UV blocking and crack protecting passivation layer

Information

  • Patent Application
  • 20070187813
  • Publication Number
    20070187813
  • Date Filed
    February 10, 2006
    18 years ago
  • Date Published
    August 16, 2007
    17 years ago
Abstract
A semiconductor device comprises a substrate, a patterned metal conductor layer over the substrate, and a passivation layer. The passivation layer may comprise a UV blocking, protection layer, over at least a portion of the substrate and patterned metal conductor layers, and a separation layer between the patterned metal conductor layer and the UV protection layer. The passivation layer may also comprise a gap-filling, hydrogen-blocking layer over the substrate, the patterned metal conductor layer and any UV protection layer.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Various embodiments relate in general to semiconductor devices and to processes for fabricating semiconductor devices. More particularly, various embodiments relate to semiconductors having a passivation layer including one or both of an ultraviolet radiation (UV) blocking layer and a compressively stressed, crack-preventing layer and also to processes for fabricating such semiconductor devices.


2. Description of Related Art


As device geometry has continued to shrink, dimensional requirements of devices become more exacting while the aspect ratios of etching or gap filling rise. Plasma process technology is indispensable for ULSI fabrication that meets these demands. Examples of plasma process applications include plasma implantation, plasma sputtering, physical vapor deposition (PVD), dry etching, and chemical vapor deposition (CVD), for example, plasma assisted CVD, plasma-enhancement CVD, and high-density plasma CVD. During plasma processing, photons are generated with wavelengths in and above the UV spectrum.


Passivation layers are typically deposited, using plasma processes, over the top of the wafer after the final patterned conductor layer has been made. The passivation layer is used to protect the device structures from mechanical damage, such as scratching, as well as chemical damage, such as from moisture and other contaminants. With some types of devices it is important that the passivation layer permit the passage of UV to the device; for example, some flash memory devices need a UV-erase process to erase the initial charge within the floating gate. However, with many other devices and structures it is necessary to prevent the passage of UV to the devices or structures, such as through the passivation layer. U.S. patent application Ser. No. 10/858,352 entitled Ultraviolet Blocking Layer discloses the use of a super silicon rich oxide layer as a UV blocking layer. The disclosure of this application as it relates to the theory, composition and process steps involved in the deposition of a UV blocking layer is incorporated by reference.


BRIEF SUMMARY OF THE INVENTION

A first aspect of the invention is directed to a semiconductor device comprising a substrate, a patterned metal conductor layer over the substrate, and a passivation layer. The passivation layer comprises an ultraviolet (UV) protection layer over at least a portion of the substrate and patterned metal conductor layers, a separation layer between the patterned metal conductor layer and the UV protection layer. The UV protection layer is constructed for UV blocking. According to some embodiments, the separation layer directly contacts the UV protection layer, the patterned metal conductor layer and the substrate. The separation layer may comprise a SiON layer having a thickness of at least 50 Å. The UV protection layer may block at least 70% of radiation having a wavelength of 400 nm or less. The UV protection layer may have an extinction coefficient of at least about 1.3 for a range of wavelengths less than 400 nanometers. The UV protection layer may have an extinction coefficient of at least about 1.7 for a wavelength of 248 nanometers. The UV protection layer may comprise a silicon rich oxide layer having a silicon atomic concentration of at least 70%, and preferably a silicon atomic concentration of at least 85%. The silicon rich oxide layer may have a ratio of silicon concentration to oxygen concentration of at least about 10. The passivation layer may further comprise a gap-filling, hydrogen-blocking layer over the UV protection layer.


