Variable abrasive polishing pad for mechanical and chemical-mechanical planarization

Information

  • Patent Grant
  • 6309282
  • Patent Number
    6,309,282
  • Date Filed
    Friday, September 8, 2000
    25 years ago
  • Date Issued
    Tuesday, October 30, 2001
    24 years ago
Abstract
An abrasive polishing pad for planarizing a substrate. In one embodiment, the abrasive polishing pad has a planarizing surface with a first planarizing region and a second planarizing region. The first planarizing region has a first abrasiveness and the second planarizing region has a second abrasiveness different than the first abrasiveness of the first region. The polishing pad preferably has a plurality of abrasive elements at the planarizing surface in at least one of the first or second planarizing regions. The abrasive elements may be abrasive particles fixedly suspended in a suspension medium, contact/non-contact regions on the pad, or other elements that mechanically remove material from the wafer. In operation of a preferred embodiment, the lesser abrasive of the first and second planarizing regions contacts a first area of the wafer where the relative velocity between the wafer and the polishing pad is relatively high, and the more abrasive of the first and second planarizing regions contacts a second area of the wafer where the relative velocity between the wafer and the polishing pad is relatively low. The different abrasivenesses of the first and second planarizing regions compensate for variations in relative velocities across the face of the wafer to more uniformly planarize the wafer.
Description




TECHNICAL FIELD




The present invention relates to polishing pads used in mechanical and/or chemical-mechanical planarization of substrates, and more particularly to a polishing pad with an abrasive planarizing surface.




BACKGROUND OF THE INVENTION




Chemical-mechanical planarization (“CMP”) processes remove material from the surface of semiconductor wafers or other substrates in the production of integrated circuits.

FIG. 1

schematically illustrates a CMP machine


10


with a platen


20


, a wafer carrier


30


, and a polishing pad


40


. The polishing pad


40


may be a conventional polishing pad made from a continuous phase matrix material (e.g., polyurethane), or it may be an abrasive polishing pad made from abrasive particles fixedly dispersed in a suspension medium. The planarizing liquid


44


may be a conventional CMP slurry with abrasive particles and chemicals that remove material from the wafer, or the planarizing liquid


44


may be a planarizing solution without abrasive particles. In most CMP applications, conventional CMP slurries are used on conventional polishing pads, but planarizing solutions without abrasive particles are used on abrasive polishing pads.




The CMP machine


10


also has an under pad


25


attached to an upper surface


22


of the platen


20


and the lower surface of the polishing pad


40


. A drive assembly


26


rotates the platen


20


(as indicated by arrow A), or it reciprocates the platen back and forth (as indicated by arrow B). Since the polishing pad


40


is attached to the under pad


25


, the polishing pad


40


moves with the platen


20


.




The wafer carrier


30


has a lower surface


32


to which a wafer


12


may be attached, or the wafer


12


may be attached to a resilient pad


34


positioned between the wafer


12


and the lower surface


32


. The wafer carrier


30


may be a weighted, free-floating wafer carrier; or an actuator assembly


36


may be attached to the wafer carrier


30


to impart axial and/or rotational motion (indicated by arrow C and arrow D, respectively).




To planarize the wafer


12


with the CMP machine


10


, the wafer carrier


30


presses the wafer


12


face-downward against the polishing pad


40


, and at least one of the platen


20


or the wafer carrier


30


moves relative to the other to move the wafer


12


across the planarizing surface


42


. As the face of the wafer


12


moves across the planarizing surface


42


, the polishing pad


40


and/or planarizing solution


44


continually remove material from the face of the wafer


12


.




CMP processes must consistently and accurately produce a uniform planar surface on the wafer to enable precise circuit and device patterns to be formed with photolithography techniques. As the density of integrated circuits increases, it is often necessary to accurately focus the critical dimensions of the photo-patterns to within a tolerance of approximately 0.1 μm. Focusing photo patterns to such small tolerances, however, is difficult when the planarized surface of the wafer is not uniformly planar. Thus, CMP processes must create a highly uniform planar surface.




