAGAGCCTGATCAGCCAGGGCAGCAGAGTGATCGTGATCACCGAGCTGTTCAT



CCGGAAGCAGCCCACCTACGAGAACCTGGTCAACGTGTACAGCGCCACCAGACTGAAGCTGGACAAGGCCTTCCTGG



TCAAGATCATCACCGCCTTCGAGAGCAAGAAGAACCTGACAATCGCCGAGCTGATCACCCAGGACAAGAGAGAGTA



CGAGCTGGAACAGATCCACCGGCTGATCTTCGAGAGAAAGCTGATCGCCCCTATCAACATCGAGATCATCAGCACCA



GCAGCGTGATCCAGCACAGCGGCGAGAGCTACGAGTGCTACATCTGA (SEQ ID NO: 389)





tnsB
ATGAGCGCCACCTACAACAACGAGGACTTCCTGCTGATCACCAACGACGACATCAGCCGGCAGTTCCAGATCCTGAG



CTGCAATGCCAGAGCTGTGCGGCTGCTGGATATCGTGACAGGCGTGGAAAGCGAGCGGAAAGTGACCGAGCTGGAC



GAGCTGATCGTGTCTGGAAATGCCGCCATCCAGAAGAAGGACACCCAGGCCAGAAAGCGGCTGAACCCCGAGAGCA



GAGATTTCGGCAGCTACCCCGAGAAGTCCAAGTCTCAGGCCCGGGACAGACTGAAGATCGTGATGGGAGTGATCGAG



GCCAAGCCTAAGAGCTTCAGCGCCAAGAGACTGGAACCCATCATCAGCAAGCTGTATAGCGAGTACACCTTCGAGAC



ACTGAAGCGGAAGCCCAGCAGCAGATCCGTGATCCGGTGGATCCAGAGATTCAGCAGCAGCGGCCACAACATCAGA



AGCCTGCTGCCTTTCGACGAGATGAAGGGCAACCGCGAGAACAAGGTGGACCCCAGAATCGAGCCTTACGTGGAAG



CCGCCATCAAGCACTTCAAGAGCCCTGAGTGCCCCTCTATCGCCAAGAGCTACGATGAGCTGAAGAAACTGGTGTAC



AGCAAGAACGCCGAGATCGTGGACGAGGCCAAAAAGATGAAGCCCATGCACTACAGCGCCTTCGTGAAGCGGCTGG



AAAAAGAGGCCCCTAAAGAGCTGACCAAGGCCAGATTCGGCAAAGAGGCCGCCAGAAAACTGTTCCGGGAAGCCAA



ACAGCCCCAAGAGATCAGCCTGATCCTGCAGCGCGTGGAAGTGGACCACACCAAGCTGGACCTGTTCATCGTGGATG



AGAAGAACTTCCTGCCTCTGGGCAGACCCTGGGTCACAGCCCTGATCGACTACAAGAGCAAGAGCATCCTGGGCTTT



CACATCGGCTTCGAGCCTCCAAGCTACCTGTCTATCGCTAGCGCCCTGAGACACGCCATCCTGCCTAAGTCCTACGTG



AAAGAAAGATACCCCGAAGTGAACTGCGACTGGAATTGCTACGGCATCCCCAAGTCTATCGCCGTGGACAGAGGCAA



GGACTTCGAGTCCAAGGCCTTCGAGGACGCCTGCATGGATCTGTTTATCCGGATCCACAGAAACCCCGGCAGACACG



CCTGGTACAAGGGCAGCATCGAGAGCTACTTCAACACCCTGAACAAGAGGCTGCTGAACGACCTGAAAGGCAAGGT



GTTCCCCAACATCGGCGAGAGCAACAACTACAACCCTCAGAAAAACGCCGTGATCAGCTTCGAGGTGTTCATGCGGG



TGTTCCACATCTGGGTCATCGACATCTACCAGCAGAGCAAGGTGTCCAAGGGCACAATCATCCCCAGAGTGTCCTGG



GAAGAGGACCTGGACGTTGTGACAAGAGGCGCCATCAACAGAGATGCCCTGGACATCATCCTGTGCGAGCACAAGA



CCCGGATGAACAGCGAGAAGGGCATCGTGCTGAACCACATCTTCTACGACAACGAGCAGCTGTACAAGCTGAGGGCC



CTGACCGGCATCAGAAAGGTGCACATCAAGTTCACCCGCGAGAATCTGGGCTTCGTGTGGGTGCAAGACGACCAGAA



CAATCAAGAGAACGTGTTCTTCAAGGTGCCGGCCATCAACCAGAAGTACGCCAGCGGACTGAGACTGCACCAGCACG



AAGTGATCAAGAACTTCTGCGACAAGATGCTGGACCTCGAGCTGAACGAGGAAAATCTGGCCCTGGCCAAGATCAAG



ATGGAAAACCTGATCAGCGACTGGGTCGACACCGTGAACGCCAAGAAGGTGTCCTCTCTGCAGAAGGCCGCTCGGTA



TTACGGCGTGGGACAGCAGAGTGATCAGACCGTGGTGTCCACCGTGACCAAGGACACCATCGAGAACCAGCTGATCT



CCAGCAGCACCGCCACCGAGGAAAGACTGAAAAAGGGCGACGAGAACGAGAGCGGCTACGAGTTCTACGACGGCAA



GAACAATCTGCTGCCCGACGAGCTGGAATTCTGA (SEQ ID NO: 390)





tnsC
ATGAGCAACGAGAGCGAGCTGTTCACCGAGCACCAGAAAAAGATCGTGAAGCAGATCAAGAACATCTTCGTGGCCA



CCGACACACTGCAGCTGATCCTGGACGAGATGAAGGAAATCAGAGAGCTGAGCAAGATCGACGAGTACGAGAACCT



GCCTGAGTGCATCTTCATCGGCGGCGAAACAGGCACAGGCAAGAGCCACTTCATCAAGCAGTACCAGAGAGAGTAC



GACCGCTACGACCTGATCTCTCACCTGGGCGAGAGAACCATCGTGCCCGTGCTGTACTGCGAGCTGCCTAAGGCCAC



ACATCCCAAGCCTGTGGTGTCCGAGCTGCTGGATGTTCTGGGCGATCCTCTGAAGGGACTGAAAGGGGATGTGCGGC



AGCTGACCAGCAGACTGGTGCATCTGCTGAAAGAGAGCAAGACAGAGCTGCTGATCATCGACGAGCTGCAGCACGC



CATCGAGAAGGCCAGCAATACCGTGATCCAGGACATCGGCGAGTGGTTCAAGATCCTGATCAACAAGTCTAAGATCC



CGATCGCCTTCTTCGGCGAGCCTTGGGCTACAGCCGTGTTCGATGTGAACCCACAGCTGAGCAGACGGGTGTCCAAG



CGGGATTTCGTGATCCCCAACTACACAGCCCTGACCTTCGACAAGTTCCAGATGTTCATCGAGAACCTCCAGAAGAA



GCTGCCCATCAAGCCCGCTCAGGACCTGTTCGATGACGAGATGGCCTTCAAGCTGTTCGCCGCCAGCAGCGGCAATCT



GAGCAATCTGGTCAAGGGCATCATCATGCCCGCCAGCATCAGCGCCCTTAAAGAAGGCGCCGATTGCTTCACCGAGG



AACACATGAAGCTGGCCTTTAAGCAGAGAAAGAGCCTGAGCCAGAAAGCCAACTTCGTGATCAAGAATCCCTTCAAG



AAGAAGATTGACGACATCGAAGGCTGGCAGCAGCTGACAAGCTCCCACTGGGACAACACCGCCAATACCAAGGCCG



AGAGAATCATCCACGCCACCTACAGCAGGCTGAAGTTCAAGGACATCCCCGCCAACCAGATCCTGAGCAAGCGGTAA



(SEQ ID NO: 391)





