The present invention relates to cooling of a heat producing device using a heat exchanger, in general, and in particular, a vapor escape membrane coupled to a heat exchanger and a method of providing the same.
A variety of devices and applications are present which require cooling of devices that have very high heat fluxes, such as in the range of 100-1000 W/cm2. These devices include integrated electronic circuits in microprocessors, laser diodes, and power semiconductor devices for control electronics. There have been many solution strategies for cooling these devices.
One solution strategy for cooling a device emitting high heat fluxes include utilizing a heat pipe 10 having a vapor chamber 12, as shown in FIG. 1A. The heat pipe 10 includes a wick structure 14 which draws liquid to the heat source 99 by the use of capillary forces. In particular, as shown in
Another solution strategy for cooling the high heat fluxes in the devices is using a microchannel heat sink 20 coupled to a pump 22 and a heat rejector 26, as shown in FIG. 1B. This approach in
However, a major problem with cooling a device using these two-phase microchannel heat exchangers is the large pressure gradients that occur along the channels when the liquid begins to boil. It is known that the vapor phase of a substance is much less dense than that of the substance in liquid form. Therefore, for a given pumping power, the vapor phase of the substance will accelerate through a channel by up to a factor of a 1000 times. The acceleration and the resulting shear forces of the vapor substance through the channel dramatically increases the pressure drop along the channel. The large pressure drop in the channel thereby causes two-phase unsteady flow instabilities along the channel. These instabilities are assisted with bubbles forming in the flow and large drag forces being produced due to the small dimensions of the channels. The large pressure drop also greatly increases the amount of power required to pump the liquid through the microchannel heat sink 20. In effect, the microchannel requires more pumping power to cool a device 99, because the boiling of the liquid causes a very large increase in volume flow rate and a large pressure drop within the microchannel heat sink 20.
What is needed is a device which offers high flowrate capabilities, low thermal resistance and volume as well as has a phase separation capability in the heat exchanger which minimizes the pressure drop created by the phase change of the cooling liquid.
In one aspect of the invention, a microchannel heat exchanger comprises means for channeling a fluid in a liquid state along a heat exchange interface, whereby vapor is produced within the means for channeling. The heat exchanger also comprises means for removing the vapor from the means for channeling. The means for removing is operatively coupled to the means for channeling such that substantially all of the fluid in the liquid state is retained along the heat exchange interface and the vapor is removed from the means for channeling. The microchannel heat exchanger further comprises means for collecting the vapor that passes through the means for removing, whereby vapor within the means for collecting exits through a vapor outlet. The means for removing is preferably positioned above the channeling means.
In another aspect of the invention, a microchannel heat exchanger is coupled to a heat producing device. The heat exchanger also comprises a first chamber for channeling liquid from a first port. The liquid is channeled along a surface that is configured to transfer heat between the heat exchanger and the heat producing device. The heat exchanger also comprises a second chamber which collects vapor that is produced from the heated liquid that is within the first chamber. The second chamber outputs the vapor collected through a third port. The heat exchanger also comprises a porous membrane which passes vapor from the first chamber to the second chamber. The porous membrane is positioned between the first chamber and the second chamber and is configured to substantially retain the liquid within the first chamber. The microchannel heat exchanger further comprises a second port that is coupled to the first chamber, wherein heated liquid exits the second port. The porous membrane is operatively coupled to the first chamber. The liquid enters the first port at a first temperature and exits the second port at a second temperature. The surface of the first chamber includes an array of channels positioned in a predetermined pattern, wherein one channel in the array alternatively has at least one dimension dissimilar to an adjacent channel. The microchannel heat exchanger alternatively has at least one channel which includes a channel aperture that passes the liquid to an adjacent channel. The surface is alternatively roughened. Alternatively, the first chamber further comprises an array of pillars that are configured in a predetermined pattern. The porous membrane further comprises a plurality of apertures which allow vapor to pass through, whereby the apertures have a predetermined dimension.
