VAPOR CHAMBER AND SUPPORTING STRUCTURE OF THE SAME

Abstract
A vapor chamber includes a casing, the working fluid, a wick structure and a supporting structure. The casing has a hollow room for allowing the working fluid to be filled therein. The wick structure is distributed in the hollow room. The supporting structure abuts against an inside surface of the wick structure. The supporting structure includes side plates and a plurality of wavelike pieces connected between the side plates. Each of the wavelike pieces is constituted of a plurality of crests and troughs. The crests of any two neighboring wavelike pieces are arranged in an alternating manner. A penetrating hole is provided at the crests and the troughs respectively. The working fluid flows through the separated passages and the penetrating holes. Via the above arrangement, the heat-conducting efficiency of the vapor chamber can be enhanced.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a supporting structure, and in particular to a vapor chamber and a supporting structure of the same.


2. Description of Prior Art


With the increase in the operation speed of a central processing unit of a computer, it generates more and more heat. Therefore, the traditional heat-dissipating device constituted of an aluminum-extruded heat sink and a fan cannot satisfy the requirement for the operation of the central processing unit. Thus, many manufacturers develop heat pipes and vapor chambers that have larger heat-conducting performance, and combine the heat pipes and vapor chamber with the heat sink, thereby solving the current problems relating to heat dissipation. Among these heat-dissipating means, more and more manufactures pay attention to and devote themselves to the development of vapor chambers because the vapor chamber has a large area that is brought into direct contact with heat-generating electronic elements.



FIG. 1 shows a conventional vapor chamber. The vapor chamber is constituted of a casing 10a, a wick structure 20a, a supporting structure 30a and the working fluid 40a. The casing 10a comprises a lower shell 11a and an upper shell 12a for sealing the lower shell 11a. The wick structure 20a is received in the casing 10a and the interior of the wick structure 20a is formed into an accommodating space 21a. The supporting structure 30a is received in the accommodating space 21a for supporting the wick structure 20a and the casing 10a. The supporting structure 30a is constituted of a plate. The plate is formed into a wave shape by means of a pressing process, thereby forming a plurality of separated passages 22a between the plate and the wick structure 20a. Finally, four sides of the upper shell 12a and the lower shell 11a are soldered together to form a sealed space. After the working fluid is filled in this space, the sealed space is made vacuum. As a result, the vapor chamber can be formed.


When the above formed vapor chamber is in use, one surface of the vapor chamber (i.e. the upper shell 12a) is provided thereon with a plurality of heat-dissipating fins (not shown). A heat-generating element (such as CPU) (not shown) is adhered to the other surface (i.e. the lower shell 11a), so that the working fluid 40a within the wick structure 20a brought into surface contact with the lower shell 11a is heated to be vaporized. The vaporized working fluid passes through gaps (not shown) formed between both sides of the supporting structure 30a and the casing 10a via the separated passages 22a so as to flow into the wick structure 20a brought into surface contact with the surface of the upper shell 12a, thereby dissipating the heat to the heat-dissipating fins and conducting the heat generated by the heat-generating element.


However, the working fluid 40a in the above-mentioned vapor chamber has to flow through the long-distance separated passages 22a to enter the wick structure 20a that is brought into surface contact with the upper shell 12a so as to conduct the heat generated by the heat-generating element. Since the heat-conducting path is relatively long, the heat-conducting efficiency of the vapor chamber becomes poor, which also affects the heat-conducting performance of the heat-generating element. Furthermore, since the path of the separated passage 22a is relatively long, the supporting force of the supporting structure 30a of the vapor chamber for supporting the upper shell 12a or the lower shell 11a becomes uneven, so that the casing 10a may get deformed or collapsed.


Therefore, it is an important issue to overcome the drawbacks of prior art.


SUMMARY OF THE INVENTION

The present invention is to provide a vapor chamber and a supporting structure of the same. With separated passages between a plurality of wavelike pieces of the supporting structure and penetrating holes provided between crests and troughs, the heat-conducting efficiency of the vapor chamber can be enhanced.


The present invention is to provide a supporting structure of a vapor chamber. The supporting structure can be designed into various modular sub-structures so as to cooperate with various vapor chambers, thereby reducing the production cost.


The present invention is to provide a supporting structure of a vapor chamber. With an alternating arrangement of the crests of any two neighboring wavelike pieces, the force can be exerted on the vapor chamber more uniformly, thereby avoiding the vapor chamber from collapsing and deforming.