tnsD
ATGACCTTCCTGATCCGGAACCGGGTGTTCAAGGACGAGACACTGGAAAGCTACTTCATCCGGCTGGCCCACAGCAA



CGGCTTCGAGAAGATCAACCTGTTCCTGAGCAGCCTGAACGCCTTCTTCATCGAGTACGACATCAAGCTGAAGGGCA



TCCTGCCTACCGCTCTGTCCAGACTGAACCTGTACAAGGCCCACAACAGCAGCGCCTATAGAGTGCGGGCCATTAAG



CTGCTGGAAGAGTTCTGCGACCTGCAGCCTAGCAGCCTGCTGAGAGTGTCCGTGCTGAGGACCAACAAGCACTTCGG



CAGCTATGCCGCACTGGCCAGATCCAACGTGCTGTTCCCCAACATCATGCTGCGCGAGAAAGTGATCCCTGTGTGCCC



CGAGTGCCTGCAAGAGAAGTCCTACATCCGGTTCATCTGGCACCTGAAGCCTATCCAGCACTGCCCCAAGCACCACG



TGAAGCTGATCTTCAACTGCCCTGAGTGCGGCAACGATATCAACTACATCCAGAACGAGAACGTCGAGCTGTGCAGC



TGCGGCTTCGACTTCAGACAGATCAAGCCTCCTAACAAGATCGAAGAGAGCATGAGCGCCAGCCTGTTCGAGAGCCC



TGAGAATGCCGAACACCTGAGCCTGGAATTCGGCAAGTACCTGTGGTTCAGCAAGCGGAGCGGCGTGGAACTGGACG



ATGAGTGCTTCCTGCTGAAGTTCAACCGGTACTTCAGCAACTGGCCCGACAACTACCTGAGCTACCTGAAAACCCAA



GAGAGCAATGCCATCGAGAAGCAGACCAGCCGGTTCAACCAGATCAGCGTGAACGACATCTGGCGGGACCAGCTGC



GGAATGTGAAGCTGTCCAGCACCGACAAAGTGAACAACCTGGTCCTGGAACAGCTGACCAATTACTTCATCGACCTC



GTGCGGAGATACCCCAAGTGCGAGCATGCCAACGTGGCCGACACACTGATCAACCAGGTGGACTCTGCCCTGCTGCT



GAGAACCTCTGTGGAACAGGTGTTCCGCCTGCTCGAGGACGGCTACCTGAGAGTGAAGTTTGGCGTGCCAACCGAGG



CCATCTACAAGCCTCACATCCCCATCTTCTACCTGCGGGAAGTGATTGAGCTGGTGCAGGCCCAAGGCGCCAATACCA



CCATGAGCAACCACATCATCAGCGCCTGGTGA (SEQ ID NO: 392)





Cas5/
ATGAACCTGAAAGAGCTGCTGAACATCGAGACAGTGTCCCTGCGGAACAGCAAGATCCGGGACAGACTGAAGCCCA


8
GCAATCCTCCTGTGGATGCCTCTGGCTATGAGGCCCAGATGTTCCTGATCCTGATCAACCTGGGCTACAGCAAGAACG



AGCACATCGACCTGCTGAACCTGCACAGCGCCAAGCAGTTTCTGAACGACAAGAAATACTTCGGCGTGACCCTGAGC



GAGAGCGCCTGGATCCACACACACAACAGCAAGTACCCCGACATCCGGGTGTCCGACCAGGCCATTAGAGCCAAGGT



GCTGAGCAAGGGCATCAACGGCGTGTGCAGCCAGCACTGTAGCCACAGCATCAGCTACAGCTACTCCCACAACGGCG



GCAGAGTGACCAGAAGCTTCCCACTGATCACCGAGTTCTGCTGGAACGGCAAAGTGACCTGTCTGGCCGAGCTGATC



GCCAACTGTGAAGCTATCTGGATCGAGCAGTTCCTGGACCTGGGCTTTAGCCTGCAGTATATCGCCATCGTGGTCAAG



ATCCTGAAGTCCAGCCTGGCCACATACAGCCCCAACAAGGTGCACAACACCATCCAGCTGCGGTTCCCTTACAAGGA



CGACTACATTGCCATCACACCCGTGGTGTCCCACAGAGTGCTGAGCGAACTGCAGAAAGCCTGCGCCAACGACAGCC



TGAGATACAGAAGCCTGCTGTACCCTCAGAAGGGCTACACCAATACCGGCAGCCTGCTGACAGGACTCGGCGGCAGG



ATCAATGTGCTGAGCTACTACAGCAACACCATGAAGTACCACCAAGAACTCGAGAAATACGTGAACCAGCTGACCGA



CGAGAGCCTGTTCTACAACAAGGCCCTGAGCTTCACCCGGTTCAAGAAGGCCCTGTACGAGATCACCTTCAGCGTGC



GGTATCTGACCCTGCGGGCCAAAAGACTGGCCAGAATCGACGCCATCAAAGTGATTCGGAGAGTGATCTACCTGTGG



CTGTTCAGAATCCTGCGGTACAAGAAGTACGCCAACCTGGACGAGGAAAAGCTGAGAGAGGGCAGCCTGATCAAAG



AGCTGGTCGAGTACGGCAACGCCGAGGCTCCATCTCTGGCCGTGAAGCTGAACGCCAAGCTGAATCTGCAGCTGTCC



GAGAACGACGCCACTAAGAAGTTCGCCTACCATCCTAAGCTGCTCGAACTGCTGAAGCGGCAGATCAAATACGTGCT



GCACCACAGGGACGCCCACGACGAACATCTGCAGAGCAACTTCACCTACCTGCACGTGAAGAACATCACCGCCGAGG



ACATCAACACCCTGAGCAACCTGTACCTGTGGGGCATGCCTAGCATCATTGCCCTGACCGGCTTCAGCCACGAGTTTG



AACTCAACCTGCGGAGAGCCGGCGTGTTCCTGAAAGTGATTGGCGTGGCCATCTTCGTGCACAGCTACCAAGTGAAG



TGCAACAGCAGCCTGCCTGAGTGCGACCGGATCAATGGAAAGGCCGACCAGTACATCCCCGCCAGACCTGCTCTGGT



GGATCTGCCTAGAAGCCGGATGAAGTTCGACCTGGTGTTCAGACTGGCCCTGCAGGATACCCTGGAAGCCAACATCA



GCCTGGAAGTGCTGGCCAACGCCTTTCCTGACAGAATTATGGGCGGCGAGATCTTCCTGAGCGATAAGAAGATCAAG



AAGCAGTTCTACCTGACCAGCAACATCCAAGAGCTGTTCTCATTCCTGCGGTTCATCAGCCACAAAGGCTGCTGGCTG



TGCCCCACCGATCACAGACTGAGAGGCATCAGCGAGCTGAGTTCCCTGCTGAAGAGAGATGAGGAACTGAAGCCTGT



GCACATCGGCTACGCCTATCTGGAACAGCCCAAGTCTAGAGAGGGCGCCATCAGCAGCAGACACTGCTTTGGCGAGA



GCATCCTGGGAATCGCCAAATGCGTGCACCCCATCGATGCCAACAACAAGGGACTGAAGTTCTTCTTCGACAACGCC



TTCTGGGCCCCTAAGATCAGCGAGTTCAGCACCCTGATGACCAAGTGA (SEQ ID NO: 393)





Cas7
ATGGACATCCCTCTGAGCCTGAGCTACAGCGGCAGCATCAGACCTTCTCCAGCCATCTTCTACTGCAAGAGCGCCGAC



AGCGACGTGAAACTGCCTGTGGCCATCGTGAACCTGGTGGCCAATTCTCCTACCAGCGCCTTCTCTGAGGGCCACAGA



GAACAGGGCGTGATCAAGAACGTGAACGCCTACGAGCTGGGCAGACCTCAGCTGCACTGTGCCCCTTATTGCCACGT



GCCATACGAGGCCAAGTGGCTGTACTGCAAGTTCAGCCTGAAGCTGAGAGCCGACAGCTTCAAGCCTCACGGCCACG



ACGATCTGAAGGTGTCCAAGTACCTGCAGAGATTCGCCAAGAGCTACAAGGACCAGAACGGCTACCACGAGCTGGCC



AAGCGCTACGCCAAGAACATCCTGAGAGGCAAATGGCTGTGGGACAACCTGGAAAGCGACCAGCCTATCACACTGA



GCATCAAGCGGAGAGGCAACCTGCTGATCAAGATCAAGAAGATCCAGAGCCTGCAGTGGAACTACGGCTGGGAGGG



ATATCAGGACGCCCTGAATGAACTGACAGCCCTGATCGACACAGCCCTGTCTAGCACCGGAACCGTGACACTGCAGA



TCAAAGTGAAGATCCGGGCCGAGACACTGCAAGAAGTGATCCCTTCTCAGCTGGTGCTGAGCGAGGCCGAAAGAAG



GGCCGACAAAGAGCCTACCTTCGCCGAGACAAGCCTGAACAGCAACCAGAGAACCGTGTGCCTGACCAAGTACAAA



GTCGGAGCCGGCATCCAGCTGATCGACGACTGGATCGATACCGAGGATCCCATCCGGGTGTCCGAATATGGCGCTGT



GCACGGACAGCACATTGCCCTGAGAACCCCTAGAAGCAAGCAGGACGTGTACAGCCTGCTGCCTAAGGTGCCCTTCT



ACATCCGGTTTCTGCGGTACAACCAGCTGGGCGAAGATGAGATCAGCAACGAGATCCACTACCTGATGAGCATGCTG



GTCAAAGGCGGCGTGTTCAACCGGAAGTCCGACAAGAGCATGCGGTGA (SEQ ID NO: 394)