A second aspect of the invention is directed to a semiconductor device comprising a substrate, a patterned conductor layer over the substrate, and a passivation layer over at least a portion of the substrate and the patterned conductor layer. The passivation layer comprises a gap-filling, hydrogen-blocking layer and a compressively stressed layer over at least a portion of the gap-filling, hydrogen-blocking layer. According to some embodiments of the invention the gap-filling, hydrogen-blocking layer may comprise a silicon rich oxide layer. The gap-filling, hydrogen-blocking layer may have a silicon atomic concentration of 40%-60%. The gap-filling, hydrogen-blocking layer may have a refraction index (RI) at least about 1.5 for a range of wavelengths less than 400 nanometers.


Various features and advantages of the invention will appear from the following description in which the preferred embodiments have been set forth in detail in conjunction with the accompanying drawings.




BRIEF DESCRIPTION OF THE DRAWINGS

The drawing figure is a simplified cross-sectional view of a portion of a semiconductor device made according to the invention.




DETAILED DESCRIPTION OF THE INVENTION

The following description of the invention will typically be with reference to specific structural embodiments and methods. It is to be understood that there is no intention to limit the invention to the specifically disclosed embodiments but that the invention may be practiced using other features, elements, methods and embodiments.


The use of a super silicon rich oxide layer as a UV protection layer to block UV may create a bridge issue when used with a patterned metal conductor layer. The high concentration of silicon in the UV protection layer can result in metal atoms, such as aluminum, diffusing from the metal conductor layer into the silicon rich UV protection layer creating a metal bridge defect. The present invention addresses this issue. Another issue with regard to passivation layers relates to cracking of the passivation layer. The present invention also addresses this passivation layer cracking issue.


Ultraviolet radiation includes electromagnetic radiation at wavelengths no longer than 400 nm. A subset of one or more wavelengths no longer than 400 nm is a range of wavelengths less than 400 nm.


The Beer-Lambert Law describes the absorption of electromagnetic radiation by a layer as follows:

I=I0*ed


where: I0 represents the initial intensity of the electromagnetic radiation prior to transiting the layer; I represents the intensity of the electromagnetic radiation once having transited the layer, d represents the layer thickness; and a represents the absorption coefficient.


The ratio (I/I0) indicates the percentage of electromagnetic radiation that successfully transits the layer.


The absorption coefficient can also be expressed as follows:

α=(4πK)/λ


where K represents the extinction coefficient and λ represents the wavelength. The extinction coefficient K is a dimensionless quantity.



FIG. 1 is a simplified cross-sectional view of a portion of a semiconductor device 10 made according to the invention. Device 10 includes a substrate 12 upon which a patterned metal conductor layer 14 has been deposited. Layer 14 includes conductors 16, 18 having a height 20 separated by spacing 22 to create a gap 24 between conductors 16, 18.


The passivation layer for device 10 begins with a separation layer 26 deposited on substrate 12 and layer 14. Separation layer 26 is preferably made of SiON. Next, a UV protection layer 28 is deposited on separation layer 26. Layer 28 is a high Si content oxide layer, sometimes called silicon rich oxide or Super Si Rich Oxide (SSRO). Its silicon atomic concentration is at least 70% and preferably more than 85%. Layer 28 has an extinction coefficient (K) of at least about 1.3 for a range of wavelengths less than 400 nm; in one preferred embodiment layer 28 has an extinction coefficient (K) of approximately 1.7 at a wavelength of 248 nm. UV protection layer 28 has a ratio of silicon concentration to oxygen concentration sufficient for ultraviolet blocking; this ratio is preferably at least about 10. This Si-rich oxide layer 28 is used to prevent UV light damage to the semiconductor components of device 10 by virtue of its high extinction coefficient property. Therefore, the effectiveness of the SSRO liner (layer 28) to block UV can be defined by one or more of the following: (1) an Si atomic concentration of greater than 70% and preferably greater than 85%, (2) an extinction coefficient (K) of at least about 1.3 for a range of wavelengths less than 400 nm, and preferably at least 1.7 at 248 nm, and (3) a ratio of silicon concentration to oxygen concentration of at least about 10. The extinction coefficient technique is typically preferred to monitor the process. However, Si atomic concentration technique or the silicon to oxygen concentration ratio technique may be preferred to check product samples.


