The present disclosure relates to chemical mechanical polishing (CMP), and more specifically to the use of steam for cleaning or preheating during CMP.
An integrated circuit is typically formed on a substrate by the sequential deposition of conductive, semiconductive, or insulative layers on a semiconductor wafer. A variety of fabrication processes require planarization of a layer on the substrate. For example, one fabrication step involves depositing a filler layer over a non-planar surface and planarizing the filler layer. For certain applications, the filler layer is planarized until the top surface of a patterned layer is exposed. For example, a metal layer can be deposited on a patterned insulative layer to fill the trenches and holes in the insulative layer. After planarization, the remaining portions of the metal in the trenches and holes of the patterned layer form vias, plugs, and lines to provide conductive paths between thin film circuits on the substrate. As another example, a dielectric layer can be deposited over a patterned conductive layer, and then planarized to enable subsequent photolithographic steps.
Chemical mechanical polishing (CMP) is one accepted method of planarization. This planarization method typically requires that the substrate be mounted on a carrier head. The exposed surface of the substrate is typically placed against a rotating polishing pad. The carrier head provides a controllable load on the substrate to push it against the polishing pad. A polishing slurry with abrasive particles is typically supplied to the surface of the polishing pad.
In one aspect, a method of temperature control for a chemical mechanical polishing system includes directing a gas that includes steam from an orifice onto a component in the polishing system while the component is spaced away from a polishing pad of the polishing system to raise a temperature of the component to an elevated temperature, and before the component returns to an ambient temperature, moving the component into contact with the polishing pad.
Implementations can include one or more of the following features.
A temperature of the component can be measured while the steam is directed onto the component and halting the steam when the component reaches a target temperature. A temperature of the polishing pad can be measured, and the target temperature can be based on the measured temperature.
A timer can be set, and the steam can be halted at expiration of the timer.
The temperature of the component can be approximately equal to a temperature of the polishing pad when the component is placed into contact with the polishing pad. The elevated temperature can be greater than the temperature of the polishing pad.
The gas can have a temperature of 70-100° C. The steam can be a dry steam. The gas can consist of steam.
The component can be positioned to be spaced from the polishing pad to direct steam onto the component at the treatment station. The component can be rotated in the treatment station as steam is directed onto the component. The component can move vertically in the treatment station as steam is directed onto the component.
The component can include a carrier head or a substrate to be polished. The steam can be directed onto the component at a substrate transfer station. The steam can be directed onto the component at an inter-platen station.
The component can include a conditioner disk or conditioner head. The steam can be directed onto the component at a conditioner disk cleaning cup.
In another aspect, a chemical mechanical polishing system includes a platen to support a polishing pad, a boiler, a treatment station spaced from the polishing pad and having a plurality of nozzles to direct steam from the boiler onto a body positioned in the treatment station, an actuator to move the component from the treatment station into contact with the polishing pad, and a controller configured to cause the treatment station to direct the steam onto the component to raise a temperature of the component to an elevated temperature, and to cause the actuator to move the component from the treatment station into contact with the polishing pad before the component returns to an ambient temperature.
Implementations can include one or more of the following features.
The component can include a carrier head or a substrate. The component can include a conditioner head or conditioner disk.
Possible advantages may include, but are not limited to, one or more of the following.
Steam, i.e., gaseous H2O generated by boiling, can be generated in sufficient quantities with low levels of contaminants. Additionally, a steam generator can generate steam that is substantially pure gas, e.g., has little to no suspended liquid in the steam. Such steam, also known as dry steam, can provide a gaseous form of H2O that has a higher energy transfer and lower liquid content than other steam alternatives such as flash steam.
Various components of a CMP apparatus can be quickly and efficiently cleaned. Steam can be more effective than liquid water in dissolving or otherwise removing polishing by-products, dried slurry, debris, etc., from surfaces in the polishing system. Thus, defects on the substrate can be reduced.
Various components of a CMP apparatus can be pre-heated. Temperature variation across the polishing pad and thus across the substrate can be reduced, thereby reducing within-wafer non-uniformity (WIWNU). Temperature variation over a polishing operation can be reduced. This can improve predictability of polishing during the CMP process. Temperature variations from one polishing operation to another polishing operation can be reduced. This can improve wafer-to-wafer uniformity.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Other aspects, features, and advantages will be apparent from the description and drawings, and from the claims.
Chemical mechanical polishing operates by a combination of mechanical abrasion and chemical etching at the interface between the substrate, polishing liquid, and polishing pad. During the polishing process, a significant amount of heat is generated due to friction between the surface of the substrate and the polishing pad. In addition, some processes also include an in-situ pad conditioning step in which a conditioning disk, e.g., a disk coated with abrasive diamond particles, is pressed against the rotating polishing pad to condition and texture the polishing pad surface. The abrasion of the conditioning process can also generate heat. For example, in a typical one minute copper CMP process with a nominal downforce pressure of 2 psi and removal rate of 8000 Å/min, the surface temperature of a polyurethane polishing pad can rise by about 30° C.
