1. Field of the Invention
Embodiments of the invention generally relate to the field of semiconductor manufacturing processes, and more particular, to methods of forming ultra shallow junction having reduced junction depths and improved dopant activation.
2. Description of the Related Art
A CMOS (complementary metal-oxide semiconductor) transistor includes a gate structure that is disposed between a source region and a drain region defined in a semiconductor substrate. The gate structure generally includes a gate electrode formed on a gate dielectric material. The gate electrode controls a flow of charge carriers, beneath the gate dielectric, in a channel region that is formed between a drain region and a source region, so as to turn the transistor on or off. The channel, drain, and source regions are collectively referred to in the art as a “transistor junction”. There is a constant trend to reduce dimensions of the transistor junction and decrease the channel region width in order to facilitate an increase in the operational speed of such transistors.
As smaller transistors are manufactured, ultra shallow junctions, low sheet resistance and abrupt lateral junctions are desired to reduce short channel effects and to increase transistor saturation current in source drain extensions. However, ultra shallow source/drain junctions are becoming more challenging to fabricate as junction depths of less than 40 nm for sub-100 nm CMOS devices are desired. Conventional doping by implantation followed by thermal post-annealing is often used to activate the dopants implanted in the substrate, and effectively remove implant damage. However, thermal post-annealing may often cause and/or aggravate dopant diffusion. Dopant diffusion may contaminate nearby layers and cause failure of the device.
Activating the dopants implanted in the source and drain regions with reduced junction depth, as well as high dopant activation is a major challenge for sub-micron front end of line (FEOL) processing. A tight balance exists between enhancing dopant activation and aggregating dopant diffusion. An aggressive activation anneal may lead to high carrier concentration, and the dopant may be driven into the channel region resulting in channel shorting. Insufficient thermal energy for dopant activation may result in lack of effective carrier chargers in the source/drain region, thereby leading to failure of the overall device performance.
Therefore, there is a need for having a process capable of forming ultra shallow junctions in a transistor with reduced junction depth, as well as, providing high dopant activation.
Embodiments of the invention generally provide a method for forming an ultra shallow junction in a semiconductor device. In one embodiment, the method includes providing a silicon containing layer disposed on a substrate, implanting carbon and an elemental dopant into the silicon containing layer on the substrate, and annealing the implanted silicon containing layer.
In another embodiment, the method includes providing a silicon containing layer on a substrate, implanting carbon and an elemental dopant into the silicon containing layer to form source and drain regions on the substrate, annealing the silicon containing layer, and forming an ultra shallow junction between the source and drain regions on the substrate having a junction depth less than 20 nm.
In yet another embodiment, the method includes providing a silicon containing layer on a substrate, implanting carbon and an elemental dopant into the silicon containing layer to form source and drain regions on the substrate, annealing the silicon containing layer in an annealing chamber, cooling the substrate by removing heat absorbed by a highly emissive reflective plate disposed below the substrate in the annealing chamber at a rate in excess of 75 degrees Celsius per second, and forming an ultra shallow junction between the source and drain regions on the substrate having a junction depth less than 20 nm.
So that the manner in which the above recited features of the invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
It is to be noted, however, that the appended drawings illustrate only exemplary embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Embodiments of the invention provide methods for forming an ultra shallow junction in a transistor in a substrate. The ultra shallow junction in formed by ion implanting dopants into a silicon containing layer and followed by a rapid thermal annealing (RTA) process having a rapid temperature cool down rate after processing.
The processing chamber 100 includes a chamber body 150 having chamber walls 130, a bottom 132, and a top 134 defining an interior volume 128. The walls 130 typically include at least one substrate access port (not shown) to facilitate entry and egress of a substrate 108.
A radiant heat assembly 124 is mounted to the top 134 of the chamber body 150. The radiant heat assembly 124 is utilized to heat the substrate 108 suspended by an edge ring 110 disposed around the periphery of the substrate 108. The radiant heat assembly 124 includes a plurality of lamp tubes 102 in a water jacket assembly 104. Each tube 102 contains a reflector and a tungsten halogen lamp assembly. The lamp tubes 102 are nested in a tight honeycomb pipe arrangement. This close-packed hexagonal arrangement of lamp tubes 102 provides radiant energy, such as an IR radiation and/or longer wavelength of UV radiation having a wavelength between about 400 nm and about 4000 nm, with high-power density. In one embodiment, the radiant heat assembly 124 provides radiant energy to thermally process the substrate, such as annealing a silicon layer disposed on the substrate 108. One radiant heat assembly 124 that may be adapted to benefit from the invention is described in U.S. Pat. No. 5,487,127, issued Jan. 23, 1996 to Gronet, et al., and is hereby incorporated by reference in its entirety.