The present invention is to provide a vapor chamber, which includes a casing, the working fluid, a wick structure and a supporting structure. The casing has a hollow room for allowing the working fluid to be filled therein. The wick structure is distributed in the hollow room. The supporting structure abuts against an inside surface of the wick structure. The wick structure comprises at least two side plates and a plurality of wavelike pieces connected between the two side plates. Each of the wavelike pieces is constituted of a plurality of crests and troughs. The crests of any two neighboring wavelike pieces are arranged in an alternating manner, and a penetrating hole is provided at the crests and the troughs respectively.


The present invention is to provide a supporting structure of a vapor chamber, which includes at least two side plates and a plurality of wavelike pieces. The wavelike pieces are connected between the two side plates. Each of the wavelike pieces is constituted of a plurality of crests and troughs. The crests of any two neighboring wavelike pieces are arranged in an alternating manner. Further, a penetrating is provided at the crests and the troughs respectively.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of a conventional vapor chamber;



FIG. 2 is an exploded perspective view of the present invention;



FIG. 3 is a partially enlarged view showing the details of the portion A of the supporting structure in FIG. 2;



FIG. 4 is a top view showing the supporting structure of FIG. 2 being received in the lower shell; and



FIG. 5 is a cross-sectional view along the line 5-5 in FIG. 4 showing the upper cover being covered.





DETAILED DESCRIPTION OF THE INVENTION

The detailed description and technical contents of the present invention will be explained with reference to the accompanying drawings. However, the drawings are illustrative only, but not used to limit the present invention.


Please refer to FIGS. 2 and 3. FIG. 2 is an exploded perspective view of the present invention, and FIG. 3 is a partially enlarged view showing the details of the portion A of the supporting structure in FIG. 2. The present invention is to provide a vapor chamber, which includes a casing 10, a wick structure 20, a supporting structure 30 and the working fluid 40.


The casing 10 comprises a lower shell 11 and an upper shell 12 for sealing the lower shell 11. A hollow room b is formed between the lower shell 11 and the upper shell 12. The lower shell 11 is constituted of a bottom plate 111 and a plurality of surrounding plates 112 for surrounding the circumference of the bottom plate 111. One of the surrounding plates 112 is provided with a filling/degassing pipe 113 that is in communication with the interior and exterior of the casing 10. The wick structure 20 is distributed in the hollow room b of the casing 10. The wick structure 20 comprises a lower layer 21 and an upper layer 22 connected on the lower layer 21. The upper layer 22 is adhered to the surface of the upper shell 12. The lower layer 21 is adhered to the surface of the lower shell 11. The upper layer 22 is connected onto the lower layer 21, thereby forming an accommodating space. In addition, the wick structure 20 can be a metallic woven mesh.


The supporting structure 30 is accommodated in the accommodating space 30 of the wick structure 20 and abuts against an inside surface of the wick structure 20. The supporting structure 30 comprises at least two side plates 31 and a plurality of wavelike pieces 32 connected between the two side plates 31. The wavelike pieces 32 are constituted of a plurality of crests 321 and troughs 322. The crests 321 of any two neighboring wavelike pieces 32 are arranged in an alternating manner. Of course, the troughs 322 are also arranged in an alternating manner. Any two neighboring wavelike pieces 32 are separated from each other, thereby forming a separated passage 324. The crests 321 are located at positions higher than the top surface of the side plate 31, while the troughs 322 are located at positions lower than the bottom surface of the side plate 31. Further, the crests 321 and the troughs 322 are provided with a penetrating hole 325 respectively.


The working fluid 40 is filled in the hollow room b of the casing 10. The working fluid 40 can be pure water. Finally, four sides of the upper shell 12 and the lower shell 11 are soldered to each other. After the necessary working fluid 40 is filled in the casing 10 via the filling/degassing pipe 113, the interior of the casing 10 is made vacuum. In this way, the vapor chamber of the present invention can be formed.


Please refer to FIGS. 4 and 5. FIG. 4 is a top view showing the supporting structure of FIG. 2 being received in the lower shell, and FIG. 5 is a cross-sectional view along the line 5-5 in FIG. 4 showing the upper shell being covered. When the present invention is in use, the surface of the upper shell 12 of the vapor chamber is provided thereon with a plurality of heat-dissipating fins (not shown), a heat-generating element (such as CPU) (not shown) is adhered to the surface of the lower shell 11, so that the working fluid 40 within the wick structure 20 brought into surface contact with the separated passages 324 is heated to be vaporized. The vaporized working fluid quickly and directly flows into the wick structure 20 brought into surface contact with the upper shell 12 via the separated passages 324 and the penetrating holes 325, thereby reducing the heat-conducting path. Thus, the heat can be conducted into the heat-dissipating fins to dissipate the heat generated by the heat-generating element.