On the other hand, if the polishing pad has been heated by previous polishing operations, when a new substrate is initially lowered into contact with the polishing pad, it is at a lower temperature, and thus can act as a heat sink. Similarly, slurry dispensed onto the polishing pad can act as a heat sink. Overall, these effects result in variation of the temperature of the polishing pad spatially and over time.
Both the chemical-related variables in a CMP process, e.g., as the initiation and rates of the participating reactions, and the mechanical-related variables, e.g., the surface friction coefficient and viscoelasticity of the polishing pad, are strongly temperature dependent. Consequently, variation in the surface temperature of the polishing pad can result in changes in removal rate, polishing uniformity, erosion, dishing, and residue. By more tightly controlling the temperature of the surface of the polishing pad during polishing, variation in temperature can be reduced, and polishing performance, e.g., as measured by within-wafer non-uniformity or wafer-to-wafer non-uniformity, can be improved.
Furthermore, debris and slurry can accumulate on various components of the CMP apparatus during CMP. If these polishing by-products later come loose from the components, they can scratch or otherwise damage the substrate, resulting in an increase in polishing defects. Water jets have been used to clean various components of the CMP apparatus system. However, a large quantity of water is needed to perform this task.
A technique that could address one or more of these issues is to clean and/or pre-heat various components of the CMP apparatus using steam, i.e., gaseous H2O generated by boiling. Less steam may be required to impart an equivalent amount of energy as hot water, e.g., due to the latent heat of the steam. Additionally, steam can be sprayed at high velocities to clean and/or preheat the components. In addition, steam can be more effective than liquid water in dissolving or otherwise removing polishing by-products.
The polishing apparatus 2 also includes a multiplicity of carrier heads 70, each of which is configured to carry a substrate. The polishing apparatus 2 also includes a transfer station 6 for loading and unloading substrates from the carrier heads. The transfer station 6 can include a plurality of load cups 8, e.g., two load cups 8a, 8b, adapted to facilitate transfer of a substrate between the carrier heads 70 and a factory interface (not shown) or other device (not shown) by a transfer robot 9. The load cups 8 generally facilitate transfer between the robot 9 and each of the carrier heads 70 by loading and unloading the carrier heads 70.
The stations of the polishing apparatus 2, including the transfer station 6 and the polishing stations 20, can be positioned at substantially equal angular intervals around the center of the platform 4. This is not required, but can provide the polishing apparatus with a good footprint.
For a polishing operation, one carrier head 70 is positioned at each polishing station. Two additional carrier heads can be positioned in the loading and unloading station 6 to exchange polished substrates for unpolished substrates while the other substrates are being polished at the polishing stations 20.
The carrier heads 70 are held by a support structure that can cause each carrier head to move along a path that passes, in order, the first polishing station 20a, the second polishing station 20b, the third polishing station 20c, and the fourth polishing station 20d. This permits each carrier head to be selectively positioned over the polishing stations 20 and the load cups 8.
In some implementations, each carrier head 70 is coupled to a carriage 78 that is mounted to a support structure 72. By moving a carriage 78 along the support structure 72, e.g., a track, the carrier head 70 can be positioned over a selected polishing station 20 or load cup 8. Alternatively, the carrier heads 70 can be suspended from a carousel, and rotation of the carousel moves all of the carrier heads simultaneously along a circular path.
Each polishing station 20 of the polishing apparatus 2 can include a port, e.g., at the end of a slurry supply arm 39, to dispense polishing liquid 38 (see
Referring to
The polishing station 20 can include a pad conditioner 90 with a conditioner disk 92 (see
A carrier head 70 is operable to hold a substrate 10 against the polishing pad 30. The carrier head 70 is suspended from a support structure 72, e.g., a carousel or a track, and is connected by a drive shaft 74 to a carrier head rotation motor 76 so that the carrier head can rotate about an axis 71. Optionally, the carrier head 70 can oscillate laterally, e.g., on sliders on the carousel, by movement along the track, or by rotational oscillation of the carousel itself.
The carrier head 70 can include a flexible membrane 80 having a substrate mounting surface to contact the back side of the substrate 10, and a plurality of pressurizable chambers 82 to apply different pressures to different zones, e.g., different radial zones, on the substrate 10. The carrier head 70 can include a retaining ring 84 to hold the substrate. In some implementations, the retaining ring 84 may include a lower plastic portion 86 that contacts the polishing pad, and an upper portion 88 of a harder material, e.g., a metal.