In yet another aspect, a microchannel heat exchanger comprises a first port for receiving liquid that has a first temperature. The heat exchanger also comprises a heat transferring element which channels the liquid from the first port along an interface, wherein the liquid generates vapor while flowing along the interface. The heat exchanger also comprises a membrane for separating vapor from the liquid. The membrane is configured to transfer the vapor to a separate element and confine the liquid to the interface, whereby a majority of vapor exits through a second port in the separate element. The microchannel heat exchanger further comprises a third port that is coupled to the heat transferring element. The third port allows liquid to exit, whereby the liquid has a second temperature which is higher than the first temperature. The heat transferring element further comprises an array of channels that are positioned in a predetermined pattern, whereby at least one channel in the array alternatively has a dimension different than an adjacent channel. Alternatively, at least one channel further comprises a channel aperture that passes the liquid to an adjacent channel. In another embodiment, the interface is roughened. The first chamber alternatively comprises an array of pillars that are configured in a predetermined pattern. The membrane further comprises a plurality of apertures which allow vapor to transfer therethrough, whereby each of the apertures has a predetermined dimension.
Another aspect of the invention includes a closed circulation loop for cooling a heat producing device. The loop comprises a heat exchanging element that is in contact with the heat producing device. The heat exchanging element further comprises a first element which channels a liquid along a heat transfer region, wherein the liquid enters the first element through a first port at a first temperature. The heat exchanging element also further comprises a vapor permeable membrane that is coupled to the first element. The vapor permeable membrane is configured to transfer vapor that is produced in the first element to a second port. The vapor permeable membrane confines the liquid within the first element. The loop also comprises a heat rejector which cools vapor received from the second port to the first temperature to produce the liquid. The heat rejector is coupled to the first port and is configured to provide the first temperature liquid to the heat exchanging element. The heat exchanging element preferably further comprises a third port that is coupled to the first element, whereby liquid which has a second temperature is confined within the first element and flows to the heat rejector through the third port. The heat rejector preferably receives the liquid from the third port, wherein the heat rejector cools the liquid from the second temperature to the first temperature. The circulation loop further comprises a second element coupled to the second port. The second element holds vapor that is transferred through the vapor permeable membrane, whereby the second element is configured to induce vapor to transfer thereto. The circulation loop further comprises at least one pump that is coupled to the heat rejector. The pump pumps the liquid from the rejector to the heat exchanging element at an appropriate flowrate to cool the heat producing device. The pump includes, but is not limited to different types of pumps, such as a microchannel electroosmotic pump, a hydraulic pump, and a capillary pump which has a wicking structure positioned along the heat transfer interface. The heat rejector is alternatively positioned at a first height in the loop above the heat exchanging element, wherein the liquid flows to the heat exchanging element using gravitational forces. The capillary pump alternatively comprises a thermosyphon pump that utilizes the gravitational forces to pump the liquid to the heat exchanging element.
In yet another aspect of the invention, a vapor escape membrane for use in a heat exchanging device, whereby the heat exchanging device runs liquid into a cooling region that is positioned adjacent to the heat producing device. The vapor escape membrane comprises a porous surface which removes vapor produced from the liquid in the cooling region. The membrane is configured to confine the liquid only within the cooling region. The vapor escape membrane transfers vapor to a vapor region within the heat exchanging device, whereby the membrane is configured to prevent liquid in the cooling region from entering the vapor region. The vapor escape membrane is configured to include a hydrophobic surface between the membrane and the cooling region, wherein the liquid in the cooling region does not flow through the porous surface. The heat exchanging device alternatively comprises a heat pipe configuration which has a wick structure positioned within the cooling region. The heat exchanging device preferably comprises a heat sink that has a plurality of microchannels that are configured in a predetermined pattern in the cooling region. The vapor escape membrane further comprises a plurality of apertures which allow vapor to transfer therethrough, whereby each of the apertures have a predetermined dimension.
In yet another aspect of the invention, a method of assembling a microchannel heat exchanger which cools a heat producing device. The method comprises providing a liquid chamber which has a surface that is configurable to be placed adjacent to the heat producing device. The method comprises coupling a vapor chamber to the liquid chamber, wherein the vapor chamber is configured above the liquid chamber. The method comprises configuring a vapor permeable membrane between the vapor chamber and the liquid chamber, whereby the vapor permeable membrane is operatively coupled to the liquid chamber such that only vapor that is produced with the liquid chamber flows to the vapor chamber. The method further comprises coupling an inlet port to the liquid chamber, whereby the inlet port is configured to provide liquid that has a first temperature to the microchannel heat exchanger. The method further comprises patterning the surface of the liquid chamber into a desired configuration. The method also further comprises coupling an outlet port to the liquid chamber, whereby the outlet port is configured to exit liquid having a second temperature from the microchannel heat exchanger. The method further comprises coupling an outlet port to the vapor chamber, whereby the outlet port is configured to remove vapor that is present within the vapor chamber.