It has been found that because of the high concentration of Si in UV protection layer 28, without the use of separation layer 26, metal atoms from patterned metal conductor layer 14, such as Al atoms, will tend to diffuse into layer 28 creating a bridge defect. Separation layer 26 is therefore used to separate the SSRO layer 28 from patterned metal conductor layer 14. Doing so helps to prevent diffusion of the metal atoms from patterned metal conductor layer 14 into UV protection layer 28 thus helping to eliminate the metal bridge issue.


Next, a gap-filling, hydrogen-blocking layer 30 is deposited on layer 28. Layer 30 is a silicon rich oxide layer (sometimes called Si Rich Oxide or SRO). The Si atomic concentration of SRO layer 30 is typically much lower, such as about 30-50% lower, than the Si atomic concentration of SSRO layer 28. In some embodiments the silicon atomic concentration of SRO layer 30 may be 40% to 60%. Because of its higher Si concentration, layer 30 blocks hydrogen better than general SiO2, general SiO2 typically having a silicon atomic concentration of about 35%. It is preferred that the aspect ratio, that is height 20 to spacing 22 of conductors 16, 18 be less than 3 to help ensure that layer 30 fills in gap 24.


The refractive index RI (n=C0/C, where C0 is the speed of light in free space, C is the speed of light in the medium) is often used to monitor oxide film for its ability to block hydrogen. The Si dangling bonds in Si-rich oxide films are what block hydrogen. The greater the amount of silicon in the oxide film, the higher the n-value (refractive index). Therefore, a higher n-value implies an oxide film with a higher silicon concentration, more Si dangling bonds and thus a greater ability to block hydrogen. SRO layer 30 may have a refraction index (RI) of at least about 1.5, and preferably at least about 1.6, when the wavelength is 248 nm.


Finally, a compressively stressed layer 32, typically made of SiON, is deposited on layer 30. The combination of layers 26, 28, 30 and 32 constitute, in this embodiment, a passivation layer 34. The amount of the compressive stress within layer 32 can be adjusted in conventional manners by changing process conditions. The provision of appropriate compressive stresses in layer 32 helps to prevent cracking in passivation layer 34. Further processing steps can be accomplished after deposition of layer 32. For example, a photoresist may be deposited on layer 32 and then etched to expose, for example, wire bond pads.


SSRO layer 28 need not completely block all UV to successfully serve as a UV blocking layer. SSRO layer 28 needs to provide sufficient UV blocking to protect underlying features from UV damage in the particular manufacturing flow. However, it is expected that SSRO layer 28 should block at least about 70%, and preferably at least about 90%, of UV.


Increases in the thickness of SSRO UV blocking layer 28 leads to greater UV blocking capability of layer 28. While it may be theoretically possible to make UV blocking layer 28 with a silicon atomic concentration substantially less than 70%, such as 60%, such a blocking layer would need to be excessively thick, and thus prone to have poor gap-fill performance.


The following are exemplary process parameters for each of the layers.


Separation layer 26 (SiON): Plasma-enhancement chemical vapor deposition (PECVD) using (N2O, SiH4) at the following flow rates: N2:5000˜10000 sccm/SiH4: 100˜300 sccm/N2O:150˜500 scm, at the following RF power levels: 200˜500 W, in the following pressure range: 2˜5 torr, at the following temperature: <400 C., and for the following deposition time: <5 s. Separation layer 26 has a thickness of 50 to 500 Å, with a preferred thickness of about 100 Å.


UV protection layer 28 (SSRO): High-density plasma chemical vapor deposition (HDP CVD) using (SiH4, O2) at the following flow rates: SiH4:50˜200 sccm/02:20˜100 sccm, at the following temperature: <400 C. UV protection layer 28 has a thickness of 200 Å to 1000 Å with a preferred thickness of about 500 Å. PECVD using (SiH4, N2O) may be used instead of HDP CVD using (SiH4, O2). At least one of the following reactants: TEOS/O2, and TEOS/O3 may also be used for SSRO layer 28. Other deposition techniques, such as semi-atmosphere chemical vapor deposition (SACVD), may be used.