In operation, the platen is rotated about its central axis 25, and the carrier head is rotated about its central axis 71 (see arrow B in
Referring to
Moreover, the slurry can cake onto the carrier head 70, or the sodium hydroxide in the slurry can crystallize on one of the surfaces of the carrier head 70 and/or the substrate 10 and cause the surface of the carrier head 70 to be corrode. The caked-on slurry is difficult to remove and the crystallized sodium hydroxide is difficult to return to a solution.
Similar problems occur with the conditioner head 92, e.g., particulates can form on the conditioner head 92, the slurry can cake onto the conditioner head 92, or the sodium hydroxide in the slurry can crystallize on one of the surfaces of the conditioner head 92.
One solution is to clean the components, e.g., the carrier head 70 and conditioner head 92, with a liquid water jet. However, the components can be difficult to clean with a water jet alone, and a substantial amount of water may be necessary. Additionally, the components that contact the polishing pad 30, e.g., the carrier head 70, substrate 10 and conditioner disk 92, can act as heat sinks that hinder uniformity of the polishing pad temperature.
To address these problems, as shown in the
A steam treating assembly 200 can be part of the load cup 8, e.g., part of the load cup 8a or 8b. Alternatively or in addition, a steam treating assembly 200 can be provided at one or more inter-platen stations 9 located between adjacent polishing stations 20.
The load cup 8 includes a pedestal 204 to hold the substrate 10 during a loading/unloading process. The load cup 8 also includes a housing 206 that surrounds or substantially surrounds the pedestal 204. Multiple nozzles 225 are supported by the housing 206 or a separate support to deliver steam 245 to a carrier head and/or substrate positioned in a cavity 208 defined by the housing 206. For example, nozzles 225 can be positioned on one or more interior surfaces of the housing 206, e.g., a floor 206a and/or a side wall 206b and/or a ceiling of the cavity. The nozzles 225 can be oriented to direct steam inwardly into the cavity 206. The steam 245 can be generated by using the steam generator 410, e.g., a boiler such as a flash boiler or a regular boiler. A drain 235 can permit excess water, cleaning solution, and cleaning by-product to pass through to prevent accumulation in the load cup 8.
An actuator provides relative vertical motion between the housing 206 and the carrier head 70. For example, a shaft 210 can support the housing 206 and be vertically actuatable to raise and lower the housing 206. Alternatively, the carrier head 70 can move vertically. The pedestal 205 can be on-axis with the shaft 210. The pedestal 204 can be vertically movable relative to the housing 206.
In operation, the carrier head 70 can be positioned over the load cup 8, and the housing 206 can be raised (or the carrier head 70 lowered) so that the carrier head 70 is partially within the cavity 208. A substrate 10 can begin on the pedestal 204 and be chucked onto the carrier head 70, and/or begin on the carrier head 70 and be dechucked onto the pedestal 204.
Steam is directed through the nozzles 225 to clean and/or preheat one or more surfaces of the substrate 10 and/or carrier head 70. For example, one or more of the nozzles can be positioned to direct steam onto the outer surface of the carrier head 70, the outer surface 84a of the retaining ring 84, and/or the bottom surface 84b of the retaining ring 84. One or more of the nozzles can be positioned to direct steam onto a front surface of a substrate 10 being held by the carrier head 70, i.e., the surface to be polished, or onto the bottom surface of the membrane 80 if no substrate 10 is being supported on the carrier head 70. One or more nozzles can be positioned below the pedestal 204 to direct steam upward onto the front surface of a substrate 10 positioned on pedestal 204. One or more nozzles can be positioned above the pedestal 204 to direct steam downward onto a back surface of a substrate 10 positioned on pedestal 204. The carrier head 70 can rotate within the load cup 8 and/or move vertically relative to the load cup 8 to allow the nozzles 225 to treat different areas of the carrier head 70 and/or substrate 10. The substrate 10 can rest on the pedestal 205 to allow for the interior surfaces of the carrier head 70 to be steam treated, e.g., the bottom surface of the membrane 82, or the inner surfaces of the retaining ring 84.
Steam is circulated from a steam source through a supply line 230 through the housing 206 to the nozzles 225. The nozzles 225 can spray steam 245 to remove organic residues, by-product, debris, and slurry particles left on the carrier head 70 and the substrate 10 after each polishing operation. The nozzles 225 can spray steam 245 to heat the substrate 10 and/or carrier head 70.
An inter-platen station 9 can be constructed and operated similarly, but need not have a substrate support pedestal.
The steam 245 delivered by the nozzles 225 can have an adjustable temperature, pressure, and flow rate to vary the cleaning and preheating of the carrier head 70 and the substrate 10. In some implementations, the temperature, pressure and/or flow rate can be independently adjustable for each nozzle or between groups of nozzles.