Cas6
ATGTGCAACCGGTACTACTTCATGGTCAAGTACCTGCCTGAGAACGCCACCAACAGCCTGCTGGCCGCTAGATGTGTG



TCTGTGCTGCATGGCGTGGTGTCCCACAACGGCGAGACAAACATCGGAGTGTCATTCCCCGATTGGAGCGACAGCTC



TATCGGCGGCCAGATCGGCTTCGTGTCCAACAACTACCGGAACCTGGAATCCTTCCGCAAGAATCGGTACTTCAACAT



GATGAACGAGGACGGCCTGTTCTTTGTGTCCGACGTGGAAGAGGTGCCCAACGGCCTGAGAGAGGTGCAGTACATCC



GGAACAACGGAATCGCCAAGAACACACTGAGAGAGCGGCAGCGGAGAATCGAGCGGTGTCAGAAGAGAGCCGAGA



AAGGCGGCAGAGAGTACCAGCCTAAGCTGGGCTTCATCGAGAGAGAGTTCAGCCACTTCCACAAGCTGATCGTGCAG



AGCACCAGCAGCCACAAGGCCTTTCCACTGTACATCCAGAAAAAGTCCGCCGTGGGCAACGCCGCCAATTGCGATTT



TGGCCACTATGGCCTGGCCAGCAACAGAGTGCTGATGGGCACAGTGCCCGACCTGAGCTTCAACCACTAA (SEQ ID



NO: 395)





DR
GTGACCTACCGCACAGGTAGCCGAAAAT (SEQ ID NO: 396)





RE
TGGTGATTCGACCATAAGCTGACATTTAACGACCATAAGTTGTCACTCAATGCTCATAACATGTCACATTAACAAAGC



ATAATTTGACATTAACGTGATGTAGCGTGACTCTGACGAAAATTTATCAGAGTCACTTGCAATGGCAAAAAAGCAAA



AGCGCAGAGATGTTCGAAAGCTGATGTCAAAGAGCGTAAATGTCT (SEQ ID NO: 397)





LE
AAAAAGTTAGAACTGCAAAATTTGGAATTCATTTTGTCCAGAATGAATTGCATTAGAAACGAAGTATGGATAAAAGC



GTTAGCTGAAGTTCGTAATGAAATATAGCAAAGAAGTAAATGTCACTTTATGGTAGAGAAATACGATTTTGTGACAC



TTTATAGTAGAAAATGACTTTCATTAAAATTTCATGACTTAAGAGTTTATACGGGTTGTAGGGAACAGTTTGTGACAC



TTTATGAGAGAAACATCA (SEQ ID NO: 398)









256296|40|GCA_004378355.1_ASM437835v1_genomic|SNTB01000030.1|42089|Psychromonas (ID: 134)










TABLE 44





Elements
Sequences







tnsA
ATGTACATCCGGAACCTGCGGAAGCCCTCTCCAAACAAGAACGTGTTCAAGTTCGCCAGCACCAAGATGGGCGAAGT



GATCCTGTGCGAGAGCACCCTGGAATTCGACGCCTGCTTCCACCACGAGTACAACGACGAGATCGAGAGCTACGGCA



GCCAGCCTCAGGGCTTTAAGTACGAGTTCAACGGCAAGGTGCTGCCCTACACACCCGACGCTCTGATCCTGTACAAG



AACGGCGTGCACAAGTACCATGAGTACAAGCCCTACAGCAAGATCAGCAGCACCCTGTTCCGGGACAAGTTCGAGGC



CAAGAGACAGACCAGCCTGACCATGGGCATCGACCTGATCCTGGTCACCGACCGGCAGATCAGAGTGAACCCCATCC



TGAACAACCTGAAGCTGCTGCACAGATACAGCGGCGTGTACGGCGTGTCCAAGGTGCAGGTTGAGCTGCTGAAGATC



ATCCGGTACAGCGAGACAATCAAGCTGAACGACGTGTCCAGCCAGTGCAACCTGAGCATCGGCGAGACAAGAAGCT



TCATCTACGGCCTGATCCACAAGGGCTTTCTGAAGGCCGACCTGGGCAAAGAGGACCTGAGCAACAACCCCACACTG



CGGGCTGTGTAA (SEQ ID NO: 399)





tnsB
ATGAGCGACTTCATCAACGAGTTCGACAACAGCATCGTGCCCATCAAGCCCGAGACACCCGACCAGTATGTGAAGCT



GGAAGATGCCACACTGATCAAGCGCGACCTGGATACCTTTCCTGACTTCCTGAAGGACAAGGCCTTCGACAAGTACA



AGCTGATCTCCATCATCGAGAAAGAGATCAGCGGCGGCTGGACCCAGAAGAACATCGACCCCATCCTGGAAAACCTG



TTCGAGGAAAACAACGCCAAGAAGCCCAACTGGCGGACAGTCGTCAGATGGCGGAAGGCCTACATCGACAGCAACG



GCGATCTGAGCAGCCTGGTGGTCAAGCAGCACAAGATGGGCAACCGCACCAAGAGAATCGACGGCGACGAGTTCTT



CTTCGATAAGGCCCTGGAACGGTTCCTGGACGCCAAGAGGCCTAAAGTGACCACCGCCTACCAGTACTACAAGGACC



TGATCATGATTGCCAACGAGAACGTGGTGGAAGGCGAGATCCCCGTGATCAGCTACAGCGCCTTCAACAAGCGGATC



AAGAGCCTGCCTCCTTATCCTACCGCCATTGCCAGACACGGCAAGTTCAAGGCCGATCAGTGGTTCGCCTACTGCGGC



TCTCACATCCCTCCAACCAGGATTCTGGAACGCGTGGAAATCGATCACACCCCTCTGGATCTGATCCTGCTGGACGAC



GAGCTGCTGATCCCTATCGGCAGACCCTACCTGACACTGCTGGTGGATGTGTTCAGCGGCTGCATCCTGGGCTTCCAC



CTGAGCTACAAGAGCCCCAGCTATGTGTCTGCCGCCAAGGCCATCTCTCACGCCATTAAGCCTAAGAGCCTCGAGCA



CCTGTCTATCGCCCTGCAGAACGACTGGCCTTGCTACGGCAAGATCGAGAATCTGGTGGTGGACAACGGCGCCGAGT



TTTGGAGCAAGTCTCTGGAACACGCCTGTCACGCCACCGGCATCAACATCCAGTACAACCCTGTGCGGAAGCCCTGG



CTGAAGCCCTTCGTGGAAAGATTCTTCGGGATGATCAACCAGTGCTTCCTGAGCGAGATTCCCGGCAAGACCTTCAGC



AACATCCTCGAAAAAGAAGAGTACAAGCCTGAGAAGGACGCCATCATGCGGTTCAGCACCTTTGTGGAAGAGTTTCA



CCGGTGGATCGTGGACGTGTACCACCAGGATAGCAACAGCCGGGAAACCCGGGTGCCAATCAAGAGATGGCAGCAG



GGCTTCGATGTGTACCCTCCACTGAAGATGAACGACGAAGAGGACGCCAGATTCAGCATCCTGATGCGGGTGTCCGA



CACCAGAACACTGACCCGGAACGGCTTCAAGTTTGAGGAACTGATGTACGACAGCACAGCCCTGGCCGACTACCGGA



AGCACTACCCTCAGACCAAAGAAAGCGTGAAGAAGATCATCAAGGTCGACCCCGACGACATCAGCAAGATCCACGT



GTACCTGGAAGAACTGGAAAGCTATCTGGAAGTGCCCTGCACCGAGACAACCGGCTATTCTGATGGCCTGAGCCTGT



ACGAGCACAAGACCATCAAGAAGATTAACCGCGAGATCATCCGCGAGAGCAAGGACTCTCTGGGACTCGCCAAAGC



CAGAATGGCCATCCACGAGAGAATCAAGCAAGAGCAAGAGGTGTTCATCAAGTCCAAGACCAAGGCCAAGCTGACC



GCCGTGAAGAAACAGGCCCAGATTGCCGACGTGTCCAACACAGGCAAGGGCAGCATCAAGGTGCCCGAGATCGAGA



GCATCCAGCCTAAGCGGAGCAACATCTCCGACGTGCTGGATGACTGGGAAGATGAAGTGGAAGCCTTCGAGTGAC



(SEQ ID NO: 400)





tnsC
ATGAACGACCTGACCGAGCTGCAGATCCAGCAGCTGAGAGACTTCAGCGACTGCATCGTGGTGCACCCTCAGATCAA



GATCATCTTCGACGACTTCGATGAGCTGCGGTTCAACCGGAAGTTCCAGAGCGACCAGCAGTGCATGCTGCTGATCG



GAGATACAGGCGTGGGCAAGAGCCACCTGATCAACCACTACAAGAAACGCGTGCTGGCCACACAGAACTACAGCAG



AGGCACAATCCCCGTGCTGGTGTCCAGAATCTCCAGAGGCAAAGGCCTGGAAGCCACACTGATCCAGATGCTGGCTG



ACCTGGAACTGTTCGGCAGCAGCCAGATTAAGAAGCGGGGCTACAAGATCGACCTCACCAAGAAACTGGTGGAAAA



CCTGATTAAGGCCCAGGTGGAACTGCTGATCATCAACGAGTTCCAAGAGCTGATCGAGTTCAAGTCCGTGCAAGAGC



GGCAGCTGATCGCCAACGGCCTGAAGTTCATCAGCGAAGAGGCCAAGGTGCCCATCGTGCTCGTTGGAATGCCTTGG



GCCGAGAGAATCGCCGAGGAACCTCAGTGGGCCAGCAGACTGATCCGGAAGAGACAGCTGGAATACTTCAGCCTGA



AGAACAACAGCAAGTACTTCCGGCAGTACCTGATGGGCCTCGCCAAGAAGATGCCCTTCGACGAGCCTCCTAAGCTG



AAAGTGAAGCACACCACACTGGCCATCTTCTCCGCCTGCAAGGGCGAGAATCGGGCCCTGAAACATCTGCTGACAGA



GGCCCTTAAGCAGGCCCTGAGCTGCAATGAGCACCTGGAAAACAAGCACTTCGTGTTCGCCTTCGACAAGCTGTACC



TGAGCGACACCTCCAGCTTCTCCCAGCAGAAGCTGACCATCAAGAACCCCTTCAAGCAGGACATCAAGGATATCAAG



ATCTACGAGGTGTCCAAGAACAGCAGCTACAACCCCAACGCCATCGATCCCGAGGATGCCCTGACAGGCAGAGAGTT



TAGCCTGATCGCCTGA (SEQ ID NO: 401)