Other features and advantages of the present invention will become apparent after reviewing the detailed description of the preferred embodiments set forth below.
Reference will now be made in detail to the preferred and alternative embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it should be noted that the present invention may be practiced without these specific details. In other instances, well known methods, procedures and components have not been described in detail as not to unnecessarily obscure aspects of the present invention.
Cooling of a device having a high heat flux can be achieved using two-phase boiling convection in a microchannel heat exchanger of the present invention. As stated above with respect to existing cooling solutions, the acceleration of the vapor phase and the additional drag forces caused by the mixed phases yield large pressure drops within the heat exchanger. This large pressure drop requires pumping the fluid at a higher flowrate to ensure that the liquid adequately cools or heats up the heat producing device. It should be apparent to one skilled in the art that although the present description is directed to cooling a heat producing device, it is contemplated that the present apparatus and system can be used to refrigerate or heat up a heat producing device which is initially cold.
To overcome these problems, the present invention is directed to a vapor-permeable membrane for providing vapor escape capabilities to a heat exchanger including, but not limited to, a heat pipe or microchannel heat sink. The membrane 112 of the present invention keeps the liquid in close contact with the heated surface but removes the vapor portion produced by the boiling of the liquid flow. This removal of vapor minimizes the pressure drop along the channels. Minimizing the pressure drop thereby enables a pump to operate at lower pressures and power to provide adequate flow of liquid to achieve desired cooling of the heat producing device 99.
Preferably the heat exchanger 100 is coupled to the heat source 99 using a standard die attach or thermal interface material 101 including, but not limited to thermal grease, phase-change attachment, and eutectic. Alternatively, the heat exchanger 100 is integrally formed onto or within the device 99 by directly fabricating the channels on a surface of the heat source device 99. Further, the heat exchanger 100 is alternatively coupled to the heat source using the self attach method described and disclosed in copending patent application Ser. No. 10/366,122 filed Feb. 12, 2003 and entitled “SELF ATTACHING HEAT EXCHANGER AND METHOD THEREOF” which is hereby incorporated by reference.
As stated above, the heat exchanger 100 is coupled to the heat source 99, whereby heat travels from the heat source 99 up through the attaching material 101 to the heat exchanging interface 103 of the heat exchanger 100. The heat exchanging interface 103 is preferably the interior bottom surface of the heat exchanger 100. As shown in
The boiling point of the liquid flowing through the apparatus and the system can be controlled by the type of liquid as well as the pressure at which the apparatus and/or system operates. Regarding the type of liquid used, it should be apparent to one skilled in the art that other working fluids are contemplated including, but not limited to, water having ionic buffers or other additives, acetone, acetonitrile, methanol, alcohol, as well as mixtures thereof. It should also be apparent that other liquids are alternatively used which are appropriate in operating the present apparatus and system.
In the preferred embodiment, the heated liquid exits the heat exchanger 100 through the liquid outlet port 108 at a raised temperature. Alternatively, for an application in which an initially cold heat producing device is warmed up, the liquid exits the heat exchanger through the liquid port 108 at a lower temperature. In an alternative embodiment, the heat exchanger 100 does not include a liquid outlet port 108, whereby only vapor exits from the heat exchanger 100. In another alternative embodiment, the heat exchanger 100 includes multiple liquid outlet ports 108. Depending on the effectiveness of the membrane 112 in removing vapor from the liquid chamber 102, a small amount of vapor is alternatively mixed with the liquid when the liquid exits through the liquid outlet port 108. However, it should be noted that a small amount vapor mixed with the liquid still reap substantial benefits to the performance of the heat exchanger 100 in terms of reduced pump pressure drop and decreased thermal resistance.