For example, the temperature of the steam 245 can be 90 to 200° C. when the steam 245 is generated (e.g., in the steam generator 410). The temperature of the steam 245 can be between 90 to 150° C. when the steam 245 is dispensed by the nozzles 225, e.g., due to heat loss in transit. In some implementations, steam is delivered by the nozzles 225 at a temperature of 70-100° C., e.g., 80-90° C. In some implementations, the steam delivered by the nozzles is superheated, i.e., is at a temperature above the boiling point.
The flow rate of the steam 245 can be 1-1000 cc/minute when the steam 245 is delivered by the nozzles 225, depending on heater power and pressure. In some implementations, the steam is mixed with other gases, e.g., is mixed with normal atmosphere or with N2. Alternatively, the fluid delivered by the nozzles 225 is substantially purely water. In some implementations, the steam 245 delivered by the nozzles 225 is mixed with liquid water, e.g., aerosolized water. For example, liquid water and steam can be combined at a relative flow ratio (e.g., with flow rates in sccm) 1:1 to 1:10. However, if the amount of liquid water is low, e.g., less than 5 wt %, e.g., less than 3 wt %, e.g., less than 1 wt %, then the steam will have superior heat transfer qualities. Thus, in some implementations the steam is dry steam, i.e., is substantially free of water droplets.
To avoid degrading the membrane with heat, water can be mixed with the steam 245 to reduce the temperature, e.g., to around 40-50° C. The temperature of the steam 245 can be reduced by mixing cooled water into the steam 245, or mixing water at the same or substantially the same temperature into the steam 245 (as liquid water transfers less energy than gaseous water).
In some implementations, a temperature sensor 214 can be installed in or adjacent the steam treating assembly 200 to detect the temperature of the carrier head 70 and/or the substrate 10. A signal from the sensor 214 can be received by a controller 12 to monitor the temperature of the carrier head 70 and/or the substrate 10. The controller 12 can control delivery of the steam by the assembly 100 based on the temperature measurement from the temperature sensor 214. For example, the controller can receive a target temperature value. If the controller 12 detects that the temperature measurement exceeds a target value, the controller 12 halt the flow of steam. As another example, the controller 12 can reduce the steam delivery flow rate and/or reduce the steam temperature, e.g., to prevent overheating of the components during cleaning and/or preheating.
In some implementations, the controller 12 includes a timer. In this case, the controller 12 can start when delivery of the steam begins, and can halt delivery of steam upon expiration of the timer. The timer can be set based on empirical testing to attain a desired temperature of the carrier head 70 and substrate 10 during cleaning and/or preheating.
The conditioner head 93 and conditioner disk 92 can be lowered at least partially into the housing 255 to be steam treated. When the conditioner disk 92 is to be returned to operation, the conditioner head 93 and conditioning disk 92 are lifted out of the housing 255 and positioned on the polishing pad 30 to condition the polishing pad 30. When the conditioning operation is completed, the conditioner head 93 and conditioning disk 92 are lifted off the polishing pad and swung back to the housing cup 255 for the polishing by-product on the conditioner head 93 and conditioner disk 92 to be removed. In some implementations, the housing 255 is vertical actuatable, e.g., is mounted to a vertical drive shaft 260.
The housing 255 is positioned to receive the pad conditioner disk 92 and conditioner head 93. The conditioner disk 92 and conditioner head 93 can rotate within the housing 255, and/or move vertically in the housing 255, to allow the nozzles 275 to steam treat the various surfaces of the conditioning disk 92 and conditioner head 93.
The steam 295 delivered by the nozzles 275 can have an adjustable temperature, pressure, and/or flow rate. In some implementations, the temperature, pressure and/or flow rate can be independently adjustable for each nozzle or between groups of nozzles. This permits variation and thus more effective the cleaning of the conditioner disk 92 or conditioner head 93.
For example, the temperature of the steam 295 can be 90 to 200° C. when the steam 295 is generated (e.g., in the steam generator 410). The temperature of the steam 295 can be between 90 to 150° C. when the steam 295 is dispensed by the nozzles 275, e.g., due to heat loss in transit. In some implementations, steam can be delivered by the nozzles 275 at a temperature of 70-100° C., e.g., 80-90° C. In some implementations, the steam delivered by the nozzles is superheated, i.e., is at a temperature above the boiling point.
The flow rate of the steam 2945 can be 1-1000 cc/minute when the steam 295 is delivered by the nozzles 275. In some implementations, the steam is mixed with other gases, e.g., is mixed with normal atmosphere or with N2. Alternatively, the fluid delivered by the nozzles 275 is substantially purely water. In some implementations, the steam 295 delivered by the nozzles 275 is mixed with liquid water, e.g., aerosolized water. For example, liquid water and steam can be combined at a relative flow ratio (e.g., with flow rates in sccm) 1:1 to 1:10. However, if the amount of liquid water is low, e.g., less than 5 wt %, e.g., less than 3 wt %, e.g., less than 1 wt %, then the steam will have superior heat transfer qualities. Thus, in some implementations the steam is dry steam, i.e., does not include water droplets.