One problem with the CMP processes is that the surface of the wafer may not be uniformly planar because the rate at which the thickness of the wafer decreases (the “polishing rate”) may vary from one area of the wafer to another. The polishing rate depends, in part, on the relative linear velocity between the surface of the wafer and the portion of the planarizing surface contacting the wafer. The linear velocity of the planarizing surface of a circular, rotating polishing pad varies across the planarizing surface of the pad in proportion to the radial distance from the center of the pad. Similarly, the linear velocity also varies across the front face of the wafer in proportion to the radial distance from the center of the wafer. The variation of linear velocities across the face of the wafer and planarizing surface of the polishing pad creates a relative velocity gradient between the wafer and the polishing pad. In general, the relative velocity gradient between the wafer and the pad causes the polishing rate to vary across the face of the wafer in a center-to-edge profile where the perimeter of the wafer polishes faster than the center of the wafer.




Several devices and concepts have been developed to reduce the center-to-edge planarizing profile across wafers. For example, U.S. Pat. No. 5,020,283 to Tuttle discloses a non-abrasive polishing pad with voids in the surface of the pad. The area of the planarizing surface occupied by the voids increases with increasing radial distance to reduce the contact area between the wafer and an abrasive slurry on the surface of the polishing pad towards the perimeter of the pad. Thus, at the periphery of the pad where the linear velocity of the pad is high, the voids reduce the polishing rate of the wafer compared to a planarizing surface without voids.




Although the non-abrasive polishing pad of U.S. Pat. No. 5,020,283 reduces the nonuniformity in polishing rates across a wafer, it may not provide adequate control of the polishing rate to produce a uniformly planar surface on the wafer. The pad of U.S. Pat. No. 5,020,283 seeks to control the polishing rate across the wafer by reducing contact area between the wafer and the slurry at selected areas on the pad. However, the distribution of the slurry between the wafer and the pad may not be uniform under the wafer because the perimeter of the wafer wipes the slurry off the planarizing surface leaving less slurry under the center of the wafer. Thus, even though existing devices control the contact area between the wafer and the pad at selected regions of the pad, they may not effectively control the polishing rate across the face of the wafer.




SUMMARY OF THE INVENTION




The present invention is an abrasive polishing pad for uniformly planarizing a semiconductor wafer or other substrate. In one embodiment, the abrasive polishing pad has a planarizing surface with a first planarizing region and a second planarizing region. The first planarizing region has a first abrasiveness and the second planarizing region has a second abrasiveness different than the first abrasiveness of the first region. The polishing pad preferably has a plurality of abrasive elements at the planarizing surface in at least one of the first or second planarizing regions. The abrasive elements may be abrasive particles fixedly suspended in a suspension medium, contact/non-contact regions on the pad, or other elements that mechanically remove material from the wafer. In the operation of a preferred embodiment, the lesser abrasive of the first and second planarizing regions contacts a first area of the wafer where the relative velocity between the wafer and the polishing pad is relatively high, and the more abrasive of the first and second planarizing regions contacts a second area of the wafer where the relative velocity between the wafer and the polishing pad is relatively low. The different abrasivenesses of the first and second planarizing regions compensate for variations in relative velocities across the face of the wafer to more uniformly planarize the wafer.




To control the abrasiveness of the first and planarizing second regions, several embodiments of abrasive polishing pads in accordance with the invention vary a characteristic of the abrasive elements in the first and second planarizing regions. In one embodiment, for example, the first region may have a higher number of abrasive elements per unit of surface area on the planarizing surface than the second region. In another embodiment, the first region may have abrasive elements with a size or shape that is more abrasive than that of the abrasive elements in the second region. In still another embodiment, the first region may have abrasive particles made from one material and the second region may have abrasive particles made from a different, less abrasive material.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic cross-sectional view of a planarizing machine for planarizing a semiconductor wafer in accordance with the prior art.





FIG. 2

is a partial schematic cross-sectional view of an embodiment of a planarizing machine and a polishing pad in accordance with the invention.





FIG. 3

is a schematic plan view of the planarizing machine and the polishing pad of FIG.