The membrane 112 is preferably configured above the liquid chamber 102 and has several small apertures 105 which allow the vapor in the liquid chamber to transfer to the vapor chamber 104 (FIGS. 2A-2B). Alternatively, the membrane 112 is positioned below or adjacent to the liquid chamber 102. The diameter of the pores range between 0.01-50.00 microns. However, the preferred range of the pore diameters is 0.05-10.00 microns although other pore diameters are apparent to one skilled in the art. Preferably, the apertures 105 have the same vertical and diametrical dimensions. The membrane 112 alternatively has apertures 105 that have vertical and diametrical dimensions which are variable. In addition, alternatively a portion of the apertures 105 in the membrane 112 have the same dimension, whereas another portion of the apertures 105 in the membrane have varying dimensions. In addition, the membrane 112 is configured to provide a seal between the liquid chamber 102 and the vapor chamber 104, whereby liquid within the liquid chamber 102 does not enter the vapor chamber 104 from the liquid chamber 102. Thus, the membrane 112 is preferably porous as well as hydrophobic, such that vapor passes through the membrane 112 without allowing liquid to clog or restrict the pores.
The membrane 112 removes the vapor generated from the heated liquid within the liquid chamber 102, whereby the vapor passes or transfers through the apertures of the membrane 112. The transferred vapor is collected within the vapor chamber 104 and flows out the vapor outlet 110 of the heat exchanger 100. Alternatively, the vapor chamber 104 includes more than one vapor outlet 110. Preferably the vapor chamber 104 has less pressure within than the liquid chamber 102. Therefore, the pressure differential between the two chambers causes the vapor within the liquid chamber 102 to automatically pass through the membrane 112 into the vapor chamber 104. The vapor chamber 104 contains less pressure than the liquid chamber 102 preferably due to the vapor outlet port 110 allowing vapor to freely exit the chamber 104. Alternatively, the vapor chamber 104 contains less pressure due to a suction force being applied through the vapor outlet port 110. In addition, the hydrophobicity of the membrane 112 tends to attract the vapor toward the membrane 112 into the vapor chamber 104. The vapor membrane 112 is preferably made of a hydrophobic material which allows the transfer of vapor while fully repelling liquid. For example, GORTEX® is preferably used as the membrane 112. Alternatively, other materials include, but are not limited to, PTFE, TEFLON® coated metal, micromachined Silicon, Versapor® or any other copolymers and nylons. Nonetheless, any other material is contemplated which provides the structural support and has the porous characteristics to operate the heat exchanger in accordance with the present invention. The sizes of the pores within the membrane 112 are sufficiently enough to remove as much vapor as possible from the liquid chamber 102 but also sufficiently small to prevent the actual liquid from passing into the vapor chamber 104.
The membrane 112 is preferably coupled to the heat exchanger 100 to provide a sealable engagement between the liquid chamber 102 and the vapor chamber 104. The sealable engagement between the liquid chamber 102 and the vapor chamber 104 prevents liquid from penetrating the membrane 112 at any point. However, despite the sealable engagement, the porous characteristics of the membrane 112 allow vapor from the liquid chamber 102 to pass through the membrane 112 into the vapor chamber 104. The membrane is coupled to the interior of the heat exchanger using conventional methods, including but not limited to heat sealing, sonic welding, adhesives, such as epoxy, or any mechanical means.
The membrane 112 of the present invention is alternatively utilized in existing heat exchangers to improve the performance of the heat exchangers. It should be noted that the heat exchangers include, but are not limited to, heat pipes, heat sinks, capillary loops and thermosyphons. For example, a heat pipe 100′ (
In this alternative embodiment, as shown in
Referring to
The heat exchange interface 103 of the heat exchanger 100 includes a variety of configurations. As shown in
These features in the interface 103 promote control of the heat exchange with the liquid by directing the liquid to the regions of the heat source 99 needing more continuous flow of the liquid. These channeling features also help reduce temperature differences on the surface of the heat source by cooling the higher heat flux areas with more liquid flow while supplying the lesser heated areas of the device 99 with less liquid flow. Such configurations include a high surface-to volume ratio and promote lateral flow of the liquid in the liquid chamber 103 of the heat exchanger 100. It should be noted that other configurations along the interface 103 are contemplated so long as the surface-to-volume ratio of the features in the interface 103 is large enough to result in a low thermal resistance between the interface 103 and the liquid.