tnsD
ATGGCCTTCCTGTTCAGCCCTAAGGCCACACCTTTCAGCGACGAGAGCCTGGAAAGCTACCTGCTGAGAATCGTGTCC



GAGAACTTCTTCGACAGCTACGAGGAACTGAGCCTGGCCATCAGAGAGGAACTGCACGAGCTGGATTTTGAGGCCCA



CGGCGCCTTTCCAATCGACCTGAAGAGACTGAACGTGTACCACGCCAAGCACAACAGCCACTTCCGGATCAGAGCCC



TGGGACTGCTGGAAGCTCTGCTGGACCTGCCTAGATTCGAGCTGCAGAAGATCGCCCTGCTGAAGTCCGACGTGACC



TTCAATAGCAGCGCCGCTCTGTACCGGAACGGCGTGGACATCCCTCAGAAGTTCATCAGATACCAGGGCAACAGAAA



GGCCTACAGCATCCCCATCTGTCCCCACTGCCTGAGAGAGGAAGCCTACATCAAGCAGAGCTGGCACATCGAGTGGG



TCAACATCTGCGTGAAGCACCAGTGCACCCTGATCCACAACTGCCCCGAGTGCAACCTGCCTATCAACTACATCGAG



AACGAGAGCATCACCCACTGCAGCTGCGGATTTGAACTGGCCAGCGCCGATAGCCTGCCTGTGAAAGAGAAGTCCAT



CAAGTACCTGCATGCCCTGCTGGACAGCAATATCTGCAGCGGCAGCAACCCTCTGTTCAACTTCACCACCAGCAGCG



ACAGATTCGCCGCACTGCTGTGGTTCCACAAGCGGTACAGCCACAAGAACGTGTTCTGCCTGGACGAGGCCGTGGAA



TACTTCTCTGAATGGCCCGCCAGCTTCTACAAAGAGCTGAACGGCCTGACCAACAACGCCGAGATGAAGCTGATCGA



CCTGTTCAACAAGACCGAGTTCCGGTTCATCTTCGAGGACCTGATCCTGAGCAGCCCCAACACACAGATCCTGGAAA



AGCCCCACTTCATCCTGATCACACTGCTGGACTACCTGGCCGCTCTGATCGAGGAAAACCCCAAGAGCAAGAAGGCC



AACATCGGCGACCTGCTGGTGTCCGTGTCTGAAACAGCACTGCTGCTGGGCACCAGCATCGACCAGGTGTACAGACT



GTACCAGGACGGCATCTTCCAGACCGCCTTCCGGCTGAAGCTGAACCAGAGAATCAACCCCAACAAGGGCGTGTTCT



TCCTGCGGCAAGTGATCGAGTACAAGGCCAGCTTCGGCAACGACAAGAACCGTATGTACGTGTCCGCCTGGTGA



(SEQ ID NO: 402)





Cas5/
ATGGTCAACAGCATGCACCTGAAAGAGCTGCTGGAAATCCAGGACATCACCGAGCGGAACAAGCTGCTGAGAAGGG


8
CCTTTAGCGCCTACACCGAGACAATCGATATCACCGGCTGCGAGGAATTCGCCCTGATCATCCTGCTGAACCTGACCT



ACAGACGGAACCAGGTGGAAGATCTGCTGGACAAGGTGCTGGCCAAGAAAACCCTGAACAACGAGGACTACATCGG



CAAGTGCATCAACGAGGTGGAATGGTTTCACACCCACAACCTGAAGTACCCCGACATCCGGGTGTCCAAGCAGACCC



TGGCTGTGAATCCTCCTCCTCTGCACCCTCACGTGCTGAGCAGCGCCAACTACGACAAGATCTTCGGCTGGTCCCACG



ACAGCGCCAAAGTGAACGTGGTCAAGCTGTTCCTGAGCTACTTCAAGTGGCAGGACGACAGCTACTGTCTGGCCCAG



ATCCTGGTGTCCCTGCCTGATGATTGGAAGGCCGCCTTTACCAGCCTGGGCATGAAAGTGAAGGTGCTGCTGAATCTG



TGCGGCAGAGTGTCCAGCGTGCTGCCCGAAGAAGTGATCCCCAGCTTCGTGGACCGGTACTGCAGACAGATCAGAAT



GCCCTACCACGACGGCTACACCGCCATCACACCTGTGATCAGCCACAGCATCCAGAGCAAGATCCAGCAGGCCGCCA



TCCAGAAGAAGGGCAGCTTCACCAAGGTGGAATTCACCAGAACAGCCGCCGTGTCTGAGCTGGTGGCCTCTATCGGC



GGATTCGTGAACGCCCTGAGCTATCCTCCTGACGTGGGCATCTCTCACCACGGCCTGAGCCAGAGCAGACTGTTCCAG



ATCCAGAACGGCAAGCAGATTTTCAACGGCAACGTGCTGCTCAAGCCCCAGTTTATCGGAGCCCTGGAAGGCATCAT



CTTCAACCACTCTGCCCTGGCTCTGAAGCAGCGGAGACAGCTGAGAGTGAAGTCCATCAAAGAGCTGAGAAACACCC



TGAGCGAGTGGTTCGCCCCTATCCTGGAATGGCGGCTGGACATCATCGAGAACAGAGTGAACCTGATCGACTTCGAG



AGCATCAATGACCAGCTCGAGTACAAGCTGGTGTCCACCAGCGACGACAAGCTGCCCAGCCTGGTCATCCCTCTGTTC



GGCAGCCTGAACTCCATGCTGGCTAACATCCCCATGATGCAGAAGTACGCCTTCCATCCTAAGCTGATGGAACCCCTG



AAGTTTGCCCTGAAGTGGCTGCTGAGCAATATCGGCAACGAGAGCGACGTGGCCATCAAGGACGACGACCTGCCTTT



CAGATACCTGCACCTGAGCGGAGTGCGGGTGTTCGATGCTCAAGCTCTGTCTAACCCCTACTGCAGCGGCATCCCATC



TCTGACAGCTGTGTGGGGAATGCTGCACCACTACCAGAGAGAGCTGAATCAGGCCCTCGGCCTGGGCGTCAGATTCA



CCAGCTTCAGCTGGTTCATCCGGGACTACAGTCTGATCCCCGGCAAGAAGCTGCCTGAGATCAACCTGCACGGCACC



AAGCCTAACGACGTGAAGAGGCCCGGCATCATCGACAACCAGTACTGCGACCTGACCTTCGACCTGGTGGTGCACAT



CGATGGCTACCAGGACGAGCTGCTGAAACTGGACGATGAGCCCGAACTGCTGAAGGCCCACTTTCCTAGCAACTTCG



CTGGCGGCGTTATGCACCAGCCTGAGCTGGACAGCAACATCGACTGGTGCCGGCTGTACCACAAAGAGAAGTTTCTG



TTCGAGAAGATCCGGCGGCTGCCTCTGTCTGGCTGTTGGGTTATCCCCACAGAGTACAAGGTGCACGATTTCGAGAGC



CTGTTTGCCATCCTGAACAATGACAGCAAGCTGAGCCCCAGCATGATGGGCTACATGCTGCTTAACAAGCCCGAGCC



TAGACCTGGCAGCCTGGAAAAGATGCACTGCTACGCCGAGCCTGTGATCGGCGTGGTGGAATACTCCCCTGCCATCA



ACATCCGGCTGAAGGGCAAGAGAAACTACTTCCACAAGGCTTTTTGGATGCTGGACGCCCAAGAGAAATTCATGCTG



ATGAAGAAGATCTGA (SEQ ID NO: 403)