In some implementations, a temperature sensor 264 can be installed in or adjacent the housing 255 to detect the temperature of the conditioner head 93 and/or conditioner disk 92. The controller 12 can receive a signal from the temperature sensor 264 to monitor the temperature of the conditioner head 93 or conditioner disk 92, e.g., to detect the temperature of the pad conditioner disk 92. The controller 12 can control delivery of the steam by the assembly 250 based on the temperature measurement from the temperature sensor 264. For example, the controller can receive a target temperature value. If the controller 12 detects that the temperature measurement exceeds a target value, the controller 12 halt the flow of steam. As another example, the controller 12 can reduce the steam delivery flow rate and/or reduce the steam temperature, e.g., to prevent overheating of the components during cleaning and/or preheating.
In some implementations, the controller 12 uses a timer. In this case, the controller 12 can start the time when delivery of steam begins, and halt delivery of steam upon expiration of the timer. The timer can be set based on empirical testing to attain a desired temperature of the conditioner disk 92 during cleaning and/or preheating, e.g., to prevent overheating.
Referring to
In some implementations, the temperature sensor is a contact sensor rather than a non-contact sensor. For example, the temperature sensor 64 can be thermocouple or IR thermometer positioned on or in the platen 24. In addition, the temperature sensor 64 can be in direct contact with the polishing pad.
In some implementations, multiple temperature sensors could be spaced at different radial positions across the polishing pad 30 in order to provide the temperature at multiple points along the radius of the polishing pad 30. This technique could be use in the alternative or in addition to an IR camera.
Although illustrated in
The polishing system 20 also includes a temperature control system 100 to control the temperature of the polishing pad 30 and/or slurry 38 on the polishing pad. The temperature control system 100 can include a cooling system 102 and/or a heating system 104. At least one, and in some implementations both, of the cooling system 102 and heating system 104 operate by delivering a temperature-controlled medium, e.g., a liquid, vapor or spray, onto the polishing surface 36 of the polishing pad 30 (or onto a polishing liquid that is already present on the polishing pad).
For the cooling system 102, the cooling medium can be a gas, e.g., air, or a liquid, e.g., water. The medium can be at room temperature or chilled below room temperature, e.g., at 5-15° C. In some implementations, the cooling system 102 uses a spray of air and liquid, e.g., an aerosolized spray of liquid, e.g., water. In particular, the cooling system can have nozzles that generate an aerosolized spray of water that is chilled below room temperature. In some implementations, solid material can be mixed with the gas and/or liquid. The solid material can be a chilled material, e.g., ice, or a material that absorbs heat, e.g., by chemical reaction, when dissolved in water.
The cooling medium can be delivered by flowing through one or more apertures, e.g., holes or slots, optionally formed in nozzles, in a coolant delivery arm. The apertures can be provided by a manifold that is connected to a coolant source.
As shown in
The example cooling system 102 includes multiple nozzles 120 suspended from the arm 110. Each nozzle 120 is configured to spray a liquid coolant medium, e.g., water, onto the polishing pad 30. The arm 110 can be supported by a base 112 so that the nozzles 120 are separated from the polishing pad 30 by a gap 126.
Each nozzle 120 can be configured to direct aerosolized water in a spray 122 toward the polishing pad 30. The cooling system 102 can include a source 130 of liquid coolant medium and a gas source 132 (see
In some implementations, a process parameter, e.g., flow rate, pressure, temperature, and/or mixing ratio of liquid to gas, can be independently controlled for each nozzle. For example, the coolant for each nozzle 120 can flow through an independently controllable chiller to independently control the temperature of the spray. As another example, a separate pair of pumps, one for the gas and one for the liquid, can be connected to each nozzle such that the flow rate, pressure and mixing ratio of the gas and liquid can be independently controlled for each nozzle.
The various nozzles can spray onto different radial zones 124 on the polishing pad 30. Adjacent radial zones 124 can overlap. In some implementations, the nozzles 120 generate a spray impinges the polishing pad 30 along an elongated region 128. For example, the nozzle can be configured to generate a spray in a generally planar triangular volume.
One or more of the elongated region 128, e.g., all of the elongated regions 128, can have a longitudinal axis parallel to the radius that extends through the region 128 (see region 128a). Alternatively, the nozzles 120 generate a conical spray.
Although
At least some nozzles 120 can be oriented so that a central axis of the spray (see arrow A) from that nozzle is at an oblique angle relative to the polishing surface 36. In particular, spray 122 can be directed from a nozzle 120 to have a horizontal component in a direction opposite to the direction of motion of polishing pad 30 (see arrow A) in the region of impingement caused by rotation of the platen 24.