Alternatively, the heat exchanger 100 utilizes gravitational forces to pump the liquid throughout the system i.e. thermosyphon. Alternatively, the heat exchanger 100 utilizes hydraulic pumping techniques or capillary pumping techniques. Alternatively, the system utilizes a combination of the above pumping techniques or any other pumping techniques. In the preferred embodiment, as shown in
In the loop 200 of the present invention, the liquid enters into the microchannel heat exchanger 202 through the liquid inlet port 216 at a predetermined temperature and flow rate across the heat exchange interface 203 in the liquid chamber 208. In the preferred embodiment, the heat source 99 has a temperature in a range between 0 and 200 degrees Celsius. However, it is preferred that the heat source 99 has a temperature between 45 and 95 degrees. In the preferred embodiment, the liquid flows through the liquid chamber 208 and the heat produced by the heat source 99 is transferred through the interface 203 of the heat exchanger 202 by means of convection. This heat transfer causes the temperature of the liquid to rise to the point in which some of the liquid begins boiling and undergoes a phase change. During the phase change, some of the liquid turns into vapor within the liquid chamber 208.
As stated above, the membrane 210 is hydrophobic and is in sealable engagement with the liquid chamber 208 such that the liquid does not enter the vapor chamber 212 when passing through the liquid chamber 208. The removal of vapor from the liquid chamber 208 preferably leaves only liquid within the liquid chamber 208, whereby, in the preferred embodiment, only the liquid flows along the interface and exits out the liquid outlet port 218 at a raised temperature. Alternatively, a small amount of vapor remains in the liquid chamber 208 and exits with the liquid out the liquid outlet port 216 at a raised temperature. Alternatively, as in a heat pipe, the liquid is continuously pumped into the wicking structure as the vaporized liquid exists the vapor chamber 212. The temperature of the liquid, depending on the type of application, ranges between −15 and 190 degrees Celsius. However, it is preferred that the exit temperature of the liquid is in the range of 30 to 95 degrees Celsius.
As stated above, the vapor chamber 212 within the heat exchanger 202 preferably has a lower pressure than that in the liquid chamber 208. Thus, the pressure differential between the two chambers, 208, 212 causes the less dense vapor to flow toward the vapor chamber 212. In the microchannel heat exchanger 202, the vapor naturally rises toward the membrane 210 and passes through the apertures 105 (
In the preferred system, as shown in
In an alternative embodiment, as shown in
In another alternate embodiment, as shown in
In another alternative embodiment, as shown in
As stated above, in existing heat exchangers having many parallel channels, the boiling of the liquid in some of the channels induces a dramatic increase in the pressure drop across those channels due to mixing of the liquid and vapor phases. As a result, the flowrate in those channels is reduced, leading to a temporal instability and dry out and a substantial increase in the temperature of the heat producing device. Thus, in existing cooling systems, the exit quality of the heat exchanger is limited to a smaller number, such as 0.2-0.4, to avoid burnout and the temporal fluctuations between the channels along the surface adjacent to the heat producing device. The limitation of the exit quality leads to only a portion of the pumped fluid to boil, which thereby requires pumping the liquid at a higher flowrate to sufficiently cool the heat producing device. In effect, the pump which pumps the liquid must throughout the system must work at a higher rate to maintain a high flowrate of cooling liquid. In contrast, the present invention substantially reduces temporal instabilities that result from the mixing of the vapor and liquid phases in the liquid being pumped through the heat exchanger. The vapor escape alleviates the large pressure drop in the channels in which boiling occurs, allowing the system to operate stably at exit qualities that are higher in comparison to the existing cooling systems. In addition, high qualities of the system and the small pressure drop allow the pump used in the present cooling system to work at a lower wattage.
The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modification s may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention.