The edge ring 110 that supports substrate 108 is spaced above a stainless steel base 118 by a rotatable quartz cylinder 112 mounted on a stainless steel base 118. The edge ring 110 may be fabricated from a hard material with a small coefficient of thermal expansion, such as silicon carbide, to prevent excessive expansion and contraction during thermal processing. The quartz cylinder 112 is rotated between about 50 rpm and about 300 rpm during substrate processing to maximize substrate temperature uniformity by minimizing the effect of thermal asymmetries in the chamber 100 and on the substrate 108. In one embodiment, the cylinder 112 may be coated with silicon to render the cylinder opaque to a desired wavelength. The base 118 has a circulation circuit 146 allowing coolant, such as water, to circulate therethrough. The coolant circulation efficiently cools down the chamber temperature after processing.
A reflector plate 114 is disposed below the substrate 108 and mounted above the base 118. An array of temperature probes 144 is embedded in the reflector plate 114 through openings 142 defined therein. The temperature probes 144 are connected to pyrometers 116 through a conduit 136 that extends from the bottom side of the base 118 to the openings 142 in the reflector plate 114. The temperature probes 144 and pyrometers 116 are used to obtain a metric indicative of temperatures of regions of the substrate 108 proximate each probe 144 such that a temperature gradient of the substrate may be determined.
The bottom side 120 of the substrate 108 and the upper side 138 of the reflector plate 114 bound a reflecting cavity 140 therebetween. The reflecting cavity 140 enhances the effective emissivity of the substrate 108, thereby improving the accuracy of the temperature measurement. A controller 118 may receive measurements from the pyrometers 116 and output control signals to radiant heat assembly 124 for real-time modify the radiation generated in the processing chamber 100, thereby maintaining the substrate temperature within a desired processing range.
The upper side 138 of the reflector plate 114 is highly reflective, and reflects thermal radiation in a target wavelength range and absorbs thermal radiation other then the target wavelength range. One or more coating or layers may be utilized to coat the reflector plate 114 on the base 118 to provide the selective reflectivity. For example, different combination of coatings with different reflectivity and absorbability may be utilized to enable the reflector plate 114 to reflect thermal radiation at a desired wavelength back to the substrate 108 and absorb (or less reflect) thermal radiation other than the desired wavelength. In one embodiment, the reflector plate 114 reflects the thermal wavelength between about 700 nm and about 1000 nm, and absorbs thermal wavelength below 700 nm and above 1000 nm. One reflector plate 114 that may be adapted to benefit from the invention is described in U.S. Pat. No. 6,839,507, issued Jan. 4, 2005 to Adams, et al., and is hereby incorporated by reference in its entirety.
The thermal energy not reflected to back to the substrate 108 is absorbed by the reflector plate 114. The absorbed thermal energy is efficiently and rapidly removed by the coolant circulating through the base 118 disposed below the reflector plate 114. Additionally, gas provided through holes (not shown) in the reflector plate 114 may be utilized to promote the cooling rate of the reflector plate 114 and the substrate 108 positioned thereabove. The rapid cool down rate provided by the reflector plate 114 promotes the temperature control of the substrate 108, thereby efficiently providing a desired temperature processing profile. In one embodiment, the reflector plate 114 may provide a substrate cool date rate greater than about 200 degrees Celsius per second. In another embodiment, the reflector plate 114 may provide a substrate cool date rate of about 220 degrees Celsius per second.
The method 200 begins at step 202 by providing a substrate 108 utilized to form semiconductor devices, as shown in
At step 204, an optional pre-amorphization implant (PAI) process is performed. The pre-amorphization implant (PAI) process provides dopants implanted into the silicon layer 304 with a limit implant depth 306, as shown in
In one embodiment, the ion implantation process may be performed at an implantation energy of between about 2 and about 20 KeV and a dose from about 1×1013 atoms/cm2 to about 1×1015 atoms/cm2 at angle between 0 degree and 45 degrees. For example, the ion implantation process may be performed at an implantation energy of about 20 KeV and a dose of Ge element from about 5×1014 atoms/cm2. Exemplary details of the dopants implanted by the ion implantation process are described in commonly assigned, U.S. Pat. No. 6,583,018, which is incorporated herein by reference.