Cas7
ATGGAACTGTGCAACATCCTGAAGTACGACCGCTCTCTGTACCCCAGCAAGGCCGTGTTCTTCTACAAGACCGACGAC



AGCGACTTCGTGCCCCTGGAAGCCGACATCTGCAGAATCAGAGGCCCCAAGAGCGGCTTCACCGAGGCCTTCACACC



TCAGTTTCTGCCCAAGAACCTGAGCACCCAGGATCTGACCCACAACAACATTCTGACCCTGGAAGAGTGCTACGTGC



CACCTAACGTGGACCACCTGTACTGCCGGTTCAGCCTGAGAGTGCAGGCCAATTCTCTGGCCCCTAGCGGCTGTTCTG



ATCCCGAGGTGTTCTCCCTGCTGAAAGAATTCGCCGAAGTGTTCAAAGAGCGCGGAGGCTACAAAGAACTGGCCGTG



CGGTACTGCAGAAACATCCTGCTCGGAACATGGCTGTGGCGGAACCAGAACACCGGCAACACCGAGATCAAGATCA



AGACCAGCAGCGGCAACGACTACCTGATCAACAACACCCGGAAGGTGGCCTGGGAGAGCAAGTGGAGTGACGAGGA



ACTGAAAACCCTCGAGGACCTGAGCAACGAGATCCAGAACGCCCTGATCGACCCCAATGTGTTTTGGAGCGCCGACA



TCACCGCCAAGATCGAGAGCGTGTTCTGCCAAGAGGTGTACCCTAGCCAGATCCTGACCGACAAGGTGTCCCAGAGC



GAGGCCAGCAAGCAGTTCGTGAAGTCCAAGTTCAGCGACGGCAGATACGCCGTGTCCTTCAACAGCGTGAAGATCGG



AGCCGCTCTGCAGTCCATCGACGATTGGTGGGATGATGGCGCCAGCAAGAGACTGAGGGTGCACGAGTTTGGCGTGG



ACAAAGAGATCGGCACCACCAGAAGGCCTCCACACAGCGAGCACAACTTCTACCACATTCTGAAGTCCGCCGAGAGA



TACCTGAGCGAGCTGAACAAGTTCAACGCCAACAACGGCGAGGTGGTCAACCCCAACATCTACTACCTGTTCAGCGT



GCTGATCAAAGGCGGCATGTTCCAGAAGAAGGCCGAGAGCAAGAAGGGCTGA (SEQ ID NO: 404)





Cas6
ATGAAGCGGTACTACTTCATGATCCACTTTCTGCCCAAAGAGGCCAATCTGGCCCTGCTGACCGGCAGATGCATCAGC



ATCATGCACGGCTTCATCCTGAAGCGGGACATCCAAGGCGTGGGCGTTACACTTCCTGCTTGGAGCGATCTGAGCATC



GGCAACGTGATCGCCTTCGTGCACAGCGACAAGAAAGTGCTGCAGATGCTGAAAGAGCAGAGCTACTTCGAGGATAT



GCAGAACTGCGGCTTCTTCGAGCTGACCAGCGTGACAGCCGTGCCTGACAATTGCGAAGAGGTGTACTTCAAGCGGA



ACCAGGCCATTGCCAAGATCTTCACCGGCGAGAGCAGACGGCGGCTGAAGAGACTGGAAAAGAGAGCCCTGAGCAG



AGGCGAGACATTCAACCCTCAGAAATGCGTGGTGTCCCGCGAGTTCGACGTGTTCCACAGAATCGCCATCAGCAGCA



ACAGCAACCAGAACGACTACATCCTGCACATCCAGAAGCAGAAAGGCGGCACCAAAGTGGGCAGCACCTTCAGCAA



TTACGGCTTCAGCTCCAACGAGAAGTTCGACGGCAGCGTGCCAGATCTGAGCCACCTGGTCATGAAGCTGTGA (SEQ



ID NO: 405)





DR
GTGTCCTGCCGAACAGGCAGCTGAGAAT (SEQ ID NO: 406)





RE
TGTCGCTGAAACCATACATTGACATAATATAACCATACTTTGACAAAATTAAAGCATACTCTGACATAAAATATAAA



ACTGTAATTTTATTACACTTTTATTTTTCTTTTTAATCAGTTGCTTATGATTTTATTAGCGCATACTCTGACAAATTGTG



TAATTTAGTTGTTTAGTTTATACTCAGTAGAGATAAAATTAACTGGATTACTCTATGTATATACGCAATTTAAGAAAG



CCTTCTCCTAATAAA (SEQ ID NO: 407)





LE
TCGCTTTGATGTATATGTTAAACAATTTCTGCCGAACAGGCAGTTTTATATAAAGAGAGTATAGGGTCTTTATATACC



TAAATAGTTGAATAATTATTTGTAATTTAATTACATATTGAAAATGGCTTGAATATTAATTTTTTTAATTTGTCAGTGT



ATGGTTGTATTTTATGTCAAAGTTTACTTTTATATATGATGTAAGCAAATGATTTACTGTACCATGTTATGTCAGAGTA



TGATTTCAGCGACA (SEQ ID NO: 408)









264788|117|GCA_005146805.1_ASM514680v1_genomic|SYVQ01000076.1|757 05|Vibrio (ID: 135)










TABLE 45





Elements
Sequences







tnsA
ATGCGGACCATGTTCGACCAGACCAAGAAAAGCAGCCACGTGCACAACATCTGCAAGTTCATGAGCCTGAAGAACG



ACGCCGTCGTGCGGACACTGAGCGTGCTGGAATTCGACTTCTGCTTCCACCTCGAGTACAACCCCGACGTGAAGCGGT



ACATCTCTCAGCCCCACGGCTTCTACTACTACTTCAACGGCCGGAAGTGCCGGTACACCCCTGACTTTCTGGCCGACG



ACCACAAGGATCAGAGCACCCTGATCGAGATCAAGCACAGCAGCCAGATCCTGAAGCCTGACTTCCGGCAGAGATTC



GCCGAGAAGCAGAGAGTGGCCCTGGAAGAACAGGGCAAGAGACTGGTGCTGGTCACCGAGAAACAGATCAGAATCG



ACCCCATCTTCAGCAACCTGAAGCTGCTGCACAGATACAGCGGCCTGCACACCGTGACCAAGGTGCAGAAATCCGTG



CTGGGCTTCATCCAGAGAAAGCAGAAGGTGCAGCTGAGAGAGGTGTCCGAGTACCTGGGACTGAGCGAGCACGAGA



CACTGATCAGCACCCTGTGCTGGCTGTCTAGCGGAAGAGTGCGGACCGACATCAGAAGCAGCGACTTCGGCCTGAAC



AGCTACGTGTGGTGCTGA (SEQ ID NO: 409)





tnsB
ATGGCCAGCGACTTCGACGATGTGTTCGGCTTCATCGACGAGATGGAAGCCAGCGCTCAAGAGGCCGAGCTGGCCAC



AAAACTGCCCAGGGATCTGTTCGAAGAGGACACCAGCTACCTGCCTACCATCGACACATTCCCCGAGAAAACCCAGA



AAGAGGTGTTCCGGCGGCTGAAAGTGATCCAGTTCACCGAGAAGAGACTGAAAGGCGGCTGGACAGAGAAGAACCT



GGTGCCTATCCTGAACCAGGTGGAACAAGAGCTGGCCCTGTCTCCTCCATCTTGGAGAGTGCTGGCCGAGTGGAAGA



AGGTGTACTTTGAGAGCGGCCGGTCTATCCACAGCCTGGTGCCAGCTCATGCCCAGAAGGGCAACAGAAACCAGCAC



ACCGATAGCCAGCTGCTGATCGACGAGGCCATCAACAAGAAGTACCTGACCAAAGAACGGCTGAGCGTGGCCGAGG



CCTACCGGTACTATAAGAGCAGAGTGATCAAGACCAATCAAGAGATCGTCGAGGGCAAGATCAAGCTGATCAAAGA



GCGGAGCTTCTACAACAGAGTGAAGGGCCTGCCTCCTTACGACGTGGCCGTGGCCAGATACGGCAAGAGATACGCCG



ACCGCGAGTTCAGACCAGTGGGACAGCAGATCGAGGCCACCAAGCCTATGGAATACGTGGAAATCGATCACACCCCT



GTGCCTGTGATCCTGATCGATGACGAGCTGGACATCCCTCTGGGCAGACCCTACCTGACAATGCTGTACGACCGGTTC



AGCAAGTGCATCGTGGGCTTCAGCATCAACTTCAGAGAGCCCAGCTTCGACAGCGTGCGGAAAGCCCTGCTGAGCAC



CCTGCTGGAAAAGAATTGGATCAAGGACAAGTTCCCCAGCATCACCAACGACTGGCCTTGCCACGGCAAGATCGACT



ACCTGGTGGTGGATAACGGCGCCGAGTTTTGGACACCCAGCCTGGAAGATAGCCTGCGGCCTCTGGTGTCCGACATC



CACTATTCTCAGGCCGCCAAACCTTGGAGAAAGACCGGCATCGAGAAGCTGTTCGACCAGCTGAACAAGGGCCTCGT



GAATGCCCTGCCTGGCAAGACCTTCACAAACCCCACACAGCTGAAGGACTACGACCCCAAGAAAGAAAGCGCCGTG



CGGGTGTCCGTGTTCATGGAACTGATCCACAAATGGGTCATCGACCGCTACCACATGGACAGCGACAGCCGGGAAAG



ACACGTGCCCTACCACAAGTGGAAAGAATCCAAGTGGCTGCCCAACTTCTACCAGGGCAAAGCCGCCGCTGACCTGA



GAATTGAACTGGGCCTGCTGCGGCACAGAACCATCGGAACAGCCGGAATCAGACTGCACAACCTGTGCTACCAGAGC



GAGGAACTGATTGAGTACCGGAAGTACAACTCCGTGAACAGCCAGGGCAAGCTGTACGTGCGGACCAAGACCGATC



CTAGCGACATCAGCGCTATCTACGTGTTCCTGGAAAGCGAGAAGCGGTACATCAAGGTGCCCGCCGTGGACAATAGC



GGCTACACAAATGGCCTGAGCCTGTTCGAGCACGAGCGGATTCAGAGAGTGCGGAGACTGAACACCAGAAGCCTGG



TCAACGAGGAAAGCCTGGCCGACACCTACCTGTACATGGAAGCCCTGATTGAGGGCGAAGCCGAGCGGATGAGAAA



GAGCAGAAACAAGAAGCTGACCCAGCCTAAGACAGGCAACACCAGCAAGATCGCCAAGTACCGCGACGTGGGCACA



GAAGGCCCTGGCTCTATCGTGAAGAAGAAGGACAACTCCAACACAGCCCTGAACGTGGTGTCTACCCAGCTGAGCCT



GGACGACGATGATGACCTGGCCGATATCGAGGGCTACTGA (SEQ ID NO: 410)