2


.





FIG. 4

is a schematic plan view of another embodiment of a polishing pad in accordance with the invention.





FIG. 5

is a schematic plan view of another embodiment of a polishing pad in accordance with the invention.





FIG. 6

is a partial schematic cross-sectional view of another embodiment of a polishing pad in accordance with the invention.





FIG. 7

is a partial schematic cross-sectional view of another embodiment of a polishing pad in accordance with the invention.





FIG. 8

is a partial schematic cross-sectional view of another embodiment of a polishing pad in accordance with the invention.





FIG. 9

is a partial schematic cross-sectional view of another embodiment of a polishing pad in accordance with the invention.





FIG. 10

is a partial schematic cross-sectional view of another embodiment of a polishing pad in accordance with the invention.











DETAILED DESCRIPTION OF THE INVENTION




The present invention is an abrasive polishing pad for planarizing semiconductor wafers, baseplates for field emission displays, and other related substrates. An aspect of an embodiment of the invention is that the polishing pad has abrasive planarizing regions in which a first region has an abrasiveness sufficient to remove material from a wafer and a second region has an abrasiveness different than that of the first region. Another aspect of an embodiment of the invention is that the polishing pad has abrasive elements fixedly positioned in the first and second regions to control the abrasiveness of the pad under selected sections of the wafer. Thus, unlike conventional non-abrasive pads with an abrasive slurry, the abrasiveness acting against specific sections of the wafer may be effectively controlled to increase the uniformity of the polishing rate across the wafer.

FIGS. 2-11

, in which like reference numbers refer to like parts, illustrate various embodiments of planarizing machines and polishing pads in accordance with the invention.





FIG. 2

is a partial schematic cross-sectional view and

FIG. 3

is a schematic plan view that illustrate an embodiment of a planarizing machine


100


with an abrasive polishing pad


140


in accordance with the invention. The planarizing machine


100


has a platen


120


, an under pad


125


attached to the platen


120


, and a wafer carrier


130


positioned over the platen


120


. The abrasive polishing pad


140


is attached to the under pad


125


. The abrasive polishing pad


140


has a planarizing surface


145


, a first abrasive region


180


with a first abrasiveness capable of removing material from a wafer


150


, and a second abrasive region


185


with a second abrasiveness different than the first abrasiveness of the first region


180


.




The abrasive polishing pad


140


is preferably a body made from a matrix material


142


and a plurality of abrasive elements


144


. The abrasive elements


144


are preferably formed from or distributed within the matrix material


142


, and they are capable of removing material from a lower surface


155


of the wafer


150


. In general, the abrasive elements


144


are preferably abrasive particles


147


fixedly distributed within the matrix material


142


, contact regions


148


formed from the matrix material


142


, a combination of abrasive particles


147


and contact regions


148


, or other fixed mechanical features on the planarizing surface


145


capable of removing material from the wafer


150


. As discussed in greater detail below, the abrasiveness of the first and second regions


180


and


185


is controlled by the size, shape, distribution and composition of the abrasive elements


144


.





FIG. 3

further illustrates an embodiment of the operation of a circular abrasive polishing pad


140


in which the first abrasive region


180


is more abrasive than the second abrasive region


185


. The polishing pad


140


rotates clockwise (indicated by arrow E) about a polishing pad axis


160


, and the wafer


150


rotates clockwise (indicated by arrow F) about a wafer axis


162


. Depending on the radii and angular velocities of the pad


140


and the wafer


150


, the relative velocity between the pad


140


and the wafer


150


is generally less at an outer point


170


of the wafer


150


than it is at an inner point


175


because the wafer


150


and the polishing pad


140


rotate in the same direction. To compensate for the low relative velocity at the outer point


170


of the wafer


150


, the more abrasive first region


180


is positioned radially outwardly from the less abrasive second region


185


. Additionally, the wafer carrier


130


presses the wafer


150


against the polishing pad


140


to position areas on the wafer


150


with a low relative velocity over the more abrasive first region


180


and areas on the wafer


150


with a high relative velocity over the less abrasive second region


185


. As a result, the more abrasive first region


180


increases the polishing rate at areas on the wafer where the relative velocity is low, and the less abrasive second region


185


reduces the polishing rate at areas on the wafer


150


where the relative velocity is high. Thus, even though the relative velocity between the pad


140


and the wafer


150


varies across the face of the wafer


150


, the polishing pad


140


provides a surface with fixed abrasive regions upon which the wafer


150


may be selectively positioned to more uniformly polish the surface of the wafer.