At step 206, an ion implantation process is performed on substrate 108 to implant the elements into the silicon layer 304.
The elemental dopant implanted along with the carbon or fluorine elements may have a dose in a range from about 1×1013 atoms/cm2 to about 1×1016 atoms/cm2. In one example, the silicon layer 304 may be doped as P type having a co-implantation of carbon and boron to a dose in a range from 1×1013 atoms/cm2 to about 1×1015 atoms/cm2, such as about 1×1015 atoms/cm2 for carbon and about 7×1014 atoms/cm2 for boron. The implantation energy may be performed of between about 0.1 and about 10 KeV. For example, the implantation energy may be performed about 4 KeV for carbon element implantation and about 2 KeV for boron element implantation. In another example, the silicon layer 304 may be doped as N type, having a co-implantation of carbon and phosphorus to a dose in a range from 1×1013 atoms/cm2 to about 1×1015 atoms/cm2, such as about 1×1015 atoms/cm2 for carbon and about 7×1014 atoms/cm2 for phosphorus. The implantation energy may be performed of between about 0.1 and about 10 KeV. For example, the implantation energy may be performed about 6 KeV for carbon element implantation and about 1 KeV for phosphorus element implantation.
At step 208, a rapid thermal annealing process is performed to activate the dopants implanted in the silicon layer 304. The rapid thermal annealing process may be performed in the thermal annealing chamber 100, as described in
The silicon layer 304 implanted by the dopants is exposed to the thermal annealing process to redistribute the implanted dopants and increase the dopant dose in favorable lattice sites in the silicon layer 304. Atom sites with the crystalline lattice of the silicon layer 304 are opened to incorporate the incoming carbon and dopant atoms, thereby efficiently activating the dopants implanted in the silicon layer 304. As most of the dopants may be substantially activated after a predetermined process period, by utilizing the fast cooling rate of the reflector plate 114, the rapid temperature drop of the substrate 108 causes the dopants to stay and occupy in the desired lattice sites without further diffusing into undesired location and/or into adjacent materials. In one embodiment, the substrate 108 may be cooled down by the reflector plate 144 at a rapid rate greater than 75 degrees Celsius per second, such as greater than 150 degrees Celsius per second, for example, greater than 200 degrees Celsius per second.
In one embodiment, the thermal annealing process is performed by a rapidly annealing the substrate 108 between about 2 second and 50 seconds while maintaining substrate temperature between about 900 degrees Celsius and about 1100 degrees Celsius prior to rapid cooling. In one example, the thermal annealing process may be performed for about 40 seconds at a substrate temperature of between about 950 degrees Celsius and about 1050 degrees Celsius.
In another example, the thermal annealing process may be performed by two step annealing process followed by rapid cooling. The substrate temperature is initially raised to about 550 degrees Celsius for about 30 seconds to stabilize the substrate 108 and chamber temperature until the substrate 108 has been thoroughly heated to the desired temperature. Subsequently, the substrate temperature is further ramped up in a second step to a predetermined temperature between about 900 degrees Celsius and about 1100 degrees Celsius. For example, the substrate temperature may be ramped up to at least about 950 degrees Celsius, about 1000 degrees Celsius, or about 1050 degrees Celsius. The temperature of the second step may be based on specific process requirement. The ramp up rate of the substrate temperature may be set at between about 200 degrees Celsius per second and about 300 degrees Celsius per second, such as 220 degrees Celsius per second. It is noted that the annealing process, including process time and temperature, may be varied based on the elemental dopants and dopant dose present.
After the thermal annealing process is completed, the carbon and doped elementals are thoroughly distributed in the silicon layer 312, as shown in
Thus, methods for forming an ultra shallow junction in semiconductor devices are provided in the present invention. The ultra shallow junction is achieved by performing thermal annealing process on a substrate having a selected combination of dopants implanted therein in a chamber. The chamber provides a rapid cool date rate, thereby eliminating dopant diffusion on the substrate and increasing overall dopant dose in the devices with minimum dopant diffusion length as well as high dopant activation.
While the foregoing is directed to embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. Provisional Patent Application Ser. No. 60/828,947, filed Oct. 10, 2006, which is incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60828947 | Oct 2006 | US |