Although
For the heating system 104, the heating medium can be a gas, e.g., steam (e.g., from the steam generator 410) or heated air, or a liquid, e.g., heated water, or a combination of gas and liquid. The medium is above room temperature, e.g., at 40-120° C., e.g., at 90-110° C. The medium can be water, such as substantially pure de-ionized water, or water that that includes additives or chemicals. In some implementations, the heating system 104 uses a spray of steam. The steam can includes additives or chemicals.
The heating medium can be delivered by flowing through apertures, e.g., holes or slots, e.g., provided by one or more nozzles, on a heating delivery arm. The apertures can be provided by a manifold that is connected to a source of the heating medium.
An example heating system 104 includes an arm 140 that extends over the platen 24 and polishing pad 30 from an edge of the polishing pad to or at least near (e.g., within 5% of the total radius of the polishing pad) the center of polishing pad 30. The arm 140 can be supported by a base 142, and the base 142 can be supported on the same frame 40 as the platen 24. The base 142 can include one or more an actuators, e.g., a linear actuator to raise or lower the arm 140, and/or a rotational actuator to swing the arm 140 laterally over the platen 24. The arm 140 is positioned to avoid colliding with other hardware components such as the polishing head 70, pad conditioning disk 92, and the slurry dispensing arm 39.
Along the direction of rotation of the platen 24, the arm 140 of the heating system 104 can be positioned between the arm 110 of the cooling system 110 and the carrier head 70. Along the direction rotation of the platen 24, the arm 140 of the heating system 104 can be positioned between the arm 110 of the cooling system 110 and the slurry delivery arm 39. For example, the arm 110 of the cooling system 110, the arm 140 of the heating system 104, the slurry delivery arm 39 and the carrier head 70 can be positioned in that order along the direction rotation of the platen 24.
Multiple openings 144 are formed in the bottom surface of the arm 140. Each opening 144 is configured to direct a gas or vapor, e.g., steam, onto the polishing pad 30. The arm 140 can be supported by a base 142 so that the openings 144 are separated from the polishing pad 30 by a gap. The gap can be 0.5 to 5 mm. In particular, the gap can be selected such that the heat of the heating fluid does not significantly dissipate before the fluid reaches the polishing pad. For example, the gap can be selected such that steam emitted from the openings does not condense before reaching the polishing pad.
The heating system 104 can include a source 148 of steam, e.g., the steam generator 410, which can be connected to the arm 140 by tubing. Each opening 144 can be configured to direct steam toward the polishing pad 30.
In some implementations, a process parameter, e.g., flow rate, pressure, temperature, and/or mixing ratio of liquid to gas, can be independently controlled for each nozzle. For example, the fluid for each opening 144 can flow through an independently controllable heater to independently control the temperature of the heating fluid, e.g., the temperature of the steam.
The various openings 144 can direct steam onto different radial zones on the polishing pad 30. Adjacent radial zones can overlap. Optionally, some of the openings 144 can be oriented so that a central axis of the spray from that opening is at an oblique angle relative to the polishing surface 36. Steam can be directed from one or more of the openings 144 to have a horizontal component in a direction opposite to the direction of motion of polishing pad 30 in the region of impingement as caused by rotation of the platen 24.
Although
The polishing system 20 can also include a high pressure rinse system 106. The high pressure rinse system 106 includes a plurality of nozzles 154, e.g., three to twenty nozzles that direct a cleaning fluid, e.g., water, at high intensity onto the polishing pad 30 to wash the pad 30 and remove used slurry, polishing debris, etc.
As shown in
Along the direction of rotation of the platen 24, the arm 150 of the rinse system 106 can be between the arm 110 of the cooling system 110 and the arm 140 of the heating system 140. For example, the arm 110 of the cooling system 110, the arm 150 of the rinse system 106, the arm 140 of the heating system 104, the slurry delivery arm 39 and the carrier head 70 can be positioned in that order along the direction rotation of the platen 24. Alternatively, along the direction of rotation of the platen 24, the arm 140 of the cooling system 104 can be between the arm 150 of the rinse system 106 and the arm 140 of the heating system 140. For example, the arm 150 of the rinse system 106, the arm 110 of the cooling system 110, the arm 140 of the heating system 104, the slurry delivery arm 39 and the carrier head 70 can be positioned in that order along the direction rotation of the platen 24.
Although
The polishing system 2 can also include the controller 12 to control operation of various components, e.g., the temperature control system 100. The controller 12 is configured to receive the temperature measurements from the temperature sensor 64 for each radial zone of the polishing pad. The controller 12 can compare the measured temperature profile to a desired temperature profile, and generate a feedback signal to a control mechanism (e.g., actuator, power source, pump, valve, etc.) for each nozzle or opening. The feedback signal is calculated by the controller 12 e.g., based on an internal feedback algorithm, to cause the control mechanism to adjust the amount of cooling or heating such that the polishing pad and/or slurry reaches (or at least moves closer to) the desired temperature profile.