This Patent Application claims priority under 35 U.S.C. 119 (e) of the co-pending U.S. Provisional Patent Application, Ser. No. 60/420,557 filed Oct. 22, 2002, and entitled “VAPOR ESCAPE MICROCHANNEL HEAT EXCHANGER WITH SELF ATTACHMENT MEANS”. The Provisional Patent Application, Ser. No. 60/420,557 filed Oct. 22, 2002, and entitled “VAPOR ESCAPE MICROCHANNEL HEAT EXCHANGER WITH SELF ATTACHMENT MEANS” is also hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
596062 | Firey | Dec 1897 | A |
2039593 | Hubbuch et al. | May 1936 | A |
2273505 | Florian | Feb 1942 | A |
3361195 | Meyerhoff et al. | Jan 1968 | A |
3771219 | Tuzi et al. | Nov 1973 | A |
3817321 | von Cube et al. | Jun 1974 | A |
3948316 | Souriau | Apr 1976 | A |
4109707 | Wilson et al. | Aug 1978 | A |
4211208 | Lindner | Jul 1980 | A |
4312012 | Frieser et al. | Jan 1982 | A |
4450472 | Tuckerman et al. | May 1984 | A |
4467861 | Kiseev et al. | Aug 1984 | A |
4485429 | Mittal | Nov 1984 | A |
4516632 | Swift et al. | May 1985 | A |
4540115 | Hawrylo | Sep 1985 | A |
4561040 | Eastman et al. | Dec 1985 | A |
4567505 | Pease et al. | Jan 1986 | A |
4573067 | Tuckerman et al. | Feb 1986 | A |
4574876 | Aid | Mar 1986 | A |
4644385 | Nakanishi et al. | Feb 1987 | A |
4758926 | Herrell et al. | Jul 1988 | A |
4866570 | Porter | Sep 1989 | A |
4868712 | Woodman | Sep 1989 | A |
4893174 | Yamada et al. | Jan 1990 | A |
4894709 | Phillips et al. | Jan 1990 | A |
4896719 | O'Neill et al. | Jan 1990 | A |
4903761 | Cima | Feb 1990 | A |
4908112 | Pace | Mar 1990 | A |
4938280 | Clark | Jul 1990 | A |
5009760 | Zare et al. | Apr 1991 | A |
5016090 | Galyon et al. | May 1991 | A |
5016138 | Woodman | May 1991 | A |
5043797 | Lopes | Aug 1991 | A |
5057908 | Weber | Oct 1991 | A |
5070040 | Pankove | Dec 1991 | A |
5083194 | Bartilson | Jan 1992 | A |
5088005 | Ciaccio | Feb 1992 | A |
5099311 | Bonde et al. | Mar 1992 | A |
5099910 | Walpole et al. | Mar 1992 | A |
5125451 | Matthews | Jun 1992 | A |
5131233 | Cray et al. | Jul 1992 | A |
5161089 | Chu et al. | Nov 1992 | A |
5179500 | Koubek et al. | Jan 1993 | A |
5203401 | Hamburgen et al. | Apr 1993 | A |
5218515 | Bernhardt | Jun 1993 | A |
5228502 | Chu et al. | Jul 1993 | A |
5230564 | Bartilson et al. | Jul 1993 | A |
5232047 | Matthews | Aug 1993 | A |
5239200 | Messina et al. | Aug 1993 | A |
5239443 | Fahey et al. | Aug 1993 | A |
5263251 | Matthews | Nov 1993 | A |
5265670 | Zingher | Nov 1993 | A |
5269372 | Chu et al. | Dec 1993 | A |
5274920 | Mathews | Jan 1994 | A |
5275237 | Rolfson et al. | Jan 1994 | A |
5281026 | Bartilson et al. | Jan 1994 | A |
5308429 | Bradley | May 1994 | A |
5309319 | Messina | May 1994 | A |
5310440 | Zingher | May 1994 | A |
5316077 | Reichard | May 1994 | A |
5317805 | Hoopman et al. | Jun 1994 | A |
5325265 | Turlik et al. | Jun 1994 | A |
5346000 | Schlitt | Sep 1994 | A |
5380956 | Loo et al. | Jan 1995 | A |
5383340 | Larson et al. | Jan 1995 | A |