An advantage of an embodiment of the polishing pad


140


is that it compensates for the non-uniform relative velocity between the polishing pad


140


and the wafer


150


. Unlike conventional non-abrasive polishing pads that use an abrasive slurry, the distribution of the abrasive elements


144


under the wafer


150


may be accurately controlled because the abrasive elements


144


are fixed with respect to the planarizing surface


145


of the polishing pad


140


. Additionally, unlike conventional non-abrasive or abrasive polishing pads, the abrasiveness across the planarizing surface


145


of the polishing pad


140


is varied to provide high abrasive regions under low relative velocity areas on the wafer and low abrasive regions under high relative velocity areas on the wafer. As a result, the polishing rate of the high relative velocity areas on the wafer is reduced, while the polishing rate of low relative velocity areas on the wafer is increased. The preferred embodiment of the polishing pad


140


, therefore, enhances the uniformity of the planarized surface of the wafer


150


.




In addition to the circular polishing pad


140


and wafer


150


that rotate clockwise (illustrated in FIG.


3


), the polishing pad


140


may have different shapes and both the pad


140


and the wafer


150


may move in any direction that creates relative motion between the pad


140


and the wafer


150


. To produce the relative motion between the pad


140


and the wafer


150


, the polishing pad


140


and/or the wafer


155


may translate and/or rotate with respect to one another. In accordance with an embodiment of the invention, the more abrasive of the first and second regions


180


and


185


is positioned to engage the low relative velocity areas on the wafer


150


, and the less abrasive of the first and second regions


180


and


185


is positioned to engage the high relative velocity areas on the wafer


150


.





FIG. 4

is a schematic plan view of another embodiment of an abrasive polishing pad


140


(


a


) that has a first abrasive region


180


with a first abrasiveness, a second abrasive region


185


with a second abrasiveness, and a third abrasive region


187


with a third abrasiveness. In a preferred embodiment, the first abrasiveness of the first region


180


is greater than the second abrasiveness of the second region


185


, and the second abrasiveness of the second region


185


is greater than a third abrasiveness of the third region


187


. The polishing pad


140


(


a


) closely tailors the abrasiveness of the planarizing surface to the relative velocities between the polishing pad


140


and the wafer


150


. It will be appreciated that the present invention includes additional embodiments with more than three abrasive regions to further tailor the abrasiveness of the planarizing surface to the relative velocity gradient between the polishing pad


140


and the wafer


150


.




Referring to

FIGS. 3 and 4

together, the abrasiveness of a given region is preferably constant throughout the region to provide sharp demarcation boundaries


197


between areas of different abrasiveness on the planarizing surface


145


of the pads. Alternatively, the abrasiveness across a width


195


of a region may vary so that the abrasiveness gradually changes from one region to another across the planarizing surface


145







FIG. 5

is a schematic view of another embodiment of a polishing pad


140


(


b


) in which the polishing pad


140


(


b


) and the wafer carrier


130


rotate in opposite directions (indicated by arrows G and H). The relative velocity between the polishing pad


140


(


b


) and the wafer


150


is accordingly greater at the outerpoint


170


of the wafer


150


than at the inner point


175


. Therefore, in the embodiment shown in

FIG. 5

, the more abrasive first region


180


is positioned to engage the inner point


175


and the less abrasive second region


185


is positioned to engage the outer point


170


.