In some implementations, the polishing system 20 includes a wiper blade or body 170 to evenly distribute the polishing liquid 38 across the polishing pad 30. Along the direction of rotation of the platen 24, the wiper blade 170 can be between the slurry delivery arm 39 and the carrier head 70.
Referring to
In some embodiments, the controller 12 stores a desired temperature for the polishing pad 30, the carrier head 70, and the conditioner disk 92. The controller 12 can monitor the temperature measurements from the sensors 64, 214, and 264 and control the temperature control system 100 and the steam treating assembly 200 and/or 250 to bring the temperatures of the polishing pad 30, the carrier head 70, and/or the conditioner disk 92 to the desired temperature. By causing the temperatures to achieve a desired temperature, the controller 12 can improve within-wafer uniformity and wafer-to-wafer uniformity.
Alternatively, the controller 12 can raise the temperatures of the carrier head 70 and/or the conditioner head 92 to slightly above the temperature of the polishing pad 30, to allow for the carrier head 70 and/or the conditioner head 92 to cool to the same or substantially the same temperature of the polishing pad 30 as they move from their respective cleaning and pre-heating stations to the polishing pad 30.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
This application claims priority to U.S. Provisional Application Ser. No. 62/854,298, filed on May 29, 2019, the entire disclosure of which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4450652 | Walsh | May 1984 | A |
5088242 | Lubbering et al. | Feb 1992 | A |
5196353 | Sandhu et al. | Mar 1993 | A |
5351360 | Suzuki et al. | Oct 1994 | A |
5597442 | Chen et al. | Jan 1997 | A |
5643050 | Chen | Jul 1997 | A |
5709593 | Guthrie | Jan 1998 | A |
5722875 | Iwashita et al. | Mar 1998 | A |
5738574 | Tolles et al. | Apr 1998 | A |
5762544 | Zuniga et al. | Jun 1998 | A |
5765394 | Rhoades | Jun 1998 | A |
5851135 | Sandhu et al. | Dec 1998 | A |
5851846 | Matsui et al. | Dec 1998 | A |
5868003 | Simas et al. | Feb 1999 | A |
5873769 | Chiou et al. | Feb 1999 | A |
5957750 | Brunelli | Sep 1999 | A |
5964952 | Kunze-Concewitz | Oct 1999 | A |
6000997 | Kao et al. | Dec 1999 | A |
6012967 | Satake et al. | Jan 2000 | A |
6023941 | Rhoades | Feb 2000 | A |
6095898 | Hennofer et al. | Aug 2000 | A |
6121144 | Marcyk et al. | Sep 2000 | A |
6151913 | Lewis et al. | Nov 2000 | A |
6159073 | Wiswesser et al. | Dec 2000 | A |
6206760 | Chang et al. | Mar 2001 | B1 |
6257954 | Ng et al. | Jul 2001 | B1 |
6257955 | Springer et al. | Jul 2001 | B1 |
6264789 | Pandey et al. | Jul 2001 | B1 |
6280289 | Wiswesser et al. | Aug 2001 | B1 |
6315635 | Lin | Nov 2001 | B1 |
6332835 | Nishimura et al. | Dec 2001 | B1 |
6399501 | Birang et al. | Jun 2002 | B2 |
6422927 | Zuniga | Jul 2002 | B1 |
6460552 | Lorimer | Oct 2002 | B1 |
6461980 | Cheung et al. | Oct 2002 | B1 |
6494765 | Gitis et al. | Dec 2002 | B2 |
6508258 | Lorimer | Jan 2003 | B1 |
6543251 | Gasteyer, III et al. | Apr 2003 | B1 |
6640151 | Somekh et al. | Oct 2003 | B1 |
6647309 | Bone | Nov 2003 | B1 |
6776692 | Zuniga et al. | Aug 2004 | B1 |
6829559 | Bultman et al. | Dec 2004 | B2 |
7008295 | Wiswesser et al. | Mar 2006 | B2 |
7016750 | Steinkirchner et al. | Mar 2006 | B2 |
7196782 | Fielden et al. | Mar 2007 | B2 |
7797855 | Fukuoka | Sep 2010 | B2 |
8658937 | Harte et al. | Feb 2014 | B2 |
9005999 | Xu et al. | Apr 2015 | B2 |
9475167 | Maruyama et al. | Oct 2016 | B2 |
9579768 | Motoshima et al. | Feb 2017 | B2 |
9630295 | Peng et al. | Apr 2017 | B2 |