Gap-filling, hydrogen-blocking layer 30 (SRO): HDP CVD using (SiH4,O2) at the following flow rates: SiH4:50˜200 sccm/O2:50˜200 sccm, at the following power levels LF: 1000˜3000 W/HF: 1000˜3000 W, at the following temperature: <400 C. Gap-filling, hydrogen-blocking layer 30 has a thickness of about 4000 Å to 8000 Å; this thickness depends in large part upon height 20 of metal conductors 16, 18.


Compressively stressed layer 32 (SiON): PECVD using (SiH4, N2, N2O or NH3) at the following flow rates: N2:5000˜10000 sccm/SiH4:100˜300 sccm/N2O:150˜500 scm, at the following RF power levels: 200˜500 W, in the following pressure range: 2˜5 torr, at the following temperature: <400 C., and with the deposition time depending upon thickness. Compressively stressed layer 32 has a thickness of 4000 Å to 10000 Å, with a preferred thickness of about 7000 Å.


For UV protection layer 28 (SSRO), by tuning process parameters such as the ratio of the flow rates of the sources, other embodiments can be made which have a refractive index greater than about 1.5, and preferably greater than about 1.6, for a range of wavelengths less than 400 nanometers, an extinction coefficient at least about 1.3 for a range of wavelengths less than 400 nanometers, and preferably at least 1.7 at 248 nanometers.


Other modification and variation can be made to the disclosed embodiments without departing from the subject of the invention as defined in following claims.


Any and all patents, patent applications and printed publications referred to above are incorporated by reference.