FIGS. 6-10

are partial schematic cross-sectional views that illustrate additional embodiments of polishing pads


140


in which the first and second abrasive regions


180


and


185


have different abrasivenesses. The abrasiveness of the first and second regions


180


and


185


is preferably controlled by altering the characteristics of the abrasive elements


144


from one region to another. Accordingly, since the abrasive elements


144


are fixed with respect to the pad


140


, the abrasiveness of the planarizing surface


145


is a static characteristic of the polishing pads


140


that is not altered by the wafer during planarization.





FIG. 6

illustrates an embodiment of the polishing pad


140


in which the abrasive elements


144


are abrasive particles


147


fixedly dispersed in the matrix material


142


. Additionally, the first abrasive region


180


has a greater number of abrasive particle


147


per unit area at the planarizing surface


145


than the second abrasive region


185


. The first abrasive region


180


is accordingly more abrasive than the second abrasive region


185


. The abrasive particles


147


preferably occupy between 50% and 99% of the planarizing surface


145


in the first abrasive region


180


, and more preferably between 60% and 80%. Suitable abrasive particles include silicon dioxide, cerium oxide, aluminum oxide and. tantalum oxide particles.




In another embodiment of the invention (not shown), the abrasiveness of each region of the polishing pad


140


is controlled by varying the chemical composition of the abrasive particles from one region on the pad to another. For example, highly abrasive cerium oxide particles may be dispersed in the first abrasive region


180


and lesser abrasive silicon dioxide particles may be dispersed in the second abrasive region


185


. Other embodiments of polishing pads may disperse intermediately abrasive aluminum oxide or tantalum oxide particles to add a third abrasive region or alter the abrasiveness of the first or second abrasive regions


180


and


185


. In still other embodiments, the abrasiveness of a region may be controlled by a combination of particle density and particle composition. Referring again to

FIG. 6

, for example, the abrasive particles


147


in the first abrasive region


180


may be cerium oxide particles and the abrasive particles


147


in the second abrasive region


185


may be silicon dioxide particles.





FIG. 7

illustrates another embodiment of the polishing pad


140


in which the abrasiveness of the first and second regions


180


and


185


is controlled by the particle size of the abrasive particles


147


. The first abrasive region


180


preferably has large abrasive particles


147


(


a


) and the second abrasive region


185


preferably has small abrasive particles


147


(


b


). The first abrasive region


180


with the large abrasive particles


147


(


a


) is accordingly more abrasive than the second region


185


with the smaller abrasive particles


147


(


b


). The abrasive particles


147


(


a


) and


147


(


b


) are preferably between 0.015 μm and 1.5 μm in cross section, and more preferably less than 1.0 μm in cross section.





FIG. 8

illustrates another embodiment of the polishing pad


140


in which the abrasiveness of the first and second regions


180


and


185


is controlled by the external shape of the particles. The first abrasive region


180


preferably has relatively rough abrasive particles


147


(


c


) while the second abrasive region


185


preferably has smoother abrasive particles


147


(


d


). For example, the rough abrasive particles


147


(


c


) in the first abrasive region


180


may have sharp edges or other sharp projections. In contrast, the smoother abrasive particles


147


(


d


) in the second abrasive region


185


may be slightly less angular or have other shapes that are less abrasive than the rough abrasive particles


147


(


c


).





FIG. 9

illustrates another embodiment of the polishing pad


140


in which the abrasive elements


144


are contact regions


148


formed from the matrix material


142


and defined by the polishing pad face, and separated from each other by non-contact regions


149


defined by voids in the face. The abrasive elements


144


may be a combination of the contact regions


148


and the abrasive particles


147


such that the abrasive contact regions


148


abrade the surface of a wafer (not shown) without abrasive slurries. Suitable patterns of contact regiors


148


and non-contact regions


149


to vary the residence time of the wafer on the abrasive contact regions


148


are disclosed in U.S. Pat. No. 5,020,283, which is herein incorporated by reference. However, other patterns of contact regions


148


and non-contact regions


149


may also be used to vary the abrasiveness of the polishing pad


140


. To vary the abrasiveness from the first region


180


to the second region


185


, the first abrasive region


180


preferably has a different density of contact regions


148


than the second abrasive region


185


. In an alternative embodiment (not shown), the shape of the abrasive regions


148


in the first region


180


may be different than the shape of the abrasive regions


148


in the second region


185


.