tnsC
ATGGTCAACCTGACCAGCATGCAGCACGAGCAGCTGAAGGCCTACGACAACTGCTTCATCGAGTACCCCGAGATCAC



CGAGATCTACAGCATCTTCGACCAGCTGCGGTTCAACCAGTCTCTCGGCGGAGAGCCTGAGAGCTTTCTGCTGACTGG



CGAGACAGGCTCTGGCAAGACAGCCCTGATCAACAACTACCTGAAGAGATTCGAGGCCAGCAGCCGGTCCAGCTGGT



CTACACAGACAGTGCTGAGCACACGGATCCCCAGCAGAGTGAATGAGCAGTCTACCCTGAACCAGTTCCTGGTGGAC



CTGAACAGCAAGAGCGGCGGCAGAAGCACCAGAAGGCGGAACGAAATTGCCCTGGGCGAGTCTGTTGTGCGGCACC



TGAAACGGAAGTCCGTGGAACTGATCATCGTGAACGAGATCCAAGAGCTGGTGGAATTCAGCAACGCCGACGAGAG



ACAGACAATCGCCAACACCTTCAAGTACATCAGCGAGGAATCCGGCGTGTCCTTCGTGCTCGTGGGAATGCCTTACG



CCGACGTGATCGCCAATGAGAGCCAGTGGAACAGCAGACTGAGCTGGCGGAGAGAGATCAACTACTTCACCCTGTTC



AAGGACGACAGAGGCCCCAAGGACACTGGCCCCAAGTACAGAATTGACGCCGTGCAGAAAAAGCACTTCGCCATGT



TTGTGGCCGGCCTGGCCAGCAGAATGGGCTACGAAAACAAGCCCCTGCTGACCAACAACGAGATTCTGTACCCTCTG



TTCAGCATGTGCAGAGGCGAGTGCAGACGGCTGAAGCACTTCCTGAAGGACGCCATGCTGATGAGCTTCAAAGAGGA



CAAGAACACCATGGACAAAGAGGTGCTGTCCAGCACATTCGCCCTGAAGTTCCCCAGCCTGGACAACCCTTTCGAGT



GCTCCCTGGACAAGCTGGAACTGGACCAGATCGATATCGGCAGCGCCTACAACACCAGAGCCATCACCGCCGAGGAT



AAGATTCTGGCCCCTCGGTTTACCGACGCCATTCCTCTGAGCATCCTGCTGAGCAAGTCCGGCCTGAAAGTGTGA



(SEQ ID NO: 411)





tnsD
ATGAACACCGACATCCAGCTGTACCCCGACGAGAGCCTGGAAAGCTTCCTGCTGAGACTGAGCCAAGAGCAGGGCTA



CGAGCGGTTCTCTCACTTCGCCGAGGACATTTGGTTCGACACCATGGACCAGCACGAGGCCATTGCCGGCGCTTTTCC



ACTGGAACTGAACCGCGTGAACATCTATCACGCCCAGACCACCAGCCAGATGAGAGTGCGGGTGCTGATCCACCTGG



AAAACCAGCTGAAGCTGAACAACTTCGGCGTGCTGAGGCTGGCCCTGTCTCACTCTAAAGCCCAGCTGAGCCCTCAG



TACAAGGCCGTGCACAGATTCGGCGTGGACTACCCTTACGCCTTCCTGCGGAAGCGGTTTACCCCTATCTGCCCTCTG



TGCATCAACGAGGCCCCTTACATCCACCAGCAGTGGCAGTTCATTAGCCACCAGGCCTGTGAACACCACGGCTGCAA



GCTGACACACCACTGTCCTGAGTGCAGCAGCAGACTGGAATACCAGAGCACCGAGAGCATCGGCCAGTGCGAGTGTG



GCTATGAGCTGAGAAACAGCCCCGTGGACGATGCCCCTGAAGCCGAAACACTGGTGGCCAGATGGCTGAGCGGCAA



CGATTCTAAGCCTCTGGGACTGCTGAAGGCCGAGATGACAATCCCCGAGAGATACGGCTTTCTGCTTTGGTACGTGAA



CCGCTACGGCGACATCGACGACCTGAGCTTCGAGAGCTTCATCGAGTACTGCTGCGCCTGGCCTACAGCTCTGTGGCA



GGATCTGGATGCCCTGAAAGAAAAGGCCGAACTCGTGCGGATCAAGGACTGGAAGAAGGTGTTCTTTAACGAGGCCT



TCGGCGCCCTGCTGAAAGACTGTAGACAGCTGCCTAGCCGCCAGCTGTCCCACAATATCGTGCTGGCTCAGGTGCTGG



CCTACTTCACCAAGCTGATGGCCACAGTGCCTAGCAGCGCCAAGGGCAACATTGGAGATGTGCTGCTGAGCCCACTG



GAAGCCAGCACACTGCTGAGCTGCACCACCGATGAGGTGTACCGGCTGTACGAGTTTGGCGAGATCAAGGCCGCCAT



CAGACCCCGGATGCACACAAAGATTGCCAGCCACGAGAGCGCCTTCACACTGAGAAGCGTGATCGAGACAAAGCTG



ACCCGGATGAGCAGCGAGTCCGATGGCCTGTCTGTGTACCTGCCTGAGTGGTGA (SEQ ID NO: 412)