5386143 | Fitch | Jan 1995 | A |
5388635 | Gruber et al. | Feb 1995 | A |
5421943 | Tam et al. | Jun 1995 | A |
5427174 | Lomolino et al. | Jun 1995 | A |
5436793 | Sanwo et al. | Jul 1995 | A |
5459099 | Hsu | Oct 1995 | A |
5490117 | Oda et al. | Feb 1996 | A |
5508234 | Dusablon, Sr. et al. | Apr 1996 | A |
5514832 | Dusablon, Sr. et al. | May 1996 | A |
5514906 | Love et al. | May 1996 | A |
5544696 | Leland | Aug 1996 | A |
5548605 | Benett et al. | Aug 1996 | A |
5575929 | Yu et al. | Nov 1996 | A |
5585069 | Zanzucchi et al. | Dec 1996 | A |
5641400 | Kaltenbach et al. | Jun 1997 | A |
5658831 | Layton et al. | Aug 1997 | A |
5675473 | McDunn et al. | Oct 1997 | A |
5692558 | Hamilton et al. | Dec 1997 | A |
5696405 | Weld | Dec 1997 | A |
5703536 | Davis et al. | Dec 1997 | A |
5704416 | Larson et al. | Jan 1998 | A |
5727618 | Mundinger et al. | Mar 1998 | A |
5740013 | Roesner et al. | Apr 1998 | A |
5763951 | Hamilton et al. | Jun 1998 | A |
5768104 | Salmonson et al. | Jun 1998 | A |
5774779 | Tuchinskiy | Jun 1998 | A |
5800690 | Chow et al. | Sep 1998 | A |
5801442 | Hamilton et al. | Sep 1998 | A |
5839290 | Nazeri | Nov 1998 | A |
5921087 | Bhatia et al. | Jul 1999 | A |
5945217 | Hanrahan | Aug 1999 | A |
5978220 | Frey et al. | Nov 1999 | A |
5993750 | Ghosh et al. | Nov 1999 | A |
5997713 | Beetz, Jr. et al. | Dec 1999 | A |
5998240 | Hamilton et al. | Dec 1999 | A |
6007309 | Hartley | Dec 1999 | A |
6019165 | Batchelder | Feb 2000 | A |
6023934 | Gold | Feb 2000 | A |
6034872 | Chrysler et al. | Mar 2000 | A |
6039114 | Becker et al. | Mar 2000 | A |
6054034 | Soane et al. | Apr 2000 | A |
6068752 | Dubrow et al. | May 2000 | A |
6090251 | Sundberg et al. | Jul 2000 | A |
6096656 | Matzke et al. | Aug 2000 | A |
6100541 | Nagle et al. | Aug 2000 | A |
6101715 | Fuesser et al. | Aug 2000 | A |
6119729 | Oberholzer et al. | Sep 2000 | A |
6126723 | Drost et al. | Oct 2000 | A |
6129145 | Yamamoto et al. | Oct 2000 | A |
6129260 | Andrus et al. | Oct 2000 | A |
6131650 | North et al. | Oct 2000 | A |
6140860 | Sandhu et al. | Oct 2000 | A |
6146103 | Lee et al. | Nov 2000 | A |
6159353 | West et al. | Dec 2000 | A |
6167948 | Thomas | Jan 2001 | B1 |
6174675 | Chow et al. | Jan 2001 | B1 |
6176962 | Soane et al. | Jan 2001 | B1 |
6182742 | Takahashi et al. | Feb 2001 | B1 |
6186660 | Kopf-Sill et al. | Feb 2001 | B1 |
6206022 | Tsai et al. | Mar 2001 | B1 |
6210986 | Arnold et al. | Apr 2001 | B1 |
6216343 | Leland et al. | Apr 2001 | B1 |
6221226 | Kopf-Sill | Apr 2001 | B1 |
6234240 | Cheon | May 2001 | B1 |
6238538 | Parce et al. | May 2001 | B1 |
6253832 | Hallefalt | Jul 2001 | B1 |
6253835 | Chu et al. | Jul 2001 | B1 |
6257320 | Wargo | Jul 2001 | B1 |
6277257 | Paul et al. | Aug 2001 | B1 |
6301109 | Chu et al. | Oct 2001 | B1 |
6313992 | Hildebrandt | Nov 2001 | B1 |
6317326 | Vogel et al. | Nov 2001 | B1 |
6321791 | Chow | Nov 2001 | B1 |
6322753 | Lindberg et al. | Nov 2001 | B1 |