FIG. 10

illustrates another embodiment of the polishing pad


140


in which the abrasive elements


144


are both abrasive particles


147


and contact regions


148


. The first abrasive region


180


preferably has a greater number of abrasive particles


147


per unit surface area than the second abrasive region


185


. Additionally, the first abrasive region


180


also preferably has larger contact regions


148


than the second abrasive region


185


to increase the contact area between the wafer


155


and the planarizing surface


145


in the first abrasive region


180


. Accordingly, the first abrasive region


180


of the polishing pad


140


illustrated in

FIG. 10

has a much higher abrasiveness than the second abrasive region


185


.




From the foregoing it will be appreciated that although specific embodiments of the invention have been described herein for purposes cf illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.



Claims
  • 1. An abrasive polishing pad for planarizing a surface of a substrate, comprising a body having a planarizing surface including a first planarizing region and a second planarizing region, the first planarizing region having a first abrasiveness and the second planarizing region having a second abrasiveness different than the first abrasiveness of the first region.
  • 2. The polishing pad of claim 1 wherein the body has a plurality of abrasive elements in at least one of the first and second planarizing regions.
  • 3. The polishing pad of claim 2 wherein the abrasive elements comprise abrasive particles fixedly dispersed in the body, and the first region of the planarizing surface has a first density of abrasive particles and the second region has a second density of abrasive particles different than the first density of the first region.
  • 4. The polishing pad of claim 3 wherein the first density of abrasive particles is greater than the second density of abrasive particles.
  • 5. The polishing pad of claim 2 wherein the abrasive elements comprise abrasive particles, the first region has a plurality of abrasive particles having a first chemical composition and the second region has a plurality of abrasive particles having a second chemical composition, the first chemical composition having a different abrasiveness than the second chemical composition.
  • 6. The polishing pad of claim 5 wherein the first chemical composition is more abrasive than the second chemical composition.
  • 7. The polishing pad of claim 2 wherein the first planarizing region has a plurality of abrasive elements having a first size and the second planarizing region has a plurality of abrasive elements having a second size, the first size being different than the second size.
  • 8. The polishing pad of claim 7 wherein the first size is greater than the second size.
  • 9. The polishing pad of claim 2 wherein the first planarizing region has a plurality of abrasive elements having a first shape and the second planarizing region has a plurality of abrasive elements having a second shape, the first shape having a different abrasiveness than the second shape.
  • 10. The polishing pad of claim 9 wherein the first shape is more abrasive than the second shape.
  • 11. The polishing pad of claim 1 wherein the abrasive elements comprise contact regions and non-contact regions formed from the body, and the first planarizing region has contact regions defining a first abrasive surface area and the second planarizing region has contact regions defining a second abrasive surface area, the first abrasive surface area being a different size than the second abrasive surface area.
  • 12. The polishing pad of claim 1 wherein the body is circular and the first planarizing region and the second planarizing region are substantially concentric bands on the planarizing surface of the polishing pad.
  • 13. The polishing pad of claim 12 wherein the first planarizing region is positioned radially outwardly from the second planarizing region.
  • 14. The polishing pad of claim 12 wherein the first planarizing region is positioned radially inwardly from the second planarizing region.
  • 15. The polishing pad of claim 1 wherein the first planarizing region of the planarizing surface has a first density of contact regions and the second planarizing region has a second density of contact regions, the first density being different than the second density.
  • 16. The polishing pad of claim 15 wherein the first density is greater than the second density.
  • 17. An abrasive polishing pad for planarizing a surface of a substrate, comprising:a polishing body having a planarizing surface facing the wafer with a first planarizing region and a second planarizing region; and a plurality of abrasive elements in at least the first planarizing region of the planarizing surface, the abrasive elements being capable of removing material from the substrate.
  • 18. The polishing pad of claim 17 wherein the second planarizing region has a plurality of abrasive elements, the first planarizing region being more abrasive than the second planarizing region.
  • 19. The polishing pad of claim 18, further comprising a third planarizing region less abrasive than the second planarizing region.
  • 20. The polishing pad of claim 19 wherein the third planarizing region has a plurality of abrasive elements.
  • 21. The polishing pad of claim 17, further comprising a third planarizing region, and wherein the first planarizing region has a first plurality of abrasive elements, the second planarizing region has a second plurality of abrasive elements, and the third planarizing region has a third plurality of abrasive elements.
  • 22. The polishing pad of claim 17 wherein the abrasive elements comprise abrasive particles fixedly dispersed in at least a portion of the body.
  • 23. The polishing pad of claim 17 wherein the abrasive elements comprise contact regions formed from the body at the planarizing surface.
  • 24. An abrasive polishing pad for planarizing a surface of a substrate, comprising a polishing body having a first volumetric region and a second volumetric region, the first volumetric region having a first planarizing surface with a first abrasiveness and the second volumetric region having a second planarizing with a, second abrasiveness, wherein the first abrasiveness is greater than the second abrasiveness.
  • 25. The polishing pad of claim 24 wherein the first abrasive elements are distributed substantially uniformly throughout the first volumetric region and the second abrasive elements are distributed substantially uniformly throughout the second volumetric region.