Cas5/
ATGACCAAGCTGAGCGACCTGCTGGCCATCGAGGATGAGGTTGTGAAGCAGGCCAGCCTGAAGAAAATGTTCATGCC


8
CTACACCGAGGACGTGTGCGTGGAAGGCTTTGAGAAAGAGGCCCTGACCATCCTGCTGAACCTGAGCAGCAGCCACC



AGAGCGACAGATGCAGCGATTGGCTGGATGTGGCCAGAGCCAAGAGACACCTGAAGGCCGCCGAAAACCTGGAAGC



CAGCCTGGACGAGATCAAGTGGTTTCACACCCACAACCTGAAGTTCCCCGACTGCAGAGTGAAGGACCAGCGGATTG



TGGCTCAGCCTCTGGCTACCGCCGAGGTGTTCATTTCTAGCGCCGTGCTGGATCAGAGACTCGGCTGGGCCCATAATT



CCGCCGTGTACAGACACACCCTGTGGCTGCTCAACCCCTTCAGATGGCAGAGCCAGTCCGTGTCTCTGCTGAGCCTGG



TGCAGCAAGAAACCCCTGTGTGGGTCGAGCTGCTGAAAGAGTTTGGCCTGGGAGCCAAGCTGCTGGCCCGACTCCAA



AACACAATGGCCGAGCAGCTGCCCGAGAACAGCTTTCCCGTGTCCGTGAACACCTACAGCAAGCAGCTGAGATTCCC



CAGCGGCGACGACTATGTGTCTGTGACCCCTGTGGTGTCCCACGCCATTCAGCGAGAACTGGAAGTGCGGAGCAGAA



GCAGAGAGTCCAAGCTGTCCTTCGTGTCCAGCAGCCTGCCTAACTCTGCCAGCATCGGCAATCTGTGTGGCTCTCTCG



GCGGCCACATGAAGGTGCTGAACTACCCTCTGGACGTGAAGCCTGCTCAAGGCGGCACACTGACCGAGAGCAGAAA



GAAGTCCGGCAGATACTTCGACGACTACCAAGTGACCAACGCCAAGATCTGCCAGGTCCTGAACCACCTGATCGGCA



GCGAGCCTAGCAAGACCCAGAAGCAGCGGGAAAGCGCCAGAAAAGTGCGGTCCAAGATCCTGCGGAAGCAGATCGC



ACTGTGGATGCTGCCTCTGATCGAGCTGAGAGACATCGTGGACGCCGATCCTAACCAGCAGCAGCTGGAACACGACG



ATACTCTGGCCCAGGCCTTTCTGACACTGCCCGAGTCTGATCTGGGCAGCCTGGCCAGCGAGTTCAACAGACATCTGC



ACCTGACCTTCCAGAACAACAAATACGCCGCCAAGTTCGCCTACCATCCTAAGCTGATGCAGGTCGTGAAGGCCCAG



ATCGTGTGGGTGCTCGAACAGCTGAGCAAGCCCAACGGCAACGAGGACAAAGTGACCGGCGAGCAGTACATCTACC



TGTCCAGCATGAGAGTGCAGGACGCCGTGGCCATGAGCAGCTCTTATCTTTGTGGCGCCCCTAGCCTGACAGCCATCT



GGGGCTTTATGCACCACTACCAGCGCGAGTTTAACAAGCTGGTCAACTGCGACAGCCCCTTCGAGTTCTCCAGCTTCA



GCTTCTACGTGCGCTCCGAGAACATTCAGCCCACCGCCAAGCTGACCGAGCCATCCTCTGTGGCCAAGGCCAGAACC



GTGTCCAATGCCAAGAGGCCCACCATCAGAAGCGAGAGACTGGCCGACCTGGAAATCGACCTGGTCATCAGAGTGCA



CAGCGACAGCCGGATCAGCGACTTTAAGAGCGCCCTGAAAACAGCCCTGCCTGTGGCTTTTGCTGGCGGAGCACTGT



ATCAGCCCCAGCTGTCTACACAGGTGGAATGGCTGAAAACCTTCACCAGCCGCAGCGAGCTGTTCCACGTGCTGAAA



GGACTGCCTGCCTACGGCAGATGGCTCTACCCTTCTGAGAAGCAGCCCAAGGACTTCGATGAGCTGGAACGGCTGAT



CACCAAGGACGCCGACAATCTGCCTGTGTCCATCGGCTACCATCTGCTGGAAAGACCCACCAAGCGGTGCAACAGCA



TCACAGGCTGTCACGCCTATGCCGAGAACGCCATTGGACTGGCCCAGAGAGTGAACCCCATCGAAGTGCGGTTCAGC



GGCAGAGATCACTTCCTGAATCACGCCTTCTGGTCCATCGAGTGCTCCTCCGAGACAATCCTGATCAAGAACTACCGG



GACTGA (SEQ ID NO: 413)





Cas7
ATGGAACTGTGCACCCAGCTGAACTACGTGCGGAGCCTGTCTGCCGGCAAGGCCTACTTTTACCACCTGAGCAAGAG



CGGCGAGATGTGCCCTCTGGAAATCGACCGGACCAGACTGAGAGCCCCTAAAGGCGGATATGCCGAGGCCTACAAA



GGCGGCAAGTTCGTGGCCAAGAATGTGGCCCCTCAGGACCTGGCCTATGCCAATCCTCAGTTCATCGAGGAATGCTA



CGTGAAGCCCGGCGTGGACGATATCTACTGCGCCTTCAGCCTGCGGATCCGGGCCAATAGCCTGAATCCTGATGTGTG



CAGCGACGACGAAGTGCGGTACAAGCTGTCTAGCCTGGCCAAGACCTACAAAGAGCTGAACGGCTACAGCGAGCTG



GCCTACAGATACGCCAAGAACATCCTGCTCGGCACCTGGGTCTGGCGGAACAGAGAGTGTAGAAAGCTGACCATCGA



AGTCAAGACCAGCGACAGCGAGACAGTGGTCATCGAGAACGCCACCAGACTGTCTTGGTACGGCTACTGGGATGAA



GCCAGCACCGAGTGCCTGGAAAAGCTGACAGCCTACCTGAAGCAGGCCCTGAGCGATCCCAGCGAGTACTTCTACAT



GGACGTGAAGGCCAAGATCGGCGTTGGATGGGGAGATGAGGTGTACCCCAGCCAAGAGTACCTGGACAGCAGAGAA



GATGGCGTGCCCACAAAGCAGCTGGCCACCATCGAACTGACCAGCGGCAAAGAAACCGTGGCCTTCCACGGCCAGA



AAGTGGGAGCTGCCCTGCAGAGCATCGACGACTGGTGGCATGAGGAAGCCGACAAGCCCCTGAGAGTGAATGAGTA



TGGCGCCGACCGCGAGTACGTGATCGCTAGAAGGCACGTGACCCTGAAGAACGACTTCTACCAGCTGCTGCGGAACA



CCGAGAACTGGATCGAATCTATGGCCGCCAGCCAGACAATCCCCAACGACGTGCACTTCATCATGAGCGTGCTGATC



AAAGGCGGGCTGTTCAACAGAAGCAAGAGCAAGCCCAAGGCCAAGTGA (SEQ ID NO: 414)





Cas6
ATGACCAAGCGGTACTACTTCTACATCCGGTACATCCCCGCTCACGCCGACTTTGAACTGCTGGCCGGAAGATGCATC



CACCAGATGCACATGTTCATGGTCAACAACCCGCAAGTGATGAACCGGATCGGCGTGTCATTTCCCACATGGGGCGA



AAGCTCTGTGGGCCAGACAATCGCCTTTGTGGCCGAGGACAAGGACATGATGATCGGCCTGAGCTTCCAGCCTTACTT



CAGCCTGATGACCAAAGAGGGCATCTTCGAGATCTTCAACGTGTGCGAGGTGCCCGAGAACCTGGGCGAAGTGCGCT



TCATCAGAAACCAGACTATCGAGAAGAACTTCCTGGGCAGCAAGAAGCGGCGGATCAAGCGGTCTATTGCCAGAGCC



GAACTGTCTGGCGGAGAGCAGCCTCTGCCTGTGGCTGTGGAAGAAAGAGTGGTGGACCACTTCCACAGAGTGCCCAT



CAGCTCTGGCTCTAGCGGCCAGGACTACATCCTGTTCACCCAGAAAGAGTTCGCCGAGGAACGGACCGCCAGAAGCT



TCAATTCTTACGGCCTGGCCACCAACGAAGAAAGACGGGGCACAGTGCCCGACCTGAGATTCTAA (SEQ ID NO: 415)





DR
GTGTCCTGCCGCATAGGCAGCTAAGAAT (SEQ ID NO: 416)





RE
TGATGTTTGCAAGATAACTTAGCATAAATTGCAAAGAAGTTAGCAAATTTGCACTATAAGTCAGCATAGTCTATTTTT



TGTTGTAGGTTTACAACAAATGTCATGCGCACTATGTTCGATCAAACCAAAAAATCCTCTCACGTCCACAACATCTGC



AAGTTCATGAGCTTGAAAAACGATGCTGTCGTTCGCACCCTCTC (SEQ ID NO: 417)





LE
CTCTAAAAATTCGTAACAAGGTTTTGTCCAAAAACGTGTTACAGAGCGGAGCCATGCTCTGTGATCACCATGCTCGAT



CTATACGACCTCGGTCAGCTGATATTTATGTGGTAATTTTACAACGCTTGATTTCAACATTGGTTAAAATTTGTAGACT



TTCAATGCAATCTTATGCGAACTAATACTGCAATTTTACTCGTAAGTCTTTGAAAGCTGGTTTGAGTTATGCTGACTTA



TGTTGCAAGCATCA (SEQ ID NO: 418)









Example 2—Plasmid Targeting in HEK293 Cells

In order to determine transposition of cells transfected with plasmids expressing nuclear localization signal-tagged (NLS) type 1-F CRISPR-Cas genes, NLS-TnsA, NLS-TnsB, NLS-TnsC, NLS-TnsD, NLS-Cas5/8, NLS-Cas6, NLS-Cas7, U6-crRNA were cloned and expressed along with a pDonor and pTarget plasmid. Transfected HEK 293 cells were harvested after 72 hr and insertion sites were detected by PCR followed by next-generation sequencing (Illumina). The insertion site distances, in base pairs (bp), from the PAM site are shown in FIG. 1. Web logos indicate the sequence conservation of the nucleotides in and around the insertion sites (FIG. 1, inset).


Various modifications and variations of the described methods, pharmaceutical compositions, and kits of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific embodiments, it will be understood that it is capable of further modifications and that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the art are intended to be within the scope of the invention. This application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure come within known customary practice within the art to which the invention pertains and may be applied to the essential features herein before set forth.