9782870 | Maruyama et al. | Oct 2017 | B2 |
10035238 | Maruyama et al. | Jul 2018 | B2 |
11446711 | Wu et al. | Sep 2022 | B2 |
20010055940 | Swanson | Dec 2001 | A1 |
20020039874 | Hecker et al. | Apr 2002 | A1 |
20020058469 | Pinheiro et al. | May 2002 | A1 |
20030055526 | Avanzino et al. | Mar 2003 | A1 |
20030211816 | Liu et al. | Nov 2003 | A1 |
20040029494 | Banerjee et al. | Feb 2004 | A1 |
20040097176 | Cron | May 2004 | A1 |
20050024047 | Miller et al. | Feb 2005 | A1 |
20050042877 | Salfelder et al. | Feb 2005 | A1 |
20050211377 | Chen et al. | Sep 2005 | A1 |
20060030165 | Ingle | Feb 2006 | A1 |
20070238395 | Kimura et al. | Oct 2007 | A1 |
20090258573 | Muldowney et al. | Oct 2009 | A1 |
20100047424 | Cousin et al. | Feb 2010 | A1 |
20100081360 | Xu et al. | Apr 2010 | A1 |
20100227435 | Park et al. | Sep 2010 | A1 |
20100279435 | Xu et al. | Nov 2010 | A1 |
20100291841 | Sung et al. | Nov 2010 | A1 |
20110159782 | Sone et al. | Jun 2011 | A1 |
20120034846 | Minamihaba et al. | Feb 2012 | A1 |
20120040592 | Chen et al. | Feb 2012 | A1 |
20120190273 | Ono et al. | Jul 2012 | A1 |
20130023186 | Motoshima et al. | Jan 2013 | A1 |
20130045596 | Eda et al. | Feb 2013 | A1 |
20130331005 | Gawase et al. | Dec 2013 | A1 |
20140187122 | Ishibashi | Jul 2014 | A1 |
20140323017 | Tang et al. | Oct 2014 | A1 |
20150090694 | Hashimoto et al. | Apr 2015 | A1 |
20150196988 | Watanabe | Jul 2015 | A1 |
20150224621 | Motoshima et al. | Aug 2015 | A1 |
20150224623 | Xu et al. | Aug 2015 | A1 |
20170081065 | Fitzgerald et al. | Mar 2017 | A1 |
20170232572 | Brown | Aug 2017 | A1 |
20170320188 | Kweon et al. | Nov 2017 | A1 |
20180236631 | Eto et al. | Aug 2018 | A1 |
20180281150 | Chen et al. | Oct 2018 | A1 |
20190096708 | Sharma | Mar 2019 | A1 |
20190143476 | Wu | May 2019 | A1 |
20200001426 | Soundararajan et al. | Jan 2020 | A1 |
20200001427 | Soundararajan et al. | Jan 2020 | A1 |
20200262024 | Chang et al. | Aug 2020 | A1 |
20200376522 | Wu et al. | Dec 2020 | A1 |
20200376523 | Wu et al. | Dec 2020 | A1 |
20200406310 | Soundararajan et al. | Dec 2020 | A1 |
20210280410 | Otsuji | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
207171777 | Apr 2018 | CN |
3532261 | Mar 1987 | DE |
0323939 | Jun 1992 | EP |
H11-033897 | Feb 1999 | JP |
2003-071709 | Mar 2003 | JP |
2003-197586 | Jul 2003 | JP |
2004-202666 | Jul 2004 | JP |
2004-306173 | Nov 2004 | JP |
2005-311246 | Nov 2005 | JP |
2013-042066 | Feb 2013 | JP |
2018-046260 | Mar 2018 | JP |
10-2000-0025767 | May 2000 | KR |
20-0241537 | Oct 2001 | KR |
20-0326835 | Sep 2003 | KR |
2006-0076332 | Jul 2006 | KR |
2009-0046468 | May 2009 | KR |
2012-0084671 | Jul 2012 | KR |
10-1816694 | Jan 2018 | KR |
2020-0056015 | May 2020 | KR |
201802994 | Jan 2018 | TW |
WO 97-21057 | Jun 1997 | WO |
WO 0217411 | Feb 2002 | WO |
WO 2014113220 | Jul 2014 | WO |
Entry |
---|
Banerjee et al., “Post CMP Aqueous and CO2 Cryogenic Cleaning Technologies for Low k and Copper Integration,” CMPUG Symposium, Poster Abstract, Jan. 2015, 2 pages. |
Sampurno et al, “Pad Surface Thermal Management during Copper Chemical Mechanical Planarization” Presented. Oct. 1, 2015 at Iie International Conference on Planarization/CMP Technology, Sep. 30, 2015-Oct. 2, 2015, Session D-4, Chandler, AZ, USA, 24 pages. |
Wu et al., “Pad Surface Thermal Management during Copper Chemical: Mechanical. Planarization” ECS Journal of Solid State Science and Technology, Apr. 2015, 4(7):p. 206-12. |
Number | Date | Country | |
---|---|---|---|
20200376626 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62854298 | May 2019 | US |