  • 26. The polishing pad of claim 24 wherein the first volumetric region has a first density of abrasive elements and the second volumetric region has a second density of second abrasive elements.
  • 27. The polishing pad of claim 26 wherein the first density of the first volumetric region comprises a first plurality of abrasive elements per cubic inch and the second density of the second volumetric region comprises a second plurality of abrasive elements per cubic inch.
  • 28. The polishing pad of claim 24, further comprising a third volumetric region having a third planarizing surface facing the wafer.
  • 29. The polishing pad of claim 24 wherein the abrasive elements comprise abrasive particles fixedly dispersed in the body.
  • 30. An abrasive polishing pad for planarizing the surface of a semiconductor wafer, comprising:a body having a first planarizing section with a first planarizing surface and a second planarizing section with a second planarizing surface; and a plurality of abrasive particles fixedly suspended in at least the first planarizing section, the first planarizing section having a first abrasiveness and the second planarizing section having a second abrasiveness less than the first abrasiveness of the first section.
  • 31. The polishing pad of claim 30 wherein the first and second planarizing surfaces have a contour defined by a pattern of contact regions and non-contact regions.
  • 32. The polishing pad of claim 30 wherein the first planarizing section has a first plurality of abrasive particles per unit area and the second planarizing section has a second plurality of abrasive particles per unit area less than the first plurality of abrasive particles per unit area of the first section.
  • 33. An abrasive polishing pad for planarizing a surface of a substrate, comprising a body having a planarizing surface including a first planarizing region and a second planarizing region, the first planarizing region having a first roughness and the second planarizing region having a second roughness less than the first roughness of the first planarizing region.
  • 34. The polishing pad of claim 33 wherein the first planarizing region has a first plurality of abrasive elements and the second planarizing region has a second plurality of abrasive elements.
  • 35. The polishing pad of claim 33 wherein the abrasive elements comprise abrasive particles fixedly dispersed with the body.
  • 36. The polishing pad of claim 35 wherein the polishing pad is circular and the first planarizing region is positioned radially outwardly from the second planarizing region.
  • 37. The polishing pad of claim 33 wherein the abrasive elements comprise contact regions at the planarizing surface.
  • 38. An apparatus for planarizing a substrate, comprising:a pad support structure; an abrasive polishing pad positioned on the support structure, the abrasive polishing pad having a planarizing surface with a first region and a second region, wherein the first region has a first abrasiveness and the second region has a second abrasiveness different than the first abrasiveness of the first region; and a substrate carrier to which the substrate may be attached, the substrate carrier being positionable over the first and second regions of the planarizing surface and adapted to selectively engage the substrate with the planarizing surface, wherein at least one of the polishing pad and the substrate carrier is movable with respect to the other to impart relative motion therebetween.
  • 39. The apparatus of claim 41 wherein the polishing pad has a plurality of abrasive elements at the planarizing surface in at least the first region.
  • 40. The apparatus of claim 39 wherein the abrasive elements comprise abrasive particles fixedly dispersed in at least the first region.
  • 41. The apparatus of claim 39 wherein the abrasive elements comprise abrasive particles, the first region having a first plurality of abrasive particles per square inch of surface area and the second region having a second plurality of abrasive particle per square inch of surface area different than that of the first region.
  • 42. The apparatus of claim 39 wherein the abrasive elements comprise contact regions at the planarizing surface.
  • 43. An apparatus for planarizing a surface of a substrate, comprising:an abrasive polishing pad attached to a support structure, the polishing pad having a planarizing surface with a first planarizing region and a second planarizing region, the first planarizing region having a first roughness and the second planarizing region having a second roughness less than the first roughness of the first planarizing region; and a substrate carrier to which the substrate may be attached, the substrate carrier being positionable over the planarizing surface and adapted to selectively engage a first section of the substrate with the first planarizing region and a second section of the substrate with the second planarizing region.
  • 44. The apparatus of claim 43 wherein the polishing pad has a plurality of abrasive elements at the planarizing surface in at least the first planarizing region.
  • 45. The apparatus of claim 44 wherein the abrasive elements comprise abrasive particles fixedly dispersed throughout at least the first planarizing region.
  • 46. The apparatus of claim 44 wherein the abrasive elements comprise abrasive particles, the first planarizing region having a first plurality of abrasive particles per square inch of surface area and the second planarizing region having a second plurality of abrasive particle per square of surface area less than that of the first planarizing region.
  • 47. The apparatus of claim 44 wherein the abrasive elements comprise contact regions at the planarizing surface.
  • 48. A method for planarizing a substrate, comprising the steps of:pressing the substrate against a first abrasive region of an abrasive polishing pad and a second abrasive region of the abrasive polishing pad, the first abrasive region having a first abrasiveness and the second abrasive region having a second abrasiveness different than the first abrasiveness; and moving at least one of the polishing pad and the substrate with respect to the other to impart relative motion therebetween and abrade material from the substrate with the first and second abrasive regions.
  • 49. The method of claim 48 wherein the pressing step comprises engaging the wafer with the first and second abrasive regions simultaneously.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 09/378,243 filed Aug. 19, 1999, now U.S. Pat. No. 6,186,870 which is a continuation of U.S. patent application Ser. No. 08/834,524 filed Apr. 4, 1997 which issued as U.S. Pat. No. 6,062,958 on May 16, 2000.