Claims
  • 1. An engineered composition, the composition comprising: a. one or more CRISPR-associated Tn7 transposases;b. one or more Type I-F Cas proteins; andc. a guide molecule capable of complexing with the one or more Type I-F Cas proteins and directing binding of the guide-Cas protein complex to a target polynucleotide.
  • 2. The composition of claim 1, wherein the one or more CRISPR-associated Tn7 transposases comprise one or more of TnsA, TnsB, TnsC, and TnsD, optionally wherein the one or more Tn7 transposases comprises TnsA, TnsB, TnsC, and TnsD.
  • 3. (canceled)
  • 4. The composition of claim 1, wherein the one or more Type I-F Cas proteins comprises one or more of Cas5, Cas6, Cas7, and Cas 8, optionally wherein the one or more Type I-F Cas proteins comprise Cas5, Cas6, and Cas7 or the one or more Type I-F Cas proteins comprise Cas6, Cas7, and Cas8.
  • 5. (canceled)
  • 6. (canceled)
  • 7. The composition of claim 1, wherein (a), (b), and (c) are encoded by polynucleotides in Tables 7-45.
  • 8. The composition of claim 1, wherein the one or more Type I-F Cas proteins lacks nuclease activity.
  • 9. The composition of claim 1, further comprising a donor polynucleotide, optionally wherein the donor polynucleotide is a heterologous donor polynucleotide;optionally wherein the donor polynucleotide comprises a polynucleotide insert, a left element sequence, and a right element sequence;optionally wherein the donor polynucleotide: a. introduces one or more mutations to the target polynucleotide,b. corrects a premature stop codon in the target polynucleotide,c. disrupts a splicing site,d. restores a splicing site, ore. a combination thereof;optionally wherein the one or more mutations introduced by the donor polynucleotide comprises substitutions, deletions, insertions, or a combination thereof;optionally wherein the one or more mutations causes a shift in an open reading frame on the target polynucleotide;optionally wherein the donor polynucleotide is between 100 basepairs pair and 30 kb in length.
  • 10. (canceled)
  • 11. (canceled)
  • 12. (canceled)
  • 13. (canceled)
  • 14. (canceled)
  • 15. (canceled)
  • 16. The composition of claim 1, further comprising a targeting moiety.
  • 17. The composition of claim 1, which comprises a plurality of guide molecules capable of directing binding of the guide-Cas protein complex to one or more target polynucleotides.
  • 18. The composition of claim 1, wherein the target polynucleotide is in a eukaryotic cell.
  • 19. A composition comprising one or more polynucleotides encoding: a. one or more CRISPR-associated Tn7 transposases;b. one or more Type I-F Cas proteins; andc. a guide molecule capable of complexing with the one or more Type I-F Cas proteins and directing binding of the guide-Cas protein complex to a target polynucleotide.
  • 20. The composition of claim 19, further comprising a donor polynucleotide, optionally wherein the donor polynucleotide comprises a polynucleotide insert, a left element sequence, and a right element sequence.
  • 21. (canceled)
  • 22. (canceled)
  • 23. The composition of claim 19, wherein the one or more Type I-F Cas proteins comprises Cas5, Cas6, Cas7, and/or Cas 8, optionally wherein the one or more Type I-F Cas proteins comprises Cas5, Cas6, and Cas7 or wherein the one or more Type I-F Cas proteins comprises Cas6, Cas7, and Cas8 andoptionally wherein the one or more polynucleotides are selected from Tables 7-45.
  • 24. (canceled)
  • 25. (canceled)
  • 26. (canceled)
  • 27. A vector comprising the one or more polynucleotides of claim 19.
  • 28. An engineered cell comprising the system of claim 1, optionally wherein the cell produces and/or secretes an endogenous or non-endogenous biological product or chemical compound andoptionally wherein the biological product is a protein or an RNA.
  • 29. (canceled)
  • 30. (canceled)
  • 31. A cell line comprising the engineered cell of claim 28 and progeny thereof.
  • 32. A plant or animal comprising the engineered cell of claim 28 and progeny thereof.
  • 33. A composition comprising the engineered cell of claim 28, optionally wherein the composition is formulated for use as a therapeutic.
  • 34. (canceled)
  • 35. A biological product or chemical compound produced by the engineered cell of claim 28.
  • 36. An engineered cell or progeny thereof, the cell being engineered using the composition of claim 1, optionally wherein the cell comprises a mutation in a protein expressed from a gene comprising the target sequence;optionally wherein the cell comprises deletion of a genomic region comprising the target sequence;optionally wherein the cell comprises integration of an exogenous sequence by homology-directed repair; optionally wherein the cell comprises decreased transcription of a gene associated with the target sequence;optionally wherein the cell comprises increased transcription of a gene associated with the target sequence; optionally wherein the cell or progeny thereof that is isolated;optionally wherein the cell or progeny thereof that is further used as a therapeutic;optionally wherein the cell or progeny thereof from which a product is isolated.
  • 37. (canceled)
  • 38. (canceled)
  • 39. (canceled)
  • 40. (canceled)
  • 41. (canceled)
  • 42. (canceled)
  • 43. (canceled)
  • 44. (canceled)
  • 45. A product produced by the cell or progeny thereof of claim 36, optionally wherein the product is a protein or an RNA;optionally wherein the product is a mutated protein or product provided by a template; andoptionally wherein the protein comprises a mutation.
  • 46. (canceled)
  • 47. (canceled)
  • 48. (canceled)
  • 49. A pharmaceutical composition for treatment of a disease or disorder, comprising the cell or progeny thereof of claim 36, optionally wherein the treatment results in genetic changes in one or more cells;optionally wherein the treatment results in correction of one or more defective genotypes; andoptionally wherein the treatment results in improved phenotype.
  • 50. (canceled)
  • 51. (canceled)
  • 52. (canceled)
  • 53. A method of inserting a donor polynucleotide into a target polynucleotide in a cell, the method comprises introducing to the cell: a. one or more CRISPR-associated Tn7 transposases or functional fragments thereof;b. one or more Type I-F Cas proteins;c. a guide molecule capable of complexing with the Type I-F Cas protein and directing binding of the guide-Cas protein complex to a target polynucleotide; andd. the donor polynucleotide. optionally wherein the donor polynucleotide: introduces one or more mutations to the target polynucleotide,corrects a premature stop codon in the target polynucleotide,disrupts a splicing site,restores a splicing site, ora combination thereof;optionally wherein the one or more mutations introduced by the donor polynucleotide comprises substitutions, deletions, insertions, or a combination thereof;optionally wherein the one or more mutations causes a shift in an open reading frame on the target polynucleotide;optionally wherein the donor polynucleotide is between 100 bases and 30 kb in length;optionally wherein one or more of components (a), (b), (c), and (d) is expressed from a nucleic acid operably linked to a regulatory sequence;optionally wherein one or more of components (a), (b), (c), and (d) is introduced in a particle;optionally wherein the particle comprises a ribonucleoprotein (RNP);optionally wherein the cell is a prokaryotic cell or eukaryotic cell;optionally wherein the cell is a mammalian cell, a cell of a non-human primate, or a human cell;optionally wherein the cell is a plant cell; andoptionally wherein insertion of the donor polynucleotide into the target polynucleotide in the cell results in: a cell or population of cells comprising altered expression levels of one or more gene products;a cell or population of cells that produces and/or secrete an endogenous or non-endogenous biological product or chemical compound.
  • 54. (canceled)
  • 55. (canceled)
  • 56. (canceled)
  • 57. (canceled)
  • 58. (canceled)
  • 59. (canceled)
  • 60. (canceled)
  • 61. (canceled)
  • 62. (canceled)
  • 63. (canceled)
  • 64. (canceled)
  • 65. (canceled)
  • 66. An engineered cell comprising the system of claim 19, optionally wherein the cell produces and/or secretes an endogenous or non-endogenous biological product or chemical compound andoptionally wherein the biological product is a protein or an RNA.
  • 67. A cell line comprising the engineered cell of claim 66 and progeny thereof.
  • 68. A plant or animal comprising the engineered cell of claim 66 and progeny thereof.
  • 69. A composition comprising the engineered cell of claim 66, optionally wherein the composition is formulated for use as a therapeutic.
  • 70. A biological product or chemical compound produced by the engineered cell of claim 66.
  • 71. An engineered cell comprising the vector of claim 27, optionally wherein the cell produces and/or secretes an endogenous or non-endogenous biological product or chemical compound andoptionally wherein the biological product is a protein or an RNA.
  • 72. A cell line comprising the engineered cell of claim 71 and progeny thereof.
  • 73. A plant or animal comprising the engineered cell of claim 71 and progeny thereof.
  • 74. A composition comprising the engineered cell of claim 71, optionally wherein the composition is formulated for use as a therapeutic.
  • 75. A biological product or chemical compound produced by the engineered cell of claim 71.
  • 76. An engineered cell or progeny thereof, the cell being engineered using the composition of claim 19, optionally wherein the cell comprises a mutation in a protein expressed from a gene comprising the target sequence;optionally wherein the cell comprises deletion of a genomic region comprising the target sequence;optionally wherein the cell comprises integration of an exogenous sequence by homology-directed repair; optionally wherein the cell comprises decreased transcription of a gene associated with the target sequence;optionally wherein the cell comprises increased transcription of a gene associated with the target sequence; optionally wherein the cell or progeny thereof that is isolated;optionally wherein the cell or progeny thereof that is further used as a therapeutic;optionally wherein the cell or progeny thereof from which a product is isolated.
  • 77. A product produced by the cell or progeny thereof of claim 76, optionally wherein the product is a protein or an RNA;optionally wherein the product is a mutated protein or product provided by a template; andoptionally wherein the protein comprises a mutation.
  • 78. A pharmaceutical composition for treatment of a disease or disorder, comprising the cell or progeny thereof of claim 76, optionally wherein the treatment results in genetic changes in one or more cells;optionally wherein the treatment results in correction of one or more defective genotypes; andoptionally wherein the treatment results in improved phenotype.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 63/089,220, filed Oct. 8, 2020. The entire contents of the above-reference application are hereby fully incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/054190 10/8/2021 WO
Provisional Applications (1)
Number Date Country
63089220 Oct 2020 US