The primary function of the penetrating holes 325 is to allow the working fluid 40 to pass through the crests 321 and the troughs 322 directly, so that the working fluid 40 will not stick onto the wavelike pieces 32 so as to reduce the heat-conducting speed. Thus, the heat-conducting speed of the working fluid 40 can be increased substantially. Furthermore, the present invention also has a feature of short heat-conducting paths. Therefore, the heat-conducting efficiency of the present invention can be enhanced.


Further, since the crests 321 of any two neighboring wavelike pieces 32 are arranged in an alternating manner, forces coming from the heat-dissipating fins or the heat-generating element can be exerted on the vapor chamber more uniformly, thereby avoiding the vapor chamber from collapsing or deforming. Further, in manufacturing the vapor chamber, the supporting structure 30 can be cut into a plurality of modular sub-structures in the longitudinal or transverse direction, thereby matching with various vapor chambers of different sizes. Furthermore, owing to the structural design of the supporting structure 30, it can be made by means of mass production, thereby reducing the production cost. Therefore, the production cost of the present invention can be reduced.


Therefore, the vapor chamber and the supporting structure of the same in accordance with the present invention have advantageous features as follows.


(I) With the separated passages 324 and the penetrating holes 325, the working fluid 40 within the vapor chamber can conduct the heat quickly between the upper layer 22 and the lower layer 21, thereby increasing the heat-conducting efficiency.


(II) Since the crests 321 of any two neighboring wavelike pieces 32 are arranged in an alternating manner, forces coming from the heat-dissipating fins or the heat-generating element can be exerted on the vapor chamber more uniformly, thereby avoiding the vapor chamber from collapsing or deforming.


(III) Since the supporting structure 30 can be cut into a plurality of modular sub-structures in the longitudinal or transverse direction, thereby matching with various vapor chambers of different sizes. Therefore, the vapor chamber can be made by means of mass production, thereby reducing the production cost.


According to the above, the vapor chamber and the supporting structure of the same in accordance with the present invention already have industrial applicability, novelty and inventive steps. Furthermore, the present invention has not been seen in products of the same kind or let in public use. Therefore, the present invention conforms to the requirements for a utility model patent.

Claims
  • 1. A vapor chamber, comprising: a casing having a hollow room;a working fluid filled in the hollow room;a wick structure distributed in the hollow room; anda supporting structure abutting against an inside surface of the wick structure, the supporting structure comprising at least two side plates and a plurality of wavelike pieces between the two side plates, each of the wavelike pieces being constituted of a plurality of crests and troughs, the crests of any two neighboring wavelike pieces being arranged in an alternating manner, and a penetrating hole being provided at the crests and the troughs respectively.
  • 2. The vapor chamber according to claim 1, wherein the casing comprises a lower shell and an upper shell for sealing the lower shell, the hollow room is formed between the upper shell and the lower shell.
  • 3. The vapor chamber according to claim 2, wherein the lower shell is constituted of a bottom plate and a plurality of surrounding plates for surrounding the circumference of the bottom plate.
  • 4. The vapor chamber according to claim 2, wherein the wick structure comprises a lower layer and an upper layer connected to the lower layer, the upper layer is adhered to the surface of the upper shell while the lower layer is adhered to the surface of the lower shell.
  • 5. The vapor chamber according to claim 1, wherein the wick structure is a metallic woven mesh.
  • 6. The vapor chamber according to claim 1, wherein any two neighboring wavelike pieces are separated from each other to form a separated passage therebetween.
  • 7. The vapor chamber according to claim 1, wherein the crests are located at positions higher than a top surface of the side plate.
  • 8. The vapor chamber according to claim 1, wherein the troughs are located at positions lower than a bottom surface of the side plate.
  • 9. The vapor chamber according to claim 1, wherein the troughs of any two neighboring wavelike pieces are arranged in an alternating manner.
  • 10. A supporting structure of a vapor chamber, comprising; at least two side plates; anda plurality of wavelike pieces connected between the two side plates, each of the wavelike pieces being constituted of a plurality of crests and troughs, the crests of any two neighboring wavelike pieces being arranged in an alternating manner, and a penetrating hole being provided at the crests and the troughs respectively.
  • 11. The supporting structure of a vapor chamber according to claim 10, wherein any two neighboring wavelike pieces are separated from each other to form a separated passage therebetween.
  • 12. The supporting structure of a vapor chamber according to claim 10, wherein the crests are located at positions higher than a top surface of the side plate.
  • 13. The supporting structure of a vapor chamber according to claim 10, wherein the troughs are located at positions lower than a bottom surface of the side plate.
  • 14. The supporting structure of a vapor chamber according to claim 10, wherein the troughs of any two neighboring wavelike pieces are arranged in an alternating manner.