US Referenced Citations (33)
Number Name Date Kind
1139817 Smith May 1915
2242877 Albertson May 1941
2309016 Ryan Jan 1943
2451295 Metzger et al. Oct 1948
2496352 Metzger et al. Feb 1950
3498010 Hagihara Mar 1970
3617347 Kuratomi Nov 1971
3841031 Walsh Oct 1974
4111666 Kalbow Sep 1978
4347689 Hammond Sep 1982
4514937 Gehrung et al. May 1985
4565771 Lynch et al. Jan 1986
4576612 Shukla et al. Mar 1986
4656790 Mukai et al. Apr 1987
4736475 Ekhoff Apr 1988
5012618 Price et al. May 1991
5020283 Tuttle Jun 1991
5127196 Morimoto et al. Jul 1992
5177908 Tuttle Jan 1993
5197999 Thomas Mar 1993
5213588 Wong et al. May 1993
5232875 Tuttle et al. Aug 1993
5250085 Mevissen Oct 1993
5297364 Tuttle Mar 1994
5433650 Winebarger Jul 1995
5435772 Yu Jul 1995
5454751 Wiand Oct 1995
5503592 Neumann Apr 1996
5534106 Cote et al. Jul 1996
5624303 Robinson Apr 1997
5645471 Strecker Jul 1997
6062958 Wright et al. May 2000
6186870 Wright et al. Feb 2001
Continuations (2)
Number Date Country
Parent 09/378243 Aug 1999 US
Child 09/657764 US
Parent 08/834524 Apr 1997 US
Child 09/378243 US