Claims
  • 1. A semiconductor device comprising: a substrate; a patterned metal conductor layer over the substrate; and a passivation layer comprising: an ultraviolet (UV) protection layer over at least a portion of the substrate and patterned metal conductor layers; a separation layer between the patterned metal conductor layer and the UV protection layer; and the UV protection layer being constructed for UV blocking.
  • 2. The semiconductor device according to claim 1, wherein the patterned metal conductor layer directly contacts the substrate.
  • 3. The semiconductor device according to claim 1, wherein the separation layer directly contacts the UV protection layer, the patterned metal conductor layer and the substrate.
  • 4. The semiconductor device according to claim 1, wherein the separation layer comprises silicon, oxygen and nitrogen.
  • 5. The semiconductor device according to claim 1, wherein the separation layer comprises a SiON layer having a thickness of at least 50 Å.
  • 6. The semiconductor device according to claim 1, wherein the UV protection layer blocks at least 70% of radiation having a wavelength of 400 nm or less.
  • 7. The semiconductor device according to claim 1, wherein the UV protection layer has an extinction coefficient of at least about 1.3 for a range of wavelengths less than 400 nanometers.
  • 8. The semiconductor device according to claim 1, wherein the UV protection layer has an extinction coefficient of at least about 1.7 for a wavelength of 248 nanometers.
  • 9. The semiconductor device according to claim 1, wherein the UV protection layer is formed from at least one of the following reactants: SiH4/O2, SiH4/N2O, TEOS/O2, and TEOS/O3.
  • 10. The semiconductor device according to claim 1, wherein the UV protection layer is formed by at least one of plasma-enhancement chemical vapor deposition (PECVD), semi-atmosphere chemical vapor deposition (SACVD) and high-density plasma chemical vapor deposition (HDPCVD).
  • 11. The semiconductor device according to claim 1, wherein the UV protection layer comprises a silicon rich oxide layer.
  • 12. The semiconductor device according to claim 11, wherein the silicon rich oxide layer has a silicon atomic concentration of at least 70%.
  • 13. The semiconductor device according to claim 11, wherein the silicon rich oxide layer has a silicon atomic concentration of at least 85%.
  • 14. The semiconductor device according to claim 11, wherein the silicon rich oxide layer has a ratio of silicon concentration to oxygen concentration of at least about 10.
  • 15. The semiconductor device according to claim 11, wherein the silicon rich oxide layer has a silicon atomic concentration of more than 70% and a thickness of at least 200 Å to provide an extinction coefficient (K) of at least about 1.7 at a wavelength of 248 nm.
  • 16. The semiconductor device according to claim 15, wherein the passivation layer further comprises: a gap-filling, hydrogen-blocking layer over the UV protection layer, the gap-filling, hydrogen-blocking layer having a silicon atomic concentration of 40-60%; and a compressively stressed layer over at least a portion of the gap-filling, hydrogen-blocking layer.
  • 17. The semiconductor device according to claim 1, wherein the passivation layer further comprises a gap-filling, hydrogen-blocking layer over the UV protection layer.
  • 18. The semiconductor device according to claim 17, wherein the passivation layer further comprises a compressively stressed layer over the gap-filling, hydrogen-blocking layer.
  • 19. The semiconductor device according to claim 17, wherein the gap filling, hydrogen-blocking layer has a refraction index (RI) at least about 1.5 at a wavelength of 248 nm.
  • 20. The semiconductor device according to claim 17, wherein the gap filling, hydrogen-blocking layer has a refraction index (RI) at least about 1.6 at a wavelength of 248 nm.
  • 21. The semiconductor device according to claim 17, wherein the gap filling, hydrogen-blocking layer has a silicon atomic concentration of 40%-60%.
  • 22. A semiconductor device comprising: a substrate; a patterned conductor layer over the substrate; and a passivation layer over at least a portion of the substrate and the patterned conductor layer, the passivation layer comprising: a gap-filling, hydrogen-blocking layer; and a compressively stressed layer over at least a portion of the gap-filling, hydrogen-blocking layer.
  • 23. The semiconductor device according to claim 22, wherein the gap-filling, hydrogen-blocking layer comprises a silicon rich oxide layer.
  • 24. The semiconductor device according to claim 23, wherein the gap-filling, hydrogen-blocking layer has a silicon atomic concentration of 40%-60%.
  • 25. The semiconductor device according to claim 23, wherein the gap-filling, hydrogen-blocking layer has a silicon atomic concentration of 40-60% and a thickness of about 4000 Å to 8000 Å to provide a refraction index (RI) of at least about 1.6 at a wavelength of 248 nm.
  • 26. The semiconductor device according to claim 23, wherein the gap-filling, hydrogen-blocking layer has a refraction index (RI) at least about 1.5 for a range of wavelengths less than 400 nanometers.
  • 27. The semiconductor device according to claim 22, wherein the compressively stressed layer comprises a layer of SiON 4000 Å to 1000 Å thick.
  • 28. The semiconductor device according to claim 22, wherein the compressively stressed layer comprises a layer of SiON about 7000 Å thick.
CROSS-REFERENCE TO OTHER APPLICATIONS

This application relates to the following U.S. patent applications, each of which is assigned to the assignee of the present application: application number 10/858,352, entitled Ultraviolet Blocking Layer, of inventors Chien Hung Lu and Chin Ta Su, filed on 1 Jun. 2004, Attorney Docket MXIC 1563-1, published on ______ as ______; application number 11/116,719, entitled Ultraviolet Blocking Layer, of inventors Tuung Luoh, Ling-Wuu Yang, and Kuang-Chao Chen, filed on 28 Apr. 2005, Attorney Docket MXIC 1596-2, published on ______ as ______; and application number______, entitled UV Blocking and Crack Protecting Passivation Layer Fabricating Method, of inventors Chien Hung Lu and Chin Ta Su, filed on the same day as this application, Attorney Docket MXIC 1644-2.