The International Organization for Standardization that is widely known as ISO, is an international standard-setting body composed of representatives from various national standards organizations. The ISO promulgates worldwide proprietary, industrial, and commercial standards.
Among the standards promulgated by the ISO are standards for fasteners such as clamps. ISO clamps conform to measurements and dimensions that are defined by ISO reference standards. An application of ISO clamps include the joining of tubing.
It has been common in the art to use a split clamp retained with bolts to secure targets in rotary magnetrons. Split clamps have persistent problems in that it can be difficult to push the complementary clamp portions onto the flanges in sufficiently close proximity that the fasteners can be started. Often, technicians use a mallet to force this degree of clamp closure thereby causing undue damage to surrounding components, such as support shaft bearings. Another limitation of split clamps is that there are often only 2 or 4 points of contact between the outer split clamp halves and the joined articles such as target tube flanges in the context of a rotary magnetron; thereby placing undue stresses on the anchored article; that in the context of a rotary magnetron is the end block. Once fastened tightly, the split clamps can be difficult to remove and often a screwdriver is used to wedge the clamp portions apart and thereby causing undue wear on the flanges and the clamps. The non-uniform clamping force also distorts the jointed articles and in the context of a rotary magnetron: to the target tube thereby causing runout in target tube rotation.
Another conventional joinder is the use of threaded fasteners extending through the articles to be joined. This approach also suffers from serious limitations including the possibility that the fastener can loosen during operation, thereby causing catastrophic flooding of the vacuum chamber. Threaded fasteners are difficult to start and to tighten. Special tools are required and it is time-consuming to both tighten and loosen the fasteners.
In spite of the prior art efforts, there remains a need for improved clamp designs that provide uniform clamping pressure along the circumference of a tube or pipe to be joined to an adjoining flange or fitting.
A clamp is provided that incorporates a plurality of flexible links with ‘v’ flexures between the links to maintain even spacing of the links before and during installation. In embodiments of the inventive clamp, each link has multiple segments joined at a center flexure point, and a floating band surrounding the links to adjust an evenly distributed clamping pressure that is produced along a circumference of contact points provided by the link segments. Embodiments of the present inventive clamp provide evenly distributed clamping pressure by increasing the number of clamping contact points between the inventive clamp and an application device or apparatus to be secured. Embodiments of the inventive clamps have non-limiting applications for clamping target tubes or as a vacuum flange for ISO fittings. Embodiments of the inventive clamp produce a vacuum tight seal between a target tube and end block or end support flange without requiring tools, and is very fast to apply and use by a technician.
Embodiments of the inventive clamp employ a floating band that is not attached to the links. In embodiments, as the floating band is tightened the links are not pulled around with the band itself, as encountered in previous designs that provide an uneven clamping force and made the previous clamps unusable for many applications such as in a rotary magnetron. The ‘v’ flexures between the links of the inventive clamp act to keep the links evenly apart before and during installation and tightening of the floating band. The ‘v’ flexures work to keep the links positioned, and also allow the links to move inward without binding. The ‘v’ flexures are also vacuum and high heat compatible.
Embodiments of the inventive clamp utilize stabilizer pins at the clamp handle. The stabilizer pin prevents an undesirable condition when rotating the handle down, where the downward force on the handle causes that link to dig down and ‘over clamp’ that portion of the flange, and as tightening progresses clamping pressures do not even out and the end result is uneven clamping on the flange, with clamping pressure greater near the handle.
The subject matter that is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and in which:
The detailed description explains the preferred embodiments of the invention.
The present invention has utility as a clamp. The present invention discloses a clamp incorporating a plurality of flexible links with ‘v’ flexures between the links to maintain even spacing of the links before and during installation, where each link has at least two segments joined around at least one flexure point, and a floating band surrounding the links to adjust the distribution of clamping pressure that is produced along a circumference of contact points with the articles being joined. An inventive clamp has the benefits multiple contact points around sealing flanges thereby reducing deformation on the jointed articles; more uniform clamping force at each contact point; no necessity for tools to engage or disengage the clamp and therefore is quicker to deploy and remove; compliant members between links keeps links properly spaced at initial installation and then allow links to move inward, and closer together, as they are tightened around a joinder.
Embodiments of the present inventive clamp provide evenly distributed clamping pressure by increasing the number of clamping contact points between the inventive clamp and an application device or apparatus to be secured. For example, commonly used split clamps, given tolerance stack ups, only provide two flange/clamp contact points. With an embodiment of the present inventive clamp as shown in
Embodiments of the inventive clamp employ a floating band that is not attached to the links. In embodiments, as the floating band is tightened the links are not pulled around with the band itself. In previous design instances where the links are pulled around when tightened, the inward clamping force is reduced by the friction force pulling the link in the tightening direction, and an uneven clamping force is produced around the flange. An uneven clamping force encountered in previous link clamp designs made these clamps unusable for many applications such as in a rotary magnetron. The sliding band and floating links of the present invention eliminate this problem. Embodiments of the inventive clamps have ‘v’ flexures between the links to keep the links evenly apart before and during installation and tightening of the floating band. The ‘v’ flexures work to keep the links positioned, and also allow the links to move inward without binding. The ‘v’ flexures are also vacuum and high heat compatible.
Embodiments of the inventive clamp utilize stabilizer pins at the clamp handle. In embodiments, the stabilizer pin prevents an undesirable condition when rotating the handle down, where the downward force on the handle causes that link to dig down and ‘over clamp’ that portion of the flange, and as tightening progresses clamping pressures do not even out and the end result is uneven clamping on the flange, with clamping pressure greater near the handle.
Embodiments of the inventive clamp are compact with a small outside radius, which is important in tight applications, such as in rotary magnetrons where space is very limited in the chambers and shields and other components are very close to the spinning rotary target tubes, as will be shown in
Embodiments of the inventive clamp also have an optional shield cover. In a non-limiting application of the inventive clamp, an electrically floating shield covers the link clamp from getting covered in sputter debris. The clamp has no protruding parts so the shield cover can be annular and compact. In an embodiment, the shield may be set off the clamp by alumina insulators. In an additional embodiment, the shield could also be just metal on metal with the inventive clamp.
Referring to
A process is provided by two articles are joined together by bring the two articles into terminal end contact to form a joint. An inventive clamp is used to circumvent the joint. By tightening the clamp, a superior degree of external clamping pressure uniformity is achieved relative to conventional clamps. With resort to conventional force sensors, the pressure applied by the clamp at multiple points on a surface of the joint is monitored.
The foregoing description is illustrative of particular embodiments of the invention, but is not meant to be a limitation upon the practice thereof. The following claims, including all equivalents thereof, are intended to define the scope of the invention.
This application claims priority of United States Provisional Patent Application Ser. No. 61/703,249 filed Sep. 19, 2012, which is incorporated herein by reference. The present invention generally relates to clamps. More specifically, the present invention discloses a clamp incorporating a plurality of flexible links with ‘v’ flexures between the links to maintain even spacing of the links before and during installation, where each link has multiple segments joined at a center flexure point, and a floating band surrounding the links to adjust an evenly distributed clamping pressure that is produced along a circumference of contact points provided by the link segments.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/060746 | 9/19/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61703249 | Sep 2012 | US |