6324058 | Hsiao | Nov 2001 | B1 |
6330907 | Ogushi et al. | Dec 2001 | B1 |
6336497 | Lin | Jan 2002 | B1 |
6337794 | Agonafer et al. | Jan 2002 | B1 |
6351384 | Daikoku et al. | Feb 2002 | B1 |
6366462 | Chu et al. | Apr 2002 | B1 |
6366467 | Patel et al. | Apr 2002 | B1 |
6367544 | Calaman | Apr 2002 | B1 |
6388317 | Reese | May 2002 | B1 |
6396706 | Wohlfarth | May 2002 | B1 |
6397932 | Calaman et al. | Jun 2002 | B1 |
6400012 | Miller et al. | Jun 2002 | B1 |
6406605 | Moles | Jun 2002 | B1 |
6415860 | Kelly et al. | Jul 2002 | B1 |
6417060 | Tavkhelidze et al. | Jul 2002 | B2 |
6424531 | Bhatti et al. | Jul 2002 | B1 |
6431260 | Agonafer et al. | Aug 2002 | B1 |
6437981 | Newton et al. | Aug 2002 | B1 |
6438984 | Novotny et al. | Aug 2002 | B1 |
6443222 | Yun et al. | Sep 2002 | B1 |
6444461 | Knapp et al. | Sep 2002 | B1 |
6457515 | Vafai et al. | Oct 2002 | B1 |
6459581 | Newton et al. | Oct 2002 | B1 |
6466442 | Lin | Oct 2002 | B2 |
6477045 | Wang | Nov 2002 | B1 |
6492200 | Park et al. | Dec 2002 | B1 |
6519151 | Chu et al. | Feb 2003 | B2 |
6533029 | Phillips | Mar 2003 | B1 |
6536516 | Davies et al. | Mar 2003 | B2 |
6537437 | Galambos et al. | Mar 2003 | B1 |
6543521 | Sato et al. | Apr 2003 | B1 |
6553253 | Chang | Apr 2003 | B1 |
6578626 | Calaman et al. | Jun 2003 | B1 |
6581388 | Novotny et al. | Jun 2003 | B2 |
6587343 | Novotny et al. | Jul 2003 | B2 |
6588498 | Reyzin et al. | Jul 2003 | B1 |
6591625 | Simon | Jul 2003 | B1 |
6600220 | Barber et al. | Jul 2003 | B2 |
6601643 | Cho et al. | Aug 2003 | B2 |
6606251 | Kenny, Jr. et al. | Aug 2003 | B1 |
6609560 | Cho et al. | Aug 2003 | B2 |
6632655 | Mehta et al. | Oct 2003 | B1 |
6632719 | DeBoer et al. | Oct 2003 | B1 |
6651735 | Cho et al. | Nov 2003 | B2 |
6729383 | Cannell et al. | May 2004 | B1 |
6743664 | Liang et al. | Jun 2004 | B2 |
6775996 | Cowans | Aug 2004 | B2 |
20010016985 | Insley et al. | Aug 2001 | A1 |
20010024820 | Mastromatteo et al. | Sep 2001 | A1 |
20010045270 | Bhatti | Nov 2001 | A1 |
20010046703 | Burns et al. | Nov 2001 | A1 |
20020075645 | Kitano et al. | Jun 2002 | A1 |
20020096312 | Korin | Jul 2002 | A1 |
20020121105 | McCarthy, Jr. et al. | Sep 2002 | A1 |
20020134543 | Estes et al. | Sep 2002 | A1 |
20030062149 | Goodson et al. | Apr 2003 | A1 |
20030121274 | Wightman | Jul 2003 | A1 |
20030213580 | Philpott et al. | Nov 2003 | A1 |
20040040695 | Chesser et al. | Mar 2004 | A1 |
20040052049 | Wu et al. | Mar 2004 | A1 |
20040089008 | Tilton et al. | May 2004 | A1 |
20040125561 | Gwin et al. | Jul 2004 | A1 |
20040160741 | Moss et al. | Aug 2004 | A1 |
20040188069 | Tomioka et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
1-256775 | Oct 1989 | JP |
10-99592 | Apr 1998 | JP |
2000-277540 | Oct 2000 | JP |
2001-326311 | Nov 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20040104012 A1 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
60420557 | Oct 2002 | US |